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Abstract. I have presented several simple results of mine related to graph spectra which in turn
appeared to be of some importance in the development of spectral graph theory. Results relevant to
Chemistry are included as well.

1 Introduction

Spectral graph theory is a mathematical theory in which linear algebra and graph theory
meet. For any graph matrix M we can build a spectral graph theory in which graphs are
studied by means of eigenvalues of the matrix M . This theory is called M -theory. In order to
avoid confusion, to any notion in this theory a prefix M - could be added (e.g., M -eigenvalues).
Frequently used graph matrices are the adjacency matrix A, the Laplacian L = D − A and
the signless Laplacian Q = D + A, where D is a diagonal matrix of vertex degrees. The
spectral graph theory includes all particular theories together with interaction tools.

Originally, A-theory was developed. The Q-theory has been established in last several
years.

The adjacency matrix A of a graph G, with n vertices, is the matrix whose element
aij is equal to the number of the edges, which lead from the vertex i to the vertex j. The
spectrum of the graph G is the set of solutions λi (1 = 1, . . . , n) of the characteristic equation
det(λI −A) = 0 of the matrix A, i. e. the family of eigenvalues of A.

We use standard notation Kn, Cn and Pn for the complete graph, cycle and the path on
n vertices and Kn1,n2 for the bicomplete graph on n1 + n2 vertices.

I was in position to take part in founding A-theory and Q-theory and was forced to
describe some basic results. Any educated mathematician would do approximately the same
in my position!

In general, I tend to simplify the things if possible, contrary to some researchers who want
to make everything complicate. The simplicity, in my opinion, is not a weakness of a theory
provided the theory is good.

My results include Theorems 2, 3, 4, 5, 6, 8, 9, 11, 12, 13 and 15 - 19, Definitions 1, 2, 5
and 7, constructions of some cospectral graphs (Section 4) and related formulas as described
in Sections 3 - 10. A special contribution was to show that the Hückel molecular orbital

1Recently W. So and W. Haemers asked who was first to observe that bipartite graphs are characterized
by their spectra (Theorem 3 below). That inspired me to prepare this paper.

2Mathematical Institute SANU, P.O. Box 367, 11000 Belgrade, Serbia, E-mail: ecvetkod@etf.rs

1



theory from Chemistry and the theory of graph spectra are essentially the same, as described
in Section 9. Most of these results appeared in my thesis [13] or/and in the monograph [18].

2 Thesis and the monograph

In my thesis [13], defended on May 27, 1971, I wrote:

While writing this paper, I have aimed at the following goals: 1. To supple-
ment the existing procedures of the spectral method by original contributions; 2.
To connect the results of various authors; 3. To show by concrete examples the
possibilities of application of the spectral method; 4. To expose in one place all
the important results of this discipline from a unique outlook.

The formal supervisor was D.S. Mitrinović but the thesis was accepted on the basis of
informal reports by L. Collatz and H. Sachs.

The thesis, originally prepared in Serbian, has been published in English in a condensed
form [13]. It attracted attention of American mathematician Richard Bellman who sent me
the following letter on July 29, 1972:

Dear Dr. Cvetković, I noted with great interest your paper ”Graphs and Their
Spectra”. Have you given any thought to extending these results and collecting
them in book form? If so, I would be glad to consider it for my Academic Press
series.

H. Sachs even earlier suggested to write a monograph with Deutscher Verlag der Wis-
senschaften.

This led after some time to publication of the book [18]. The book has been widely used
and cited a few thousand times in the literature.

3 Basic properties of graph spectra

I realized that the well established Perron-Frobenius theory of non-negative matrices is rel-
evant for the theory of graph spectra. In the thesis [13] and in the monograph [18] I have
collected all useful theorems from the Perron-Frobenius theory and classified basic implica-
tions of them.

Spectral properties of irreducible non-negative matrices are described by the following
theorem of Frobenius and this has several immediate corollaries.

Theorem 1. An irreducible non-negative matrix A always has a positive eigenvalue r that is
a simple root of the characteristic polynomial. The modulus of any other eigenvalue does not
exceed r. To the “maximal” eigenvalue r there corresponds a positive eigenvector. Moreover,
if A has h eigenvalues of modulus r, then these numbers are all distinct and are roots of the
equation λh−rh = 0. More generally: the whole spectrum [λ1 = r, λ2, . . . , λn] of A, regarded
as a system of points in the complex λ-plane, is mapped onto itself under a rotation of the
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plane by the angle
2π
h

. If h>1, then by a permutation of rows and the same permutation of
columns A can be put into the following “cyclic” form

A =

∥∥∥∥∥∥∥∥∥∥∥

O A12 O . . . O
O O A12 . . . O
...

. . .
O O O . . . Ah−1,h

Ah1 O O . . . O

∥∥∥∥∥∥∥∥∥∥∥
,

where there are square blocks along the main diagonal.

The adjacency matrix of an undirected multigraph G is symmetric (and, therefore, Her-
mitian) and the spectrum of G, containing only real numbers, according to Theorem 1 lies
in the segment [−r, r]. The largest eigenvalue r is also called the index of G.

For the smallest eigenvalue q of the spectrum of a graph G the inequality −r ≤ q ≤ 0
holds. For the graph without edges we have q = 0. Otherwise q ≤ −1.

According to the foregoing, the following theorem describes the fundamental spectral
properties of (undirected) graphs [13], [18].

Theorem 2. For the spectrum [λ1, λ2, . . . , λn] of an (undirected) graph G the following
statements holds:
1◦ The numbers λ1, λ2, . . . , λn are real and λ1 + λ2 + · · ·+ λn = 0.
2◦ If G contains no edges, we have λ1 = · · · = λn = 0.
3◦ If G contains at least one edge, we have

1 ≤ r ≤ n− 1 , (1)

−r ≤ q ≤ −1 . (2)

In (1) the upper bound is attained if and only if G is a complete graph, while the lower
bound is reached if and only if the components of G consist of graphs K2 and possibly K1. In
(2) the upper bound is reached if and only if the components of G are complete graphs, and
the lower bound if and only if a component of G having the greatest index is a bipartite graph.
If G is connected, the lower bound in (1) is replaced by 2 cos

π

n+ 1
. Then equality holds if

and only if G is a path.

The following theorem appeared in [13] as Theorem 4.10.

Theorem 3. A graph G is regular (of degree λ1) if and only if

nλ1 = λ2
1 + λ2

2 + · · ·+ λ2
n.

If equality holds, the number of components of G is equal to the multiplicity of the eigenvalue
λ1.

Thus regularity (together with the connectedness property) can be recognized from the
spectrum.
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The proof is based on the properties of the Rayleigh quotient. The theorem is implicitly
contained in [4] and [12].

Theorem 3 is very useful in many existing characterizations of regular graphs by their
spectra starting from characterizations of the cubic lattice graph [12]. Many examples can
be found in [24].

Next we turn to the bipartiteness of graphs.
It is proved in [4] that a bipartite graph has a symmetric spectrum. This fact was known

even earlier in chemical literature under the name the Pairing Theorem [7], [5]. In [8] a new
proof of this theorem and the proof of the inverse theorem are given:

Theorem 4.3 Connected, finite, undirected graph, without loops and with at least two ver-
tices, is bipartite if and only if, its spectrum, considered as a set of points on the number axis,
is symmetric with respect to the point zero.

This characterization of bipartite graphs appeared for the first time in my paper [8]. The
theorem appears also in my book ”Spectra of Graphs” as Theorem 3.11 on. p. 87, where
other related references can be found. The paper [8] appears in the book as reference [Cve1].

The proof in [8] uses the Frobenius theorem (Theorem 1) what nowadays can be considered
as shooting with cannons on small birds. In recent book [24] the proof uses the fact that in
the case of a symmetric spectrum all the odd spectral moments are zero and the graph has
no cycles of odd length.

Actually, from the proof in [8] it is clear that only bipartite graphs, from the considered
class of graphs, have in the spectrum the number −r, where, r is the largest number from
the spectrum.

Hence, for connected graphs we have a substantially stronger result:

Theorem 5. A connected graph G is bipartite if and only if λ1 = −λn.

This important characterization of connected bipartite graphs is proved in [13] (Theorem
4.3) using the Frobenius theorem. Again this can be done with simpler tools (see [24],
Theorem 3.2.4). See Section 8 for an application of Theorem 5.

4 Cospectral graphs

The term ”a pair of isospectral non-isomorphic graphs” was denoted in [13] as a PING.
Nowadays we use the term ”cospectral” instead of ”isospectral”.

The smallest PING was found in [13]. It consists of graphs C4 ∪K1 and K1,4.
This example was generalized in the same paper. The graph, having as components

s isolated vertices and one bicomplete graph Kn1,n2 has the spectrum containing numbers√
n1n2,−

√
n1n2 and n1 + n2 − 2 + s numbers equal to 0. Consider the graph with the

spectrum:
√
m,−

√
m and n − 2 numbers equal to 0 (m a natural number). This spectrum

may belong to each of graphs of the above described type whose parameters n1, n2, s satisfy
3The theorem is formulated in [24] in a more condensed form: A graph G is bipartite if and only if its

spectrum is symmetric with respect to the origin.
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the equations n1 + n2 − 2 + s = n, n1n2 = m. These equations can have obviously several
solutions in the set of natural numbers (s can be equal to 0).

The spectral structure of graphs having the largest eigenvalue not greater than 2 was
completely described in [20]. This includes a construction of all cospectral graphs in the
considered class of graphs.

First examples of cubic cospectral graphs have been found in [2], [3]. There are three
pairs of cospectral cubic graphs on 14 vertices.

5 Refinements using eigenvectors and graph angles

A graph is completely determined by eigenvalues and eigenvectors in the following sense. Let
A be the adjacency matrix of a graph G with vertices 1, 2, . . . , n and eigenvalues λ1, λ2, . . . , λn.
If v1,v2, . . . ,vn are linearly independent eigenvectors of A corresponding to λ1, λ2, . . . , λn
respectively, if V = (v1|v2| · · · |vn) and if D = diag(λ1, λ2, . . . , λn), then

A = V DV −1.

Since G is determined by A, we have proved, [18], p. 44,

Theorem 6. Any graph is determined by its eigenvalues and a basis of corresponding eigen-
vectors.

We may construct an orthonormal basis of eigenvectors u1,u2, . . . ,un by stringing to-
gether orthonormal bases of eigenspaces. If U = (u1|u2| · · · |un) then U−1 = UT and we
have

A = UDUT , (3)

a relation which we exploit in the next section.
Since eigenvectors are not graph invariants it is reasonable to extend eigenvalue based

techniques by some invariants of the eigenspaces called graph angles.
Let G be a graph on n vertices with distinct eigenvalues µ1, µ2, . . . , µm

(µ1 > µ2 > · · · > µm) and let S1, S2, . . . , Sm be the corresponding eigenspaces. Let
{e1, e2, . . . , en} be the standard (orthonormal) basis of Rn.

Definition 1. The numbers αpq = cosβpq(p = 1, 2, . . . ,m; q = 1, 2, . . . , n), where βpq is the
angle between Sp and eq, are called graph angles. The sequence αpq (q = 1, 2, . . . , n) is called
the eigenvalue angle sequence corresponding to the eigenvalue µp (p = 1, 2, . . . ,m). We also
define the angle matrix of G, i.e. an m×n matrix (m is the number of its distinct eigenvalues,
while n is the order of G) as a matrix (αij). This matrix is a graph invariant if its columns
are ordered lexicographically. The rows of the angle matrix are called the standard eigenvalue
angle sequences.

Let xi = (xi1, xi2, . . . , xin) (i = 1, 2, . . . , n) be orthonormal eigenvectors of G. Define
Mp = {j | Axj = µpxj}. We have α2

pq =
∑
j∈Mp

x2
jq for squares of angles of G. This formula

holds for any choice of orthonormal eigenvectors of G (cf. [22], p. 76).
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Definition 2. The cosines β1, β2, . . . , βm of angles between the vector (1, 1, . . . , 1) ∈ Rn and
eigenspaces S1, S2, . . . , Sm are called main angles of the graph. An eigenvalue is called main
if the corresponding main angle is different from 0. The set of main eigenvalues is called the
main part of the spectrum.

The main part of the spectrum has been introduced in [10].
An overview of results on graph angles is given in [22] including the characterizing prop-

erties of graph angles. A survey on main angles appeared in [36].
Let G be a graph with adjacency matrix A, and let Nk(j) = a

(k)
jj , the number of walks

of length k in G originating and terminating at vertex j (see Theorem 7). Let Hj(t) be the
generating function

∑∞
k=0Nk(j)tk. We can obtain [22], p. 82,

Ns(j) = a
(s)
jj =

n∑
i=1

µsiα
2
ij ,

Hj(t) =
∞∑
k=0

tk
m∑
i=1

α2
ijµ

k
i =

m∑
i=1

α2
ij

1− µit
.

On the other hand, we have Hj(t) = 1 + djt
2 + 2tjt3 + · · · , where dj is the degree of vertex

j and tj is the number of triangles containing j.
The degree dj of the vertex j, and the number tj of triangles containing the vertex j, are

given by

dj =
m∑
i=1

α2
ijµ

2
i , tj =

1
2

m∑
i=1

α2
ijµ

3
i .

The following formulas are also useful.
Let PG(λ) = det(λI−A) be the characteristic polynomial of the graph G. The generating

function can be obtained by the formula

HGj (t) = PG−j(
1
t
)/tPG(

1
t
),

since

PG−j(x) = PG(x)
m∑
i=1

α2
ij

x− µi
.

6 Counting walks

We can use eigenvalues and eigenvectors to count walks in a graph.

Definition 3. By a walk of length k in a graph (or digraph) we mean any sequence of (not
necessarily different) vertices x1, x2, . . . , xk, xk+1 such that for each i = 1, 2, . . . , k there is an
edge (or arc) from xi to xi+1. The walk is closed if xk+1 = x1.

Counting walks with specified properties in a graph (or digraph) is related to graph spectra
by the following well-known result.
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Theorem 7. If A is the adjacency matrix of a graph, then the (i, j)-entry a(k)
ij of the matrix

Ak is equal to the number of walks of length k that originate at vertex i and terminate at
vertex j.

Thus, for example, the number of closed walks of length k is equal to the k-th spectral
moment, since

∑n
i=1 a

(k)
ii = tr(Ak) =

∑n
i=1 λ

k
i .

Many combinatorial enumeration problems can be reduced to the enumeration of walks
in a suitably chosen graph or digraph. Also, formulas giving the number of walks in terms
of eigenvalues and eigenvectors represent a link between spectral and structural properties of
a graph, and this is a very useful auxiliary tool in treating many problems on graphs. An
important notion related to the number of walks is the main part of the spectrum, described
in Section 5.

Let G denote a graph with adjacency matrix A and let U = (uij), an orthogonal matrix
of eigenvectors of A as described in Section 5. Then, according to (3),

a
(k)
ij =

n∑
s=1

uisujsλ
k
s . (4)

The number Nk of all walks of length k in G is given by

Nk =
∑
i,j

a
(k)
ij =

n∑
s=1

(
n∑
i=1

uis

)2

λks .

Thus we have proved

Theorem 8. The total number Nk of walks of length k in a graph G is given by

Nk =
n∑
s=1

Csλ
k
s (k = 0, 1, 2, . . .),

where Cs = (
∑n

i=1 uis)
2.

I proved this theorem in a slightly different form in [10]. When preparing the book [18]
I found the theorem in this form and it appeared in [18] as Theorem 1.8 on p. 44. Another
proof of the theorem appears in [34].

The formula of Theorem 8 can be rewritten in the form

Nk =
m∑
s=1

Dsµ
k
s (k = 0, 1, 2, . . .), (5)

where µ1, µ2, . . . , µm are distinct eigenvalues.

Note that the quantities Ds are related to main angles βs, i.e. Ds = nβ2
s (s = 1, 2, . . . ,m).

Given the eigenvalues of G, knowledge of the main angles of G is equivalent to knowledge of
the walk generating function
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WG(t) =
∞∑
k=0

Nkt
k,

where Nk is the number of walks of length k in G. For by formula (5) we have

WG(t) = n
m∑
p=1

β2
p/(1− tµp).

The walk generating function can be expressed also in terms of characteristic polynomials
of the graph and of its complement [10]:

WG(t) =
1
t

{
(−1)n

PG
(
− t+1

t

)
PG
(

1
t

) − 1

}
.

Main angles are relevant also for the theory of graph divisors.

Definition 4. Given an s× s matrix B = (bij), let the vertex set of a graph G be partitioned
into (non-empty) subsets X1, X2, . . . , Xs so that for any i, j = 1, 2, . . . , s each vertex from
Xi is adjacent to exactly bij vertices of Xj. The multidigraph H with adjacency matrix B is
called a front divisor of G, or briefly, a divisor of G.

The concept of a divisor of a graph was introduced by H. Sachs [38], [39]. The existence
of a divisor means that the graph has a certain structure; indeed, a divisor can be interpreted
as a homomorphic image of the graph. On the other hand, by Theorem 2.4.3 of [22], the
characteristic polynomial of a divisor divides the characteristic polynomial of the graph (i.e.
the spectrum of a divisor is contained in the spectrum of the graph). In this way the notion
of a divisor can be seen as a link between spectral and structural properties of a graph [30].
Divisors have been considered in [34] under the name equitable partitions.

The role of main eigenvalues in the theory of graph divisors is explained by the next
theorem from [15].

Theorem 9. The spectrum of any divisor H of a graph G includes the main part of the
spectrum of G.

Since the largest eigenvalue r of a graph always belongs to the main part of the spectrum
we have the following result.

Corollary. [15] Any divisor of a graph G has the index of G as an eigenvalue.

It was conjectured in [34] that the spectrum of a divisor H with the smallest number
of vertices is just the main part of the spectrum of G. Theorem 9 confirms one of the two
inclusions implicit in this conjecture. The reverse inclusion does not hold in general, as shown
by a counterexample in [15].
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7 Interlacing theorem

The so called Interlacing Theorem (Theorem 10) plays an important role in spectral graph
theory and its applications.

Recall that the matrix A with complex entries aij is called Hermitian if AT = A, i.e.
aji = aij for all i, j.

Theorem 10. (see, e.g., [18], p. 19) Let A be a Hermitian matrix with eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λn and let B be one of its principal submatrices. If the eigenvalues of B are
µ1 ≥ µ2 ≥ · · · ≥ µm then λn−m+1 ≤ µi ≤ λi (i = 1, . . . ,m)

The inequalities of this theorem are known as Cauchy’s inequalities and the whole theorem
is known as the Interlacing Theorem.

Usually, A is the adjacency matrix of a graph G and B is the adjacency matrix of an
induced subgraph H of the graph G.

On the basis of the spectrum the inequalities for the number of internal stability α(G)
and the number k(G) of vertices of the maximal complete subgraph of the graph G can easily
be obtained using Theorem 10. It seems that I was the first to use the Interlacing Theorem in
the theory of graph spectra. An obvious idea how to apply this theorem led to the following
result [13], [14].

Theorem 11. The number of internal stability α(G) of the graph G satisfies the inequality
α(G) ≤ p0 +min(p−, p+), where p−, p0, p+ denote the numbers of eigenvalues, smaller, equal
and greater than zero in the spectrum of G.

In [14] an inequality for the size of a maximal clique and for the chromatic number of a
graph are obtained as well.

Theorem 11 has been cited very much in the literature, among other places in books [31]
and [1]. It is said on p. 216 of [31] that this theorem ”seems surprisingly useful”.

8 Application of the spectral method

The main idea of spectral graph theory is to use graph eigenvalues to prove statements on
graphs which do not involve eigenvalues. I shall describe two such contributions of mine.

1. The set of vertices of the product G1 × G2 of graphs G1, G2 is the Cartesian product of
the sets of vertices of the graphs G1, G2. If xi and yi are vertices of the graph Gi (i = 1, 2)
the vertices (x1, , x2) and (y1, y2) of G1 ×G2 are adjacent if, and only if, x1, y1 are adjacent
in G1 and x2, y2 are adjacent in G2.

It is proved in [41] that the product of two finite, connected graphs is a connected graph
if, and only if, at least one of the graph - factors has an odd cycle. In 1969 I proved this
theorem using graph eigenvalues in the following way.

Let r1 and q1 be the largest and the least eigenvalue ofG1 and r2 and q2 the same quantities
for G2. Since eigenvalues of G1 × G2 are all possible products of an eigenvalue of G1 and
of an eigenvalue of G2, the largest eigenvalue of G1 × G2 is r1r2. By the Perron-Frobenius
theory of non-negative matrices this eigenvalue is simple with a positive eigenvector unless
q1 = −r1 and q2 = −r2 in which case r1r2 is a twofold eigenvalue. In the first case G1 ×G2
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is connected. By Theorem 5 the second case appears if and only if both graphs G1, G2 are
bipartite and G1 ×G2 appears to be disconnected.

I published this result in a more general setting in [9].
We shall define the p-sum (p = 1, . . . , n) of graphs G1, . . . , Gn. The set of vertices of

the p-sum is the Cartesian product of the sets of vertices of the graphs G1, . . . , Gn. If xi
and yi are vertices of the graph Gi (i = 1, . . . , n) the vertices of the p-sum (x1, . . . , xn) and
(y1, . . . , yn) are adjacent if, and only if, exactly p of n pairs (xi, yi) (i = 1, . . . , n) are the
pairs of the adjacent vertices in corresponding graphs and if for the other n − p pairs holds
xi = yi). If p = n, the p-sum is called the product of graphs and in the case p = 1 - the sum
of graphs.

The eigenvalues of the p-sum are elementary symmetric functions of order p of eigenvalues
of graphs G1, . . . , Gn. Similar reasoning as above leads to the following theorem.

Theorem 12. Let G1, . . . , Gn be finite, connected, undirected graphs, without loops and
multiple edges and with at least two vertices. p-sum of these graphs is a connected graph if,
and only if, one of the following conditions holds: 1. p is equal to n and at most one of the
graphs G1, . . . , Gn is bipartite, 2. p is odd and less than n, 3. p is even and less than n,
where at least one of the graphs G1, . . . , Gn is not bipartite.

If p is equal to n and exactly l(> 1) of the graphs G1, . . . , Gn are bipartite, the p-sum has
2l−1 components. If p is even and less than n and all the graphs G1, . . . , Gn are bipartite, the
p-sum has two components.

By the above facts, the following theorem from [9] can also be easily proved using Theorem
5.

Theorem 13. The p-sum from Theorem 12 is a bipartite graph if, and only if, one of the
following conditions holds: 1. p is equal to n and at least one of the graphs G1, . . . , Gn is
bipartite, 2. p is odd and less than n and all the graphs G1, . . . , Gn are bipartite.

Theorems 12 and 13 have been generalized in [13] to a very general graph operation called
NEPS (non-complete extended p-sum) of graphs.

Definition 5. Let B be a set of non-zero binary n-tuples, i.e. B ⊆ {0, 1}n\{(0, . . . , 0)}. The
NEPS of graphs G1, . . . , Gn with basis B is the graph with vertex set V (G1)×· · ·×V (Gn), in
which two vertices, say (x1, . . . , xn) and (y1, . . . , yn), are adjacent if and only if there exists
an n-tuple β = (β1, . . . , βn) ∈ B such that xi = yi whenever βi = 0, and xi is adjacent to yi
(in Gi) whenever βi = 1.

Clearly the NEPS construction generates many binary graph operations in which the
vertex set of the resulting graph is the Cartesian product of the vertex sets of the graphs
on which the operation is performed. We mention some special cases in which a graph is
the NEPS of graphs G1, . . . , Gn with basis B. In particular, for n = 2 we have the following
familiar operations:

(i) the sum G1 +G2, when B = {(0, 1), (1, 0)};
(ii) the product G1 ×G2, when B = {(1, 1)};
(iii) the strong product G1 ∗G2, when B = {(0, 1), (1, 0), (1, 1)}.

(A variety of terms for these particular constructions can be found in the literature.)
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The notion of NEPS arises in a natural way when studying spectral properties of graphs
obtained by binary operations of the type mentioned above.

2. Let us determine the number of walks of length k in the path Pn with n vertices. The
adjacency matrix of Pn is of the form∥∥∥∥∥∥∥∥∥∥∥

0 1 O
1 0 1

. . . . . . . . .
1 0 1

O 1 0

∥∥∥∥∥∥∥∥∥∥∥
.

It is known that the eigenvalues of this matrix are λi = 2 cos iπ
n+1 (i = 1, . . . , n). It is easy to

verify that the numbers
√

2
n+1 sin ijπ

n+1 (j = 1, . . . , n) are the coordinates uij of the normalized
eigenvector ui belonging to λi (see [4]). By Theorem 8 we obtain for the number Nkn of walks
of length k in Pn the expression

Nkn =
2k+1

n+ 1

[n+1
2

]∑
l=1

cot2
2l − 1
n+ 1

π

2
cosk

2l − 1
n+ 1

π. (6)

This result is related to the following two problems treated in the literature.

1. In [29] the following problem is solved.
Determine the number Nkn of all zig-zag lines in the plane which (i) consist of segments of

length
√

2 with direction (±1, 1)T , (ii) start from one of the points (0, 0), (0, 1), . . . , (0, k− 1)
and, without leaving the rectangle 0 ≤ x ≤ n, 0 ≤ y ≤ k − 1, terminate in one of the points
(n, 0), (n, 1), . . . , (n, k − 1).

This question arises in certain problems of the theory of the function spaces, and the
answer is given by (6).

2. A particular result from [11] reads:
The number Nkn of ways in which a king can make a series of k moves on a one-

dimensional chess board (the board of dimensions 1× n) is given by (6).

This is obvious if we use the concept of a graph corresponding to a chess piece on a given
chess-board. The vertices of this graph correspond to the squares of the chess-board and two
vertices are adjacent if and only if the piece can proceed from one square to the other in one
move. In the case considered the corresponding graph is just the path Pn.

9 Applications to Chemistry

In order to solve the Schrödinger equations for complicated many-electron molecular systems,
various approximations are used. In the pioneering days of quantum chemistry (in the 1930s
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and 1940s) an approximate method for describing the state of single electrons in conjugated
hydrocarbons was developed, known under the name Hückel molecular orbital theory.4

Within the framework of the Hückel method, the Hamiltonian matrix H = [hij ] is a
square matrix of order n, where n is the number of carbon atoms in the molecule. Let these
carbon atoms be labelled by 1, 2, . . . , n. Then the matrix elements hrs are given by

hrs =


α if r = s = 1, 2, . . . , n
β if r 6= s and the atoms r and s are chemically bonded
0 if r 6= s and no chemical bond between the atoms r and s exists.

(7)

The parameters α and β are called the Coulomb and the resonance integral; in Hückel theory
these are assumed to be constants. The approximations imposed by the relations (7) are
severe. Therefore it is surprising that the results of the Hückel theory are (at least sometimes)
in good agreement with both experimental findings and other, more advanced, theoretical
approaches.

Having in mind relations (7), we see that the Hückel Hamiltonian matrix can be presented
as

H = αIn + βA, (8)

where A is a symmetric matrix whose diagonal elements equal 0 and whose off-diagonal
elements equal 1 or 0, depending on whether the corresponding atoms are connected or not.
In fact A is just the adjacency matrix of the Hückel graph5. Equation (8) immediately gives
the following result.

Theorem 14. If λ is an eigenvalue and z an eigenvector of the matrix A, then α+βλ is an
eigenvalue and z is an eigenvector of the matrix H.

From this theorem it follows that the Hückel molecular orbitals Ψj coincide with the
eigenvectors zj of the adjacency matrix of the Hückel graph, that is, Ψj = zj . The eigenvalues
λj of the matrix A and the energies Ej of the corresponding electrons are related simply as

Ej = α+ βλj .

There are exactly n different molecular orbitals, namely the zj for j = 1, 2, . . . , n.
This important conclusion shows that there is a deep and far-reaching relation between

the Hückel molecular orbital theory and graph spectral theory. The Hückel theory provides
an important field of application of the graph spectra.

For more information on Hückel theory the interested reader can consult, for example,
[6], [28], [18].

4Hydrocarbons are chemical compounds composed of only two elements - carbon (C) and hydrogen (H). A
hydrocarbon is saturated if its molecules possess only single bonds. If in a molecule there are also multiple
bonds, then the hydrocarbon is unsaturated. An important class of unsaturated hydrocarbons are the conju-
gated hydrocarbons, each of whose carbon atoms participates in exactly one double bond. We assume that in
a hydrocarbon molecule all carbon atoms have the valency 4 and all hydrogen atoms have the valency 1.

5The Hückel graph is used for an abbreviated representation of conjugated hydrocarbons. Its vertices
represent only the carbon atoms, and all its edges are simple (irrespective of whether the corresponding
chemical bonds are single or double). The vertices of a Hückel graph may be of degree 1,2 or 3.
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The main contribution of [19] was to establish that the Hückel theory and theory of graph
spectra are essentially the same. It was Ivan Gutman who realized this fact during some
contacts with me in 1971. The relation between Hückel’s theory and theory of graph spectra
was noticed earlier in [33], but was poorly used later (see, for example, [40]). However, since
[19] was published in a mathematical journal, it has not been cited very much in chemical
literature. The chemical community has realized the connection between the two theories
after [32] has been published6 but the fact remains that [19] was the first paper to establish
clearly this connection.

In chemistry the problem of determining the algebraic multiplicity of the number 0 in the
spectra of bipartite graphs is of interest. It can easily be proved that if the spectrum of the
corresponding graph contains at least one number zero, then the molecule cannot have the
total electron spin equal to zero, which implies its instability in chemical sense. The wave
functions for which λ = 0 are called ”non-bonding molecular orbitals”.

Let η(G) be the algebraic multiplicity of the eigenvalue 0 in the spectrum of the bipartite
graph G. The problem is to find out the connection between the graph structure and the
number η(G). This connection can be, perhaps, expressed by a set of rules by which we
can, after a finite number of steps, determine η(G), the spectrum in total being thus left
undetermined. (This problem for an arbitrary graph was posed in [4]).

The following theorem appears in [19].

Theorem 15. If q is the maximal number of mutually non-adjacent edges in a tree G having
n vertices, then η(G) = n− 2q.

This theorem is an immediate consequence of a statement about the coefficients of the
characteristic polynomial of the adjacency matrix of a tree from [37]. It has been generalized
in [21] in the following way.

Theorem 16. If a bipartite graph G with n vertices does not contain any cycle of length
4s (s = 1, 2, . . . ), then η(G) = n − 2q, where q is the maximal number of mutually non-
adjacent edges in G.

A general solution of the problem of finding the multiplicity of 0 in the spectrum of a
graph is not known, but a variety of partial results have been obtained. As an illustration
we present the following statement from [19] (see also [18], Section 8.1).

Theorem 17. Assume the graph G has a vertex x of degree 1 where x is adjacent to the
vertex y. Then the graphs G and G− x− y have equal multiplicity of the number 0 in their
spectra, i.e. η(G) = η(G− x− y).

10 Spectral graph theory based on the signless Laplacian

In my papers [16], [23], [17], [25], [26], [27] a spectral graph theory based on the signless
Laplacian is outlined. Papers [23], [25], [26], [27] are cited very much in the literature (paper

6Relations between the coefficients of the characteristic polynomial and the structure of a graph from [37]
were denoted here as the Sachs theorem, a name which will be used widely afterwards in chemical literature.
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[23] over 100 times). As in founding A-theory, it was necessary to establish a number of basic
and simple results. We quote here two such results.

1. We consider the enumeration of walks.
In order to introduce a new notion we shall first rephrase the definition of a walk from

Section 6.

Definition 6. A walk (of length k) in an (undirected) graph G is an alternating sequence
v1, e1, v2, e2, . . . , vk, ek, vk+1 of vertices v1, v2, . . . , vk, vk+1 and edges e1, e2, . . . , ek such that
for any i = 1, 2, . . . , k the vertices vi and vi+1 are distinct end-vertices of the edge ei.

Such a walk can be imagined as an actual walk of a traveller along the edges in a dia-
grammatic representation of the graph under consideration. The traveller always walks along
an edge from one end-vertex to the other. Suppose now that we allow the traveller to change
his mind when coming to the midpoint of an edge: instead of continuing along the edge
towards the other end-vertex, he could return to the initial end-vertex and continue as he
wishes. Then the basic constituent of a walk is no longer an edge; rather we could speak of a
walk as a sequence of semi-edges. Such walks could be called semi-edge walks. A semi-edge
in a walk could be followed by the other semi-edge of the same edge (thus completing the
edge) or by the same semi-edge in which case the traveller returns to the vertex at which he
started. A formal definition of a semi-edge walk is obtained from the above definition of a
walk by deleting the word “distinct” from the description of end-vertices. Hence we have the
following definition.

Definition 7. A semi-edge walk (of length k) in an (undirected) graph G is an alternating
sequence v1, e1, v2, e2, . . . , vk, ek, vk+1 of vertices v1, v2, . . . , vk+1 and edges e1, e2, . . . , ek such
that for any i = 1, 2, . . . , k the vertices vi and vi+1 are end-vertices (not necessarily distinct)
of the edge ei.

In both definitions we shall say that the walk starts at the vertex v1 and terminates at
the vertex vk+1.

The well known theorem concerning the powers of the adjacency matrix (Theorem 7) has
the following counterpart for the signless Laplacian (see [23]).

Theorem 18. Let Q be the signless Laplacian of a graph G. The (i, j)-entry of the matrix
Qk is equal to the number of semi-edge walks of length k starting at vertex i and terminating
at vertex j.

Proof. For k = 1 the statement is obviously true. The result follows by induction on k just
as in the proof of the corresponding theorem for the adjacency matrix.

2. The following statement and its proof is analogous to an existing result of mine related to
the adjacency spectrum [18, Theorem 3.13]. The proof is taken from [17].

Theorem 19. Let G be a connected graph of diameter D with e distinct Q–eigenvalues.
Then D ≤ e− 1.

Proof. By Theorem 18 the (i, j)-entry q(k)i,j of Qk is the number of semi-edge walks of length k
from i to j. By the definition of the diameter, for some vertices i and j there is no semi-edge
walk of length k connecting i and j for k < D, whereas there is at least one for k = D.
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Hence we have q(k)i,j = 0 for k < D and q
(k)
i,j > 0 for k = D. The minimal polynomial of the

matrix Q is of degree e(G) = e and yields a recursive relation connecting e + 1 consecutive
members of the sequence q(k)i,j , k = 0, 1, 2, . . . . The assumption D > e− 1 would cause that

all members of the sequence q(k)i,j , k = 0, 1, 2, . . . are equal to 0 what is impossible. The
obtained contradiction proves the theorem.
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[3] Bussemaker F. C., Čobeljić S., Cvetković D., Seidel J. J., Cubic graphs on ≤ 14 vertices, J.
Combinatorial Theory (B), 23(1977) 234-235.

[4] Collatz L., Sinogowitz U., Spektren endlicher Grafen. Abh. Math. Sem. Univ. Hamburg,
21(1957), 63-77.

[5] Coulson C.A., Longuet-Higgins H.C., The structure of conjugated systems II , Unsaturated hy-
drocarbons and their hetero-derivatives, Proc. Roy. Soc. (London), Ser. A , 192(1947),1632 .

[6] C. A. Coulson, B. O’Leary, R. B. Mallion, Hückel Theory for Organic Chemists, Academic Press,
London, 1978.

[7] Coulson C.A., Ruhsbrooke G.S., Note on the method of molecular orbitals, Proc. Camb. Phil.
Soc., 36(1940), 193200 .
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[38] Sachs H., Über Teiler, Faktoren und charakteristische Polynome von Graphen. Teil I, Wiss. Z.,
T.H. Ilmenau, 12(1966), 7-12.
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