ὅδε οἶκος, ὦ ἑταῖρε, μνημεῖον ἐστιν ζῴων τῶν σοφῶν ἀνδρῶν, καὶ τῶν ἔργων αὐτῶν

Mathematical Colloquim

 

PROGRAM


ODELJENJE ZA MATEMATIKU

MATEMATICKOG INSTITUTA SANU
                       OPSTI MATEMATICKI SEMINAR

NA MATEMATICKOM FAKULTETU U BEOGRADU



-- PROGRAM ZA DECEMBAR 2005 --

 

Petak, 02. decembar 2005. u 14h, sala 2 MI SANU BG:

Sastanak se nece odrzati.


Petak, 09. decembar 2005. u 14h, sala 2 MI SANU:

Sastanak se nece odrzati.


Petak, 16. decembar 2005. u 14h, sala 2 MI SANU:

Sinisa Vrecica, Matematicki fakultet, Beograd
O DISKRETNOJ I RACUNARSKOJ GEOMETRIJI I TOPOLOSKOJ KOMBINATORICI

Sadrzaj: U okviru predavanja cu pokusati da prikazem neke od osnovnih tema diskretne i racunarske geometrije i topoloske kombinatorike, kao i metode za njihovo tretiranje. Ove metode obuhvataju i primene rezultata topologije, algebre, kombinatorne geometrije i enumerativne kombinatorike, i po mom ubedjenju svedoce o jedinstvu matematike. Ovo ce biti ilustrovano nekim novijim primerima.

Petak, 23. decembar 2005. u 14h, sala 718, MF BG:

Milos Stojakovic, Department of Mathematics and Comp. Sci. University of Novi Sad
POSITIONAL GAMES ON RANDOM GRAPHS

We introduce positional games, random graphs, and then show how to play positional games on random graphs. This is a self-contained talk,no previous background is assumed.

For X a finite nonempty set and F a collection of subsets of X, the pair (X, F) is called a positional game on X. It is played by two players Maker and Breaker, where in each move Maker claims one previously unclaimed element of X and then Breaker claims one previously unclaimed element of X. Maker wins if he claims all the elements of some set in F, otherwise Breaker wins. For positive integers a and b, the game is called (a:b) biased if Maker claims a elements (instead of 1) and Breaker claims b elements (instead of 1) in each move.

We introduce and study positional games on random graphs. Our main concern is to determine the threshold probability p for the existence of Maker's strategy to win in the unbiased game played on the edges of random graph G(n,p), for various target families F of winning sets. More generally, for each probability above this threshold we study the smallest bias b such that Breaker wins the (1:b) biased game. We investigate these functions for a number of basic games, like the connectivity game, the perfect matching game, the clique game and the Hamiltonian cycle game.


Rukovodioci Odeljenja za matematiku Matematickog instituta SANU i Opsteg matematickog seminara na Matematickom fakultetu u Beogradu, Stevan Pilipovic i Sinisa Vrecica predlazu zajednicki program rada naucnih sastanaka.

Predavanja ce se odrzavati na Matematickom Institutu (sala 2), petkom sa pocetkom u 14 casova. Odeljenje za matematiku je opsti seminar sa najduzom tradicijom u Institutu.

Svakog meseca, jedno predavanje ce biti odrzano na Matematickom Fakultetu u terminu koji ce biti posebno odredjen.

Molimo sve zainteresovane ucesnike u radu naucnih sastanaka da posebno obrate paznju na vreme odrzavanja svakog sastanka. Na Matematickom fakultetu su moguce izmene termina.

Obavestenje o programu naucnih sastanaka ce biti objavljeno na oglasnim tablama MI (Beograd), MF (Beograd), PMF (Novi Sad), PMF (Nis) i PMF (Kragujevac).

Odeljenje za matematiku Matematickog instituta SANU

Stevan Pilipovic

Opsti matematicki seminar na Matematickom fakultetu u Beogradu,

Sinisa Vrecica


Ako zelite da se obavestenja o Vasim naucnim skupovima pojave u Newsletter of EMS (European Mathematical Society) i na Internetu na lokaciji EMS, onda se obratite na emsvesti@mi.sanu.ac.yu gde cete dobiti format obavestenja.