ПРОГРАМ ГОДИШЊЕГ СУСРЕТА
СЕМИНАРА ЗА КОНФИГУРАЦИОНЕ ПРОСТОРЕ
МАТЕМАТИЧКОГ ИНСТИТУТА САНУ

Понедељак 25. децембар

10.00 Отварање Годишњег сусрета
10.15-11.00 Владимир Грујић, *Symmetric and quasisymmetric enumerators*
11.00-11.15 Пауза
11.15-12.00 Марко Радовановић, *Recurrence formulas for Kostka and inverse Kostka numbers*
12.00-14.00 Пауза
14.00-15.00 Јелена Грбић, заједнички састанак са Одељењем за математику
15.15-16.00 Зоран Пуцановић, *On the connection between the topological graph theory and the theory of commutative rings*

Уторак, 26. децембар

9.30-10.15 Јелена Катић, Дарко Милинковић, Јована Николић, *Spectral invariants in Floer theory*
10.20-10.50 Лука Милићевић, *Blocking points in general position*
10.50-11.05 Пауза
11.05-11.35 Александар Вучић, *Orthogonal shadows and index of Grassmann manifolds*
11.40-12.10 Един Лиђан, *Homology groups of generalized polyomino type tilings*

Среда 27. децембар

9.30-10.15 Зоран Петровић, *Associating simplicial complexes to commutative rings*
10.20-10.50 Јелена Ивановић, *A simple permutoassociahedron*
10.50-11.05 Пауза
11.05-11.35 Соња Телебаковић, *On the Brauerian Representation and 1-dimensional Topological Quantum Field Theories*
11.40-12.10 Ђорђе Баралић, *Universal simplicial complexes inspired by toric topology*

Затварање скупа и коктел
Abstracts

Ђорђе Баралић, Математички институт САНУ

Universal simplicial complexes inspired by toric topology

Let k be the field \mathbb{F}_p or the ring \mathbb{Z}. We study combinatorial and topological properties of the universal complexes $X(k^n)$ and $K(k^n)$ whose simplices are certain unimodular subsets of k^n. We calculate their f-vectors, show that they are shellable but not shifted, and find their applications in toric topology and number theory. Using discrete Morse theory, we detect that $X(k^n)$, $K(k^n)$ and the links of their simplicies are homotopy equivalent to a wedge of spheres specifying the exact number of spheres in the corresponding wedge decompositions. This is a generalisation of Davis and Januszkiewicz's result that $K(\mathbb{Z}^n)$ and $K(\mathbb{Z}_2^m)$ are $(n-2)$-connected simplicial complexes. This is joint work with Jelena Grbić and Aleksandar Vučić.

Jелена Грбић, Универзитет у Саутхемптону, Велика Британија

Toric Topology from homotopy theory point of view

At the beginning of this millennium, Toric Topology has been recognised as a new branch of Topology closely related to Algebraic Geometry, Combinatorics and Algebra. Initially problems of Toric Topology were motivated by the study of toric geometry. The approach I take departs from geometry and brings in the tools and techniques of homotopy theory. That allows one to generalise the fundamental concepts of Toric Topology which will further have applications to geometric group theory, robotics and applied mathematics.

Владимир Грујић, Математички факултет Београд

Symmetric and quasisymmetric enumerators

We present classical and new enumerator functions that appear in algebraic combinatorics and topology. The most famous is the Stanley chromatic function of a graph.

Jелена Ивановић, Архитектонски факултет у Београду

A simple permutoassociahedron

In the early 1990s, a family of combinatorial CW-complexes named permutoassociahedra was introduced by Kapranov, and it was realized by Reiner and Ziegler as a family of convex polytopes. The polytopes in this family are ‘hybrids’ of permutohedra and associahedra. Since permutohedra and associahedra are simple, it is natural to search for a family of simple permutoassociahedra, which is still adequate for a topological proof of Mac Lane's coherence. Such a family was presented in the paper *A simple permutoassociahedron* co-authored with Zoran Petrić and Đorđe Baralić.
Spectral invariants in Floer theory

We will present the construction, properties and applications of spectral invariants in Floer theory. We will also describe the construction of spectral invariants for an open subset of the base in a cotangent bundle.

Homology groups of generalized polyomino type tilings

A polyomino is a plane geometric figure formed by joining one or more equal squares edge to edge and it may be regarded as a finite subset of the regular square tiling with a connected interior. Polyomino tiling problem asks is it possible to properly cover a finite region M consisting of cells with polyomino shapes from a given set T. There are a numerous generalizations of this question towards symmetrical and asymmetrical tilings, higher dimension analogs, polyomino types in other regular lattice grids (triangular, hexagonal), etc. However, the problem in all cases in general is NP-hard and we can give definite answer only in limited number of cases.

In the talk we study problem of tiling a surface S subdivided in finite 'combinatorial' grid which may fail to be regular with finite set of polyomino like shapes T and define the homology group $H_5(T)$. We present some new results based on results of Conway, Lagarias and Reid, together with illustrating examples explaining the application of the homology group of generalized polyomino type tilings in combinatorial and topological context. This is joint work with Đorđe Baralić.

Blocking points in general position

Erdős and Purdy asked the following question: given a set P of n points in the plane, no three collinear, how many new points do we need to take so that each line spanned by P contains a new point? It is easy to see that we always need at least n new points for odd n, and $n - 1$ new points for even n. Erdős and Purdy remarked that there are examples which require less than n new points. In this talk, we show that this remark is in fact false; for all $n \geq 5$, we need at least n new points. The proof is based on a classification theorem for some related arrangements of lines in the plane, which is the other main result presented in this talk.

Associating simplicial complexes to commutative rings

Erdős and Purdy asked the following question: given a set P of n points in the plane, no three collinear, how many new points do we need to take so that each line spanned by P contains a new point? It is easy to see that we always need at least n new points for odd n, and $n - 1$ new points for even n. Erdős and Purdy remarked that there are examples which require less than n new points. In this talk, we show that this remark is in fact false; for all $n \geq 5$, we need at least n new points. The proof is based on a classification theorem for some related arrangements of lines in the plane, which is the other main result presented in this talk.
In order to better understand structure of a commutative ring, it is sometimes convenient to associate a simplicial complex to this ring. Some methods of doing this will be presented. In order to establish topological properties of the associated complexes some basic methods of algebraic topology are used as well as discrete Morse theory. This is joint work with Nela Milošević.

Зоран Пуцановић, Грађевински факултет Београд

Associating simplicial complexes to commutative rings

Let R be a commutative ring with identity and $I^*(R)$ the set of its nontrivial ideals. The intersection graph of ideals $G(R)$ is defined as follows:

$$V(G(R)) = I^*(R), \quad E(G(R)) = \{\{I_1, I_2\} : I_1 \cap I_2 \neq \emptyset\},$$

where $V(G(R))$ and $E(G(R))$ denotes the set of the vertices (edges) of the graph $G(R)$. We try to establish some connections between commutative ring theory and topological graph theory, by study of the genus of the intersection graph of ideals and classify all graphs of genus 1 and genus 2 that are intersection graphs of ideals of some commutative rings.

Марко Радовановић, Математички факултет Београд

Recurrence formulas for Kostka and inverse Kostka numbers

In the algebra of symmetric functions the change from the basis given by Schur functions to the basis given by elementary symmetric functions involves Kostka numbers. These numbers are known to be hard to compute. Alternatively, these numbers may be seen in the cohomology of Grassmannians in the change from the basis given by Schubert classes to the one given by products of Chern classes. Therefore, obtaining suitable formulas for calculating in these bases produces relations between (inverse) Kostka numbers. In this talk we use this approach toward (inverse) Kostka numbers using quantum cohomology of Grassmannian. To be more precise, we construct a Gröbner basis for the ideal that determines quantum cohomology of Grassmannians as given by Siebert and Tian, and use it to obtain some recurrence formulas for (inverse) Kostka numbers. Some applications of these formulas will also be presented.

This is joint work with Zoran Petrović.

Соња Телељаковић, Математички факултет Београд

On the Brauerian Representation and 1-dimensional Topological Quantum Field Theories
In this lecture we show that every 1-dimensional topological quantum field theory, regarded as a symmetric monoidal functor between the category of 1-cobordisms and the category of matrices, coincides with the Brauerian representation up to multiplication by invertible matrices. Since the Brauerian functor is faithful, we extend our faithfulness result to all 1-TQFT. This means that different 1-cobordisms correspond with distinct matrices.

Александр Вучић, Математички факултет Београд

Orthogonal shadows and index of Grassmann manifolds

In this paper we study the $\mathbb{Z}/2$ action on real Grassmann manifolds $G_n(R^{2n})$ and $\tilde{G}_n(R^{2n})$ given by taking (appropriately oriented) orthogonal complement. We completely evaluate the related $\mathbb{Z}/2$ Fadell–Husseini index utilizing a novel computation of the Stiefel-Whitney classes of the wreath product of a vector bundle. These results are used to establish the following geometric result about the orthogonal shadows of a convex body: For $n=2a(2b+1)$, $k = 2^{a+1} - 1$, C a convex body in R^{2n}, and k real valued functions $\alpha_1, \ldots, \alpha_k$ continuous on convex bodies in R^{2n}, with respect to the Hausdorff metric, there exists a subspace $V \subseteq R^{2n}$ such that projections of C to V and its orthogonal complement V^\perp have the same value with respect to each function α_i, which is $\alpha_i (pV(C)) = \alpha_i (pV^\perp(C))$ for all $1 \leq i \leq k$. This is joint work with Đorđe Baralić, Pavle Blagojević and Roman Karašev.