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Preface

Graphs whose spectrum belongs to the interval [−2, 2] are called Smith graphs.
They have been identified by J.H. Smith [27].

The structure of a Smith graph with a given spectrum depends on a system of
Diophantine linear algebraic equations [6] (On the spectral structure of graphs having
the maximal eigenvalue not greater than two, 1975). We have established several prop-
erties of this system and have shown how it can be simplified and effectively applied [8]
(Constructing graphs with given spectrum and the spectral radius at most 2, 2017), [4]
(Spectral theory of Smith graphs, 2017) and [13] (Cospectrality graphs of Smith graphs,
2019). The purpose of this draft (which shares the title with paper [4]) is to present
systematically the ideas from these five papers.

The paper [6] has given foundations of spectral theory of Smith graphs. It has
much content but relies much on the intuition of the reader. Here we shall add many
relevant details and explain some particular topics.

Among other things, in [6] an effective procedure which enables the determination
of all graphs having the spectrum equal to a given system of numbers of the form
2 cos p

q
π is exposed. These graphs can be obtained by solving a system of linear Dio-

phantine equations. The importance of this procedure was explained in [5], p. 189.
Namely, in general case, given a hypothetical spectrum, we do not know how to decide
whether a graph with this spectrum exists apart from considering all graphs with the
corresponding number of vertices. In the case of Smith graphs we do have an effective
procedure for such decision.

Several other papers on spectra of Smith graphs are included into the list of ref-
erences. They are mentioned and commented in our text, in particular in Section
11.

Smith graphs, before J.H. Smith identified them in a graph theoretical context in
1970, appeared implicitly in several mathematical areas.

Smith graphs are related to Coxeter groups and Coxeter systems (see, for example,
[2], p. 84 and p. 294).

The role of Smith graphs in constructing line systems, in particular root systems,
has been described in [10], Section 3.4.

Recently, Smith graphs are generalized in [19] by considering symmetric integral
matrices whose spectrum belongs to the interval [−2, 2].

We shall not treat all these applications of Smith graphs in our text and will con-
centrate on spectral theory of Smith graphs.

We have divided the text into the following sections:
1. Introduction,
2. Smith graphs and their spectra,
3. The canonical representation,
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4. A system of linear Diophantine equations,
5. Some general properties of the system of equations,
6. Applying the system of equations,
7. The extended system of equations,
8. Reduction of the system,
9. An algorithmic criterion for cospectrality of Smith graphs,
10. Cospectrality graphs and quasi-cospectrality graphs,
11. Other results on the spectra of Smith graphs,
References.
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several comments which led to improvements of the text and to T. Davidović for some
technical help. This work is supported by the Serbian Ministry for Education, Science
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1 Introduction

Let G be a simple graph on n vertices (or of order n), and adjacency matrix A. The
characteristic polynomial of A (equal to det(xI − A)) is also called the characteristic

polynomial of G and will be denoted by PG(λ) or G̃. The eigenvalues and the spectrum
of A (which consists of n eigenvalues) are called the eigenvalues and the spectrum of G,
respectively. Since A is real and symmetric, its eigenvalues are real. The eigenvalues of
G (in non-increasing order) are denoted by λ1, . . . , λn. In particular, λ1, as the largest
eigenvalue of G, will be called the spectral radius (or index) of G.

The spectrum of G (as a multiset or family of reals) will be denoted by Ĝ.
The problem of determining the graphs by spectral means is one of the oldest

problems in the spectral graph theory. This problem is studied in the literature for
various kinds of graph spectra (based on different types of graph matrices). Here we
have in mind the adjacency matrix.

We say that two (non-isomorphic) graphs are cospectral if their spectra coincide.
On the other hand, we say that a graph is determined by its spectrum if it is a unique
graph having this spectrum. As in [14], we use DS (non-DS) to indicate that some
graph is determined (resp. non-determined) by its spectrum. Many results on spectral
characterizations can be found in [14]. For early results see [5].

The cospectral equivalence class of a graph G is the set of all graphs cospectral to
G (including G itself).

The following facts from spectral graph theory (see, for example, [5], Section 0.3)
will be useful in the next section.

The eigenvector of the largest eigenvalue (the index) of a connected graph is positive
(i.e. all coordinates are non-zero and have the same sign). The index of a connected
graph is greater than the index of any of its proper subgraphs.

We shall introduce some operations on graphs and families.
The disjoint union of graphs G1 and G2 will be denoted by G1+G2, while the union

of their spectra (i.e. the spectrum of G1 +G2) will be denoted by Ĝ1 + Ĝ2; in addition,

kG (kĜ) stands for the union of k copies of G (resp. Ĝ).
We shall use a more general setting from [9].
A mapping φ from a finite set S to the integer set Z is called a family (system)

over S (as an underlying set). For x ∈ S the value φ(x) is the multiplicity of x in
the family φ. This definition extends the notion of an ordinary family; normally we
would allow only non-negative multiplicities of elements in ordinary families, while here
multiplicities could be negative.

Let X,Y be families of elements of a set S. For k ∈ Z we define kX to be the
family obtained from X by multiplying the multiplicities of its elements by k. The
union X + Y of families X,Y is the family consisting of elements contained in any of
the two families with multiplicities being the sums of multiplicities in the corresponding
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families. The family k1X1 + · · ·+ knXn (k1, . . . , kn ∈ Z) is called a linear combination
of families X1, . . . ,Xn.

The set of all families over a set S is an Abelian group with respect to the union
+ of families and also a Z-module. It can be interpreted as a set of integral vectors of
dimension |S| with usual addition and multiplication by a scalar.

The corresponding ”subtraction” operation − is introduced in a standard manner
and used in treating graph spectra in [6].

The rest of the monograph is organized as follows. Section 2 contains a list and
a construction of Smith graphs and a derivation of their spectra. The canonical rep-
resentation of the spectrum of a Smith graph is introduced in Section 3. Section 4
contains the description of a system of linear Diophantine equations for parameters of
a Smith graph. Some general properties of this system are given in Section 5. Several
examples of solving the system of equations are presented in Section 6. The system
of equations could be basic, extended and reduced as described in Sections 7 and 8.
Section 9 describes an algorithmic criterion for cospectrality of Smith graphs. Section
10 introduces cospectrality and quasi-cospectrality graphs. Finally, Section 11 gives a
survey of some other results on the spectra of Smith graphs,
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2 Smith graphs and their spectra

We consider the class of graphs whose spectral radius is at most 2. This class includes,
for example, the graphs whose each component is either a path or a cycle.

All graphs with the spectral radius at most 2 have been constructed by J.H. Smith
[27]. Therefore these graphs are usually called the Smith graphs. Eigenvalues of these
graphs have been determined in [6]. All eigenvalues are of the form 2 cos p

q
π, where p, q

are integers and q 6= 0. For a review of [6] by J.H. Smith see [10], pp. 78-79, claiming
also that the form of eigenvalues of Smith graphs follows from an old theorem by L.
Kronecker [17].

A path (cycle) on n vertices will be denoted by Pn (resp. Cn).
A connected graph with index ≤ 2 is either a cycle Cn (n = 3, 4, . . .), or a path

Pn (n = 1, 2, . . .), or one of the graphs depicted in Fig. 1 (see [27]).
Note that W1 coincides with the star K1,4, while Z1 with P3. In addition, the graphs

Cn,Wn, T4, T5, and T6 are connected graphs with index equal to 2; all other graphs,
namely, Pn, Zn, T1, T2 and T3 are the induced subgraphs of these graphs (so the index
of each of them is less than 2). The graph Zn is called a snake while Wn is a double
snake. The trees T1, T2, T3, T4, T5, and T6 will be called exceptional Smith graphs.

e
e e e e e
��
QQ1 2 n−1n. . .

Zn, n = 1, 2, . . .
e
e e e e e e

e
��
QQ

QQ
��1 2 n−1n. . .

Wn, n = 1, 2, . . .

e e e eee

T1

e e e e eee

T2

e e e e e eee

T3

e e e e eee

T4

e e e e e e ee
T5

e e e e e e e ee
T6

Figure 1: Some of the Smith graphs
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We denote the set of all these graphs by S∗; the set of those which are bipartite, so
odd cycles are excluded, will be denoted by S.

We shall now prove that we have listed all connected Smith graphs.

Theorem 2.1 The only connected graphs with the largest eigenvalue 2 are graphs
Cn(n = 3, 4, . . . ),Wn(n = 1, 2, . . . ), T4, T5 and T6.

Proof. Fig. 2 gives these graphs with vertex labels defining a positive eigenvector for
eigenvalue 2. This verifies one part of the theorem.
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Figure 2: Connected Smith graphs with largest eigenvalue 2

To prove that there are no other connected graphs with largest eigenvalue 2, consider
such a possible graph G. If G contains a cycle it should be a cycle (otherwise the largest
eigenvalue is greater than 2). If G does not contain a cycle it is a tree different from a
path. By W1 the degree of any vertex is at most 4 and if a vertex is of degree equal to
4 the graph G is reduced to W1. By Wn, n > 1, G can contain at most two vertices of
degree 3 and in this case it is reduced to Wn. If G contains just one vertex of degree
3, then at least one of the paths meeting at this vertex should be of length 1 or G is
T4. If one of the paths has length 1, then remaining two can be of length at most 3 by
T5. Finally, if one of the paths is of length 1 and the second of length 2, the remaining
path can be of length at most 5 by T6.

This elegant proof is due to J.H. Smith [27] and is given also in [11], pp. 92-93.
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Let G be any graph whose each component belongs to S∗, we can write

G =
∑
H∈S∗

r(H)H, (1)

where r(H) ≥ 0 is a repetition factor (tells how many times H is appearing as a
component in G).

The repetition factor r(Si) of some of the graph Si ∈ S∗ for any relevant index i
will be denoted by si. So we have non-negative integers

p1, p2, p3, . . . , z2, z3, . . . , w1, w2, w3, . . . , t1, t2, t3, t4, t5, t6.

We have omitted z1 since Z1 = P3 and the variable p3 is relevant. We shall use
c2, c3, . . . , for repetition factors of the even cycles C4, C6, . . . .

For non-bipartite graphs from S∗ we have to introduce variables o3, o5, o7, . . . count-
ing the numbers of odd cycles C3, C5, C7, . . . .

For a given graph G ∈ S∗ the above variables which do not vanish, together with
their values, are called parameters of G. Parameters of a graph indicate the actual
number of components of particular types present in G.

We shall first list spectra of Smith graphs as they are given in [6].

Pn : 2 cos jπ
n+1

, j = 1, 2, . . . , n,

Zn : 2 cos (2j+1)π
2(n+1)

, j = 0, 1, . . . , n, and 0,

Wn : 2 cos jπ
n+1

, j = 1, 2, . . . , n, and 2, 0, 0,−2,

Cn : 2 cos 2jπ
n
, j = 1, 2, . . . , n,

T1 : 2 cos jπ
12
, j = 1, 4, 5, 7, 8, 11,

T2 : 2 cos jπ
18
, j = 1, 5, 7, 9, 11, 13, 17,

T3 : 2 cos jπ
30
, j = 1, 7, 11, 13, 17, 19, 23, 29,

T4 : 2 cos 2jπ
6
, j = 1, 2, 3, 4, 5, 6, and 0,

T5 : 2 cos jπ
4
, j = 1, 2, 3, and 2, 1, 0,−1,−2,

T6 : 2 cos jπ
5
, j = 1, 2, 3, 4, and 2, 1, 0,−1,−2.

Spectra of Pn, Zn,Wn and Cn had been known before publication of [6] (see [1] for
Pn and Cn, [16] for Zn and [7] for Wn). Spectra of T1 − T6 have been given in [6]
with the remark that they can be obtained ”by direct calculation, although this is not
simple in all cases”.

On the basis of the determined spectra the following equalities have been obtained
in [6]:
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Ŵn = Ĉ4 + P̂n,

Ẑn + P̂n = P̂2n+1 + P̂1,

Ĉ2n + 2P̂1 = Ĉ4 + 2P̂n−1,

T̂1 + P̂5 + P̂3 = P̂11 + P̂2 + P̂1,

T̂2 + P̂8 + P̂5 = P̂17 + P̂2 + P̂1, (2)

T̂3 + P̂14 + P̂9 + P̂5 = P̂29 + P̂4 + P̂2 + P̂1,

T̂4 + P̂1 = Ĉ4 + 2P̂2,

T̂5 + P̂1 = Ĉ4 + P̂3 + P̂2,

T̂6 + P̂1 = Ĉ4 + P̂4 + P̂2.

One way to verify spectra of T1 − T6 is to use characteristic polynomials of graphs
[4]. Let G̃ be the characteristic polynomial of the graph G. We have

P̃n =

[n/2]∑
k=0

(−1)k
(
n− k
k

)
xn−2k,

cf. [5], p. 77.
Characteristic polynomials of T1 − T6 can be reduced to characteristic polynomials

of paths using the formula

PG(x) = xPG−u(x)− PG−u−v(x),

where u is a vertex of G of degree 1 and v its neighbour (Theorem 2.11 from [5]).
Alternatively, they can be found in tables of trees up to 10 vertices from [5]. In

particular, we have T̃1 = x6 − 5x4 + 5x2 − 1.
Relations (2) can be rewritten in terms of characteristic polynomials. For example,

the fourth relation (2) yields T̃1P̃5P̃3 = P̃11P̃2P̃1, which can be directly verified. In this
way, the verification of spectra of T1−T6 is performed by multiplication of polynomials.

Alternatively, characteristic equations T̃i = 0, i = 1, 2, . . . , 6 can be reduced to
trigonometric equations by the substitution x = 2 cos t, as actually done when prepar-
ing [6].
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3 The canonical representation

The following theorem is taken from [6]. Note that it deals only with bipartite graphs
from S∗.

Theorem 3.1 Let H ∈ S. Then the spectrum Ĥ of H has the following representation

Ĥ = σ0Ĉ4 +
m∑
i=1

σiP̂i,

where σ0 ≥ 0, m ≥ 0 and σi ∈ Z (i = 1, . . . ,m) and σm > 0 (if m > 0). Moreover, this
representation is unique.

In the sequel, the representation of the spectrum of G ∈ S given by Theorem
3.1 will be called canonical. The integers σ0 and σi for 1 ≤ i ≤ m represent the
coefficients of such representation. This representation for all bipartite graphs from S
can be obtained by using the equalities (2). Parameter m is called the height of the
representation.

Non-bipartite Smith graphs contain odd cycles as components. It was described in
[6] how these odd cycles can be identified. They can be deleted from the graph and
their eigenvalues deleted from the spectrum. The remaining graph is bipartite. Hence,
we may assume that considered graphs are bipartite and we shall do so without the
loss of generality.

Remark 3.1. The quantity m in Theorem 3.1 is bounded by a function M(n) of the
number of vertices n. In particular,we have M(n) = max{2n − 3, 29} having in view
formulas (2). The uniqueness of the representation of Theorem 3.1 will be explained
below.

If Ŝ1, Ŝ2, . . . , Ŝn are some systems (families) of numbers with non-negative multiplic-

ities and σ1, σ2, . . . , σn integers such that the expression σ1Ŝ1+σ2Ŝ2+ · · ·+σnŜn can be
calculated in at least one way by successively performing the quoted operations with-
out introducing negative multiplicities, then it defines a system Ŝ with non-negative
multiplicities and we shall say that Ŝ is a linear combination of Ŝ1, Ŝ2, . . . , Ŝn. Systems
with non-negative multiplicities are useful in describing spectra of Smith graphs.

Formulas (2) can be rewritten in the following form:
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Ŵn = Ĉ4 + P̂n,

Ẑn = −P̂n + P̂2n+1 + P̂1,

Ĉ2n = −2P̂1 + Ĉ4 + 2P̂n−1,

T̂1 = −P̂5 − P̂3 + P̂11 + P̂2 + P̂1,

T̂2 = −P̂8 − P̂5 + P̂17 + P̂2 + P̂1, (3)

T̂3 = −P̂14 − P̂9 − P̂5 + P̂29 + P̂4 + P̂2 + P̂1,

T̂4 = −P̂1 + Ĉ4 + 2P̂2,

T̂5 = −P̂1 + Ĉ4 + P̂3 + P̂2,

T̂6 = −P̂1 + Ĉ4 + P̂4 + P̂2.

Given the spectrum of a Smith graph as the sum of spectra of its components, using
relations (3) we can eliminate left hand side quantities and obtain the spectrum in its

canonical form. Since in all formulas (3) the sign of the term P̂i with the greatest index
i is positive, this proves the first assertion of Theorem 3.1.

Suppose we have a symmetric system (family) L of numbers of the form 2 cos p
q
π

with non-negative multiplicities.
We shall now explain in some detail how to find representation (4). These arguments

will justify the claim that (4) is unique and also the uniqueness of the representation
of Theorem 3.1.

Among Ĉ4, P̂1, P̂2, . . . no two systems have the same greatest element. Spectral
radius of C4 is equal to 2 while Pi has spectral radius equal to λ1,i = 2 cos 1

i+1
π.

We first find the multiplicity σ0 of 2 in L and consider the family L′ = L− σ0Ĉ4.
The greatest element of L′ should be of the form λ1,m = 2 cos 1

m+1
π and it deter-

mines the quantity m in (4). If the greatest element is not of this form, the system L is

not the spectrum of a graph. Otherwise we consider the new system L′′ = L′ − σmP̂m
where σm is the multiplicity of λ1,m.

Considering always the greatest element we continue identifying paths of canonical
representation.

Note that reduced systems L′′, . . . could contain elements with negative multiplici-
ties. In particular, at some steps the greatest element could have a negative multiplicity
and that would mean that the corresponding coefficient σj is negative.

We shall either complete successfully this process giving rise to (4) or the procedure
will fail at some moment.
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4 A system of linear Diophantine equations

Next we shall describe the procedure from [6] for constructing all Smith graphs with
given spectrum.

Let us consider only bipartite graphs. As it is well known, bipartite graphs have a
symmetric spectrum with respect to the zero point. Given a symmetric system (family)
L of numbers of the form 2 cos p

q
π, we try to represent it as s linear combination of

Ĉ4, P̂1, P̂2, . . .. If this is not possible, L is not a spectrum of any graph (according
to Theorem 3.1). In the case such a representation is possible, the mentioned linear
combination is unique. Principles of finding the corresponding coefficients are clear
since among Ĉ4, P̂1, P̂2, . . . no two systems have the same greatest element. Some
details are given in Section 3.

Let now L be represented as:

L = σ0Ĉ4 + σ1P̂1 + σ2P̂2 + · · ·+ σmP̂m. (4)

Suppose that L is the spectrum of a graph G. Presenting L as s linear combination
of spectra of the components we get:

L =p1P̂1 + p2P̂2 + p3P̂3 + · · ·+ z2Ẑ2 + z3Ẑ3 + · · ·+ w1Ŵ1 + w2Ŵ2 + w3Ŵ3 + · · ·
c2Ĉ4 + c3Ĉ6 + · · ·+ t1T̂1 + t2T̂2 + t3T̂3 + t4T̂4 + t5T̂5 + t6T̂6, (5)

for some non-negative integers (parameters of G)

p1, p2, p3, . . . , z2, z3, . . . , w1, w2, w3, . . . ,

c2, c3, . . . , t1, t2, t3, t4, t5, t6. (6)

The number of terms in (5), as well as in (7) - (9) is finite. In each particular case
actual terms should be identified (see examples in Sections 5,6).

Using the relations (2) one can express the equation (5) in the form:

L = F0Ĉ4 + F1P̂1 + F2P̂2 + · · · , (7)

where the coefficients Fi i = 0, 1, . . . in (7) are functions of variables (6). Hence,

F0 = (w1 + w2 + w3 + · · · ) + (c2 + c3 + · · · ) + t4 + t5 + t6, (8)

F1 = p1 + w1 + (z2 + z3 + · · · )− 2 (c3 + c4 + · · · ) + t1 + t2 + t3 − t4 − t5 − t6, (9)

and for i > 1 and i 6= 2, 3, 4, 5, 8, 9, 11, 14, 17, 29 we have

Fi = F̃i, (10)
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where

F̃i =

{
pi − zi + wi + 2 ci+1, if i even or i = 3
pi + z i−1

2
− zi + wi + 2 ci+1, if i odd and i > 3.

(11)

For the excluded values of i we have

Fi = F̃i + hi, (12)

where

h2 = t1 + t2 + t3 + 2 t4 + t5 + t6; h3 = −t1 + t5; h4 = t3 + t6; h5 = −t1 − t2 − t3;
h8 = −t2; h9 = −t3; h11 = t1; h14 = −t3; h17 = t2; h29 = t3. (13)

Comparing (4) and (7) we get the following system of linear algebraic equations in
unknowns (6):

Fi = σi, i = 0, 1, 2, . . . ,m. (14)

Equation Fi = σi will be denoted by Ei for any non-negative integer i.
The following theorem stems from [6].

Theorem 4.1 Let L be a symmetric system of numbers of the form 2 cos p
q
π, where

p, q are integers and q 6= 0. A necessary condition for L to be a graph spectrum is that
L can be represented in the form (4). In this case, to every solution of the system of
equations (14) in unknowns (6), these quantities being non-negative integers, a graph
corresponds, the spectrum of which is L. All graphs having the spectrum equal to L can
be obtained in this way.

Theorem 4.1 was given in [6] without a detailed proof. Its application requires
consideration of some details not mentioned explicitly in the theorem. We shall see that
the theorem is valid if equations (7) - (12) are appropriately specified (see considerations
in [8] and in the next sections).

An efficient general theory of systems of linear Diophantine equations does not exist
(see, for example, [18]) and therefore we have to use specific features of the system (14)
when looking for solutions and their properties. However, there are computer tools to
handle particular Diophantine equations (for example, package Wolfram Mathematica).
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5 Some general properties of the system of equa-

tions

Remark 5.1. Equality (3) can be formulated as L = σ0Ĉ4 + Σ+∞
i=1σiP̂i with σi = 0 for

i > m. Together with equations (14) we can consider equations Fi = 0 for i > m and
they also should be fulfilled. Here Fi is defined by (10) and (11) for any i > m. We
shall see later that the number of useful equations is still limited. The system (14) will
be called basic and together with additional equations it is called extended.

Some examples of application of Theorem 4.1 have been described in [8] and given
here in Section 6. We reproduce here just a simple one.

Example 4.1. Let us find all graphs with the spectrum L = 2, 0, 0, 0,−2. We have
L = Ĉ4 + P̂1. The system (14) reduces to the equations w1 + c2 = 1, p1 + w1 + z2 = 1
with solutions w1 = 0, c2 = 1, p1 = 1, z2 = 0 and w1 = 1, c2 = 0, p1 = 0, z2 = 0. Hence,
graphs C4 + P1 and W1 both have the spectrum L.

Given a bipartite graph G, we can represent it in the canonical form, defined by
Theorem 3.1, and find the corresponding canonical coefficients σ0, σ1, . . . , σm. The
corresponding system of equations (14) will be called the system associated to the graph
G. We shall assume in this section that the system we are considering is associated to
a graph.

The following proposition has been proved in [8].

Proposition 5.1 If σ0, σ1, . . . , σm are coefficients of the canonical representation of
the spectrum of a bipartite graph G from S, then the number n of vertices of G is
given by

n = 4σ0 + Σm
i=1iσi.

Proof. The number of vertices of G is equal to the number of eigenvalues in Ĝ. We
have

Ĝ = σ0Ĉ4 + σ1P̂1 + σ2P̂2 + · · ·+ σmP̂m.

If all σi’s are non-negative the conclusion is clear. If σi < 0 for some i > 0, the
eigenvalues of P̂i have negative multiplicities. Hence we have for each i for which
σi < 0 to subtract |σi| from the sum of positive summands.

Example 5.2. Based on equations (2) we have the following canonical forms for the
spectra of Zn and T3 respectively:

Ẑn = P̂1 − P̂n + P̂2n+1,

T̂3 = P̂1 + P̂2 + P̂4 − P̂5 − P̂9 − P̂14 + P̂29.
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By Proposition 4.1 we have for the number of vertices 1 − n + 2n + 1 = n + 2 for
Zn and 1 + 2 + 4− 5− 9− 14 + 29 = 8 for T3.

From Proposition 5.1 we conclude that the number n of vertices of unknown graphs
is uniquely determined by the system of equations.

The number n determines the set of variables in the system (14). One should
include variables indicating the number of components whose number of vertices is at
most n.

Example 5.3. For considering graphs on 6 vertices the following variables are relevant:
p1, p2, p3, p4, p5, p6; z2, z3, z4;w1, w2; c2, c3 and t1.
If we take 6 equations, the matrix of the system (14) reads:

0 0 0 0 0 0 0 0 0 1 1 1 1 0
1 0 0 0 0 0 1 1 1 1 0 0 −2 1
0 1 0 0 0 0 −1 0 0 0 1 0 2 1
0 0 1 0 0 0 0 −1 0 0 0 0 0 −1
0 0 0 1 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 −1



Let us establish the number of variables.

Remark 5.2. Given n the number of vertices the following variables are relevant
p1, p2, . . . , pn; z2, z3, . . . , zn−2;w1, w2, . . . , wn−4; c2, c3, . . . , c[n/2] and t1, t2, t3, t4, t5, t6;.
Let us define τn for n ≥ 5 by the following table.

n 5 6 7 8 ≥ 9
τn 0 1 3 5 6

We have for n ≥ 5 counting in turn n + (n − 3) + (n − 4) + [n/2] − 1 + τn =
3n+ [n/2]− 8 + τn variables.

We shall always assume that n ≥ 5 since otherwise the system is not interesting (in
particular, the smallest number of vertices in non-isomorphic cospectral graphs is 5).

We shall see later that the list of relevant variables can be reduced.

Let v1, v2, . . . , vs be variables of our system. Let for any i the number of vertices
in the corresponding component of the considered graph be denoted by N(vi). In
particular, we have N(pj) = j, N(zj) = j + 2, N(wj) = j + 4 and N(cj) = 2j for any
suitable j. Then

N(v1) +N(v2) + · · ·+N(vs) = n.

This equation should be added to the system since this makes finding solutions
easier. It will be denoted by Ev.
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Remark 5.3. The system (14) always has a solution c2 = σ0, p1 = σ1, . . . , pm = σm
with other variables being equal to 0, giving rise to a hypothetical graph σ0C4 +σ1P1 +
σ2P2 + · · · + σmPm. However, this formal linear combination does not correspond to
a graph if among coefficients σi are some which are negative. In this case we know
that still a solution exists since we assume that the system is associated to a graph G.
This solution is expressed through parameters of G. Such a solution is called standard
solution of system (14). Obviously, a graph G is a DS-graph if and only if the system
(14), associated to G, has a unique solution (i.e. only standard solution). In the
contrary, in order to determine the cospectral equivalence class of some non DS-graph,
we are interested in non-standard solutions of the associated system. Obviously, a
graph G is DS if and only if the system (14), associated to G, has only the standard
solution.
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6 Applying the system of equations

Following the paper [8] we shall present several examples of solving the system of
equations.

6.1 Spectral characterizations

We shall prove that some Smith graphs are DS.

Theorem 6.1 The graph Zn is DS-graph.

Proof. Since Ẑn = P̂1 − P̂n + P̂2n+1, we have:

σ0 = 0, σ1 = 1, σ2 = 0, . . . , σn−1 = 0, σn = −1, σn+1 = 0, . . . , σ2n = 0, σ2n+1 = 1,

while by Proposition 5.1 the number of vertices is n + 2. We will carry out the proof
assuming that n ≥ 9, which means that we can consider all of the following variables
as relevant:

p1, p2, . . . , pn+2, z2, z3, . . . , zn, w1, w2, . . . , wn−2, c2, c3, . . . , cbn+2
2
c, t1, t2, t3, t4, t5, t6.

The cases when n < 9 can be considered in the similar fashion.
The equation E0 of the system of linear equations (14) associated to Zn reads:

F0 = (w1 + w2 + . . .+ wn−2) + (c2 + c3 + . . .+ cbn+2
2
c) + t4 + t5 + t6 = 0,

wherefrom we conclude that w1 = w2 = . . . = wn−2 = 0, c2 = c3 = . . . = cbn+2
2
c = 0

and t4 = t5 = t6 = 0.
Therefore, the equation E1 becomes:

F1 = p1 + (z2 + z3 + . . .+ zn) + t1 + t2 + t3 = 1, (15)

which means that exactly one of the involved variables should be equal to one.
If p1 = 1, then the equation En is of the following form: Fn = pn = −1, that is the

contradiction with the assumption that the variables should be non-negative integers.
So, p1 = 0.

If ti = 1, for exactly one i ∈ {1, 2, 3}, then the equation E2 becomes F2 = p2+1 = 0,
and therefore t1 = t2 = t3 = 0.

From the considered cases it follows from (15) that exactly one of the zi’s is equal to
1. From the equation E2n+1 we have F2n+1 = zn = 1, since the other possible variables
are not relevant.

According to the determined values, the equations Ei, for i ∈ {2, 3, . . . , n+ 2} and
i 6= n are of the following form Fi = pi = 0, while for i = n we have Fn = pn− 1 = −1.
Therefore, p2 = p3 = . . . = pn+2 = 0.
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Since the system (14) has unique solution, Zn is DS-graph.

Theorem 6.1 has already been proved in [26] by a different technique. Here we have
given an alternative proof using system of linear equations (14).

It is well known that all connected Smith graphs, except for the double snake Wn

and the tree T4 (see [15]), are DS-graphs, and this can be proved in the same spirit as
in Theorem 6.1. Graph that is cospectral with T4 is C6 + P1. Furthermore, together
with Theorem 6.1, it is proved in [26] that Zn1 +Zn2 + · · ·+Znk

is DS-graph whenever
n1, n2, . . . , nk are positive integers greater than 1. This result is generalized in [21],
where it is proved that a graph of type Zj1 + Zj2 + · · · + Zjk + t1T1 + t2T2 + t3T3, for
some natural numbers j1, j2, . . . , jk, t1, t2, t3 is determined by its adjacency spectrum
under some circumstances.

Cospectral equivalence classes of Pn + P1 and of Wn + P1 have been determined in
[29], while bellow we consider graphs Zn +P1 and C2n +P1. In principal, all results on
the spectral characterization and cospectrality of Smith graphs from the papers [26],
[21], [29] can be reproduced using our new technique. Also, note that the main result
of the paper [22] can be proved by our technique, as well.

Theorem 6.2 Graph Zn + P1, for n ≥ 9 is DS-graph.

Proof. Graph Zn + P1 has n + 3 vertices, and according to (2) we have Ẑn + P̂1 =

2P̂1 − P̂n + P̂2n+1. The relevant variables are:

p1, p2, . . . , pn+3, z2, z3, . . . , zn+1, w1, w2, . . . , wn−1, c2, c3, . . . , cbn+3
2
c, t1, t2, t3, t4, t5, t6.

Equation E0 of the system of linear equations (14) that is associated to Zn + P1

reads:

F0 = w1 + w2 + . . .+ wn−1 + c2 + c3 + . . .+ cbn+3
2
c + t4 + t5 + t6 = 0,

wherefrom we get w1 = w2 = . . . = wn−1 = 0, c2 = c3 = . . . = cbn+3
2
c = 0 and

t4 = t5 = t6 = 0. Therefore the equation E1 becomes:

F1 = p1 + z2 + z3 + . . .+ zn+1 + t1 + t2 + t3 = 2. (16)

Let us find the non-negative solutions of the equation (16). First, let us consider the
possible values of the variables t1, t2 and t3.

We have:
F2 = p2 + 2 = 0, if ti = 2 for exactly one i ∈ {1, 2, 3};
F2 = p2 + 2 = 0, if ti = 1 and tj = 1 for exactly one i 6= j ∈ {1, 2, 3};
F2 = p2 + 1 = 0, if p1 = 1 and ti = 1 for exactly one i ∈ {1, 2, 3};
F2 = p2 + 1 = 0, if ti = 1 for exactly one i ∈ {1, 2, 3} and

zj = 1, for exactly one j ∈ {3, 4, . . . , n+ 1}.
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Let us now assume that ti = 1 for exactly one i ∈ {1, 2, 3} and z2 = 1. Then we have:
F11 = p11 + 1 =

{
0, if n 6= 11;
−1, if n = 11.

, if t1 = 1;

F17 = p17 + 1 =

{
0, if n 6= 17;
−1, if n = 17.

, if t2 = 1;

F4 = p4 + 1 = 0, if t3 = 1.

¿From the considered cases we conclude t1 = t2 = t3 = 0.
¿From the equation E2n+1 we find F2n+1 = zn = 1, which together with (16)

means that exactly one of the variables p1, z2, z3, . . . , zn−1, zn+1 is equal to 1. Let us
suppose that zi = 1, for exactly one i ∈ {2, 3, . . . , n − 1, n + 1}. Then the equation
E2i+1 is of the form: F2i+1 = p2i+1 = −1. Since this gives the contradiction, we have
z2 = z3 = . . . = zn−1 = zn+1 = 0. Therefore, from (16) we have p1 = 1.

Now, equations Ei, for i ∈ {2, 3, . . . , n+ 3} are of the form Fi = pi = 0, so we find
p2 = p3 = . . . = pn+3 = 0.

Since the associated system (14) has unique solution, graph Zn + P1 is DS-graph.

Theorem 6.3 Graph C2n + P1, for n ≥ 4 is DS-graph.

Proof. Graph C2n+P1 has 2n+1 vertices, and according to (2) one can find Ĉ2n+P̂1 =

Ĉ4 − P̂1 + 2P̂n−1. The relevant variables are:

p1, p2, . . . , p2n+1, z2, . . . , z2n−1, w1, w2, . . . , w2n−3, c2, c3, . . . , cn, t1, t2, t3, t4, t5, t6.

Let us determine the possible non-negative values of these variables.
The equation E0 of the system of linear equations (14) that is associated to C2n+P1

reads:

F0 = w1 + w2 + . . .+ w2n−3 + c2 + c3 + . . .+ cn + t4 + t5 + t6 = 1,

wherefrom we conclude that exactly one of the variables w1, w2, . . . , w2n−3, c2, c3, . . . , cn,
t4, t5, t6 is equal to 1.

If wi = 1 for exactly one i ∈ {1, 2, . . . , 2n− 3}, then we have:

F1 = p1 + z2 + z3 + . . .+ z2n−1 + t1 + t2 + t3 =

{
−2, if w1 = 1;
−1, if wi = 1, for i 6= 1,

which means that w1 = w2 = . . . = w2n−3 = 0.
Let us now suppose that ti = 1, for exactly one i ∈ {4, 5, 6}. Then we have:

F1 = p1 + z2 + z3 + . . .+ z2n−1 + t1 + t2 + t3 = 0,
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which implies p1 = z2 = z3 = . . . = z2n−1 = t1 = t2 = t3 = 0. In that case the equation
E2 becomes: {

F2 = p2 + 2 = 0, if t4 = 1;
F2 = p2 + 1 = 0, if t5 = 1, or t6 = 1,

that is a contradiction, so t4 = t5 = t6 = 0.
It holds that c2 = 0, since if c2 = 1, we find that F1 = p1 +z2 +z3 + . . .+z2n−1 + t1 +

t2 + t3 = −1. Therefore, let us suppose that ci = 1, for exactly one i ∈ {3, 4, . . . , n}.
Then equation E1 reads:

F1 = p1 + z2 + z3 + . . .+ z2n−1 + t1 + t2 + t3 = 1, (17)

which means that exactly one of the variables p1, z2, z3, . . . , z2n−1, t1, t2, t3 is equal to 1.
If tj = 1 for exactly one j ∈ {1, 2, 3}, we find F2 = p2 + 2c3 = −1. Therefore,

t1 = t2 = t3 = 0.
Let us now suppose that zj = 1, for exactly one j ∈ {2, 3, . . . , 2n − 1}. Then the

equation E2j+1 reads:

F2j+1 = p2j+1 + 2c2j+2 =

{
1, if j = n−2

2
and n is even;

−1, in all remaining cases.

In the second case we have a contradiction, while in the first one we find p2j+1 =
pn−1 = 1 and c2j+2 = cn = 0. Therefore, the equations Ek, for k ∈ {2, 3, . . . , 2n + 1}
and k 6= (n− 1) of the associated system are of the following form:

Fk =

{
pn−2

2
+ 2cn

2
= 1, if k = n−2

2
and n is even;

pk + 2ck+1 = 0, in all remaining cases.

So, we find that ci = 0, for each i, that is the contradiction with the assumption that
ci = 1, for exactly one i ∈ {3, 4, . . . , n}. Therefore, z2 = z3 = . . . = z2n−1 = 0, and
according to (17) we have p1 = 1.

So, from the previous conclusions we have that the equationsEi, for i ∈ {2, 3, . . . , 2n+
1} have the following form:

Fi =

{
pi + 2ci+1 = 0, if i 6= n− 1;
pn−1 + 2cn = 2, if i = n− 1.

From the first equality we find that pi = 0 and ci+1 = 0, for each i 6= n− 1, while the
second equality gives two possible solutions: (pn−1, cn) = (2, 0) or (pn−1, cn) = (0, 1).
The first one is not valid since then we have the contradiction with the assumption
that ci = 1, for exactly one i ∈ {3, 4, . . . , n}. Therefore, the resulting graph is C2n+P1,
and the proof follows.
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6.2 Cospectral equivalence classes

Let us now consider some non DS-graphs from the set S.

Proposition 6.1 The cospectral equivalence class of graph W1 + T4 is: [W1 + T4] =
{W1 + T4, P1 + C6 +W1, P1 + C4 + T4, P2 + C4 +W2, 2P2 + 2C4, 2W2, C6 + C4 + 2P1}.

Proof. Graph W1 + T4 has 12 vertices, and according to (2) we find: Ŵ1 + T̂4 =

2Ĉ4 + 2P̂2. Relevant variables are:

p1, p2, . . . , p12, z2, z3, . . . , z10, w1, w2, . . . , w8, c2, c3, . . . , c6, t1, t2, t3, t4, t5, t6,

while the system (14) associated to this graph is given as item A1 in Subsection 6.3.
By considering the equations Ei of this system, for i ∈ {11, 12, 13, 14, 15, 17, 19, 21},
we find that

p11 = p12 = 0, z5 = z6 = . . . = z10 = 0, t1 = t2 = t3 = 0. (18)

Using equalities (18), from equations Ei, for i ∈ {5, 6, 7, 8, 9, 10}, we get:

p5 = p6 = . . . = p10 = 0, z2 = z3 = z4 = 0, w5 = w6 = w7 = w8, c6 = 0. (19)

Using (18) and (19), from equations E3 and E4, we have:

p3 = p4 = 0, w3 = w4 = 0, c4 = c5 = 0, t5 = t6 = 0. (20)

So, having in mind (18), (19) and (20), equations E0, E1 and E2 reduce to:

F0 = w1 + w2 + c2 + c3 + t4 = 2
F1 = p1 + w1 − 2c3 − t4 = 0
F2 = p2 + w2 + 2c3 + 2t4 = 2

}
(21)

By considering the equation F2 = 2 of system (21), one can distinguish the following
five cases.

Case 1: If c3 = 1 and p2 = w2 = t4 = 0, then there are two sets of possible solutions.
In the first one, we have w1 = 1, c2 = 0 and p1 = 1, while in the second one, we
have c2 = 1, w1 = 0 and p1 = 2. Therefore, P1 +C6 +W1 and C6 +C4 + 2P1 are
the graphs cospectral to W1 + T4.

Case 2: If t4 = 1 and p2 = w2 = c3 = 0, then there are also two sets of possible
solutions. In the first one, we have p1 = 1, w1 = 0 and c2 = 1, in the second
one we have p1 = 0, w1 = 1 and c2 = 0, so P1 + C4 + T4 and W1 + T4 are the
corresponding resulting graphs.

21



Case 3: For p2 = w2 = 1 and c3 = t4 = 0, one finds p1 = w1 = 0 and c2 = 1, so
P2 + C4 +W2 is the graph cospectral to W1 + T4.

Case 4: If p2 = 2 and w2 = c3 = t4 = 0, then p1 = w1 = 0 and c2 = 2, so 2P2 + 2C4 is
graph cospectral to W1 + T4.

Case 5: If w2 = 2 and p2 = c3 = t4 = 0, then p1 = w1 = c2 = 0, and 2W2 is the graph
cospectral to W1 + T4.

Proposition 6.2 The cospectral equivalence class of graph W1 + T5 is: [W1 + T5] =
{W1 + T5, P2 + P3 + 2C4, P2 + C4 +W3,W2 + P3 + C4,W2 +W3, T5 + C4 + P1}.

Proof. Graph W1 + T5 has 13 vertices, and according to (2) we find Ŵ1 + T̂5 =

2Ĉ4 + P̂2 + P̂3. Relevant variables are:

p1, p2, . . . , p13, z2, z3, . . . , z11, w1, w2, . . . , w9, c2, c3, . . . , c6, t1, t2, t3, t4, t5, t6,

while the system (14) associated to this graph is given as item A2 in Subsection 6.3.
By considering this system, from the equations Ei, for i ∈ {12, 13, 14, 15, 17, 19, 21, 23}
we directly get:

p12 = p13 = 0, t2 = t3 = 0, z6 = z7 = . . . = z11 = 0. (22)

By using identities (22) from equations Ei, for i ∈ {6, 7, 8, 9, 10, 11} we find:

p6 = p7 = . . . = p11 = 0, z3 = z4 = z5 = 0, t1 = 0, w6 = w7 = w8 = w9 = 0. (23)

¿From (22) and (23) and equations E4 and E5, we have:

p4 = p5 = 0, z2 = 0, w4 = w5 = 0, c5 = c6 = 0, t6 = 0. (24)

Now, having in mind (22), (23) and (24), the equations E0, E1, E2 and E3 become:

F0 = w1 + w2 + w3 + c2 + c3 + c4 + t4 + t5 = 2
F1 = p1 + w1 − 2c3 − 2c4 − t4 − t5 = 0
F2 = p2 + w2 + 2c3 + 2t4 + t5 = 1
F3 = p3 + w3 + 2c4 + t5 = 1

(25)

¿From the equations F2 = 1 and F3 = 1 of the system (25) we get that c3 = c4 = t4 = 0,
so the system (25) becomes:

F0 = w1 + w2 + w3 + c2 + t5 = 2
F1 = p1 + w1 − t5 = 0
F2 = p2 + w2 + t5 = 1
F3 = p3 + w3 + t5 = 1

(26)
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By analysing the equation F2 = 1 of system (26) we can distinguish the following three
cases:

Case 1: If p2 = 1 and w2 = t5 = 0, then p1 = w1 = 0, and there are two subcases:

Subcase 1: if p3 = 1 and w3 = 0, then c2 = 2, and it follows W1 + T5 ∼
P2 + P3 + 2C4;

Subcase 2: if w3 = 1 and p3 = 0, then c2 = 1, and we have W1 + T5 ∼
P2 + C4 +W3.

Case 2: If w2 = 1 and p2 = t5 = 0, we find that p1 = w1 = 0, so we have the following:

Subcase 1: if w3 = 1 and c2 = 0, it follows p3 = 0, and W1 + T5 ∼ W2 +W3;

Subcase 2: if w3 = 0 and c2 = 1, then p3 = 1, so we have W1+T5 ∼ W2+P3+C4.

Case 3: If t5 = 1 and p2 = w2 = 0, we find p3 = w3 = 0, and then:

Subcase 1: if p1 = 1, w1 = 0 and c2 = 1, we have W1 + T5 ∼ T5 + C4 + P1;

Subcase 2: if p1 = 0, w1 = 1 and c2 = 0, we get W1 + T5 ∼ T5 +W1.

Theorem 6.4 Graph T5 + T6 is not DS-graph. Its cospectral equivalence class is:
[T5 + T6] = {T5 + T6, P3 + P4 + C4 + C6, P4 + C6 +W3, P3 + C6 +W4}.

Proof. Graph T5 + T6 has 17 vertices, and according to (2) we find T̂5 + T̂6 = 2Ĉ4 −
2P̂1 + 2P̂2 + P̂3 + P̂4. The corresponding variables are:

p1, p2, . . . , p17, z2, z3, . . . , z15, w1, w2, . . . , w13, c2, c3, . . . , c8, t1, t2, t3, t4, t5, t6,

while the system of linear equations associated to this graph is given as item A3 in
Subsection 6.3.

¿From the equations Ei, for i ∈ {16, 17, 19, 21, 23, 25, 27, 29, 31} we directly get:

p16 = p17 = 0, z8 = z9 = . . . = z15 = 0, t2 = t3 = 0. (27)

By using (27), from the equations Ei, for i ∈ {8, 9, 10, 11, 12, 13, 14, 15}, we have:

p8 = p9 = . . . = p15 = 0, z4 = . . . = z7 = 0, w8 = w9 = . . . = w13 = 0, t1 = 0. (28)

Now, using (27) and (28) from equations E5, E6 and E7 we find:

p5 = p6 = p7 = 0, z2 = z3 = 0, w5 = w6 = w7 = 0, c6 = c7 = c8 = 0. (29)
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According to (27), (28) and (29), equations E0, E1, E2, E3 and E4 become:

F0 = w1 + w2 + w3 + w4 + c2 + c3 + c4 + c5 + t4 + t5 + t6 = 2

F1 = p1 + w1 − 2c3 − 2c4 − 2c5 − t4 − t5 − t6 = −2

F2 = p2 + w2 + 2c3 + 2t4 + t5 + t6 = 2 (30)

F3 = p3 + w3 + 2c4 + t5 = 1

F4 = p4 + w4 + 2c5 + t6 = 1.

¿From the relations F3 = 1 and F4 = 1 we find c4 = c5 = 0, so the system (30) reduces
to:

F0 = w1 + w2 + w3 + w4 + c2 + c3 + t4 + t5 + t6 = 2

F1 = p1 + w1 − 2c3 − t4 − t5 − t6 = −2

F2 = p2 + w2 + 2c3 + 2t4 + t5 + t6 = 2 (31)

F3 = p3 + w3 + t5 = 1

F4 = p4 + w4 + t6 = 1.

By considering the equation F4 = 1 of the system (31), we can distinguish between
three cases:

Case 1: If p4 = 1 and w4 = t6 = 0, then by considering the equation F3 = 1 we can
distinguish between the following three subcases:

Subcase 1: for p3 = 1 and w3 = t5 = 0, we find that c2 = c3 = 1 and p1 = p2 =
w1 = w2 = t4 = 0, so the corresponding graph is C4 + C6 + P3 + P4;

Subcase 2: if w3 = 1 and p3 = t5 = 0, we find c3 = 1 and p1 = p2 = w1 = w2 =
c2 = t4 = 0, and the corresponding graph is C6 +W3 + P4;

Subcase 3: if t5 = 1 and p3 = w3 = 0, then we have F2 = p2+w2+2c3+2t4 = 1,
wherefrom we find c3 = t4 = 0, that implies F1 = p1 + w1 = −1. Therefore,
in this subcase we do not have non-negative solutions.

Case 2: If w4 = 1 and p4 = t6 = 0, then by analysing the equation F3 = 1 we can
distinguish between the following three subcases:

Subcase 1: if p3 = 1 and w3 = t5 = 0, we find that c3 = 1 and p1 = p2 = w1 =
w2 = c2 = t4 = 0, so the corresponding graph is C6 + P3 +W4;

Subcase 2: if w3 = 1 and p3 = t5 = 0, then we have F0 = w1+w2+c2+c3+t4 = 0,
wherefrom we get w1 = w2 = c2 = c3 = t4 = 0. This implies that F1 = p1 =
−2, that is the contradiction.

Subcase 3: if t5 = 1 and p3 = w3 = 0, then we have F0 = w1+w2+c2+c3+t4 = 0,
wherefrom we get w1 = w2 = c2 = c3 = t4 = 0. Therefore, we have
F1 = p1 = −1, that is the contradiction.

24



Case 3: If t6 = 1 and p4 = w4 = 0, then from the equation F2 = p2+w2+2c3+2t4+t5 =
1, we find c3 = t4 = 0, so by considering this equation we can distinguish between
three subcases:

Subcase 1: if p2 = 1 and w2 = t5 = 0, we get F1 = p1 + w1 = −1, which is the
contradiction;

Subcase 2: if w2 = 1 and p2 = t5 = 0, the equation F1 = p1 + w1 = −1 gives
the contradiction;

Subcase 3: if t5 = 1 and p2 = w2 = 0, we find that p1 = p3 = w1 = w3 = c2 = 0,
so the resulting graph is T5 + T6.

6.3 Some details

Here we list the full-form of the systems of linear equations (14) associated to the
graphs W1 + T4, W1 + T5 and T5 + T6, respectively, that we are solving in the proofs of
the corresponding statements in Subsection 6.2. In each case the number of equations
is 2n− 3 where n is the number of vertices (avoiding equations of the form 0 = 0).

A1. System of linear equations (14) associated to W1 + T4.

F0 = w1 + w2 + . . .+ w8 + c2 + c3 + . . .+ c6 + t4 + t5 + t6 = 2,

F1 = p1 + w1 + z2 + z3 + . . .+ z10 − 2c3 − 2c4 − . . .− 2c6 + t1 + t2 + t3 − t4 − t5 − t6 = 0,

F2 = p2 − z2 + w2 + 2c3 + t1 + t2 + t3 + 2t4 + t5 + t6 = 2,

F3 = p3 − z3 + w3 + 2c4 − t1 + t5 = 0,

F4 = p4 − z4 + w4 + 2c5 + t3 + t6 = 0,

F5 = p5 + z2 − z5 + w5 + 2c6 − t1 − t2 − t3 = 0,

F6 = p6 − z6 + w6 = 0,

F7 = p7 + z3 − z7 + w7 = 0,

F8 = p8 − z8 + w8 − t2 = 0,

F9 = p9 + z4 − z9 − t3 = 0,

F10 = p10 − z10 = 0,

F11 = p11 + z5 + t1 = 0,

F12 = p12 = 0,

F13 = z6 = 0,

F14 = −t3 = 0,

F15 = z7 = 0,
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F17 = z8 + t2 = 0,

F19 = z9 = 0,

F21 = z10 = 0.

A2. System of linear equations (14) associated to W1 + T5.

F0 = w1 + w2 + . . .+ w9 + c2 + c3 + . . .+ c6 + t4 + t5 + t6 = 2,

F1 = p1 + w1 + z2 + z3 + . . .+ z11 − 2c3 − 2c4 − . . .− 2c6 + t1 + t2 + t3 − t4 − t5 − t6 = 0,

F2 = p2 − z2 + w2 + 2c3 + t1 + t2 + t3 + 2t4 + t5 + t6 = 1,

F3 = p3 − z3 + w3 + 2c4 − t1 + t5 = 1,

F4 = p4 − z4 + w4 + 2c5 + t3 + t6 = 0,

F5 = p5 + z2 − z5 + w5 + 2c6 − t1 − t2 − t3 = 0,

F6 = p6 − z6 + w6 = 0,

F7 = p7 + z3 − z7 + w7 = 0,

F8 = p8 − z8 + w8 − t2 = 0,

F9 = p9 + z4 − z9 + w9 − t3 = 0,

F10 = p10 − z10 = 0,

F11 = p11 + z5 − z11 + t1 = 0,

F12 = p12 = 0,

F13 = p13 + z6 = 0,

F14 = −t3 = 0,

F15 = z7 = 0,

F17 = z8 + t2 = 0,

F19 = z9 = 0,

F21 = z10 = 0,

F23 = z11 = 0.

A3. System of linear equations (14) associated to T5 + T6.

F0 = w1 + w2 + . . .+ w13 + c2 + c3 + . . .+ c8 + t4 + t5 + t6 = 2,

F1 = p1 + w1 + z2 + z3 + . . .+ z15 − 2c3 − 2c4 − . . .− 2c8 + t1 + t2 + t3 − t4 − t5 − t6 = −2,
F2 = p2 − z2 + w2 + 2c3 + t1 + t2 + t3 + 2t4 + t5 + t6 = 2,

F3 = p3 − z3 + w3 + 2c4 − t1 + t5 = 1,

F4 = p4 − z4 + w4 + 2c5 + t3 + t6 = 1,

F5 = p5 + z2 − z5 + w5 + 2c6 − t1 − t2 − t3 = 0,
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F6 = p6 − z6 + w6 + 2c7 = 0,

F7 = p7 + z3 − z7 + w7 + 2c8 = 0,

F8 = p8 − z8 + w8 − t2 = 0,

F9 = p9 + z4 − z9 + w9 − t3 = 0,

F10 = p10 − z10 + w10 = 0,

F11 = p11 + z5 − z11 + w11 + t1 = 0,

F12 = p12 − z12 + w12 = 0,

F13 = p13 + z6 − z13 + w13 = 0,

F14 = p14 − z14 − t3 = 0,

F15 = p15 + z7 − z15 = 0,

F16 = p16 = 0,

F17 = p17 + z8 + t2 = 0,

F19 = z9 = 0,

F21 = z10 = 0,

F23 = z11 = 0,

F25 = z12 = 0,

F27 = z13 = 0,

F29 = z14 + t3 = 0,

F31 = z15 = 0.
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7 The extended system of equations

The purpose of this section is to represent in a clear way equations from the basic and
from the extended system of equations.

Variables t1, t2, t3, t4, t5, t6 will be called exceptional. Let T = t1+t2+t3+t4+t5+t6.
We shall first consider our system for which T = 0. The system becomes simpler and
we can analyze it easier. Afterwards we shall consider the case T > 0.

Equations Ei for i > n have a simple form. From (10) we have
F2p = 0, F2p+1 = zp.
Since maximal value of p is n− 2, we see that the equation
E2n−3 : F2n−3 = zn−2

is the one with the largest index i in Ei that should be considered. Equations Ei for
i > 2n− 3 are of the form 0 = 0.

Now we see that our system is reduced to equations
Ev, E0, E1, E2, . . . , E2n−3.
These equations have been considered in [8] when determining cospectral equiv-

alence classes for graphs W1 + T4, W1 + T5 and T5 + T6 (see Subsections 6.2. and
6.3).

However, equations Ei with i even and n < i ≤ 2n− 3 are useless since they are of
the form 0 = 0.

Equations E2p+1 for n < 2p+1 ≤ 2n−3 contain only the variable zp. These variables
can be immediately determined and eliminated from the rest of the system. Note that
only one of these variables can be equal to 1, other being equal to 0. Therefore the
system is reduced to equations

Ev, E0, E1, E2, . . . , En.
After all these reductions the system has the following form (we quote left hand

sides Fi of the corresponding equations):

Fv = N(v1) +N(v2) + · · ·+N(vs)(= n),
F0 = (w1 + w2 + w3 + · · · ) + (c2 + c3 + · · · ),

F1 = p1 + w1 + (z2 + z3 + · · · )− 2 (c3 + c4 + · · · ),
F2 = p2 − z2 + w2 + 2 c3,
F3 = p3 − z3 + w3 + 2 c4,
F4 = p4 − z4 + w4 + 2 c5,

F5 = p5 + z2 − z5 + w5 + 2 c6,
—————————————————–
if i is even: if i is odd:
Fi = pi − zi + wi + 2 ci+1, Fi = pi + z i−1

2
− zi + wi + 2 ci+1,

up to i = [n/2]− 1
—————————————————–
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if i is even: if i is odd:
Fi = pi + wi, Fi = pi + z i−1

2
+ wi,

for [n/2]− 1 < i ≤ n− 4
—————————————————–
if n is even: if n is odd:
Fn−3 = pn−3 + z(n−4)/2, Fn−3 = pn−3,
Fn−2 = pn−2, Fn−2 = pn−2 + z(n−3)/2,
Fn−1 = pn−1 + z(n−2)/2, Fn−1 = pn−1,
Fn = pn. Fn = pn + z(n−1)/2.

We see that most of equations contain a small number of variables. Starting from
En, one should be able to determine immediately a lot of variables (see next section).

Exceptional variables t1, t2, t3, t4, t5, t6 appear in equation Ev and in equations Ei
for i = 0, 1, 2, 3, 4, 5, 8, 9, 11, 14, 17, 29. Last 12 equations can be presented in the form

t4 +t5 +t6 = a0,
t1 +t2 +t3 −t4 −t5 −t6 = a1,
t1 +t2 +t3 +2t4 +t5 +t6 = a2,
−t1 +t5 = a3,

t3 +t6 = a4,
−t1 −t2 −t3 = a5,

−t2 = a8,
−t3 = a9,

t1 = a11,
−t3 = a14,

t2 = a17,
t3 = a29.

In equation Ei all terms different from ti’s are collected on the right hand side with
mark ai.

For the convenience of the reader we shall repeat equations E0 − E5 with added
exceptional variables.

F0 = (w1 + w2 + w3 + · · · ) + (c2 + c3 + · · · ) + t4 + t5 + t6,
F1 = p1 + w1 + (z2 + z3 + · · · )− 2 (c3 + c4 + · · · ) + t1 + t2 + t3 − t4 − t5 − t6,
F2 = p2 − z2 + w2 + 2 c3 + t1 + t2 + t3 + 2t4 + t5 + t6,
F3 = p3 − z3 + w3 + 2 c4 − t1 + t5,
F4 = p4 − z4 + w4 + 2 c5 + t3 + t6,
F5 = p5 + z2 − z5 + w5 + 2 c6 − t1 − t2 − t3.
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8 Reduction of the system

Consider a system of equations

Ev, E0, E1, E2, . . . , En, . . . , Eq

associated to a bipartite Smith graph on n vertices. The system contains relevant
variables as listed in Remark 5.2. This is the extended system of equations for spectra
of Smith graphs. Equations Ei for i > q are of the form 0 = 0 while equation Eq
contains at least one variable. Of course, m ≤ q = max{2n− 3, 29}.

We shall consider these equations in the direction ”bottom - up”, i.e. from Eq up
to Em.

Lemma 8.1. Let v be any of variables pj, zj, wj, cj for some j or t1, t2, t3. The variable
v appears with sign + in the ”lowest” equation Ei in which it appears.

Proof. The statement follows from formulas (2) and from the way in which equations
Ei are constructed.

Theorem 8.1. When solving the extended system, one can restrict to the following
equations Ev, E0, E1, . . . , Em.

Proof. By definition of the parameter m, the equation Ei is of the form Fi = 0 for
i > m and if Fi contains the sum of non-negative variables, they all have to be equal 0.
By Lemma 6.1, this happens in equation Eq. We consider the system of equations in
the direction bottom - up, from Eq up to Em. In the moment when we consider Fi = 0
containing a variable v with - sign, then v is already determined as equal to 0 (when we
were considering one of the equations Fj = 0, j > i). In this way, we establish that all
variables from equations Eq, Eq−1, . . . , Em+1 are equal to 0. This proves the theorem.

When reducing the system of equations, the original set of variables from Remark
5.2 is also reduced. For a special case we can prove the following theorem.

Theorem 8.2. When solving the extended system with T = 0 and 5 ≤ m ≤ [n/2] −
1, one can restrict to the equations Ev, E0, E1, . . . , Em with the following variables:
p1, p2, . . . , pm; w1, w2, . . . , wm; c2, c3, . . . , cm+1 and z2, z3, . . . , zs, where s = m/2− 1 for
m even and s = (m− 1)/2 for m odd.

Proof. As in the proof of Theorem 8.1, we establish that all variables from equations
Eq, Eq−1, . . . , Em+1 are equal to 0. When considering Em+1 we establish that the fol-
lowing variables are equal to 0: pm+1, wm+1, cm+2 and zm/2 for m even and z(m+1)/2 for
m odd. This proves the theorem.

By proving Theorem 8.2 the meaning of Theorem 4.1 becomes more precise since
it was not clear what variables really take part in the system (14).
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In each particular case one can establish exactly which variables remain.
Theorem 8.2 remains valid for m < 5 in which case none of variables z2, z3, . . .

appears after reduction of the system.
Without condition T = 0, if m ≤ 10, we can conclude that t1, t2, t3 = 0. If m ≤ 3

then from E4 we get also t6 = 0 and if m ≤ 2 we conclude from E3 that t5 = 0.

Example 8.1. The cospectral equivalence class of graph W1 + T4 consists of the
following seven graphs: W1 +T4, P1 +C6 +W1, P1 +C4 +T4, P2 +C4 +W2, 2P2 + 2C4,
2W2 and C6 + C4 + 2P1. This was proved in [8] using extended system of equations.

Indeed, graph W1 +T4 has 12 vertices, and we have: Ŵ1 + T̂4 = 2Ĉ4 + 2P̂2. This means
that m = 2. Using Theorem 8.1 and above remarks, it is sufficient to consider the
following equations:

F0 = w1 + w2 + c2 + c3 + t4 = 2,
F1 = p1 + w1 − 2c3 − t4 = 0,
F2 = p2 + w2 + 2c3 + 2t4 = 2.

Equation E2 has five solutions and these readily provide seven solutions of the system,
as described in [8] and here in Subsection 6.2.

We shall now consider some special cases.

1. Height m = 0. We have m = 0 and by bottom-up principle all variables are
equal to 0 except for c2 in E0. In fact, F0 = c2 = σ0 and the solution is unique: σ0C4.
More general result is well known: regular graphs of degree 2 are DS (cf. [5], p. 167).

2. Height m = 1. The extended system is reduced to w1 + c2 = σ0, p1 + w1 = σ1
with solutions w1 = k, c2 = σ0 − k, p1 = σ1 − k for 0 ≤ k ≤ min{σ0, σ1}. We have here
a slight generalization of Example 4.1.

2. Spectral characterization of connected Smith graphs. It is known from the
literature that connected Smith graphs are DS except for Wn and T4 (cf. relations (2)).
Wn is cospectral with C4 +Pn and T4 is cospectral with C6 +P1. We can confirm these
results using our technique and will give here only a few examples.

For Pn the extended system is reduced to the equation Fn = pn = 1 proving that
Pn is DS.

For T1 we have n = 6 and m = 11. We immediately get F11 = t1 = 1 as required.
For T2 and T3 relevant equations are F17 = t2 = 1 and F29 = t3 = 1 respectively.

Of course, these tricks will not work for T4. We have n = 7,m = 2 and the following
equations

F0 = w1 + w2 + c2 + c3 + t4 = 1,
F1 = p1 + w1 − 2c3 − t4 = −1,
F2 = p2 + w2 + 2c3 + 2t4 = 2.
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From E2 we get for non-zero variables either t4 = 1 or c3 = 1 since p2 = w2 = 1 yields
a graph on 8 vertices. Hence we readily get what is expected. Note that expressions
for F0, F1, F2 are the same as in Example 6.1.

We have proved in Theorem 6.1 that the graph Zn is DS using our technique but
the result was known in the literature, obtained by other techniques.

2. Height m = 2. We already had two examples with m = 2. Now we formulate the
general case where we add equation Ev as well.

Fv = p1 + 2p2 + 5w1 + 6w2 + 4c2 + 6c3 + 7t4 = n,
F0 = w1 + w2 + c2 + c3 + t4 = σ0,
F1 = p1 + w1 − 2c3 − t4 = σ1,
F2 = p2 + w2 + 2c3 + 2t4 = σ2.

By Proposition 5.1 we have n = 4σ0 + σ1 + 2σ2, where n is the number of vertices.
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9 An algorithmic criterion for cospectrality of Smith

graphs

Let H ∈ S. Let

Ĥ = σ0Ĉ4 +
m∑
i=1

σiP̂i,

be the canonical representation of the spectrum Ĥ of H . If all quantities σi are non-
negative, the graph H is called a Smith graph of type A, otherwise it is of type B. Let
I (J) be the set of indices i for which σi in a graph of type B is negative (positive).

Let PH =
∑

i∈I |σi|Pi. Components of the graph PH are paths whose spectra appear
with a negative sign in the canonical representation of the spectrum of H. The graph
PH is called the basis of H. The basis of a graph of type A is empty. If we add
components from its basis to a graph of type B, it becomes a graph of type A.

The graph KH = σ0C4 +
∑

i∈J σiPi is called the kernel of H.
Together with formulas (2) we shall consider the corresponding component trans-

formations:

(γ1) Wn � C4 + Pn, (δ1)

(γ2) Zn + Pn � P2n+1 + P1, (δ2)

(γ3) C2n + 2P1 � C4 + 2Pn−1, (δ3)

(γ4) T1 + P5 + P3 � P11 + P2 + P1, (δ4)

(γ5) T2 + P8 + P5 � P17 + P2 + P1, (δ5) (32)

(γ6) T3 + P14 + P9 + P5 � P29 + P4 + P2 + P1, (δ6)

(γ7) T4 + P1 � C4 + 2P2, (δ7)

(γ8) T5 + P1 � C4 + P3 + P2, (δ8)

(γ9) T6 + P1 � C4 + P4 + P2. (δ9)

They are of the form A→ B or B → A meaning that in a graph the group of com-
ponents A is replaced with the group of components B or vice versa. Transformations
(32) are called G-transformations. Those of the form A → B are denoted by (γ1),
(γ2), . . . , (γ9) and are called C-transformations. For each C-transformation A → B
we define the corresponding opposite transformation B → A, also denoted by A← B.
Transformations A ← B are called D-transformations and are denoted by (δ1), (δ2),
. . . , (δ9).

Theorem 9.1 Let H1 and H2 be Smith graphs with corresponding bases PH1 and PH2.
If graphs H1 and H2 are cospectral, then the graph H1 + PH1 can be transformed into
H2 + PH2 by a finite number of G-transformations.
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Proof. If H1 and H2 are cospectral, according to Theorem 3.1 their spectrum has the
same canonical representation, PH1 = PH2 and KH1 = KH2 . By at most 9 of formulas
(3) the spectrum of H1 can be reduced to its canonical form. Let c11, c

1
2, . . . c

1
u , u ≤ 9, be

the corresponding C-transformations by which H1+PH1 is transformed to the kernel of
H1 . Let c21, c

2
2, . . . c

2
v, v ≤ 9 be the corresponding C-transformations related to reducing

H2 to the (same) kernel. Let d21, d
2
2, . . . d

2
v be the corresponding D-transformations.

Now we can conclude that the sequence of G-transformations c11, c
1
2, . . . c

1
u d

2
v, . . . , d

2
2, d

2
1

transforms the graph H1 + PH1 into graph H2 + PH2 .

We can use Theorem 9.1 to find the cospectral equivalence class of a Smith graph
H. One should start from the graph H + PH and apply G-transformations whenever
possible. By considering all possibilities of application of these transformations we can
find all cospectral mates of H. The set of applicable G-transformations is finite.

The described algorithm is an alternative to solving the system of equations (14)
when looking for the cospectral equivalence class of a Smith graph.

Example 9.1. It was proved in Subsection 6.2 using the extended system of equa-
tions that the cospectral equivalence class of the graph T5 + T6 is equal to the set
{H1, H2, H3, H4} where

H1 = T5 + T6, H2 = C6 + C4 + P4 + P3, H3 = C6 +W3 + P4, H4 = C6 +W4 + P3.

The algorithmic approach of Theorem 9.1 for this case is illustrated in Fig. 3.
Using formulas (2) we find that Ĥ1 = T̂5 + T̂6 = 2Ĉ4 − 2P̂1 + 2P̂2 + P̂3 + P̂4. Hence

we have for H1 the basis PH1 = 2P1 and the kernel KH1 = 2C4 + 2P2 + P3 + P4. In
Fig. 3 the (common) kernel is placed in the middle. The common basis 2P1 (black
vertices) is added to each of graphs H1, H2, H3, H4. Next, we see that H1 + 2P1 is
transformed into the kernel by transformations γ8 and γ9. Using transformation δ3 we
replace C4 + 2P2 into C6 + 2P1 when passing to all three remaining graphs. Finally,
using δ1 we get W3 + P4 in H3 and W4 + P3 in H4.

Remark 9.1. In application of Theorem 9.1 the order of performing G-transformation
might be sometimes important. This happens in Smith graphs of type A if in forming
their canonical forms some terms with negative signs are canceled. For example, we
have Ŵ1 + T̂4 = Ĉ4 + P̂1− P̂1 + Ĉ4 + 2P̂2 = 2Ĉ4 + 2P̂2. In this case, considering W1 +P4

we should first apply γ1 to obtain C4 + P1 + T4. Now it is possible to apply γ7 and we
get 2C4 + 2P2.
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Figure 3: Finding graphs cospectral to T5 + T6
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10 Cospectrality graphs and quasi-cospectrality graphs

10.1 Basic and non-basic graphs

Let H ∈ S. Let Ĥ = σ0Ĉ4 +
∑m

i=1 σiP̂i be the canonical representation of the spectrum

Ĥ of the bipartite Smith graph H. Here σ0, σ1, σ2, . . . σm are integers with σ0 ≥ 0. As
we know, this representation always exists and is unique. The expression

σ0C4 +
m∑
i=1

σiPi,

is called canonical representation of H. It defines a graph if σ0, σ1, σ2, . . . σm are non-
negative, otherwise it is just a formal expression. In the first case H is cospectral to
its canonical representation but not necessarily isomorphic.

As in Section 9, if all quantities σi are non-negative, the graph H is called a Smith
graph of type A, otherwise it is of type B. Let I (resp. J) be the set of indices i for
which σi in a graph of type B is negative (resp. positive).

Obviously, cospectral Smith graphs are of the same type.
Graphs C4, P1, P2, . . . , appearing in canonical representations of bipartite Smith

graphs, are called basic graphs. All other connected bipartite Smith graphs are called
non-basic graphs. Non-basic graphs are of two types. GraphsWn, (n = 1, 2, . . . ), C2k, (k =
3, 4, . . . ), T4, T5, T6 are non-basic graphs of type I while graphs Zn, (n = 2, 3, . . . ), T1, T2, T3
are non-basic graphs of type II. Note that non-basic graphs of type I have spectral ra-
dius equal to 2 while for those of type II spectral radius is less than 2.

G-transformations (see Section 9) γ1, γ2, γ3 and their opposite transformations δ1, δ2, δ3
are not unique since they depend on the index n of the involved non-basic graphs
Wn, Zn, C2n. If we want to specify this index in the name of the G-transformation, we
shall use superscripts (for example, γn1 or δn2 ).

Application of any G-transformation does not change the spectrum of the corre-
sponding graph. In the next example we use Theorem 9.1.

Example 10.1. The cospectral equivalence class of graph W1 + T4 consists of the
following seven graphs: W1 +T4, P1 +C6 +W1, P1 +C4 +T4, P2 +C4 +W2, 2P2 + 2C4,
2W2 and C6 + C4 + 2P1. This was proved in Subsection 6.2 using extended system of
equations and in Section 8 using condensed system of equations. We shall now prove
the statement using Theorem 9.1.

Indeed, graph W1 + T4 has 12 vertices, and we have: Ŵ1 + T̂4 = 2Ĉ4 + 2P̂2.
The seven graphs in question are represented in Fig. 4 in a special manner. For

each of these graphs we can easily establish by inspection which G-transformations are
applicable. After applying a G-transformation another graph from the set is obtained.
Possible G-transformations are indicated at Fig.4 by arrows with the corresponding
transformation names. The claim on seven cospectral graphs is now evident.
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Figure 4: The cospectral equivalence class of graph W1 + T4

10.2 Introducing cospectrality graphs and quasi-cospectrality
graphs

Example from the previous section can be generalized.
For any A-type graph G we define its cospectrality graph C(G) in the following

way. Vertices of C(G) are all graphs cospectral with G, i.e. the set of vertices of
C(G) is the cospectral equivalence class of G. Two vertices x and y are adjacent if
there exists a G- transformation transforming one to another. Of course, if x can be
transformed into y by a G-transformation, then y can be transformed into x by the
opposite transformation. Hence, C(G) is an undirected graph without multiple edges
or loops. By Theorem 2.1. graph C(G) is connected.

The following proposition is obvious.

Proposition 10.1 If G,H ∈ S are cospectral graphs of type A, then C(G) = C(H).

The following lemma is useful.

Lemma 10.1 Let G be a bipartite Smith graph of type A. The numbers of non-basic
Smith graphs, contained as components in graphs corresponding to adjacent vertices in
C(G), differ by 1.

Proof. Any G-transformation changes the number of non-basic graphs by 1.

Theorem 10.1 For any A type Smith graph G, the cospectrality graph C(G) is bipar-
tite.
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Proof. By Lemma 10.1. graphs associated to adjacent vertices of C(G) contain the
number of non-basic graphs of different parity. Hence, C(G) can properly be colored
by two colors.

A cospectrality graph is not always a tree. For example, C(T5 + T6 + 2P1) contains
a quadrangle induced by vertices

V1 = T5 + T6 + 2P1, V2 = C4 + P3 + P2 + T6 + P1,

V3 = T5 + P1 + C4 + P4 + P2, V4 = 2C4 + P4 + P3 + 2P2.

V2 and V3 are obtained from V1 by γ8 and γ9 respectively while V4 is obtained from V2
or V3 by γ9 and γ8 respectively .

For any B-type graph G we define its quasi-cospectrality graph QC(G) as QC(G) =
C(G+ PG), i.e. as the cospectrality graph of the kernel of G.

Although all graphs cospectral to the kernel G + PG are contained as vertices in
QC(G), only vertices which contain the basis PG give rise to a graph cospectral to G.

A condensed version of QC(T5 + T6) is given in Fig. 2 of [4]. We have T5 + T6 =
2C4 + P4 + P3 + 2P2 − 2P1. The kernel 2C4 + P4 + P3 + 2P2 of T5 + T6 is located in
the center of the figure. Two D-transformations are necessary to obtain graphs which
contain the basis 2P1 starting from the kernel and only such vertices give rise to graphs
cospectral to T5 + T6.

The graph QC(T5 + T6) = C(T5 + T6 + 2P1) is given here in Fig. 5 with all details.

We see thatG-transformation δ1 is used with various non-basic graphs (δ11, δ
2
1, δ

3
1, δ

4
1).

In Fig. 5 Smith graphs are presented as disjoint unions of connected Smith graphs
where the symbol +, denoting the disjoint union, is omitted. This gives the idea that
a Smith graph can be thought as a family of symbols representing its components. G-
transformations are then just replacements of some symbol groups with other symbol
groups.

We see from Fig. 5 that there are 15 graphs cospectral to T5 + T6 + 2P1 including
T5 + T6 + 2P1 itself.

In fact, the following theorem has been proved.

Theorem 10.2 The only cospectral mates of the graph T5 + T6 + 2P1 are 14 graphs
represented in Fig. 5.
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Figure 5: Cospectrality graph of the graph T5 + T6 + 2P1

Using G-transformations we can easily prove the following theorem.

Theorem 10.3 The only cospectral mates of the graph Zn +Wn are the following four
graphs: Zn + C4 + Pn, C4 + P1 + P2n+1, W1 + P2n+1 and W2n+1 + P1.

Proof. The only G-transformation applicable at the graph Zn + Wn is γ1 giving rise
to the graph Zn + C4 + Pn. Now δ1 reproduces the previous graph while γ2 yields
C4 + P1 + P2n+1. Applying now δ1 in two different ways we get graphs W1 + P2n+1

and W2n+1 + P1. We cannot obtain new graphs any more since applying opposite
transformation of those used leads to previous graphs.

Theorem 10.3 and other similar results can be proved using system of Diophan-
tine linear algebraic equations but the approach with cospectrality graphs and G-
transformations is obviously more effective. In particular, cospectrality graphs can be
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used in finding all Smith graphs with the given spectrum, thus avoiding the use of
system of Diophantine linear algebraic equations.

One can easily construct sets with arbitrarily many cospectral Smith graphs.

Example 10.2. Graphs

(n− k)(C4 + P1) + kW1, k = 0, 1, . . . , n

are non-isomorphic and cospectral. We have C(nC4 + nP1) = C(nW1) = Pn+1.

If involved graphs are considered as labeled graphs, the G-transformation δ1 can be
applied in several different ways. However, since the resulting graphs are isomorphic,
we shall consider all such applications of δ1 as the same one.

Example 10.2. gives rise to the following theorem.

Theorem 10.4 Given a positive integer n, there exist n mutually non-isomorphic
cospectral Smith graphs.

10.3 The structure of a cospectrality graph

Consider the cospectrality graph C(G) of a bipartite Smith graph G of type A.
The vertex v0 representing the canonical representation of G is called the c-center

of C(G).
For any vertex v of C(G) we define H(v) to be the graph which is represented by

v. The rank rankH of a Smith graph H is the number of non-basic components of H.
We have rankH = b1 + b2 where b1, b2 denote the number of non-basic graphs of types
I and II respectively.

Numbers of non-basic graphs can be expressed in terms of graph parameters:
b1 = w1 + w2 + · · ·+ c3 + c4 + · · ·+ t4 + t5 + t6, b2 = z2 + z3 + · · ·+ t1 + t2 + t3.
Vertices of C(G) are partitioned into layers according to ranks of corresponding

graphs. Layer k contains vertices v such that rankH(v) = k. The largest rank of a
vertex in C(G) is called the c-radius of C(G). The vertices with largest rank are called
peripheral vertices. Their rank is equal to the c-radius. Applying a D-transformation
on a vertex enhances its rank while C-transformations diminish the rank. Using C-
transformations we are approaching the c-center while by D-transformations we go
from c-center to peripheral vertices.

Note that notions of center and radius in cospectrality graphs (c-center and c-radius)
and in general graphs are differently defined. As an illustration see Example 3.1.

For further consideration we need the following equations for parameters and coef-
ficients of canonical representation

(F0) = (w1 + w2 + w3 + · · · ) + (c2 + c3 + · · · ) + t4 + t5 + t6 = σ0,
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(F1) = p1 + w1 + (z2 + z3 + · · · )− 2 (c3 + c4 + · · · ) + t1 + t2 + t3 − t4 − t5 − t6 = σ1.

We immediately obtain b1+c2 = σ0 and b2+p1+w1−2 (c3+c4+ · · · )−t4−t5−t6 = σ1.
Now the following proposition is immediate.

Proposition 10.2 The number of non-basic components of type I of a graph H ∈ S
is at most equal to the coefficient σ0 in its canonical representation.

Some information on the number b2 of non-basic components of type II can be ob-
tained from equations (F0) and (F1). However, for a precise estimation of b2 coefficients
σi with higher i are relevant. In particular, coefficients σ11, σ17, σ29 are relevant (cf.,
D-transformations δ4, δ5, δ6).

It would be interesting to obtain some (upper) bounds on the number of vertices
of the cospectrality graph C(G).
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11 Other results on the spectra of Smith graphs

Integral Smith graphs

A graph is called integral if its spectrum consists entirely of integers. Integral Smith
graphs have been determined in [7]. There are exactly seven connected integral Smith
graphs . They are : P2, C3, C4, C6,W1 = K1,4,W2 and T4. The result can easily be
obtained by analysing explicit formulas for eigenvalues of Smith graphs given in Section
2.

Minimal non-DS graphs

Assume that G is non-DS. We shall say that G is a minimal non-DS graph if it
becomes a DS graph by removal of any of its components. Any other non-DS graph
can be easily recognized if it contains any of minimal ones.

The main result of [12] reads:

Theorem 11.1 All minimal non-DS graphs whose each component is a path or a cycle
are given in the following list (followed by all their cospectral mates):

(i) P2n+1 + P1 (n ≥ 2), cospectral to Zn + Pn;

(ii) C4 + Pn (n ≥ 1), cospectral to Wn;

(iii) C2n + 2P1 (n ≥ 4), cospectral to C4 + 2Pn−1;

(iv) C2n + 2Pk (n ≥ 3, k ≥ 2, n 6= k + 1), cospectral to C2(k+1) + 2Pn−1;

(v) C6 + P1, cospectral to T4;

(vi) C8 + P2 + P1, cospectral to T5 + P3;

(vii) C10 + P2 + P1, cospectral to T6 + P4;

(viii) C16 + P3 + P1, cospectral to C8 + Z3 + P7;

(ix) C2n + P3 + P2 + P1 (n ≥ 6, n 6= 8), cospectral to T5 + 2Pn−1, and in addition to
T1 + C8 + P11 + P5 for n = 12;

(x) C2n + P4 + P2 + P1 (n ≥ 6 and n 6= 10), cospectral to T6 + 2Pn−1;

(xi) C4(2n+1) + P2n + P1 (n ≥ 1), cospectral to C2(2n+1) + Z2n + 2P4n+1.

An equivalent form of the above theorem reads:

Corollary 11.1 The graph whose each component is a path or a cycle is DS whenever
it does not contain, as a set of some of its components, any of graphs from the previous
theorem.
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Characterization by eigenvalues and angles

Angles of a graph are the cosines of (acute) angles between axes and eigenspaces
of the adjacency matrix (for details see, for example, [11], p. 14). In spite of the fact
that there are many non-DS Smith graphs, it was proved in [3] that Smith graphs are
uniquely determined by their eigenvalues and angles.

Reflexive graphs

A graph is called reflexive if its second largest eigenvalue does not exceed 2.
Smith graphs are related to the study of reflexive graphs (see, for example, [24],

[23], [25], [20]).
We are going to present a result from [24] which is basic for investigations of some

classes of reflexive graphs (in particular, cacti).
Let G1, G2, . . . , Gn be vertex disjoint connected graphs. Let an aditional vertex u

be adjacent to at least one vertex in each of graphs G1, G2, . . . , Gn. We get in this way
a connected graph G in which u is a cut point.

In what follows, to be short, we shall say that a graph is positive, null or negative
depending on whether its index is greater than, equal to or less than 2, respectively.

Theorem 11.2 Let λ2 be the second largest eigenvalue of the graph G. We have:
If at least two of graphs G1, G2, . . . , Gn are positive, or if only one is positive and

some of the remaining are null, then λ2 > 2,
If at least two of graphs G1, G2, . . . , Gn are null and any other is non-positive, then

λ2 = 2,
If at most one of graphs G1, G2, . . . , Gn is null and any other is negative, then

λ2 < 2.

A game on Smith graphs

In the paper [28] a game based on spectral graph theory is considered. A special
case of this game is related to Smith graphs.
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[16] Gutman I., Trinajstić N., Violation of the Dewar-Longuet-Higgins conjecture, Z.
Naturforsch., 29a(1974), 1238.

[17] Kronecker L., Zwei Sätze über Gleichnungen mit ganzzahligen Coefficienten J.
Reine Angew. Math., 53(1857), 173-175.

[18] Lazebnik F., On systems of linear Diophantine equations, Math. Magazine,
69(1996), 261-266.

[19] McKee J., Smyth C., Integer symmetric matrices having all their eigenvalues in
the interval [−2, 2], J. Algebra, 317(2007), 260-290.
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[23] Petrović M., Radosavljević Z., Spectrally Constrained Graphs, Faculty of Science,
Kragujevac, 2001.
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