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Preface

Many problems in science and engineering can be described by partial differ-
ential equations (PDE). In most cases, PDE’s can not be solved exactly, so various
approximative methods can be used instead. One of the most important and most
widely used methods is the finite difference method.

Recently, there has been a growing interest in problems with weak solutions,
reduced to PDE’s with un—smooth or discontinuous coefficients. Consequently,
there is a need for the generation of convergent difference schemes for such problems.
The most important aims for this purpose are: :

1)} determination of the minimum smoothness of the input data allowing the
convergence of the scheme;

2) determination of the relation between the rate of convergence and the
smoothness of the input data.

This work is intended for the examination of those matters.

In order to demonstrate the main difficulties which are encountered in solving
the above mentioned problems, let us consider as a model example the Dirichlet
boundary-value problem for the Poisson equation in the unit square = (0, 1)2.
We approximate the problem by a ”cross”~difference scheme on a regular mesh w
with the step A in the domain Q. Then, the error z = u—v, where u is the solution
of the original problem, and v is the solution of the difference scheme, satisfies the
relation

(1) ~Apz=9Y=Au—Azu.

. By estimating the right-hand-side using the Taylor’s expansion, we readily obtain
the following convergence rate estimate,

(2 fu - U”W;"(w) < Ch? ”ullcd(ﬁ) .

By using the appropriate transformations, the right-hand-side of (1) can be
expressed as a sum of several integrals of the fourth—order partial derivatives of the
solution u(z), which yields the following estimate

(3) e = vllwzew) < CR? [lullwy(ay-
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The estimate (3) is "finer” than the estimate (2), in the sense that it permits the
convergence for even less smooth solutions. Expression (3} can be derived easier
and more elegantly, by using the Bramble~Hilbert lemma {7}, [8]. Thus, this lemma
takes the role of the Taylor’s formula for the functions from the Sobolev spaces.

Further investigations yield the estimates of the following form
(4) e = vllwx) < Ch ullwsy, 52 k.

Estimates of type (4) are said to be consistent with the smoothness of the solution
of the boundary value problem (see Lazarov, Makarov & Samarskii [67]). Note that,
if a weaker norm is used for the estimate of the convergence rate, less smoothness
is consequently required for the solution. Estimates of the type (4) are similar to
those of the finite elements method

(5) e = vllweay S CH* ¥ ullwyy, 52k,

which shows a relation between the finite differences and finite elements methods.

Let us show here some of the difficulties arising in the derivation of the type (4)
estimates, and in the generation of the difference schemes satisfying those estimates.

— For 5 <3 (or s £ n/2+2 in the n-dimensional case) the right-hand-
side of the original equation becomes discontinuous. Consequently, the difference
schemes with averaged right-hand-sides must be used.

—For k#2 (i.e. k=0, 1),”good” apriori estimates ||z|lwx(.) are required.
In particular, such "good” estimates satisfy schemes with ” divergent” right-hand-
sides.

~— The transition to a fractional s is based on a generalisation of the Bramble—
Hilbert lemma on Sobolev spaces of fractional order (see Dupont & Scott {16]).

— The transition to a fractional k is based on multiplicative inequalities for
discrete Sobolev-type norms.

— The transition to estimates in W:-norms, for p # 2, requires a new tech-
nique for the derivation of a priori estimates, by the use of discrete Fourier multi-
pliers {see Mokin [78]).

— The transition to equations with variable coefficients (primarily the linear
elliptic equations) is the most troublesome. It is necessery to determine the widest
possible classes of coefficients of the equations. {Such classes are sets of multipli-
ers in Sobolev spaces, see Maz’ya & Shaposhnikova [77}). The error depends not
only on the solution u, but also on the coeflicients of the equation. Thus, instead
of the standard Bramble-Hilbert lemma, its bilinear version is used. Instead of
the Cauchy-Schwartz inequality, the Holder’s inequality is used. Finally, Sobolev
spaces W;‘ and W._f‘q Ja-2) with " conjugated” lower indices are used consistently, as
well as the imbedding theorems for Sobolev spaces.



~— The transition to the parabolic case is based on the generalisation of the
Bramble-Hilbert lemma to the anisotropic Sobolev-type spaces.

This work is based on the author’s papers published in the past several years,
~and 1t is closely related to the results of Ivanovié, Suli, Lazarov, Samarskii, Makarov,
Weinelt, Gavrilyuk, Voitsekhovskil, and others. The theory of convergence of
difference schemes is presented systematically for elliptic, parabolic and hyper-
bolic PDE’s with variable coefficients. The only existing monograph in this field
(Samarskil, Lazarov & Makarov [85]) deals with elliptic equations, mostly with
constant coeflicients.

Although most of the material presented in this work has been previously
published as my own results, I wish to emphasize the valuable contributions of my
colleagues Lav Ivanovi¢ and Endre Sili. Namely, we jointly started the study in
this field, posted and solved several problems together, and published a number
of papers together. Those results were the base for my ensuing work. I strongly
believe that our collaboration will continue and be more extensive in the future.

Belgrade, January 1992 Bosko S. Jovanovié



I Introductory Topics

In this chapter we shall introduce some basic terminology and results obtained in
the theories of distributions, function spaces and differential equations, which are used

in this work.

1. Preliminaries and Denotations

First, we introduce terms and denotations which shall be used.

Set

N = the set of natural numbers,
No =NU{0},and

R = the set of real numbers.
For s € R let [s] be the largest integer < s, and [s]~ — the largest integer
<s.
We shall represent the elements of the set R® as vector—-columns, and denote
Ty
z=(21,%2, ..., z,.)T = 2
Zn
..We shall denote by r, r2, ..., rn. the unit vectors.of coordinate axes in R". The

elements of the set N will be called multi-indices, and will be denoted by
a=(ay, az ..., a,.)T.
We shall also adopt the following notations
lal=ai1+as+...4an, z¥=z23?-- 25",

lz] = (23 + 23+ ... +z,2,)1/2 and dz =dz;dz; --- dz,.
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An open and connected set  C R™ will be called a domain. We assume that
domains which are used are bounded and convex, unless it is stated otherwise. The
boundary of Q is the set T = 8Q = Q\ Q. The domain €’ is called a subdomain
of the domain §, and denoted by Q' € Q,if &' C Q.

In the ensuing we shall use functions of the form f : Q2 — R, Q@ C R".
The value of the function f at the point £ €  will be denoted by f(z) or
f(zla T2, ---)xn)-

The support of the function f(z), denoted by supp f, is the closure of the set
of points such that f(z) # 0. If supp f is a bounded set, the function f is said to
be finite.

The partial derivatives will be denoted by

af @£ N Na2 Xn f — a|a|f
z; D®f.= DI D3 Dinf= a:c‘l-'l axgﬁ...az:"

We also introduce the finite differences

Dif =

Adf(z) = f(z +a) - f(z), a€R",
A‘.,hf(x)'__.AhTif(z)l hER,
fo®) = fa(e + hri) = fy (2 + 05hrs) = (Bin F(2)) /b
We shall use the following function spaces:

C™(Q) — the space of functions which are continuous in Q together with all
their partial derivatives of the order < m (m € Ng U {c0}).

Cc(Q) =C%Q).
C(Q) — the subspace of C™ () consisting of functions with compact support
in Q.
C™ (%) — the space of functions which are continuous on {, together w1th all
their partial derivatives of order < m, with the norm

=5 = max max|D®f(z)].
Wllom ey = max max|D°(2)

Ly(2) — Lebesgue space of functions which are measurable in 2, and which
satisfy the condition

' 1/p
My = ([ el dz) 7 <0, 1<p<e,

or
I fll Ly = supess|f(z)] < o0.
z€S

Lp, 10c(2) — the space of locally integrable functions,

f(z) € Lp,10c(R) if f(z) € L(R') for any bounded subdomain Q' € Q.



2. DISTRIBUTIONS: DEFINITIONS AND BASIC PROPERTIES 9

C™(%2) and L,(Q) are Banach spaces.

The hypersurface S C R", whose dimensionality is n — 1 is said to be of the
class C™, and denoted by S € C™, if in the neighbourhood of any point zy € 5,
it can be represented by an equation of the form

‘Pto(z) = 0 H

where ., € C™ . The hypersurface S is said to be continuous in the Lipschitz—
sense if it can be divided into a finite number of partitions S;, each of them being
represented by an equation of the form

Ti; = 1/)]'(211 ey Tigal, Iij+1) ey In) )

where 9; is continuous in the Lipschitz-sense. A domain € is said to be Lipschitzian
if its boundary is continuous in the Lipschitz-sense:

Finally, C and C; denote positive generic constants which may have different
values in various expressions.

2. Distributions: Definitions and Basic Properties

In the set of functions C§°(R™) we define the convergence in the following
manner.

DeriNITION 1. The sequence of functions ;'€ C$°(R") is said to converge to
¢ € C§&(R") if the following conditions are satisfied

1. There exists a compact set K CR"™ such that supp ¢; C K for every j;

2. For every mulli~indez a, the sequence D%p; converges uniformly to D*p
on K when j— oo.

The set C§°(R™) equipped with this topology will be called the set of basic
functions and denoted by D = D(R"). For a domain  in R*, D(R) C D(R")
denotes the set of basic functions with supports in £.

The linear bounded functionals on the set D(Q) are called distributions (see
Schwartz [86], Rudin [83]), and the set of distributions will be denoted by D’(Q).
The value of the distribution f € D'(2) on the basic function ¢ € D(2) will be
denoted by ‘

(£, @) = {f, D (yxD() -

DeFiNITION 2. The sequence of distributions f; € D'(?) converges to f €

D'(Q) if
(fisp)={fiv), J—o0, VYeeDQ).
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DerFINITION 3. Distribution f € D'(R™) is said lo vanish in the domain Q,
which can be wrillen in the form
f=0 in Q or f(z)=0, =zeQ
if . |
(fre) =0, VpeD).

Two distributions f, g € D'(R") are said o be equal in the domain Q, i.e.

f@)=o(z), zeQ,
f&)-g(z)=0, zeQ.

If f(x) € L1,10c(R™) then

o)~ [ fe)p(e)de

defines a bounded linear functonal on D(R"). In other words, each locally inte-
grable function induces a distribution. Such distributions are called regular. In the
following every regular distribution will be identified by the corresponding locally
integrable function, i.e.

(f, ) = /w f(z)e(z)dz.

The distributions which are not regular are called singular. Such is, for exaple,
the Dirack’s distribution

(6, p) = ¢(0), VpeD(R").

If A is a regular real matrix of the n-th order, and b is a fixed vector in R,
than we can define the linear change of variables for a distribution f € D'(R") in
the following manner -

(Say+d). o) = (), LLEZ) - vp e,

. The multiplication of a distribution f € D’(Q2) by a smooth function a €
C*(Q) is defined by :

(af,9)=(f,ap), VeoeD).
The derivation of a distribution f € D'(Q) is defined by
(D°f, p) = (=1)!*I{f, D*¢), VD).

" Note that every distribution is infinitely differentiable.
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3. Sobolev Spaces

Let Q be a domain in R®, k € Ng and 1 < p < 00. The Sobolev space W;‘(Q)
is defined in the following manner (see Sobolev {89], Adams [1])

Wy(Q) = {f € L,(Q) : D°f € L,(Q), la| <k},
where derivatives are taken in the distribution sense. In particular, for k£ = 0, set
W:(Q) =L,(Q).
The norm in W} (Q) is defined by

£ /p
A llwxay = (;lﬂa{;’(n)) , 1<p<oo,

where, /
Iflwia) = (‘2‘: D fll't’,,(n)) :
af=t
or

Ifllwe ) = o2 flwiwy, flwi= f:rllg"Daf et -

WE(Q) is a Banach space. In particular, W§(R) is a Hilbert space with the
inner product

(f, 9)w;(fz) = Z / D° f(z) D*g(z)dz .
lajgk 70
For 0 <o <1 set
- 1f(z) = f)IP 1/»
lflw;(n) = (/n A Wdzdy) , 1<p< oé,

or

[f(z) - F(¥)]
ERET
The Sobolev space W;(Q) with a fractional positive index s = [s]+¢o, 0<
o < 1,is defined as a set of functions f € W,!'](Q) with the finite norm

|flwe(a) = supess
reN

1/p
Wtz = (1 0y + P Bs) + 1SP<00,

where,

1/
lflw;(n)=( > ID"flw;-t-l(m) ’
lal=[s}



12 I INTRODUCTORY TOPICS

with the corresponding change 'for Pp=o00.

The closure of D(Q) in the norm W;(Q) is a subspace of W;(R) which shall
be denoted by W3(Q).

Let s be a positive number, 1 < p < o0 and 1/p+ 1/p’ = 1. The space
W;#(Q) is defined as the dusl space of W?,(Q), W;*(Q) = (W’ (Q)) Since

Q) C V%’;,(Q) , we have W,;7*(Q) C D'(Q), i.e. the elements of the space W, *(£2)
are distributions.

Distributions of W *(2) can be represented as derivatives of ordinary func-
tions. First, let 5 be a positive integer. If u(z) € W,,(Q) than D°u € Ly(Q) for
every Ja] <'s. According to the Riesz’s theorem (see Aljanéié [2], Yosida [112]) an
arbitrary bounded linear functlonal on W7,() can be represented in the following
manner

ww)= Y [ 07ue) (-0 fale)da,

lal<s
where fo(z) € Lp(Q).

Let now 7 be a distribution of W, *(), with the same representation as above.
‘Then 7 is fully determined by its values on functions ¢ € D(Q). Consequently,

() = n(g) = / D®p(z) (<1)°! fu(2) dz

lel<s

= 2 0N ate), D) = 30 Dale), ole).-

lal<s jol<s
We may conclude that the elements of W;’(Q) can be represented as
(1) n=f&)= ), Dfalz), where fa(z)€ Ly(Q).
lal<s - v

This representation is not unique (Lions & Magenes {70]).

Now, let s be a positive non—integer number: s =[s]+0, 0< o<1, If

€ W2(Q), then D%u € Ly () for each |a] < g Dulz) - Douly)
u(z) > (Q), then D%u € Ly (Q) for each |a] < [s] an o - ypirse

Ly (2 x ) for each |a| = [s]. An arbitrary bounded linear functional on W}, (R)
can be represented in the following form (see Wloka {111])

nw)y= > [ D*u(z)(~1)1* fu(z)dz
Msm/"

/ / Deu(z) - D"'u(y) (-1 Fy(z, y)dzdy,

|z — yl»/p'+e

Ial 5]
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where fo(z) € Lp(Q), la] < [8], and Ful(z,y) € Ly(Q x Q), |a] = [s}. Using
the same argument, the elements of the space W, *(€2) can be represented in the
form '

(2) n=flz)= Y. D°fulz)+ ), D°

lad<(s) lal={s] f

Fa(:l', y) - Fa(y: z)

o~ gffie Y

where fo(z) € Lp(Q), Fa(z,y) € Lp(Q x Q), and the integral is taken as the
principal value. This representation is not unique.

From the definition of the Sobolev spaces it follows that
3) If wveW;(Q), then DiueW; ') for s>1.

From (1) and (2) the same result followsfor s < 0. If p = 2, and Qs a Lipschitzian
domain, then (3) holds for every real s: —oco < s < +0o (Triebel [96]). -

CONSEQUENCE. If Q is a Lipschitzian domain in R®, s > 0, s # integer+1/2,
fa € L2(RQ) and g € WPH'"2(Q) then the distribution

@) fl)= 3 Dfu(z)+ ). D°ga()

lol<[s] laf=[s}+1
belongs to the space Wy * (2).

Let Q be a domain in R® and A" an arbitrary Hilbert space. Sobolev spaces
W;(2; X) of functions f : @ — X are definined analogously, substituting the
absolute value by the norm of the space X. For example,

. 1/
Wz, = ([ 15N =), 15D <0,

1/
flwica; 2) = ( > ”Daf”’i,(n;x)) Foi=0,1,2, ...

Jal=i :

- P /
lle;(n;A')=(LnMdzdy)lp, 0O<o<l,

[z — y|n+er

etc.

In the following we will frequently use the Steklov averaging operators, with
the step A

T f(z) = /1 flz+htr)dt =T f(z+hri) =Tif(z+05hr).
0

These operators map the partial derivatives onto differences

T¥ (Dif(z)) = Di(T f(2)) = fei(=)-
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The averaging increases the smoothness of the functions; if f € W;(2) then
TiTy - Tnf € Wyt (Quy2), where Q2 is the subdomain of Q, which consists
of points whose Euclidian distance from the boundary is exceeding h/2.

The following result is valid.

THEOREM 1. Let f € W;(Q), s > 0, and let the boundary of the domain

Q be sufficiently smooth (I € Cl1"+1). Then, there ezists an eztension of the
function f outside of the domain Q which also belongs to the class W .

L
ConseEQUENCE. If f € W (Q) then its ezlension by a zero outside of the
domain Q belongs to the class W;.

The fundamental role in the theory of Sobolev spaces is played by the imbed-
ding and traces theorems (see Sobolev [89], Adams [1}, Triebel [96]).

THEOREM 2. Let f € W;(Q), s > 1/p, s # inleger +1/p, and let the
boundary of the domain Q be sufficiently smooth (I € CI¥V"+1). Then there ezists

a trace of the function f on the boundary T, which belongs to the space W;-I/p(l‘) ,
and the following estimate

WA llws-sre ey € Clifllwy
holds.
THEOREM 3. Let f € W(Q), s> 0, and let the boundary of the domain Q

be continuous in the Lipschilz-sense. Then the following imbedings hold
a)if s-p<n then

s np
Wp() € L), pLe<—,

b)if s-p=n then
W () C L(2), p<g<oo,

c)if s-p>n then _
w2 (Q) c C(Q).

THEOREM 4. Let 0 St <s< 00, 1<p<qg<oo and s—nfp>t—nfq.
Then,
W, () C Wi (D).

In the following, we shall need the estimates of the norms in the near-boundary
region QF = Q\ Q;, of width h, in the domain Q. The following result hold
(Oganesyan & Rukhovets [79]).
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THEOREM 5. Let the boundary T of the domain Q belongs to the class C!.
Then, for every function f(z) € W3(Q), 0< s< 1, the following estimate holds

1fllzaary £ CFR) | Alwgay

where,

hsn 058(1/2
F(h)={ hY?|Ink], s=1/2
IATER 1/2<s<1

4. Anisotropic Spaces. Weighted Spaces.

Sometimes we encounter functions which have different smoothness in different
variables.” Spaces of such functions are called anisotropic. Here we define one class

of anisotropic function spaces. ,
Let R, be the set of non-negative real numbers. In this paragraph elements
of R} will be called multi-indices. For a = (a1, a2,...,an)T € R} define
T - - - T
[o] = ([eu], [a), -, [@n])” and [a]” = ([a1]™, [ag] ™, ..., [@a]7)

Let Q be a domain in R" with a Lipschitz continuous boundary. For o € R}
and 1 < p < oo the seminorm |fla,, can be defined in the following manner

If'p =”f”p,(n)1 for e1=a2=...=an=0,
IAx h; f(""')l . = )
Iflp «,p / ‘/fl (1') ,h '1+Pal dh; dz, for 0 < ai < 1, ak - O, Vk # z’

[Bin; Ajn; f(2)IP
P — [iid] Ry X .
1715, = /ﬂ //f].‘,'(z) [hi|T+pai [h; [L¥pes dh; dh; dz,
for O<aya5<l, ar=0, Yk#i, 7,

_ [Aip, - Ann, f(Z)P
IfI.» —/ﬂ /m/nl...‘,(z) [hy|*Per L by |THPan dhy --- dhn dz,

for 0<ay,ag, ..., ap<1,
\fI5,, = 1DCIfP 1y, ifforsomek, ax>1.
Here,
Qi(z) ={h,- : z+h-r.-€$2},
Qij(z) {(hu h_,) tx4chiritcihiri€Q; e, i =0, 1} ,

................................................

n
. m(z):{(hl,...,h,,)T L2+ Y aheri €Q; c,,=o,1}.
k=1 :
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For p =-co the corresponding integrals are substituted by supess,

fla,00 = 1 fllLeata) s for ay=az=... =au,

lfla,co= E‘ISUE:S;()LA—]"—:%QI', for 0<a;<1, ap=0, VE#1i,
€0, hi€Ni(z i

etc.

The finite set of multi-indices A C R% is called regularif 0 = (0,0, ...,0)T €
A so that for any « = (a1, @2, ..., @,)T € A, there exist real numbers S; >
ar (k=1,2,...,n) such that Brrr € A.

If A is a regular set of multi~indices we define the following norms

Mwae = (X 178,)" 1<p<e,

agA
Ifilwacn) = max {fle, 00 -

The closure of C*°(f) in the norm || - lwa(a) will be denoted by WA(Q) (see
Drazié [13]).

EXAMPLE. Let A= AqU Ay, where
n o n
A0={aeN3:Z;f<1}, A= Ay,
k=1 } i=1
. n
= n . . QA _
A= {a€RL: ar€No for k#i; LZ-; = =1},

and 51, ..., sn are given posilive real numbers. Then Wr;“(Q) = W,S""""")(Q)

is an anisoiropic Sobolev space, the lop seminorm of which can be defined by

lflwyt"""")(n)= ( Z |f|};,p)1/p7 1_<_p<°°'

agEA,

For s =83 = ... = s8,, W};‘(Q) reduces lo an ordinary, isoiropic Sobolev space
W;(Q). (More precisely, the norm of WA(Q) is then equivalent to the standard
norm of W5 (8) ).

Let Q be, as before, a domain of R*, I = (0, T) C R and @ =QxI. If
s and r are non-negative real numbers, we can introduce the space W;'"(Q) =
Ly(I; W2(2)) N Wi (I; Ly(Q)), with the norm

T : i/p
£l r@r = /o IF Oy @t + Wy s coay)  » LEP<o0,
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and with a corresponding expression for p = co.
W, 7(Q) reduces to a space of the type W};‘1 (Q). For example, if s € Ng then

A:{(al,...,an,O)T: ai €ENg, a1+ ...+(X,.SS}
VO ...,0,87 : BeENs, B<r}U{(0,...,0,7)7}.

We shall use the space W;*/*(Q) = L(I; W5(Q)) n W32 (I; Ly(Q)) . Here
we can define the top seminorm by

T 1/2
_ 2 2
If'w;-‘/z(q) - (./o lf(t)IW;(ﬂ) dt + 'f,“’;h(l;Lg(ﬂ))) .
We shall also introduce the space W;'*/*(Q) = W **/2(Q). Obviously,
: 3/2(Q) C ”,: s/Z(Q)

Anisotropic spaces also satisfy certain lmbeddmg theorems. We shall later
need those from Lions & Magenes [70].

THEoREM 1. If f € W' (Q), s > 0, r > 1/2, then for k < r—1/2

. oF f(z, 0) q 1
(k € No) there ezists a trace — € Wi(Q), where ¢ = (r —-k- 5) .
THEOREM 2. Let f € W5'"(Q), 5,7 >0, and let o €N} and k € Ng salisfy
!g-l-+ -ii < 1. Then, DZDFf € W*(Q), where :—lz -—=1- (Ial + -) , and
r s
D, and Dy are partial derivatives with respecl to z = (z;, 23, ..., T,)7 and t.

.t s/2

CONSEQUENCE. Wy’ '/2(Q) (Q) with the equivalence of their norms.

Finally, let us consider the weighted Sobolev spaces. Let Q be a domain of R"
and let g(z) € C*°(Q) be a non-negative function on . For s = 0,1, 2, ... we
shall introduce the following spaces

Wi @) ={f: % D°f € L,(2), 0<lal <5},
with norms
Mg = (109 DA i5) . 1<p <o,
|lal<s
and with corresponding expressions for p = oco.

In particular, if p(z) is of the same order as the distance d(z, ') from the
point z € Q to the boundary T,

o(z)

0<Cl_d( F)

<C2, V-‘L’EQ,
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then set =°(Q) = Wi ,(©). Obviously,
2(Q) = L2Q), WH(Q) CE(Q) € Lx(Q), s20.

Using the theory of interpolation of function spaces (Bergh & Lofstrom (4]),
spaces W, () can be defined for real s > 0. In particular,

=(Q) = {f eD'(Q): g’fEV‘i’i,(Q)}, s>0, s# integer +1/2.

For s < 0 set ,
=(Q) = (s-’(n)) .
Similarly, anisotropic weighted spaces in the domain Q = Q x I can be intro-
duced by

2%(Q) = Lo(5 2 (@) n =L Ly(@), 520,
Es,slz(Q) — (E—a,-aﬂ(Q))l ’ s<0.

5. Besov Spaces

Let  be a Lipschitzian domaininR*, 0 < s < o0, 1<p<ooand 1<¢<
oo . The Besov space Bj ,(f) consists of all functions f(z) having a finite norm

(5= /g
Wllsg v = (Il + 3 [ Wm0 18y DAL 0, )

la|<&

where k and [ are arbitrary integers satisfying the conditions 0 < k < s, | >
s—k,and Q= n;'=o {zeR*: z+jy€ Q}. (In particular, one can set
k= [s], 1 =2). For ¢ = oo one should substitute in the above expression

(f1-19 1" dy)™? by supess|-].

The Besov space can be normed also in various equivalent ways. (see Besov,

Iin & Nikol’skii [6], Triebel [96]).

For ¢ = p and for a'noh—integer s, Besov spaces reduce to Sobolev spaces
B, (@) =W;(Q).

Besov spaces satisfy various imbedding theorems. For example, for 1 < p <
00, 1 £¢q1 € g2 £ oo and arbitrary € > 0, the following imbeddings hold (see
Triebel [96])

By'o(@) € By 1(Q) € B; () C B; ,(Q) € B} (D) C By (D)

s q1 192
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For l<p<r<oo, 1<¢<o0, t<s and s—nfp>t—n/r
B}, (@) € B ,(9).

6. Bramble—Hilbert Lemma

The well known Bramble-Hilbert lemma (see Bramble & Hilbert [7, 8], Dupont
& Scott [16]) has a fundamental role for the estimation of linear functionals in
Sobolev spaces.

LEmMA 1. Let Q be a Lipschitzian domain in R™, s — a posilive real number,
and P, sel of polynomials (with n variables) of degrec < 5. Then there exisis a
constant C = C(R, s, p) such that

AW NF = Pllwyay < Clflwymy,  VfEW(Q).

This lemma can be easily transferred into anisotropic spaces of Sobolev’s type.
Let A C R} be a regular set of non—negative real multi-indices. We shall denote
by x(A) the convex envelope of the set 4 in R". Let Jox(A) be a part of the
boundary x(A) not depending on coordinate hyperplanes and As = AN Jox(A).
Let B be a subset of Ay, such that B U {0} is a regular set of multi-indices,

and v(B) = {ﬂ eNe: D" 20 =0, Yae B} With Pp we denote the set of
polynomials of the form
P(z) = Z Paz®

a€v(RB)
The following results are valid (see Drazié¢ {13, Jovanovié [35)).

LEMMA 2. Let Q be a Lipschitzian domain tn R" and let the sets of multi-
indices A and B satisfy the above defined conditions. Then there exists a constant
C =C(Q, A, B, p) such that

A0l S = Pllwaa < € S Nflap, YFEWAQ).
a€EB

. The following statements are direct. consequences of Lemma 2.

LeEMMA 3. Let n(f) be a bounded linear functional on W;‘(Q) which vanishes
for f(z) = z*, a € v(B). Then, there erists a constant C = C(Q, A, B, p) such
that for every f € WA(Q), the inequality

(A SC D flap

a€B
holds.
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LEMMA 4. Let Ai, B and Q; satisfy in R (k=1,2,..., m) the same
condilions as A, B and Q. Let y(fi, fa, ..., fim) be a bounded multi-linear func-
tional on W11 () x Wi2(Q2) x ... x WiA=(Qn), which vanishes if some of its
variables have the form fi, = z®, 2 € Qr, a € v(Bi). Then there exists a con-
stant C = C(Qy, A, By, p1, Q2, A2, Ba, pa, ..., Oy Am, Bm, Pm) suck that for
every (fi, f2, ..., fm) E WAY Q) x WA (D) X ... x WA™(Qm) the inequality

lﬁ(fl) f2) LR fm)| < c H Z: Ifkla,pk

. k=1 a€B)
holds.

7. Multipliers in Sobolev Spaces

~Let V and W be real function spaces contained in D'(2). A function a(z)
defined on Q is called a point multiplier, or simply a multiplier, from V to W if,
for every f € V, the product a(z) - f(z) belongs to W. The set of such multipliers
is denoted by M(V — W). In particular, if V = W we set M(V) = M(V — V).

We shall now examine the multipliers in Sobolev spaces, i.e. the sets of the
form M(W;(Q) — W?(Q)) , with the natural limitation t > s. We shall also limit
ourselves to the case ¢ = p. :

To begin, we shall consider the case of Sobolev spaces on R". From the defini-
tion of multiplication of a distribution by a smooth function

(a-fip)pxp =({f, a-p)pxD
for a € M(Wj(R®) — W;(R")) and f € W,;°(R"), 1/p+1/p’ =1, we shall now
define the product a - f € W,;'(R*) by
{a-f, (p)w’-'txw: ={(fa- <p)w’_’.'xw; , Vo€ W;(R").
This definition implies that
M(W;I’(R") — W;,'(R")) = M(W;(R*) — W;(R")) ,

and, therefore, it is sufficient to examine the properties of the sets M (W;(R") —
W;(R")) and M(WE(R") — W, *(R")) for t> 5> 0.

We present here, without proofs, some basic results on multipliers in Sobolev
spaces (see Maz'ya & Shaposhnikova [77]).

LemMma 1. If a € J\’I(Wtf(R") — I/V;(R")) , 12520 then

a€ M(W;™*(R") — L,(R™)),
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a€ M(Wi°(R") = W;=°(R")), 0<o<s,

D°a € M(WiR") — W;"I@®™),  la]<s,

D%a e M(W; "M \R™) — L,(R™), ol <s.

LemMma 2. For t > 5> 0, M(W}(R") —» Wi(R")) C W?

,unif

={r: sup oz = 2) - f(@)lhy; <o, YnEDR"), =1 on Bi},
where By is the unil ball with the center 0. If t-p > n, then the itnverse inclusion
M(W3(R™) — W2 (R*)) 2 W; ..., also holds.

LeMMA 3. Let t > s 2 0. If a € M(W;(R") — W;(R")) then a €
M(WHR ) — Wi R H)) . Also a € M(Wy " *(R* x R) — W, */*(R" x R)) .

LEMMA 4. For s> 0 the inclusion M(W3(R")) C Loo(R") holds.

LEMMA 5. Suppose 1 < p < oo, and lel s and t be non-negative integers such
that t> 5. If

a= Z Dfa,
fol<t

and a, € M(W}R") — Wi=*(R*)) n M(W2:(R") — Ly (R")), where 1/p +
1/ =1, then a € M(W;(R") — W;‘(R")) .
LEMMA 6. Let p> 1, t> 5> 0, and assume thal either ¢ € [n/t, oo} and

t:p<n,org€(p,oo) andt-p=n.If a € B, uniy

= {f : sup |ln(z—2)- f(z)llp. < o0, YREDR"), n=1 on Bl},
2E€R™ 92
then a € M(Wi(R") — W3(R™)). This resull is also valid for t = s, provided
that a € Lo (R").
LemMA 7. If aq € M(W;-lal(ﬂ") — W;‘k(R")) , § 2>k, for every multi-

inder o, then the differential operator

(1) Lu= Y ag(z)D%u, z€R"
lef<k
defines ¢ conlinuous mapping fromW,;'(R") to W;""(R").
Analogous result is valid for s < 0. If p =2, then this result holds for every
s. Under some conditions we have the inverse result.
LemMa 8. Let operator (1) define a continuous mapping from W;(R™) to

Wi (R"), and p(s— k) >n, p> 1. Then oo € M(W; I*IR") — W;~*(R"))
for every mulli-indez a.
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All of these results can bé extended to Sobolev spaces in a domain of R".
More precisely, if  is a Lipschitzian domain in R™ and the {unction a belongs to
M (W;(Q) - W (9)) , then a can be extended to a function &, defined on R", such
that & € M(W,(R") - W;(R" )) . The converse is also true, i.e. the restriction of
a multiplier a € M (W}(R") — W3 (R")) on Q belongs to M (W;(Q) — W;(Q)).

For bounded domains, W, ;. and Bj , ,.;, can be replaced by standard
Sobolev and Besov spaces. Using Lemmas 2, 4 and 6, imbedding theorems for
Sobolev and Besov spaces and the representation of distributions from negative
Sobolev spaces, we obtain the following results.

LEMMA 9. Suppose that Q is a bounded Lipschilzian domain in R", s > 0
and p> 1. If a € W;(Q), where

q=p, t=s, v when s-p>n, or

g>nfs, t=s+egN, >0, when s-p<n,
then a € M(W;(Q)) .

LemMa 10. Let Q de-a bounded Lipschitzian domain in R®, s >0 and p> 1.
If a € Ly(Q), where

q=p, when s-p>n,

q>p, when s-p=n, and

g>nf/s, when s-p<n,
" then a € M{W3(Q) — Lp(Q)) .

LemMa 11, Let Q be a bounded Lipschitzian domain in R" and

a(z) = ao(z) + E D; a;(z).
i=1
If ag € M(WHQ) — Ly(Q)) and a; € M(WEHQ) — WE~*(Q)) n M (Wi H(Q) —
L)), i=1,2,...,n, where 0 < s <1<t <2 and s #1/2, then a €
M(W3(Q) — Wy *(Q)) .

8. Boundary—Value Problems for Partial
Differential Equations

As a model problem in the elliptic case, let us consider the Dirichlet boundary-
value problem for a linear self-adjoint partial differential equation of the second
order

CuE—:—ZD;(a,'iju)+au=f, z€Q
(1) ) i,5=1

u=g, zel'=08Q.



8. BOUNDARY-VALUE PROBLEMS ' 23

This problemn has been extensively studied (see Ladyzhenskaya & Ural’tseva
[60], Lions & Magenes [70], Ladyzhenskaya [59]), particularly for the case of solu-
tions from spaces W3(€2). Here the equation and the boundary condition are taken
in sense of distributions. Solutions of this type, which in the general case represent
distributions, are called generalised, or weak solutions.

Let the following conditions be satisfied (A):

I Q is a bounded conver domain in R®, with a boundary T € C™;
II. aij,a € Cm(ﬁ) X

II1. The operator L is strongly elliptic, i.e.

n n
Z“ijyiyj>CoZy3, co >0, vzeQ, YyeR®,
i=1

i,j=1

a(z) 20, Vzel.

The following statement is true (Lions & Magenes [70]):

THEOREM 1. Sel g € W;_]/z(l‘) and lel one of the following condilions be

salisfied
a) fEWS Q) for s>2,
b) FeZYQ), for <s<2,
¢) FEZYQ), for s<0, s# inleger +1/2.
Then the boundary-value problem (1) has the unique solution u € Wi3(Q).

One may use weaker conditions than (A). For example, it is sufficient that the
coefficients of the equation (1) belong to the corresponding multiplier spaces (see
Theorems 7.7 and 7.8)

aij € M(WSTH(Q)), ae M(WiQ) - W:™3(Q)).

If the boundary is smooth stepwise, the solution has singularities at the break-
ing points. However, these singularities can be avoided if the input data satisfy
certain additional consistency conditions. For example, the solution of the homo-
geneous Dirichlet boundary-value problem for the Poisson equation in the square
Q = (0, 1)®> C R? belongs to the Sobolev space Wi () (for s > 3 ) if the right-hand
side satisfies the following conditions

f=0,
Dif-Dif=0,

DI¥f-D{¥*Dif+ ... +(=1))D¥f =0, k= [853] ’

at all four vertices of the square § (see Volkov [1‘08]).
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In the parabolic case, as a model problem we shall consider the initial-

boundary—value problem

(2)

®)

—+Lu=f, (z,1)eQ=0x(0,T],

u=90, (z,l)ErX[O,T'],
u(m,O):uO(z), TEN.

Let the following conditions be satisfied (B):

I Q is a bounded conver domain in R™, with a boundary T € C*;
II a;j, a € C®(Q), aij = aji;

III. The operator L is sirongly ellipiic in Q, ie

n n *
Y ajuyi>cd ¥, >0, V(z,t)e@, VYyeR",
i,j=1 '

i=1
a(z, t) >0, V(z,t)eQ@.
Note also the following consistency conditions

There ezists a function v € W3'*'*(Q) such that
v=0, (z,t) €T x [0, T},

v(z, 0) = ug(z), z €N,
* (v _ 0 f(z, 0) s—-31"
L

The solution of the initial-boundary-value problem (2) belongs to the space

o ! %(Q) under following conditions (see Lions & Magenes {70, Ladyzhenskaya,
Solonnikov & Ural’tseva [61])

a) For s> 2, s,5/2# inleger +1/2,
if FeWS™ P NQ), wuoe WY (Q) and the consislency conditions (3)
are salisfied.

b) For 1<s5<3/2,

i 1e (W Q)) , wewsTi(@).

¢) For 0<s<1,

i fe (Wi r@) , we wWi@)

d) For s <0, s# inleger +1/2,
if fEZT2NQ), uweZTNO).
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This result can be extended to the interval 3/2 < s < 2, provided that the
input data satisfy certain special consistency conditions.

Some of the conditions (B) can be reduced, similarly to those in the elliptic

case.
Finally, let us consider the following hyperbolic initial-boundary-value prob-
lem '
9%u
'a—t‘z_'l'ﬁu:fi(z:t)EQ:Qx(O)T‘]!
(4) u=0, (z,t)el'x[0,T],
u(z,0) =0, -a—lf%;—’-p—)=0, zeEN.

Let the conditions (B) be satisfied.

Contrary to the elliptic and parabolic cases, in the hyperbolic case there arises
a certain inconsistency between the smoothness of input data and the solution. For
example, the following results hold true (Lions & Magenes [70]),

a) If f€LxQ), then ue Wi (Q);
8)If feWPYQ), then ue WI(Q);

I feW @ = {rewr i@ 25D 2o, 0g<

s—%}, s> 3, s# integer +1/2, then ue W,°(Q).

Using the interpolation theory of function spaces (Bergh & Lofstrém [4]) and
the transposition, the result can be extended to the real values s < 3.



II Eliptic Equations

In this chapter we provide estimates of the convergence rate in discrete WJ-norms
for finite difference schemes approximating boundary-value problems for partial differ-
ential equations of the elliptic type. We consider equations with variable coefficients
from Sobolev classes.

In Paragraph 1 we introduce some necessary terms from the theory of difference
schemes. In Paragraph 2 we obtain estimate of the convergence rate in the discrete W21-
norm for the difference scheme approximating the Dirichlet boundary—-value probiem
for the second-order eliptic equation with variable coefficients. In Paragraph 3 for the
same problem we obtain estimates of convergence rate in other WJ-norms 0<rg 2).
In Paragraph 4 for the equation with separated variables, the Lo~estimate, consistent
with the smoothness of data is obtained. The Paragraph § is devoted to the fourth-
order equations.

1. Meshes, Mesh—functions, Operators and Norms

One-dimensional case.  Let A > 0. We denote by R, the uniform mesh
with the step h on the real axis: R, = {z =jh : j=0,%£1, £2,...}. For each
node z € Ry we consider the neighbourhood i(z) = (z ~ h/2, z + h/2). The
mesh J C Ry is said to be connected if the set Uz¢y i(z) is connected. If the mesh
¥ C Ry, is bounded we denote 2~ = 2~ (¥) = min ¥~h , zt = 2¥(J) = max J+h
and 9 =duU{z", zt}.

Let H(J) be the set of functions defined on the mesh ¥ and B (9) be the set
of functions defined on ¥ and equal to zero on ¢\ ¥. Both of these spaces can be
furnished with a inner product

('U, w),, = (v, w)LQ(,;) =h Z ’U(I) w(z),

z€d
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and the corresponding norm
lolte = llvllLaqoy = lellwsecoy = (v, v)y/%.
We also define, in H(?), the inner product
fo, wlo = [, wlzn = 3 0(=") w(z") + 5 =) w(a*) + (v, w)o
and the norm

I[ollo = I[)lza0) = Illwaey = v, o]3/% .

In the following we shall set A = 1/n, n € N, and consider the standard mesh
8 =R, N(0,1) on the unit interval. In this case z=(0) = 0, z+(6) = 1. Let us
also denote 6~ =6U {0}, 0+ =0uU{1}.

We introduce the finite difference operators in the usual way
v = (vt —v)/h, vp = (v—=0v")/h, v, = (vr +vg)/2,
where v¥ = vi(z) = v(z £ h).
The following expressions for the " derivation” of the product of mesh—functions

(vw)e =vewt +vw, =vow+ vt w,,

(vw)r=viw +vwp=vsw+v we,
and partial summation
(vz, w)g- = — (v, we)p+ + v(1) w(1) — v(0) w(0)
hold.
In }01 (6) we define the operator
= {0 TS

‘The operator A is linear, self-adjoint and positive definite. The following
equality is satisfied
,(Avx U)o = - (vz'fy 1‘)0 = “vz"g- .

The eigenvalues of the operator A are

4 .9 kﬂ'h
(1) /\L-=ﬁ81n T,

and they satisfy the following inequalities

k=1,2,...,n-1,

@) SgAk<:—2, k=1,2,...,n-1.
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Thé corresponding eigenfunctions are

v* = sin krz, z€l, k=12, ...,n-1,
and they satisfy the orthogonality conditions
1/2, k=1

(sin kxz, sin I7z)s = -;—6;,.; = { 0, R

0
thus representing the basis of the space H(f).

A mesh~function v € I°{ ()] can be represented in the form
n-1
3) ‘ U=Zbksink7r:c, €W,
k=1

where b = 2(v, sin kwz)g. We can easilly obtain the following relations

1

3
{

' 1
) ol = 5 3 81,
k=1
1 n-1
®) losll3- = (A, v)o = 5 3 Aetd,
k=1
and
1 n~-1
(®) loesll? = (Av, Av)e = 5 3 228}
. k=1
From (2) and (4-6) it follows that
(M : Nozzlle > 2v2{vello- = 8ljvlls -

Let us define the discrete Sobolev-like seminorms and norms
lvlw,'(a) = llvzlle- lvlwg(o) = lvzells
“”llfv;(o) = "U”';)V;-l(o) + ‘v‘;jv;(a) ’ k=1,2.
From the relations (7) it follows that the seminorms [vlw;(ey and |vlwz(e) are

o
equivalent with respect to the norms ||v|liv(e) and [Jollwz(ey on H ).

Let us define the operator

2 —
—;l-v,, =
Av=<{ —vz, ze€ld
2
T Vg, 1.=1
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on the space H(d). (For evenly extended mesh-functions the values at the nodes
z =0 and z = 1 can also be represented as second differences). The operator
A is self-adjoint. with respect to the inner product [v, w]s. The eigenvalues of A
are also represented by (1), for k=0, 1,..., n. Since A\g = 0, the operator A is
non-negative, but not positive definite. The corresponding elgenfunct.nons are

v* = cos kwz, k=1,2,.

=1,
They satisfy the conditions of orthogonality
1, k=l=0,n
[cos kmz, cos Irz]e = ¢ 1/2, k=1=12,...,n-1,
0, E#1
and represent the basis of the space H(6).
A function v € H(d) can be presented in the form

n-1

8) v—-2—+kz:lakcosk7rz+-§-cosn7rz,
where a; = 2[v, cos kxz]y, £ =0,1,...,n. For v € ;1(0) the representation

(3) coincides with (8) at all nodes of the mesh , and for v € H(8)\ 10{ (8) — at all
nodes of §. A simple argument shows that

n—l

2
a
uvue-f+2§jak+

n—l A 2
Il = G ol = 5 kzl“ of+222,

a?

Lot it

Mln—-

(A3 =
Also define the following norms

l[v“%v;(a) = {(o}ff + llo=ll3-
[[0)vacay = 10013 + llvelff- + I[Aw]f5 -

- Finally, introduce the discrete seminorms and norms of the non-integer order

e U
h2 Z [v(z) l:’i-z.] 3 O<r<l
z, ;6‘0
|”|3v'(o) = { : )
: [o=(z) = v=(9)]
h? Z g I<r<?2
z, 160~
\ T#L
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”””'iv;(o) = ”v”fv;"'(a) + |v|3v;(o) ’ 0<r<?,
2 . 2 2
|["]|w;(a) = I[””W;.;- ) + |vlw;(o) ) 0<r<2. |

Similarly we can define the discrete Sobolev-like norms of higher order.

LEMMA 1. In the mesh~funclion space I} (8) the mulliplicative inequality
(9) ullwycey < CIRIL Gy vl ey,  O<r <l
kolds.
Proof. Let us expand the function v € H (9) in sine series (3) and define the

norm . . . :
ln—l 1/2

B.(v) = (5 > k)
. k=1
For 0 < r < 1, using the inequality

4
sinz>-2-a:, 0<z< =,
S 2

and the Holder’s inequality, we obtain
R AT LT S = 2y7 p2(1-7)
Br(v) < [ag (3) 4] = [5,; O )78

(S (E

1/2

(1-r)/2
bz)

)

1.e.

(10) B (v) < 27" livll}sfsy tolivacey -

Using the expansion (3), the function v € Ii’ (8) becomes evenly extended
outside of the mesh 9. Set © = (-1, 1) N R, and define the norm

1 v —v{x—1t Iy1/2
Nr(v)={h22 Z o) Itllij' ) }

€0 1€
1#£0

where,
h le(a:) = g-w(—l) + gw(l) +h E w(z) = {w, 1o .

z€© €O
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The extended function (also denoted by v(z)) is periodical, so, using the expansion
(3), we obtain

N2(o) =Y Y I o(a) [ - oz ~ &) + 20(=) = o=z + 1))

€O t€®
120
n-1
= hzz Z ] Z b; sin lmz Z by - 4 sin® - -sin knz
z€6 teG
120
n—-1n-1 k?l’t
= bibe -k sin lrz -sin krz - h -1 _—_—
1 by - Z 1 k- z ft] -4 sin® 3
, 120
n-1
W . knt
= b§-8~hz t~1-% sin? —-21—,
k=1 teo+

where,

hz u(t)_h}:w(t)+ —w(l) = (w, 1)g + = w(l)

tes+ teé
Thus we obtain

N2(v) = 16 (r/2)?" -

DO =

n-—1
D BT Ck, 1),
k=1

where,

kwh " (E)r_t)—l-% sin? k;l't

C(k, r)——— 3

teét+

C(k, r) is the expansion of the integral
kx/2
/ 2717 sinzdx
0

and can be estimated from both sides,

1/2\* aar 1 1 (2"
0<-8-(;) SC(L,I‘)S?I’I <1+2 21‘)+2—(;) .

Hence we conclude that the norms N,.(v} and B,(v) are equivalent.

Using this, the inequality (10), equivalence of the seminorm |v|w1(,) and the
norm [[vlw;(e), and the obvious inequality

lvlwz(e) < Nr(v),

one obtains the statement of the lemma. =
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REMARK 1. The same result can be obtained from the cosine expansion (8)
and the norm

2r 2 2
n an)l/-

1 n-1
Ar(v) = ('i S KTal+ —
k=1

This norm is also equivalent to N, (v), assuming that v(z) is evenly extended outside
of 4.

°
REMARK 2. Similarly, for v € H(6) one can prove the following multiplicative
inequality

(11) lllwy ey < CY Mol ifey olinaey,  1<r <2,
. 10 lwzo)

Multidimensional case.  As a two-dimensional case is sufficiently repre-
sentative, using a relatively simple notation, we shall consider the following case.

The direct product R = Ry, x R, represents a uniform square mesh in R2.
For each node = = (z, z2) € R} we associate the neighbourhood e(zx) = i(z1) x
i(z2) = (z1—h/2, T1 + h/2) X (z2 — h/2, z2 + h/2). The mesh w C R} is said to
be connected if the set Uzen €(2) is connected.

Let @ be a bounded connected mesh. In the set H(w) of the functions defined
on @ we can define the inner product

(v, w)z = (v, w)L,(w) = }? Z v(z) w(z),
IEW
and the norm
fivlle = ""”L:(w) = ||v||w,°(w) = (v, 0)117/2.

Finite differences are defined in the above described manner (see Paragraph
1.1) '

vey = (W —v)/h, v =(0-vT) R, g = (vs +vr)/2,

where v = vFi(z) = v(z 2 hry).

In the ensuing we shall use the standard mesh with the step h = 1/n, in
the unit square = (0,1)>. Let I' = Q be the boundary of the domain
and I‘;k={z€I‘: zi=k, 0<z3.; <1},i=1,2, k=0,1. Set w =
QNR2Z=06x4, U:ﬁﬂRi:axa, ‘y:[‘ﬂR%:U\w, it = Tix nRﬁ,
Fe=TLie "R and 7. = 7\ (Uix 7it) . Alsoset wi =w U 70, i=1,2, and

[
wp=wUnrUya U {(k, D}, k {=0, 1. Let H(w) be the set of mesh—-functions
defined on &7, which are equal to zero on 7.
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Define the following Sobolev-like discrete seminorms and norms

2 2 2
'UIWQ‘(«;) = ””z,”;’“ + IIUS:HZI, '
I”I%vg(w) = ”vrxz.”f, + "Uzu:,“f,oo + llvzm”f, )
2 - 2 2 _
”v”W:(u) - ”v”py:—l(w) + lvl'v:(w) ’ k = 1, 2.

Also introduce the discrete Laplacean on R}
Ahv = vtlfl + v.t:fg .
() o -]
The operator A : H(w) — H(w) defined by
[ A .
Ao = { A, TEW
0, €Y

is self-adjoint and negative definite, with respect to the inner product (v, w), .

For v € 4 (w) the following relations

()
—(Anv, v)y = —(Any, ¥}y = |v|fv21(w) ,
ARl = vz, I + 2M1veieallig, + Nvzazalll 2 [oliaey
lasvllZ > 16 (=Anv, v), > 162 |jv]l2

hold. Hense,
[Plwaw) = 2V210lwiw) > 8 V20l .

o .
Consequently, in the space H(w), the seminorms |} (,) and MW,’(w) are respec-
tively equivalent to norms [[vllwzw) and [|v|lwz() -

Define the discrete Sobolev-like norms of the fractional order

2 3 '] k3 I3 2
s =20 20 X ble)stiriteindl | gcpcn,

[z; — t;|1+2r

i=1 z,1;68 T3-i€0
it

2
0oy = i: By [v2i(2) = vz, (t ri + £3-i73-1))
Wilw) = £ _ & T o - R
i=1 2;,1;€8~ T3-i€l
TiFEL

2
+ i By ) [v2,(z) = ve,(zi 7i + t3-i73-3)] C 1<r<o,

[23-i — t3-i] +2(r=1)

i=1 33-i,‘3-|’€3 z;€0~
T3—iFtyai

iy ) = "v“:‘,;rl' w T ol 0<r<2.
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The multiplicative inequalities

(12) lollwsey < COMBIEE, Moy, 0<r <1,
(13) lellwsor € COMIE Ty Wiy, 1< <2,

are direct consequences of (9) and (11).

Finally, define the following inner products and norms

2 : 2
o, wle = 23 i) ule) + o Y wzu(e)+ o T we)u(e),

ZTEw €Y\ 7. . €.
h2
— p2 e
[v, w],-,‘(,, =h*Yy" v(@) w(z) + 5 > ) v(z)w(z), i=12,
TEW; z€\(7i0U7;,)

elle = 1)Ly = [WHwsee) = [v, W72,
lfoll = ok, = o, 90
[v]a’;(w) = |z, + lv=a)13, A
['Ulzw;(w) = I[v:nil:“z + ””nz:"ioo + '[”:zi:]lzu

l[v]l';’V;(w) = l[v]";,v:—l(w) + [vlzwak(w) y k = 1, 2 .

If the function v € H (w) is oddly extended outside @, then

oliwp ) = Iollwe ey » k=0,1,2.

Analogously, we can define discrete Sobolev-like norms of higher order.

2. Difference Scheme for Second—Order Equations.
| Convergence in the W;—norm.

As a model problem let us consider the Dirichlet boundafy—value problem for

" the second-ordet linear elliptic 'equation with variable coefficients in the square
Q=(0, 1)° :

2 .
(1) —Z Di(aij Dju)+au=f in Q, vu=0 on TI'=0Q.

4,j=1

Assume that the generalised solution of the problem (1) belongs to the Sobolev
space W3(2), s> 0, and f(z) € Wi~2(Q). Consequently, the coefficients of the

sl
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equation (1) must belong to the corresponding spaces of multipliers (see Paragraph
1.7)
aij e M(WV;7HQ)),  ae M(W3(Q) — Wi™3(Q)).

According to Lemmas 7.9-7.11, the sufficient conditions are

a;; € Wi @y, ae WPUNQ), for |s—1]>1,

)
a; € WEIHQ),  a=ai+ ) Dia,
i=1
ag € Laye(9), a; € Wlemt+(q),
where, >0, .
§>0, p>2/ls—1 for 0O<|s—1/<1, and
6=0, p=cc for s=1.
The consecutive estimates do not depend on 4, so one can set § = 0.

Also assume that the following conditions hold

aij = aji,
2 2
S aimy2y v}, >0, VzeQ, VyeR",
i,j=1 i=1

a(z) > 0 in the sense of distributions, i.e.
(a- o, ?)D’XDZOv V‘PED(Q)’

as well as the possible consistency conditions at the vertices of the domain Q (see
Paragraph 1.8).

We approximate the problem (1) on the mesh @ with the following finite dif-
ference scheme

2) £h1)=TfT-§f n w, v=0 on ¥,

where,

Lav==05 Y [(aij vz,)e, +(aij v:;)z,] + (T7T3a) v,
i,j=1
and where T; are the Steklov smoothing operators with the step h. Note that (2) is
a standard symmetric difference scheme (Samarskif [84]) with both the right-hand-
side and the lowest-order coeflicient being averaged. For s < 3, a(z) and f(z) may
not be continuous, and, consequently, the difference scheme with non-averaged data
would not be well defined. ’

Let u be the solution of the boundary-value problem (1) and v be the solution
of the difference scheme (2). For s > 1, u(z) is a continuous function and the error
7 = u—v is defined at the nodes of the mesh &@. It is easy to see that the conditions

9

(3) Lz = Z mijE N In w, z=0 on 7,
ij=1



36 ' "Il ELLIPTIC EQUATIONS
are satisfied, where,

nij = T;' T3_i(aij Dju) — 0.5 (aij vz, + o “‘;fj)’ and
1 =(T{Tia)u-T{Ti(au).

Using the energy method (Samarskii [84]), it is easy to prove the following
result.

LeMMa 1. The finite difference scheme (3) is stable in the sense of the a priori
eslimate

0 Helwsoy S € (3 timsll, + il )

i,j=1

The problem of deriving the estimate of convergence rate for the finite differ-
ence scheme (2) is now reduced to the estimation of the right-hand-side terms in
(4). First, we represent 1;; in the following manner (see Jovanovi¢, Ivanovié & Siili

[54])

Nij = Mij1 + Mij2 + Mija + Mija, where,

mjr = T T3_i(aij Dju) — (T T3_045) (TH T3-; Dju),

mij2 = [T To_;aij — 0.5 (aij + o)) (T} T5_; Dju)

mijs = 0.5 (aij +a) [T T3, Dju— 0.5 (uz; +ud))], and

mija = —0.25 (a;j — ') (us,; — u}))

T/
For 1<s<2 weset n=1ny+n;+ 1, where,

n =(T{Ta0)u—T{T3(au), -and
n =T Dia)u-TT (v Dia;), i=1,2.

For 2<s<3 weset =13+ 14, where,

‘3 =(T{Tie)(u-T{Tju), and
na = (TiTia) (TETHv) - TET3 (au).

Introduce now the elementary rectangles eg = eo(z) = {y : lyj—zjl < h, j=
1, 2} and ¢; = ¢;(z) = {y <y <zt h, fys-i —za-il < h}, i=1,2. The
linear transformation y = z + hz™ maps the rectangles ey, e; onto standard
rectangles Eg = {z" : |z]‘-| <l,j=1, ‘2} and, respectively, E; = {:c‘ 1 0<
7} <1, |z5_;| < 1}. Set aj;(z") = aij(z + hz"), u*(z*) = u(z + hz") etc.
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The value 7;;; at the node z Evu,- can be represented as
1 - = - au- -
)= { [ 0l o) G

_//Ei (1= |23_;]) afy(z") dz” //E (l—lxs-;l)g—:;df}~

One can readily conclude that 7;; 1'(1:)‘ is a bounded bilinear functional of (aj;, u*) €

W;‘(E,-) X W'z;/(q-z)(Ei) , where A >0, x> 1 and ¢ > 2. Moreover, n;;, =0,
if aj; is a constant, or u* is a first~degree polynomial. Using Lemma 1.6.4 one

obtains

c,. .
(@) < 7 laislweeo 10 lws, .,

J(Ei)» 0<A<1, 1<u<?.
Switching back to the original variables,

lafjlwaz = b~ laijlwa ey, and
. — pu~(9=2)/
W lws, e = B = [l e

Consequently,

[mija(z)] < C RAF4-L laijlwae:) Iulw;q,(q_,)(e.-) 0L, 1<pug2.

Summating over the nodes of the mesh w;, and using Hélder’s inequality, one obtains

(5) lmijillo; < CEY1 Jagslwacay ul @y 0SASL, 1<pug2.

w2
[74¢)
Set A=s—~1, pu=1 and ¢ = p. From the imbedding Theorem 1.3.4, W} C
w3, J(o-2) for 1< s < 2. Therefore, from (5),

(6) Imsillo; < C B~ aijllwg-s oy lullwgy,  1<s<2.

Similar estimates hold for 7;;2, ;j4, m and 7a.

Let now ¢ > 2 be a constant. The following imbeddings are satisfied

WL C W) for w>2-2/¢  and WM CWY ., for A>2/q.

Setting A 4 p = s one obtains from (5),
(M Imijlles < CR laijllws-1(a) llullwy@y,  2<s<3.

In the same manner one can estimates 7;;4.

For s > 2, n;j3(z) is a bounded bilinear functional of (a;j, u) € W3~ !(e;) x
WX (e;) which vanishes if either a;; is a first-degree polynomial or if u is a constant.
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Using Lemma 1.6.4 and the imbedding W3 C WL, , one obtains for ;2 an estimate
of the form (7). '

Similarly, 7;j3(z) is a bounded bilinear functional of (a;;, u) € C(€)x W3 (e;),
s > 1, which vanishes if u is a second-degree polynomial. In the same manner,
using imbeddings W;~! C C' (for 1 < s < 2) and Wit c C (for 5 > 2), one
obtains again the estimates of the forms (6) and (7), for ;3.

Let 2<¢< 2/(3 s). For 2 < s €3, 53(z) is 2 bounded bilinear functional of
(a, u) € Ly(eo) x| q/(q_z)(eo) Moreover, 3 = 0 if u is a first-degree polynomial.

Using the Bra.mble—Hllbert lemma 1.6.1 and the imbeddings W;~2 C L and
W3 C 2q /( 4-2) One obtains the estimate

®  linslle S R Mlallygsiay Mellwsey,  2<s5<3.

For 2< 5 <3, n4(z) is a bounded bilinear functional of (a, u) € W33 (eo) x
WL (eo) which vanishes if either a or u are constant. Using the same formality and
the imbedding W C W1 , one obtains for 74 an estimate of the form (8).

Finally, set 2 < ¢ < min{2+¢, 2/(2—5)}. For 1<s < 2, no(z) is a bounded
bilinear functional of (ag, u) € Lg(eo) x W,_‘,’q'}tq 2)(eo) which vanishes if u is a

constant. Using imbeddings Loy C L, and W§ C W:5!

29/(g—2)» One obtains the
following estimate

) lInolle < CA*= laollLoy. o lullwy@y,  1<s<2.

Combining (4) with (6)-(9) we obtain the following result:

THEOREM 1. The finite difference scheme (2) converges in the norm W}(w)
and the following estimaies

llu = vllw; ) < CH 77 (max lloisllwg-a) + lallws-2(a)) Hullw; )

(10) _
for 2<s5<3,
and |
(1) = vllwiy <€ h*~? (r{l‘?x ||aii“w;-'(n) + max Haiﬂw;-*(n)
HleollLope) lullwymy,  for 1<s<2
hold.

The obtained estimates of the convergence rate are consistent with the smooth-
ness of data.
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3. Convergence in other Discrete Norms

From estimate of the convergence rate (2.10) of the difference scheme (2.2),
obtained in the previous paragraph, and the self-evident inequality

V6
(1) zlwz) < 5 lelwiw)
one immediatly obtains the estimate
(2) flu - L'ng(w) <Ch? ("}%X ““«'j“w;-‘(n) + ”a“w;-’(n)) ”U”w;(n) )
for 2<s<3.

In order to derive the analogous estimate for 3 < s < 4 one needs the differ-
ence analogue to the so called ”second fundamental inequality” (Ladyzhenskaya &
Ural’tseva [60], Ladyzhenskaya [59], D’yakonov [17])

(3) [2lw2ee) S CllLhzllLaqw) -
Here,

C = Clan, e, azs, @) = Co (1 + IT¥T2a(lL uy) (1 + max na,-jng(,y(;f))

where 2 < ¢ < 005 |} llz,w) and || - llqu(w) are the discrete analogues of the
corresponding Sobolev norms

lollf, oy =4 Y @I, wcRi, and

reEw
“v”;IV:(w) = ”v”%,(w) + Z ”vzi”;,q(wi) .
i=1

(As usual, the case ¢ = oo is obtained by taking the proper limit). Using the
Bramble-Hilbert lemma 1.6.3 one can easilly show that
llaijllwiw) < Crllaijllwyny, and
IT? T3 aliz ) < CallallLy(a) -
So, one can set in (3),

C = C(a11, a12, azs, a) = C3 (1+|jall () (1+rri13,x ||a,-j||g§v(;3)) , 2<g¢<oo.

It is worth noting that in the terminology used by Ladyzhenskaya ”the first
fundamental inequality” (in the discrete case) corresponds to the following inequal-

ity
(4) colzliviw) S (Chz, 2)u
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which can easily be derived by using partial summation.

One can now derive the desired convergence rate estimate in the norm W2(w)
for the finite difference scheme (2.2). From (2.3) and (3) it follows that

(%) lztwzer <€ (3 el + ik )

i,j=1
Estimating 7;;,z; and n by the method described in the previous paragraph, one
obtains again the estimate (2), for 2 < s < 4 (see also Berikelashvili [5]).

The convergence rate estimate in the norm L3(w) is also based on ”the second
fundamental inequality” (2). For the sake of simplicity, let us consider an equation
with a(z) =0

(6) -5 Di(w;Djuy=f in @, u=0 on I'=dQ,

i,j=1

and the corresponding difference scheme

- Lav=-05 [(aijv5;)e; + (i ve,)z] =TT in w,
i,j=1

v=0 on 7.

The error z = u — v satisfies the conditions

2
(8) Lpz = Z Nij,z; In w, z=0 on «.
i,j=1

The right-hand-side can be rewritten in the form

2

2 2 2
(9 Z Nij, 2 = Z ([:ii &ii +[§i Xi + E ‘U:'j,z.-) )
i=1 i=1

i,j=1

where,

[:ii v = —[(7}+T32_,‘ aii) v:‘.’]".. )
Kiv= [(T,-‘*T;;"_.- ai,a—i)'lz,_.-],i y

Xi = 0i — 0.5 (&3 +E:g-_i(3—i)) ,
& = u— 05Ty, T ju+ T3, Ty ;u),
e = 025 (T Titu = T T w) = (T3 Tt = T T w) e~ G-,

vij = TF T3 i(aij Dju) — (T T3, a5;) (T T3_; Dju)

o1

+0.5 [(TFTE; aij) (uz; + uFi) — ag uz; — o ufl] .
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One can assume that the solution u(z) is extended, preserving the class, in the
domain (—ho, 1+ he)?, hg=const >0, h<hg.

LemMMa 1. If a;; € W;(Q), g > 2, then the finite difference scheme (8)
satisfies the a prior: estimate '

2

(10) o € 3 (Il +16s a-illr + leilloncs s + 3 Bl -

i=1
Proof. Introduce an auxiliary function w satisfying the conditions
Liyw=: in w, w=0 on 7.

From (8) and (9) follows that

2115 = (2, Law) = (Lrz, w)o

= i '[([I.'i'&i, ), + (Kixi, w).,, + i (vij, 2., w)w]

i=1

= z’-’: [(f.'i, Lii W)w + (xi, IC,?w)w___m_._ - Zi: (v, wra)wi]

i=1
2 N 2
<3 (isllo il + Willuscn, e WCT 0llwims, s + D Wil Nl -
i=1 j=1
From ”the second fundamental inequality” (3) it follows that
”El'i w”w s .”K’.:w'”“’i-l.z—i ) "w-l'i”uu < C“‘Ch w”w .
Hence, one immediatly obtains the inequality ( 10). =

The "second fundamental inequality” is valid for a;; € W}(Q), ¢ > 2,s0a
”good” convergence rate estimate can be expected only for s = 2. In this case,
&:j(z) and g;(z) are bounded linear functionals on W2, vanishing on the first-degree
polynomials. Using the Bramble-Hilbert lemma 1.6.3 one obtains

(11) Miillo, N6i,3-illzs Mleillwizs,aei < Ch llullwzcay -

The term wv;;, as in the previous case, can be split into three terms, and
estimated using bilinear version of the Bramble~Hilberta lemma 1.6.4

(12)  lislles < CR (lasliwa o) lullwacay + laijllwa, ) llellway) -

From (10 — 12) one obtains the following convergence rate estimate for the
finite difference scheme (7)

(13) llu = vllLa@w) < Ch? max flasjllwz ) lluliwzca) -
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The estimate (13) is not consistent with the smoothness of data since it re-
quires that the coefficients are twice differentiable, rather than only once. This is
a consequence of the rough estimate of the term wv;j 5, in (10). A better estimate
can be obtained for the scheme with averaged coeflicients

(14) Lyv= Z Lijv=TEf in w, v=0 on v
i,ji=1

where, : o
Lijo= =05 [(TFT3_; ai) (v + 0¥ "), ],

In this case, the error z = u — v satisfies the conditions

2 2
'éhz=z(Eiifii+K«iXi+ij1,f,.) in w, z=0 on =7,

i=1 j=1
where £;;, xi and 7;j;, are defined above.
For a,-_,-EWPl(Q), p>2,

2

etk < C 3 (Hesll + 1655l + Heithorcn, e + 3 Wiall)
i=1

i=1
Using the previously derived estimates (11) and (2.5), one obtains

(15) flu— vllz,w) € Ch? max flaijllwy (o) Nullwzay -

The estimate (15) is ”almost consistent” with the data smoothness: here a;; €
W5, (Q) instead of W}(Q). If one allows the inconsistency between the smoothness
of the solution and the coefficients, assuming that instead (see Paragraph 2),

veWHQ),  a; € W (),
the following conditions hold,
ve Wi (Q), 1<s<2; ai; € Wh(Q),
then, instead of (15) one obtains

lu = vllzw) < Ch* max llaijliwy, @) lullws@), 1<sg2.

This estimate is not consistent with the smoothness of data, except for s = 2,
when it reduces to {15).

From the derived convergence rate estimates and the multiplicative inequalities
(1.12) and (1.13) one can easily obtains the new estimates in the fractional order
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Sobolev norms. For example, for the finite difference scheme (2.2) from (2.10), (2)
and (1.13) one obtain

llu - vllwyw) < C A" ("}f}x llaijlliyz-1() + llallws-2(qy) lulliwzay
for 1<r<2<s<3.
From (2.11), (1) and (1.13),
llu ~ vllwyw) S CR*T (f{‘é;x llaijliw;-1(q) + max llailly;-1(q)

+ ”00”L2+.(ﬂ)) ”u“W,'(ﬂ)l for 1 <r<s< 2.
Similarly, from (15), (1.12), (1.13), the self-evident inequality

22
fzlwiw) S =5 lzllzaw)

* and (1) one obtains the following convergence rate estimate for the difference scheme
(14)

llu = vllwsw) < CH*" max llasjllwe oy llullwz), 0<r<2.

4. Convergence in L;(w):
The Case of Separated Variables

In the previous paragraph we have seen that the derivation of the convergence
rate estimates in La(w)-norm is met with significant difficulties. A satisfactory
estimate is obtained only for s = 2, while for s < 2 only the estimates inconsistent
with the data smoothness are obtained.

A more precise result can be obtained for the equation with separated variables

(1) —2D,~(a,~D;u)=f in Q, u=0 on I'=0Q,

i=1

where,
a; = ai(zi), i=1,2

and
0<c<ai<q, z; € (0, 1), i=1,2, co, ¢1 = const.

The following conditions ensure that a; belong to the space of multipliers
M(W:=Y(Q)) (see Paragraph 1.7)

a; € W,!"IH'J(O, 1)
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where,
p=2, §=0 -~ for |s—-1]>05,
p=p(s)>1/ls=1], §>0 ~ for 0<|s-1]1<0.5, and
p =00, 6=0 -~ for s=1.

Similarly to the results of Paragraph 2, the estimates derived below do not depend
on ¢ in any way so one can set 6 =0

Introduce now the solving operators of one~dimensional exact difference
schemes (see Lazarov, Makarov & Samarskii [67])

1 z;+h
Sif(z) = 5/._;; ki(t) flz + (- z)ri)dt, i=1,2

where,
z,-—-h a‘(T)/¢/z-‘.-h a,(-r) te (1:,- - hl :ct')

.+h £ith . :
X a,(‘r // ,(1‘) tE(z,‘,.‘L‘.'+h)

These operators satisfy the following conditions

Si (Di (a; Diu)) = (8 uz, )z,

. 1 [Ttk dr \~-t ]
ai(xi)—.('i;/’; :17(—7’)-) o i=12.

S =T =TFTr.
We approximate the problem (1) by the following finite dlﬂ"erence scheme

K3 (t) =

where,

For a;(z;)=1,

@ S bl =SS i w,  v=0 o 7,

i=1
where b; = 5;(1).

Since the solution u(z) of the problem (1) is not necessarily a continuous

function, we define the error
. — { NThu, 0<s<l1
z=U—v, where U= .
u, l<s<2

The error thus defined satisfies the conditions

"'ZbS-z(ax-r ):: —Z(athr)z. in w, z=0 on 17,

i=1 i=1
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where ; = 53_.,’(11) —ba_;u, 1 ='1, 2.

The following a priori estimate holds

@) lello < C (lalle + l¥alla)

The problem of deriving the convergence rate estimate for the finite diflerence
scheme (2) is now reduced to the estimation of the right-hand-side terms in (3).

The value ¥; at the node z € w is a bounded linear functional of u €
W3(es), s > 0.5. Moreover, ¥; = 0 if u(z) is a constant. Using the Bramble-
Hilbert lemma one obtains

[¥il < C(h) [ulw;(eoy » 05<s<1,
where C(h)=Ch*~t. A summation over the mesh w yields
(4) [Wille < C W lulwyay, 05<s<I1.

The main difficulty in the derivation of estimates for s > 1 lies in the fact
that ¥3_; is a nonlinear functional of a;. However, 13_; may be conveniently
decomposed so to allow a direct estimate of the nonlinear terms. Set

Ya—¢ = Ya_i 1+ Y3~i,2 + ¥3-i3, where

Vo-is = /ol [u(z + h7r) = 2u(z)+u(z — hrr)] (/zi_'" do )

( . i )_ld h [

Y3-i 2 _/ [u(a: + hrr)—~ u(z)] (/ zitht 4. % do )-1

a;(o) zimh ai(o)

zith j- Ti+h a,(t) a,(t’) ,
X ([-.+hr a,(o') ! /z . / a,(t) ) dtdt'dr,

,,/,3‘,.'3:/0 [u(z + hrr) = u(z)] (/:-' _d{_)_

-4 ai(0)

z;-hr pzx;+h ]
xh-l(l-r)-I/ / aift) - “‘(’)dtdt 'dr

i=h i+hT a;(t) ai(t')

The value ¥3-;1 at the node z € w is a bounded linear functional of
u € Wi(eg), s > 1, which vanishes on the first-degree polynomials. Using the
Bramble—-Hilbert lemma one obtains

(5) [¥3-i1lle < CH julwsa), 1<s<2.
For 1.5 < 5<2, ta_i » is a bounded linear functional of u € W§(eg), i.e.

[¥3-i 2| < C h*-08 (h—1 ”"”Lz(eo)'*"“'W,‘(e.,)""ha.l Iu,W;(eo)) Iailw;(io) y A>0,
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where ig = io(z;) = (zi — h, z; + h). Moreover, th3_; 2 =0 if u(z) is a constant,
so one can eliminate the term A~!{ju|lz,(c,) at the right-hand-side. Using a
summation one obtains

s, 2llw < ChAMOS (m:?x lulwscann + b7 ulwy @) ,

where Qh, = Qpi(z) = {y €ER? : z;~h<y<zi+h, 0<y3_; < 1} . Setting
A = s —1 and using the inequality

lu_‘Wz‘(nh-') < Ch%* fullws (o) » s> 1.5,

which is a consequence of the Theorem 1.3.5, one obtains

©  Weoiall S CF lloddlwgio,plulwgm,  15<s<2.
Similarly,
(1) [W3-,2lle < C B llaslle-so,y lellwzy,  1<s< 15,

The same kind of estimates holds for ¥3_; 3.+ »

Combining (3) and (4)—(7) one obtains the folfoi:i:i“ﬁg result

THEOREM 1. The ﬁﬁiie_@fiﬂgrcnce scheme (2) co : and the estimate

®)  Mu=vlizyw) < Ch* maxllallyie-s1g. ) Nullwycay -
holds.

The obtained convergénce rate estimate is consistent with data smoothness.

REMARK. For 0 < s € 0.5 the function S;S2f can be discontinuous, and,
consequently, the difference scheme (2) is not applicable. In this case, instead of
(2), one should use a scheme with a more strongly averaged right-hand-side. In the
case of equation with constant coefficients, such schemes were studied by Jovanovic
[34] and Ivanovi¢, Jovanovié & Siili [30].



5. FOURTH-ORDER EQUATION 47

5. Fourth-Order Equation

In this paragraph we shall consider some boundary~value problems for the
fourth—order symmetric elliptic equation with variable coefficients

(1) Lu = D} Mi(u) + 2 Dy Dy M3(u) + D3 Ma(u) = f(z), =ze€Q
where the following notation is used
Mi(v) = a1 D}u+ ao Dju, - Ms(u) = ag D*u + ap D3u,
M3(u) = a3 D; Dau, Q=(0,1)%.
Let the following conditions be satisfied A

a;>¢c>0, i=1,2,3, alag—a§2c1>0, z€eN,

@ veW3(Q), feWiQ), 2<s<4.

Thus the coefficients a; must belong to the space of multipliers M (W; ~%(Q)). The
- following conditions are sufficient (sec Lemma 1.7.9) .

(3) G €W,7(Q),  i=0,1,2,3,

where,
p=2, e=0 = for 3<s<4,
p>2, e=0 ~ for s=13,
p>2/(s—2), €>0 — arbitrary — for 2<s<3.

First consider the problem with boundary conditions of the second kind
(4) u=0 on T; D=0 on T;pUly, i=1,2.

We approximate the problem (1),(4) by the following finite difference scheme

(5) ‘Chv = ml(v)z'xh +2 m3(v)5xfz + m'-?(v)l‘ai‘: = leTz;lfr TEew, .

(6) v=0, z€7; Uz, =0, zEYWUva, i=12,
where,

my(v) = @1 Veyz, + Q0 Vzyz,, Ma(V) = a0 Uzyz, + Q2 Vz,2,,

mz(v) = @3 vz, z, and ds(z) =a3(z; +0.5h, 22+ 0.54).

Note that the discrete solutions are defined at the external nodes, belornging
to the domain [~A, 1+ h]?. Consequently, we assume that the solution u, and the
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coefficients a; are extended, preserving the class, to the domain (—hg, 1 + ho)?,
where hg = const > 0 and h < hg.

. The error z = u — v satisfies the conditions

(7) £h2 = ¥1,x,%, + 29’3,515: + $2,2%8; zTEwWw )
(8) Z:O, 1‘67; Zp.x, = UgE; zE7i0U7ily i=1121
where,

i =m(u) —T5; Mi(w), i=1,2; w3 = ma(u) —-‘T1+T2+M3(u) .
Note that (4), (6) and (8) yields
mi(z) =¢i, TE€YOUm, i=12.

Multiplying equation (7) by z, and using. the partial summation and the
Cauchy-Schwartz’s inequality, one readily obtains the following a priori estimate

9) l2lvay < € (leally +llealll + llesllZ,,) -

THEOREM 1. If the solution and the coefficients of the boundary-value problem
(1),(4) satisfy conditions (2) and (3), then the finile difference scheme (5),(6)
converges and the estimate

(10) (|- ”“W;-‘(w) < Ch*-? max ||a,~||w;_a+.(m llellwscay, 25<s<4

holds.

Proof. In order to obtain the convergence rate estimate for the difference
scheme (5-6), it is sufficient to estimate the terms in the sum on the right-hand-
side of the inequality (9). First, we represent ¢; in the following manner

3
®1 =_S_ ¢1,j, where,
ji=1

@ik = 62k (Uzuz, — T{T3 Diu),

i k42 = (a2-k — T{T7a2_t) (T{ T3 Diu)

Gires = (TPTer-s) (TPT3DM) - T2T3 (azi D),

@i kve = TeT2(az—r Diu) — T3 (aa—i Diu), k=1,2.

Analogously we can represent ¢2. Also, set

$3 =31+ p3,2, where
¥3,1 = (&3 -_— T{"T-_;"ag) u,,,, , and
3,2 = (T T a3) uzyz, — THH T (a3 D1 Do)

N
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For s > 2, the value ¢; ; at the node z € w, is a bounded linear functional
of u € Wi(ep),
1,1l < C(B) llarl oy el eo) -

Moreover, ¢;,1 = 0 if u is a third-degree polynomial. Using Lemma 1.6.3 one
obtains
lo1,1] S Ch*3 ooy lulwye),  2<s<4.

Hence, using imbedding (see Theorem 1.3.3) W;’z*" CC, s> 2, and summing
over the mesh w,

(11) ller,ille < CR 2 llarllys=steqqy lulwyy, 255 <4.

We can estimate ¢;,2 in the same manner.

The value of ¢),3(2), z €w, is a bounded bilinear functional of (ay, u) €
Wy (eo) x Wi(eg), where A-p > 2, ¢ = oo for p=2 and ¢ = 2p/(p—2) for
p>2. Moreover 1,3 =0 if elther a, or u is a first-degree polynomlal Using
Lemma 1.6.4,

1,3l € Co*Hlatllwa(eo) lulwagea),  2/P<A<2,
and, consequently,
ler,slle < CA* [lallwa(ay llullwaca -
Setting A = s — 2 + ¢ and using the imbeddings
Wy Cwl, for s>3 and Ws C ng/(p-?)’ for 2<s5<3,
one obtains
(12)  llonalle S CE 7 flallys-aseoy el . 2<s <4

In the same manner we can estimate ¢; 4 and 3, ;.

For A > 0, 4> 2 and ¢ > 2 the value of ¢1 5(z), z € w, is a bounded
bilinear functlonal of (a1, u) € W"(eo) x W. q/(q_.,)(eo) Moreover, ¥1,5 = 0 if

either a; is a constant or if u is a second- degree polynomial. Using Lemma 1.6.4,
one obtains

ler,slhe < CHH2 Narlliva oy lellwy, .y
where 0 <A <1 and 2<pu<3. Set A+pu=s.1If A+ p>3 onecanfinda
g = q(A, p) such that A >2/¢ >3 — . Then,

$--2 Atp=2 i )
Wyt = Wyt TR O W and Wi =W C W,

Analogously, if 2 < A+p <3 one can find a g such that A > 2/q >2/p—-(1-2).
In that case,

s~24e __ pa7Atu—2+4+ A Adpu
We==re = With==v C 1] and W; =W;"" CW, q/(q-2)
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From theese imbeddings it follows that
(13) ller,sllw < Ch*~? ""lnw;-“'(n) Hullws ), 2<s<4.

In the same manner we can estimate Y1,6 and ©3,2.

For A > 0.5, the value ¢, 7(z) at the node z € w is a bounded linear
functional of a; D}u € Wi(eo), vanishing on the first-degree polynomials. Using
Lemma 1.6.3 one obtains

ler,7llw < Ch* a1 Diulwany, 05<A<2.
From the inequality
la; Diulwacy < Clleillwr+<(qy | D3ullwzay
setting A = s — 2, it follows that
(14) les, 7lls < C 2 llarllyg-ate(qy lullwyey, 25 <s<4.

In the same manner one can estimate ¢ 5.

Finally, from (11-14) and (9) one can obtain the desired estimate (10). =

REMARK 1. Similarly to the case studied in the preceeding paragraph, the
finite difference schéme (5-6) is not defined for 2 < s < 2.5, since in that case the
right-hand-side T2TZf is not continuous. Consequently, a scheme with a more
strongly averaged right-hand-side must be used (see Ivanovié, Jovanovié & Siili
[31], for the case of equation with constant coefficients).

Consider now the problem with Dirichlet boundary conditions
(15) u=0 on T; Diu=0 on T;,oUT;, i=1,2.

Same as before, we approximate the equation (1) by (5), while the boundary
conditions (15) are approximated by

(16) v=0, =zé€v; v;i=0, €Yo Vraa, i=1,2.
The error z = u — v satisfies the equation (7) and the boundary conditions

17 z=0, z€47; z TE€EYo Yy, 1=12.

o ]
z; z;?

Using the notation
G= (u;:.. - D,-u)/h,

the second boundary condition in (17) can be written as

zp. =h¢i, €YU, i=12.
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The a priori estimate

Izl 30) < C (112 030, + 102012075, + llsliZe,

+ih2 3 g”)

i=1 TEYioUYi1

(18)

holds. The first three terms in the sum on the right-hand-side can be estimated
in the same manner as in the previous case. For s > 2, (; is a bounded linear
functional of u € Wi(eo) , which vanishes on the second—degree polynomials. Using
Lemma 1.6.3 one obtains the estimate

1/2 .
(h2 Z C?) SCR™ |ulwyan), 2<s5<3,

z€%i0

where Qio = Qni(0) = {z : =k < z; <h, 0 <z3-; <1}. Using Theorem 1.3.5
one obtains

1/2 o
A2 Z <‘2) < C hMin {s-2,1.5} Ilnhll—lsgn(a-a.s)l ”u“W;(n) ,
(19) *€vio
2<s<4.

By analogy, one can estimate {; on ¥ .

From (18) and (19), and the previously derived estimatesfor ¢; , 2 and ¢3,
one obtains the following convergence rate estimate for the finite difference scheme

(5), (16),
”u ol ‘U”wg(w) S Chmin {"—'211'5} Iln hll—ISgn(a—a.s)l

20
(20) x max [lailly-sveqy llullwymy, 25 <s<4.

REMARK 2. For s < 3.5, the solution of the boundary-value problem (1), (15)
can be evenly extended outside of the boundary, preserving the class W3 . In this
case (;=0 on 70U, and the estimate (20) is a direct consequence of (11-14)
and (18).

Finally, consider the problem with natural boundary conditions

. IW,'(u) =0, D; Mi(u) +2Ds_; Ms(u) =0,
(21) ' z€ligUTa, i=1,2;
M3(u)=0, z€7..

The solution to the problem (1), (21) is determined with an accuracy of up to
an additive first—degree polynomial. In order to obtain a unique solution of the
problem, introduce the values at the three vertices of 2 as follows

2 A B Rt %g
(22) (0, ez gonr s uly Bymigay,  u(l, 0) = cpo.

L 5% 1§
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One approximates the conditions (21) and (22) by
mi(v) =0,  mi(v)g + [ma(v) + m3(v)~ i]fa-.' =0,
(23) . -‘BE‘rioU‘/ilx i=1,2,
ma(v) + ma(v)~! + 1n3(v)“"’ +ma(v)" =0, z€7.,-
and
(24) v(0, 0) = coo, v(0, 1)=co1,  v(L, 0)=cio.

Note that in that manner a discrete solution is also defined at external nodes
at distances 2h from [ and, consequently, the difference scheme (1), (23), (24)
contains lewer equations than unknowns (or nodes). The missing conditions can
be obtained from the approximation of equation (1) at.boundary nodes. Introduce
the asymmetric averaging operators in the following manner

,i_2/(l—t)f(a::i:th1) i=1,2,

and set
ATEf, z € Yig
T2 T2 . -
(25) Ly = ‘2— 3,,-'f’ % € %1
Ti T3, z = (0, 0)

and analogous expressions for  z = (0, 1), (1,0}, (1, 1)

The error z = u — v satisfies the a priori estimate
(26) 2120y < C (el + llealll + llesllZe, + 1[1)15 + [[82)15)

where, '
[ T5_i Mi(u) = Ti_y, Mi(u), T €%

$i =19 T3 M,-(u) T(a_.')_ Mi(“)_» TETH
0, ‘ . at other nodes
¥1, @2 and @3 can be estimated in the same manner as it was done in previous
cases. ¢; is a bounded linear functional of M;(u) € W3 , A > 0.5, which vanishes
“on constants. Using Lemma 1.6.3 and Theorem 1.3.5 one obtains
|[¢z]'w < C Rpmin {s-2,1.5} “n h|1-|sgn(:—3.5)l

(27) | - x max llojll-aeeqq lullwgy 25 <5 <4

From (26), (27) and the previous estimates for ¢;, i = 1, 2, 3, one obtains
the following convergence rate estimate for the finite difference scheme (1), (23),
(25)

".u _ v]IW;“(w) < C hmin {s-2,1.5}) “nhll—lsgn(:—&s)l

x max Naillws-2+e(q) llellwca) » 25<s<4.
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6. The Problem History and Comments

The principal purpose of this chapter is to establish a method for the derivation
of convergence rate estimates, which are consistent with the data smoothness, for
the difference schemes approximating boundary value problems for elliptic partial
differential equations. This procedure is based on the Bramble-Hilbert lemma and
its generalizations (1.6.1-1.6.4).

According to the definition (Lazarov, Makaroy & Samarskii {67]), a convergence
rate estimate of the form

(1) lu = vliwpw) < CR 7 (ullwg(ay, s>r

is said to be consistent with the smoothness of the solution to the boundary-value
problem. Note that similar estimates, of the form

le = vilwy ) £ CA " llullwya). s>r

are characteristic for the finite elemenats method (see Strang & Fix [90], Ciarlet
[9], (10]). In the case of equations with variable coefficients, constant C depends on
the norms of coefficients, and consequently one can obtain estimates of the form

Ife ~ ”“W,'(w) SCh™T (n.u:x ”aij"w,‘-‘(n) + ”a"w,"’(n)) ”"”W;(n)-

(compare to (2.10), (2.11), (3.2),-(3.15), (4.8), (5.10) and (5.20) ).

Estimates of the form (1) were, to the best of our knowledge, derived by
Weinelt [109], for r = 1 and s = 2,3, in case of the Poisson equation. Later,
estimates of the form (1) were obtained by Lazarov, Makarov, Samarskii, Weinelt,
Jovanovié, Ivanovié, Sili, Gavrilyuk, Voitsekhovskif and others, using systemati-
cally the Bramble—Hilbert lemma.

For example, families of difference schemes with averaged right-hand-sides for
Poisson and Helmholtz equation were introduced in Jovanovié’s [34] and Ivanovié’s,
Jovanovié’s & Siili’s [30], [51) papers, yielding the spans of estimates of the form
(1), in case of non-integer values of s.

The procedure for the determination of the constant in the Bramble-Hilbert
lemma, using the mappings of elementary rectangles onto the standard ones, was
suggested by Lazarov [62].

In the papers of Lazarov [62], Lazarov & Makarov [66] and Makarov & Ry-
zhenko 74, 75}, the convergence of the difference schemes was examined for the
Poisson equation in cylindrical, polar and spherical coordinates, and estimates of
the type (1) were obtained in the corresponding weighted Sobolev spaces.



54 I ELLIPTIC EQUATIONS

A scheme with an enhanced accuracy for equations with constant coeflicients
was derived by Jovanovié, Sili & Ivanovié [55], and similar results were obtained
later by Voitsekhovskil & Novichenko {107}.

Difference schemes for the biharimonic equation were considered by Lazarov
[63], Gavrilyuk, Lazarov, Makarov & Pirnazarov [20], Ivanovi¢, Jovanovié & Siili
(31, 32], and for the equations of the elasticity theory — by Makarov & Kalinin
[71, 57]. :

Application of the exact difference schemes was considered by Lazarov,
Makarov & Samarskii [67].

Equations with variable coeficients were studied later. At first, the difference
schemes for the Helmholtz equation with variable lowest coefficient were studied
(Weinelt, Lazarov & Makarov [97, 68], Voitsekhovskii, Makarov & Shablit {106]),
and after-that also problems with variable coefficients of the highest derivatives
(Godev & Lazarov [26], Jovanovié, Ivanovié¢ & Siili [54], Jovanovi¢ [36, 42, 43]).
Equations with the lowest coefficients belonging to the negative Sobolev classes
were considered by Voitsehovskii, Makarov & Rybak [105], and Jovanovié (43].

The fourth~order equations with variable coeflicients were studied by Gavri-
lyuk, Prikazchikov & Khimich [22], and Jovanovié {45]. Quasilinear equations in
arbitrary domains, solved by a combination of finite difference and fictitious do-
mains methods were studied by Voitsekhovskil & Gavrilyuk {100], Voitsekhovskif,
Gavrilyuk & Makarov [101] and Jovanovi¢ {37, 38, 44].

The technique described above was also used for solution of the eigenvalue
problems (Prikazchikov & Khimich [81}), variational inequalities (Voitsekhovskii,
Gavrilyuk & Sazhenyuk [102], Gavrilyuk & Sazhenyuk {23]) and in the investigation
of the superconvergence effects (Marletta [76]).

Finally, let us also mention the papers in which the convergence rate was
estimated in discrete Wy-norms, for p # 2 (Lazarov & Mokin [69], Lazarov {64],
Godev & Lazarov [24], Drenska [14, 15], Siili, Jovanovié¢ & Ivanovi¢ [91, 92]). In
this case, the determination of a priori estimates is technically more complex — the
theory of discrete Fourier multipliers (Mokin [78]) is used, rather than the energy
estirnates. The convergence rate estimates are obtained from the above described
technique, using the Bramble-Hilbert lemma.

The Paragraph 2 was written, in most part, following the Ref. [43] by Jo-
vanovi¢.” A simpler problem, with coefficients a;; € W™ and a € W52 N Lo,
was studied by Jovanovié, Ivanovi¢ & Sili [54] and Jovanovié [36]. Paragraphs 4
and 5 contain results previously published by Jovanovié [46}, and [45), respectively.



III Non-stationary Problems

" In this chapter the Ebnve"rgenc’e rate of finite difference schemes approximating
initial-boundary~value problems for non-stationary equations is examined. In Para-
graph 1 we consider the first initial-boundary-value problem for linear second-order
parabolic partial differential equation with variable coefficients. The convergence of
the corresponding finite difference schemes is proved in the discrete Wzl'llz—notm.
The obtained convergence rate estimates are consistent with the smoothness of data.
In Paragraph 2 we consider an analogous problem for the second—order hyperbolic
equation. The convergence is proved in a mixed norm |- ”gf)oo .

1. The Parabolic Problem

The formulation of the problem. Asamodel problem we consider the first
initial-boundary-value problem for the second-order linear symmetric parabolic
partial differential equation with variable coefficients in the domain @ = Q x

(0, T] = (0, 1)* x (0, T}

Brtu=s,  (@oea,
1) u=0, (z,1) €T x [0, T} = 82 x [0, T],

u(:z:, 0):‘(10(3), z€Q,
where,
2
Lu=~— Z D;(aij Dju)+au.
i,j=1
Assume that the generalised solution to the problem (1) belongs to the anisotropic
Sobolev space W;'*/*(Q), 1< s <3, f(z, t) belongs to W~ >*/>7}(Q) and the
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coefficients a;j = aij(z) and a’= a(z) satisfy the same conditions as in the elliptic
case (see Paragraph 2.2)

ai; € W3™Y(Q), a € W;™4(Q), for s>2,
2
a;j € "V;_1+6(Q)1 a=ag+ ZDiai s
i=l
ag-€ L24.(), a; € W;‘“”(Q), where,
e>0, 6>0, p>2/(s-1), for 1<s5<2.

These conditions provide that the coefficients belong to the corresponding multiplier
spaces ~
ai; € M(W;7HC7V(Q)),
a€ MWy (@) — Wy CT%(Q).
The consecutive convergence rate estimates do not depend on § by no means, so
one can set § = 0.

Also assume that the following conditions hold

a;j = aj,-,
2 2
Eaijyiyjzcozy?, >0, VzeQ, VyeR",
i,j=1 i=1

a(x) > 0 in the sense of distributions in , i.e.
((1'(‘0, ‘P)‘D’xDZO, VSDE’D(Q):

as well as the possible consistency conditions for the input data at the edges of the
domain Q, enabling the existence of the solution u.€ Wi'*/%(Q) (see Paragraph

1.8).

Finally, suppose that the solution u(z, t) of (1) is extended on Q4 = (—d, 1+
d)? x (—d, T], where d > 0, preserving the class.

* The finite difference scheme. Let m € N, r = T/m and 8, be an
uniform mesh with the step 7 on (0, T). Set 07 = 6, U {0}, 6} = 6, U {T},
0, =0,U{0,T}, Qnr =wx0,, Q;, =wx07, Q¥ =wx0F and Q,, =Txb,,
where w is the previously introduced uniform mesh with the step h in the domain

Q (see Paragraph 2.1). Assume that
clh:’S“'SCzhz, ¢;, ca =const > 0

and h, 7 <d.
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For the function v defined on @), introduce, in addition to the finite differences
vz, and vz,, the differences relativing to the variable t,

v = (vt ~v)/r=0ut,
where vE(z,t)=v(z,t 7).

Finally, together with the Steklov operators T, T;" and T;™ for the averaging
over z; (with the step k), introduce the operators for the averaging over the variable
t (with the step 7)

1
T} f(z, 1) = / flz, b+t r)dt =Tr f(z,t+7) = Ti flz, L +7/2).
0

Approximate the initial-boundary-value problem (1) on the mesh Q,, by the
following difference scheme

v+ Lawv=TTT f in Qf,

(2) v=0 on wx {0},
v=Pup on vx#0,,
where,
2
Lhv=-05 Z {(aij v2,)z: + (aij vz;)z.] + (T2T2a) v,
i,j=1
and
{ u, 2<s5<3
Pu= 22 .
TiT5 u, l<s<2

The scheme (2) is a standard symmetric implicit difference scheme (see
Samarskil [84]) with the averaged right-hand side and the lowest coefficient. The
scheme without averaging cannot be used for s < 4, since, in that case, f(z, t) is
not a continuous function. (The coefficient a(z) becomes discontinuous for s < 3).

The convergence of the finite difference scheme. Let u be the solution
..of the initial-boundary-value problem (1) and v — the solution of the difference
scheme (2). For 1 < s <2, u(z, t) needs not be a continuous function, but it has
the integrable traces for ¢ = const . In the following assume that for 1 < s < 2, the
solution u(z, t) is oddly extended in z; and z2 outside Q. (For the above indicated

; 2
values of s such an extension preserves the class W, o )-

Define the error in the following manner

t=Pu-v.
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The error thus defined satisfies the following relations

2
;4 Lpz = Z nij5 + 0+ Y in Q,{.’,,
i,f=1
z=0 on wx {0},
z=0 on 7x5,.,

3)

where,
nij = 7}+T§_in (a,-j Dju) - 0.5 [a,-j (P u),,-,. + a;-;-i (P u);i’;] .
1 = (TT5 a)(Pu) — T{"T-_;"T," (au), and
¢ =Pu-TT2u.

Introduce the discreete inner product

(v, W)gn, = (v, W)L, (Qu,) = 27 Z Z v(z, t) w(z, t),

TEW ‘Ee-:-
and norms and seminorms such as

lelig,, = (¥ v)qu, -

o} =827 Y Y v, ),

T€wi 1g0f
2
. 2 o v(z, t) —v(z, t')]°
|v|1/2 =h'7 Z Z_ [—’Tt’,—_ )
TEW ¢ 1€,
£t

) .
”U”;‘)'V;"'“(Qhr) = “v”%,I/Q = Z ”vl‘i”? + Ivlg/'.? + ”v”?'Qhr .

i=1

LemMMa 1. The finite difference scheme -

2
(4) + Lz = z nij,z; in Q:’T , z=0 on yx40,,
i,5=1 .

salisfies the a priori eslimaic
2 2
) Welfyprn,.y <€ (I O +7 3 el O+ 3 Imalf).
i= i,j=

Proof. Multiplying (4) by 72 and summing over the mesh w one obtains

2

(112 = 1=12) + 3l = 27112 + 7 (£az, 2)o = 2 e 2

DO —
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Hence, using the relations
2
o
(Lnz, 2)w 2 €0 Z ll2z:lle;  and
i=1

1 Co
(nij, 2.5 z)y = — (’7!'1'1 Zz )i < a ”’li.i”Zr.- + vy Ilzzillf,.-

one obtains

2 2
- 2
B2 = Nl + 0 D 7llzedl € = 32 rlimgle,
. i=1 0 =1

Finally, performing the summation over the mesh 8}, and using the discrete
Friedrichs’s inequality,

2 2
(6) lzlf,, + D Mz=dlf < C (12, 2+ 3 lmish?)
- i=]1

i,j=1

To estimate |z];/2 expand the function z in sine and cosine series of ¢, similarly
as in Paragraph 2.1

(2, 8) = ao(z) + "i:l a1(z) cos kxt + am(z) s T, e
2z, - 9 e k T 9 T °* ' - T

= kxt
z(z, t) = kz—:l be(z) sin ==, ted,,
where,

ar = axfz] = %T [M+ Z z(z, t) cos E;—t + .z_(:c_él_‘l (—1)"] )

2 €0,
. . . t
by = bfz] = %‘r Z 2(z, t) smf—;—.
ted,
Define the norms
m~1
1 1/2
A@) = (X Ellalli + Gmllenfl2) ", and
k=1

m-—1

8o = (2 klnela)”.
. k=1

Using the results of Lemma 2.1.1 it is easy to show that
c3|zliyz < A(z) < ealzlyy2, and

1 1

7 1/2
@ c3lzliy2 £ B(2) < cq [Izlf/z +7 Za (; + T——_t) fiz(., t)”f,] -
t€é,
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One also readily verify that

Z N6k (112 = —r >l 012,

ted,

® 3 laollIZ + Z Nasl2JI2 + %uamlszz
=77 [ 1 O + T B 01 + 3, DIE]

teo,

Multiply equation (4) by %1‘ sinﬂi—;—r—--/22 , and perform the summation

over the mesh 8}. Using the partial summation, aditive trigonometric formulae
and the above expansions,

N 1.5

SiNl o 7
- 1:2_; -fkak[z]-—cos——{—bk[[,;.z]+ Z bulms, =]}
i,j=1
kxr
—smTT— —ar[Chz] + Z ak[n,,,,]}+ sm—{ £;.z(:c 0)

i,j=1

2
+ Z mij,2:(z, 0) + (=1)* Lpz(z, T) — (-1)* Z nij,2.(z, T)}

§,j=1 i,j=1

Multiplying this relation by ai[z], summing over the mesh w and k, using the fact

that :S%t is bounded for 0 <t < 7/2, the relations (7) and (8), realations

(oxp2.), ak[z]),‘, = — (arfy], ak[zz'i])w,- » and
(belez), axl2]), = — (bele), arlz=.]),,,
and the Cauchy-Schwartz inequality, one obtains
©) p<or Y ( S sl + el + Z lz=cl2,) -
te?, i,j=1

Since the values of 7;;(z, 0) do not appear in (4), without loss of generality
one may set them to zero. Thus, from (6) and (9) one derives inequality (5). =

Similarly, one can prove

LEMMA 2. The finile difference scheme

(10) z+ Laz=9; in QF, z=0 on yx0,,
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satisfies the a priori estimate

(D) Nall svr2q,.y S C [l OIZ +7 2 lleeil - Ol + 4(w) + B2(¥)| .

From (5) and (11), using relations (7), one can conclude that the difference
scheme (3) satisfies the following a priori estimate

2
12121173, < € [ 32 Hmiil? + Uil
(‘12) . i=1

r

e 3 () o]
ted .

The problem of deriving the convergence rate estimate for the difference scherne
(2) is now reduced to the estimation of the right~hand-side terms of the inequality

(12).

First, we represent 5;; in the following manner

M = Nij1 + Mij2 + Nij3 + Mija + Nijs,  where,

mjy =TT (ai; Ty Dju) — (T T5-; i) (T T3, T Dju),
‘mij2 = [TFTE ;a5 — 0.5 (aj + o) (T T, T Djw),

mja = 0.5(aij + o) {THTE_,T7 Dju—05 [(Pu)s, + (Pu)E]]},
mja = —0.25(a;j — o) [(T7 w)e; —~ (T w)}],  and

mijs = —0.25(ai; —af) [(Pu =T w)e; — (Pu— T w)il].

For 1<s<2set n=1ng+m + 1524+ n3+ 04+ 15, where,

no = (TiT3 ao)(TTTET u) ~ T3 (ao Ty ),
m = (T{T3a0) T3 (u— T u),
mi = (TiT5 Diai) (RT3 Ty w) - TiT5 [(T7 u) Diai]
aiv1 = (TPT5 D a)) TiT2 (u =Ty vw), i=1,2.
For 2 <5 <3 set =1+ n7+ 15+ n9, where,
6 = (T o) (I u~T{TT] u),
mo = (TETE) (121 u - TP, w),

s = (TT2a)(u-TiT3u—-T v+ TETiT v), and
n  =(T{TE o) (T T u) = TiT5 (a Ty ).
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Introduce now the elementary rectangles (see Paragraph 2.2) ey = eo(z) =
{y: l—=zil<h, i=1,2}, es=ei(z) = {y: zi <ps <zi+h, lpa-i—za_i| <
h}, i=1,2, and parallelepipeds go = go(z,t) = €0 X (t — 7, t) , -9i = gi(=, t) =
e x(t—r11t).

For 2 < s <3, 1ij, satisfies the conditions for which the estimate of the form
(2.2.7) is valid

(s Ol < C B~ Hlaijllwg-r ) 1T u(- llwyeay,  2<8<3.

Then, performing the summation over the mesh 8} , and using the obvious majori-
sation, :

(13) Imialle < C R~ llassliwg -1y Mullys orgqy, — 2<5<3.
Ana.l(')gously, for 1 < s <2, from (2.2.6) if follows that
(14) Insjalls < € " laijllwe-r () Nullys.or2qy, 1 <852

Similarly, using estimates (2.2.7) and (2.2.6) one obtains for ni;2 and 7:j4 the
estimates of the form (13) and (14).

For s > 1, n;;3(z, t) is a bounded bilinear functional of (a;j, u) € C(&) x
W, #f 2(g,-) which vanishes if u is a polynomial of the second degree in z; and
and of an arbitrary degree in ¢t (with constant coefficients). Applying Lemma 1.6.3
one obtains the estimate

|7)ij3(1'1 t)l S Ch8—3 “al‘j"C(’e‘.‘) |ulw;.'/2(y..) ) 1<s S 3.
After a summation over the mesh Q:, one obtains
limisalle < C R~ laijll o Iellyserzqy,  1<s<3.
Using imbeddings '
W Q) CC@) for 2<s<3 and W;"{QCC@Q) for 1<5<2,

wherefrom one obtains estimates of the form (13) and (14). The same holds for
7ijs -
1o satisfies the conditions which allow an estimate of the form (2.2.9)

Ho(-, Ollw < CR* 7 laollLspe@ T u(- s Ollwgey, 1< s<2.

By a summation over the mesh 8}, after an evident majorization, one obtains

(15 limollos, < Ch laollgapuim lullys viaggys 1< 852
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Analogously, from (2.2.6), one obtains an estimate of the form (14) for 72 and
74, while from (2.2.8) for ng and 79 one obtains

(16) "776"QM ’ "'79”Qn S Ch’..l "a”w;-’(n) "u”w;-‘/’-'(Q) ’ 2<s S 3.

For s > 1 and ¢ > 1, m(z, t) is a bounded bilinear functional of (a, u) €

Ly(eg) x W, #/ 2(go) which vanishes if u is a polynomial of the first degree in z;
and z, (with constant coefficients). Applying Lemma 1.6.3 one arrives to

Im(z, )] < C(h)llaollLyteo) lUlys.+r2gyys 1< 852,
where C(h) = C h*~2-%/9_ By a further majorisation one has
Iml € Ch*=2=29 |lag|| o) lulyys. +12(gq)
The summation over the mesh yields
Imligs, < Ch* =21 lagl|L(n) lulws. +r2(qy -
Setting ¢ = 2 + €, after an evident majorisation, one obtains the desired estimate
(17) Imlle., < Ch*~laollL,ye(ar) lullys.errqy, 1<s<2.

For s > 1, n2it1(z, t) (i =1, 2) is a bounded bilinear functional of (a;, u) €
Leo(e0) x Wi*'*(go), which vanishes if u is a polynomial of the first degree in z
and z, (with constant coeficients). As in the previous case,

Inis1] S CH P llaillracy fulys oy, 1<8<2,

and
nzitallas. < CH 7 laillew lullys gy, 1<s<2.

Using the imbedding W;;l(Q) C Le(S2), one obtains the estimate
(18) ||'sz+1||0.f < CR ™ Hiaillys-1(q Nellws oraqy, 1<s<2.

For A > 1/2, 97(z,t) is a bounded bilinear functional of (d, TT2u) €
Ly(eo) x Wi(t — 7, t), which vanishes if T2T} u is a constant. Applying Lemma
1.6.3,

|7]7(23, t)l < Ch2¢\—,1—2/q ”a"Le,(ee)’IT12T22 u'.W:"(t—r',t) ’ 1/2 <ALl

For 1/2< A< 1,

) Ot TR (., ) - TRTE u(., )2 1z
lTl:)Tz- UIW;(t_r") - { ~/§-r '/t-r It' - t"|1+2'\ 4 dt”}

n_ 2 1/2
< Ch-z/r { /t /‘ "u( ot ) 'u( .y tl’)"L'(co) at’ dt”} / ‘
t—rJit-7

ltl - tl/|1+2A .
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Setting r = 2¢/(¢ —2),

lfu.\ &) = u(., €3, 1/2
l’l7(-"’: t)] < C h2-2 "a"L,(eo){ / / 7 t"|1+2,\"/(q 2)(¢a) dt’ dt"}

t=7t-7

The summation over the mesh, using Hdlder’s inequality, yields

T”u( t')-—-u( t”)”L, (@) y 1/2
Irlon, < CH™ llly { / / L L

Adopt the value of ¢ such that the following imbeddings hold

Wi 3(Q)C L) and  WHQ) C Lagyq-2)(D).

For 2 < 5 < 3 it can be done by using 2 < ¢ < 2/(3—s). Then,

T |lu(., t’) —-u(., t”)":v’vl(n) 1/2
lrelleu. < Ch* lallw;-2(a) {/ / — 1|42 = dt”}
» < Ch2* “a”w; 3q) "u"w_:x-u.x-n/z(q) , 2 <s<3, 1/2<A< 1.

dt’ dt”

, It/ —- tu'1+2x 18

- The same result holds for A = 1 (then, the term / /

; t du(., t)
substitued by / dt’ , and u(.,t')—u(.,t") by o

t—
2A+ 1 one finally obtains the desired estimate for N7

(19 limrlles < CH ™ lallyy-sqay Mullysorngy:  2<5<3.

£) ). Setting s =

For a € Ly(?) and s > 2, ng(z, t) is a bounded linear functional of u €
W, o 2(go) which vanishes on the polynomials of the second degree in z; and z»

and the first degree in ¢t (with constant coefﬁc1ents) Applying Lemma 1.6.3, one
obtains
Ins| < Ch*—3 ”ai"La(eo) 'ulﬁ;-'lf(go)

< Ch*-3 "ai"LQ(ﬂ) Iulﬁ};-'/?(,o) ’ | 2<s<3.

Summating over the mesh @, , and using the imbedding W;~%(Q) C L(Q) , one
obtains the estimate

(20) lImsliq.. < Ch‘_l ”allw;"(n) ““"w;--/z(q) ) 2<s<3.
Next, estimate the value of . Obviously,

(21) =0 z2a 1<s<2.
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For 2<s<3,
(22) W2 < |T Yl + [ = T ¢liye.
Furthermore, for 0 < A <1/2

1Ty 9l3, < P71 282 Z Z [T ) - T ¥(=, t)]

t— pH+22
T€W ¢ t'eq, I I

t£

For t,t' €0, and t# ¢,

1T ¥(=, ) = T (=, )]

=. 7-‘2 / / [¢(z’ a,) -—¢(2, o_l)] do’da"
t—7 Jt'—71

(. t t! "2 1/2
o o 11)(3) 0')‘71/)(1', U)]
< -2 21+-A t — tl 1422 / / [ d d J .
> {T I | er Jirer Io' — o./ll+2,\ oaor

The last two inequalities yield

Te—r
T 9l < 2 PR T / / [w(zlgo)_ a[,l(fof ) dodo’.

rTEwW

Using the relation

¥(z, t) = u(z, t) - T{ T3 u(z, t)
zi4h 224k I l ' ,
- - 0 — I
=h2/ / (1_ ylh 1)(1_.yh 2)[u(z,t)—u(y,t)]dy2dyl
zy—-h ra~h
z1+h za+h ) Z2

— p~2 |s1 — 2] 82 — za]\ O%uly, t)
=4 / / // (1 Tk ) (1 T TR ) 391 O dy2 dy, dspds;

z1~h Ta-h 8, 52
h s zy4r za+h

- h—z// / / (1 - %) (1 - lyz','lzzl) 52:;(1]"{1_; ) dy» dy; drds

0 0 zry~r xo—h
zy+h h s zatr

—h-? //// lyl—l‘ll)'(l_%)?f%%_ﬂdyzdrdsdyl

z1—-h 0 0 za2-r

and the Cauchy-Schwartz inequality, one obtains

th_'Mlﬂ < ChH-u Iulwzun. 142

@ 0<A$1/2.

Finally, setting s =2+ 2A,
(23) T ¥z S CH 7 lullysongg),  2<s<3.



66 Il NON-STATIONARY PROBLEMS

The second term in (22) can be estimated by
- 4 -
=T ol <50 30 3 (=T ).
TEW 'G‘,"
Applying Lemma 1.6.3,

(24) [ — Ty $lhy2 < Ch*™! 2<s5<3.

Il gy
Using Lemma 1.6.3 and the trace Theorem 1.4.1,

e Y (3 +——)¢’(= t)

TEwW t€d,

25-2 - 1 2 |
(2.5) <Ch r%: (t + T_t) (-1 Oy s-1q)

< Ch¥-? ln—”u” for 2<s<3.

W' t/?(q) ]
Combining (12) with (13)-(25) the following result is obtained.

THEOREM 1. The difference scheme (2) converges in the norm W;'lﬁ(Qh,) ,
if c1h® <1 <cah?, and the following estimates hold

-1 .e
flu— ”“w;-‘/’(q 0 s Ch~ (“}3" flas; "w;-‘(n)

(26)

+llallw;-2(qy + \/ln{-) lullys.orrgys for 2<s<3,
and
@) ITET3 w = vllyy g,y € OB (max flasill;-1(ay

+ max [leillw;-1q) + NaollLayem) lullys nqy,  for 1<s<2.

REMARK 1. The estimate (27) is consistent with the smoothness of data, while
the estimate (26) is "almost consistent” — the consistency is disturbed by the lerm

In }, which is slowly increasing for h — 0.

REMARK 2. If the coefficients a;; and a depend of t, the similar result holds.
The derivation of the a priori estimate is more difficult (see Samarskii [84]).

REMARK 3.9[1 is possible to derive similar eslimates in other discrete norms
(e.9. La and W._,"l ). For equations with constant coefficients such estimates were
obtained by Jovanovié, Ivanovié & Suli [29], [50].
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The factorised scheme. - The finite difference scheme (2) is not efficient,
because a system of linear equation with a block—~threediagonal matrix has to be
solved at every time-level. Instead, consider the factorised scheme

(28) (I+orA)(I+0rA2)v; + Lyv™ = TETeTy f

with the same initial- and boundary-data as in (2). Here, o is a positive real
parameter, A;v = ~vgz (i=1,2) and I is the unit operator. The difference
scheme (28) is stable, if the operator

(I+orA)(I+0orAs) — gc,,

. is positive definite (see Samarskil [84], Jovanovi¢ [41]). This condition holds, for
example, if
g2 n:gx ”aij”c('ﬁ) )

and if the step A is sufficiently small

‘ h <3 (Cg "a"LQ(Q)) , for 2<s<3,

ie.

)} ~e/(p-2)

b < [e2 (Hallzape + llasllz,ca) + llazllz , for 1<s<2.

The error z = Pu—v satisfies the conditions
: 2
(IT+orAM)(T+orhy) sz 4+ Lpz™ = Z nintn +¥  in o QF,
i,j=1
z=0 on wx{0} and 7x8,,

where,
T . .
nij = mj + 5 [ai (Pu)e; +aff (Pu)E];

oT ; or?
=5 ij [(Pu)s; +(Pu)E); + —5— (1= 8)(Pu); 5.0
" =q—7(T{T; a)(Pu)y, and
8;; — the Kronecker’s symbol.
The a priori estimate (12) still holds with nj; and %' instead of #;; and 7,

respectively. Applying the same routine as above, it is easy to prove that the
factorised scheme (28) satisfies the error etimates (26) and (27).
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2. The Hyperbolic Problem

The formulation of the problem. Let the domain @ be defined in
the same manner as in the previous paragraph. Consider the following initial-
boundary-value problem

62
5223+‘Cu=fa (zlt)eQ)
1 u=0, (z,t) €T x [0, T],

u(z, 0) = up(z), 9u(z, 0)

ot =u1(£), IEQ,

where,
2
Lu=— Z D,-(a,'iju)-}-au.
i,j=1
Suppose that the generalised solution to the problem (1) belongs to the Sobolev

space W3(Q), 2 < s < 4, and that the coefficients ¢;; = a;j(z) and a = a(z)
satisfy the conditions

aij € W5™HQ), aij =aji,

2 2
doGiwy ) ¥, «>0, VzeQ, VyeR",
i,j=1 i=1
a € Wi™(Q), a(z) > 0 in the sense of distributions in §2.
These conditions show that the coefficients belong to the corresponding multiplier
spaces :
a; e M(W;7HQ)),  ae M(W3(Q) - W,7%(Q)).
Also assume that the solution u(z, t) of (1) is extended on (—d, 1 + d)% x
(-d, T], where d > 0, preserving the class.

The finite difference scheme. Define the mesh @, in @ in the same
manner as in the previous paragraph. However, assume that the following condition
holds ' :
cth<r<ch, ¢y, ca =const > 0.

Approximate the problem (1) oni the mesh Q,,, by the following finite difference
scheme

1 .
v,;+zﬁh(v++2v+v’)='-"1Tthf in Qi

=0 x 0, ,
(2) :- 'On 7 T
=up on wx {0},

2
vW=u+ 7 Tou; + :2— (~Cauo +TRT: f) on wx {0},
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where,

Lyv=-0.5 Z [(a,-j v,:,j),,- + (a,-j U:J-)z.-] -+ (Tsz a)v.
ij=1

The scheme (2) is a standard symmetric implicit difference scheme (see
Samarskil [84]) with the averaged right-hand-side and lowest coefficient.

The convergence of the finite difference scheme.  Let u be the solution
to the problem (1) and v — the solution of the difference scheme (2). The error

z = u — v satisfies the conditions (see Jovanovié, Ivanovi¢ & Siili [53])

1 .
z‘-,-+Z£;.(z++2z+z')=<p, in Q',f,,
3 z=0 on yx0,,
z2=0, t=ru4+05r(p—x) on w x {0},

where,

o =3 E+E+X+C,

i,j=1

&; = Ty Di(aij Dju) — 0.5 [(a,-,- ur)s; + (a;"ji ugj),.,,.] ,
8%u
§ =u;-TiTxT ol
2

r
X=?Qw,
¢ =au—-T\T3Ti(au), and
v =03 (ug + u,—) -NTh %; .

The energy method leads to the a priori estimate

(4) Bel§e < € (I, Ol +7 3 He(- Bl

teo;

where,

: |
2 \1/2
et = max (s + 3 o8+, )

The problem of deriving the convergence rate estimate for the difference scheme

(2) is reduced to the estimation of the right-hand-side of inequality (4).
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First, we represent §;; in the following manner

&G =&y + &2+ &ija+ &ija+ &ijs + Eije + &ij7,  where,
&ij1 = NiT2T; (ai; Di Dju) — (TiT; ai;) (T T, DiDju),

§ija = (Tsz a,-,-) [TngTg D,-Dju -0.5 (uz..,,. + tl,_-‘.g’.)] s

&ij3 = 0.5 (T agj — aij) (uzic; + Uziz;),

&ija = 2Ty (Diaij Dju) — (T2 Diay;) (TR T, Dju),
&ijs = [TT2 Diaij — 0.5 (aij, o; + aij, 2;)] (WT2T: Dju),

Eijs = 0.5 (aij, =, +aij,2,) [T2T: Dju — 0.5 (v} +uf))],

Eij7 = 0.25 (aij,z, — @iz, z,) (uz] —ud)) .

Also set
i ) .
Xx= Y (p+xij2)+xo  and  (=Ci+Ga,
i j=1
where,
L. _T ( - _ +i _)
Xij1 = -y Qi Upzi0i + 8ij Yzipiai) s
9
r2
Xij2 = — ¢ (aij,z; Uy 47 + Bij,z; “z,z?) 1

2
Xo = (iTya) u,z,

(1 = (T1T2 a) (u - TszTg u) ’ and
¢ =(MNT2a)(TTRT, u) —NTTTi(au).

The values &1, ij6, €ija and &7 at the node (z,t) € Qp, are bounded
bilinear functionals of (aij, u) € W)\(eo) % W;; ,(9_2)(9) , where e is the elementary
square introduced in the previous paragraph and g = ep x (t — 7, t + 7). Here, for
Eijn — A20, p>2 and g > 2, while for &je, §ija and &ij7 — A > 2/q, p>
3/2—-3/q and g > 2. Moreover, &1 and &;;6 vanish if either g;; is a constant or u
is a second-degree polynomial; £;;3 and &;;7 vanish if either a;; or u is a first—degree
polynomial. By Lemma 1.6.4 one obtains the estimate

€i51(2, )} < C(h) laijlwaceo) lulwy,, o) 0
where, C(h) = Ch M#+1/9-7/12 <A <1, 2<pu<3.

A summation over the mesh @, yields

) T Z l€ij1llo € C RA*#-2 Nasjllw o lullws, (@
(5 1eo; '

T
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The following imbeddings are satisfied

(6) Wot Q) c WNQ)  for p>2-2/,
and .
(7 Wyt(Q) € Wiyg-n(@  for A 23/q.

Setting A+pu=s, ¢>3, from (5)~(7), one obtains,

Y léijille < Ch*72 llaijllw -1y Nlullws (@) »
(8) €67
for 2+3/¢g<s<4.

The estimate (8) is valid for arbitrary ¢ > 3; setting ¢ — co one can readily
conclude that it holds for 2 < 5 < 4.

In the same mauner, &;j¢ satisfies an estimate of the form (5) for 2/¢g < A <1
and 3/2-3/¢ < p < 3. Setting A+ = s and taking into account the imbeddings
(6) and (7),

7Y Ilijellw < C h* =2 llasjlliws -1 ay lullws @) »
(9) teo;

or, due to the arbitrariness of ¢, for 2 < 5 < 4. In the same manner we can
estimate x;j2.

&ij3 and §;j7 satisfy an estimate of the form (5) for 2/¢ < A <2 and 3/2 -
3/q < p < 2. Hence, as in the previous cases, one obtains

(10) > (léiisllo + lisrlla) < OB~ llaisllw-1 ) llullwscay
t€d,

for 2+1/¢g<s<4, or 2<s<4.

For s > 2, &j2(z, t) is a bounded bilinear functional of (aij, u) € Loo(eq) X
W3 (g) , which vanishes if u is a third-degree polynomial. Applying Lemma 1.6.3,

[€ij2(2, t)] < Ch-"? ”ai.i”L,,(e.,) lu'w;(g), 2<s<4.

A summation over the mesh Qj, yields’

7Y (ol < CH 2 flasillamllullwyey, 2<s<4.
tes,

Finally, using the imbedding ‘
W N CLo(Q)  for  s>2,
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one obtains the desired estimate

1) Y el S CH P lagllwg-ro ullwy @, 2<s <4
ted; ’

In the same manner one can estimate Xij'i .

&ija(z, t) and &js(z,t) are bounded bilinear functionals of (aij, Tiu) €
W) (eo) x W;q/(,-z)(eo)' for > 1, p>1, ¢ > 2. Moreover, .6.-,-4 vanishes
if either a;; or Ty u is a first~degree polynomial; §;j5 vanishes if either a;; is a
second-degree polynomial or T; u is a constant. Using Lemma 1.6.4,

3e/(a-2)

|Gijalz, t)] < CRM#-3 laij lwaeo) 1T ulws (¢a) » 1< p<2,
and, by a summation over the mesh

(12)  lalle < O ol 1T ullws,, o, 1S p<2.

29
The following imbedding holds
(13) Wyt Q) C Wh () for  A22/q.
Setting A+ p = s, one obtains from (12), (6) and (13)
(149 jall < CAlasjllws-1( ITr ullwgy,  3-2/g<s<4.
Switching to the limit ¢ — 2+ 0 one can conclude that the estimate (14) holds
for 2<s5<4. Since
1/2
r 3 Tulwyoy ST (¢ 30 T ulirg) < Clivliwga).s
€87 te6;
from {14), summing over t € 87 , one obtains
(15) Y Njalle < Ch*72 Hesillws-1 oy ullwy@y,  2<s<4.
teo;

Similarly, applying Lemma 1.6.4, one ob't.ains, for £i;5, an estimate of the form
(12), where g =1 and 1 < X < 3. Setting ¢ =2, A = s — 1 and using the
imbedding :

W3(Q) € WL(Q) for s>2,
follows ' '
Eissllo < C R =2 llasllws-s oy Te ullwyy,  2<s <4,

and

(16) T ijslle < Ch*™2 laijllws-1 oy lullwy@),  2<s<4.
tesy '
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xo(z, t) and (i(z, t) are bounded bilinear functionals of (a, u) € L,(eg) x
qu/(q_.,)(g) for p > 3/2-3/q, ¢ > 2, which vanish if u is a first- degree poly-
nomial. Applying Lemma 1.6.3,

Ixol, 161} < Ch*FY1=3/2 |la[lp () luliys 3/2- 3/q <p<?2.

2v/(q—3)(g) !

Hence, by a summation over the mesh @, one obtains

7 (lIxoll + liGall) < C 4| el g,
tedy

3/2-3/q<pn<2.
Setting u = s — 2 and applying the imbeddings

W3 (Q) C Wt Q) for ¢>2 - and  W;7%(Q) C Ly(R) where

2<¢<2/(3—5) for 2<s<3, 2<¢< oo for s=3 and ¢ — arbitrary for

s > 3, one obtains the estimate

73 (ixolls + ll6alla) < CH* =2 llallyz-3( lullwzc) »
(17) teo;
7/2-3/g<s<4.

Since ¢ > 2 is arbitrary, switching to the limit ¢ — 24 0, one concludes that the
estimate (17) holds for 2 < s < 4.

C2(z, t) is a bounded bilinear functional of (a, u) € W}(eo) x W.‘{‘q A 1_2)(g) ,
for A> 0, u >0, ¢ > 2, which vanishes if either a or u are constant. As in the
previous case, one obtains

7Y lGalle < CE** [lallwa oy lluflws Vi@ 0SA <L
teé;

Setting A + u = s — 2 and using the imbeddings

Wt Q) C WMQ) for p>1-2/q, and
Wt (Q) € Wl (- )(Q),

one obtains
Y Wellw < CH 7 Hlallys-a¢qy lullw; (@)
(18) 1€67
3-2/¢<s<4.

Switching to the limit ¢ — 2+ 0, one concludes that the estimate (18) holds for
2<s<4.
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£(z, t) and v(z, t) are bounded linear functionals of u € W3(g), for s > 2 (or
rather, for s > 3/2). Moreover, £ vanishes on the third-degree polynomials, and v
— on the second-degree polynomials. Using Lemma 1.6.3, after a summation over
the mesh, one obtains

(19) T Z ll < Ch~? “"”w;(Q), 2<s5<4,
€07

and

(20) (-, Olle € Ch*~*ulwyq,y,  2<s<3,

where Qr = Q x (-, 7). Applying Theorem 1.3.5, from (20) it follows that

21 v(., O)lle S Ch*?lullwsqy, 2<s<4.

Combining (4), (8)-(11), (15), (16)—(19) and (21) one obtains the following
result.

THEOREM 1. The finite difference scheme (2) converges in the norm |- "g)oo )
tf eoh <7 <esh, and the error estimate

(22) “u —_ u”(l) < Ch‘—2 (ma,x "a'J"W"‘(ﬂ)
+llallws-aqqy) llullwy@y,  2<s<4

holds.

REMARK 1. An analogous estimale can be obtained if the coeﬂicients aij end a
depend on t. The derivalion of the a priori estimale of the type (4) is more difficult
(see Samarskii [84]).

REMARK 2. Usmg the faciors 1/12, 10/12, 1/12 instead of 1/4, 1/2, 1/4,

and NYT>T, f+ T T\T>T; —aat—f instead of T\ToT, f in (2), the order of convergence
can be increased (for smoother solutions).
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The factorised scheme.  Consider the efficient factorised finite difference
scheme '

(23) (I+or?A)(T+0m? M) v+ Lav =T\TyTi f in Qp,,

with the same initial- and boundary-data as in (2). The scheme (23) is stable if
the operator

2
I+ a'rzAl)(I+ar_"’ Ag) - %Lh

is positive definite (see Samarskil [84], Jovanovié [41]). This condition is satisfied,
for example, if

1
o 2 5 max flaijllcm
and
-2 -1
h<4ce ”a”L,(n) .

Theerror z=u—v sa.tisﬁes the conditions

(I+0'1'2 AT+ or? A)zg+Lrz=¢ in @Qrr
z=0 on 7x8,, _
z=0, t=rv4+0572 (¢ -x) on  wx{0},

where,
) 2
¢ '
o= &i+tE+X +C,
i,j=1
and
' 2 _ R 2.4 _
X =—0oT (utlflﬂ + u:;t;t!) + T uz,!;z;i:tt *

The a priori estimate (4) still holds with ' instead of ¢. One can easily prove
that

T Z fIx'lle < Ch’-g,”u”w;(Q). 2<s<4,
teo;

which implies that the convergence rate estimate (22) also holds for the factorised
difference scheme (23).
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3. The Problem History and Comments

In this chapter we have derived the convergence rate estimates for the finite
difference method for some basic initial-boundary-value problems for parabolic and
hyperbolic linear partial differential equations. The procedure was based on the
Bramble-Hilbert lemma and its generalisations (see Paragraph 1.6), and represents
further developement of the methodology presented in Chapter II. '

As it was already mentioned in Paragraph 1.8, in the case of parabolic linear
partial differential equations of the second order, a complete theory of existence
and uniqueness of the solution of basic initial-boundary-value problems is buiit in
the anisotropic Sobolev spaces W, ! (Q). Thus, analogous difference norms were

used for the convergence rate estimates.

Analogously to the elliptic case, for a convergence rate estimate of a parabolic
difference scheme of the form

(1 Nu—tllyr.rr2q,,) S C Y hllws.erzgy,  5>r

is said to be consistent with the smoothness of the solution of the initial-boundary-
value problem. If steps h and 7 satisfy the obvious relation

clh257562h2,
the estimate (1) reduces to
@ llu = vllyy.rragqy,y S O llullyragys 8>

In case of equations with variable coefficients, the ¢onstant C depends on the norms
of the coeflicients. For example, if the coefficients are not functions of ¢, one obtains
estimates of the form

$—r s
) flu— v"w,;' 130y S Ch*~" (Tz;x"a,,llw;-x(m
+ ||“||w,'-’(n)) "u"w;-'/’(Q) ) s>r.

{(compare (1.26) and (1.27) ).

For equations with constant. coefficients, estimates of the form (1) were ob-
tained by Lazarov [65] for r = 0, s = 2. A similar estimate in the discrete
Lp-norm (for s = 2) was derived by Godev & Lazarov [25].

The case of fractional values of s was studied by Ivanovié, Jovanovi¢ & Sili
[29], [50]. Estimates of the form (2) were obtained for 2 < s <4, r =0, 2. For
r =1 the estimate was derived in the Wzl'o-norm.

In the paper [13] by Drazié, estimates of the form (1) and (2) were obtained;
also the conditions under which steps h and'r may be independent of each other.
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In the papers by Scott & Seward [87] and Seward, Kasibhatla & Fairweather
[88] the role of the averaging of the initial data on the convergence rate of the
difference scheme was examinated.

The problem of the optimal control with the parabolic equations was studied
by Ivanovié¢ & Jovanovié [28].

In all these publications the Bramble-Hilbert lemma was used in the derivation
of the convergence rate estimates. Note that some convergence rate estimates of the
difference schemes for problems with weak solutions were obtained earlier, using
different techniques (see e.g. Juncosa & Young [56}).

Equations with variable coefficients were studied by Weinelt, Lazarov & Streit
(98], and Kuzik & Makarov [58] — for. integer values of s, and by Jovanovi¢ [39],
[40], [42], [47] — for fractional values of s.

. Paragraph 1 is mainly following the ref. [47] by Jovanovié. A simpler problem
was considered in refs. [39], [40] and [42], with the coefficients a;; € W21(Q)
and a € W 2(Q)N Lo ().

The variational-difference schemes also satisfy estimates of the form (1-3)
(see Jovanovi¢ [33]). However, more common are the estimates with a continuous,
rather than discrete, W, r.*/2_norm on the right-hand-side (see Zlotnik [114], [115],
Hackbusch [27], Amosov & Zlotnik [3]).

Besides the above described estimates, parabolic problems are also charac-
terised by the estimates in the norms Lo ((0, T'); L2(2)) and Lo ((0, T); W3(Q))
(see Douglas & Dupont [11], Douglas, Dupont & Wheeler [12], Ranacher [82)],
Thomée & Wahlbin [95], Wheeler {110], ZIamal [113]), and in the "negative” norms
(see Thomée [93)]).

A review of the more recent results related to the variational-difference meth-
ods of solving parabolic partial differential equations was given by Thomée in ref.

(94].

In the hyperbolic case, the theory of existence and uniqueness of the solutions
of the contour problems was not developed as much as for the elliptic and parabolic
problems. As an example, consider the first initial-boundary-value problem for
the second-order linear hyperbolic partial differential equation. The results given
in Paragraph 1.8 imply that, if the right-hand-side of the equation belongs to
the W" space, with the corresponding smoothness of the initial and boundary
data, then the solution belongs. to the Wy~ ~! space, but need not belong to the
W3. Consequently, in order to obtain-the convergence rate estimates, one must
assume a smoother solution than in the previous cases. That is why the hyperbolic
problems are characterised by convergence rate estimates which are inconsistent
with the smoothnes of the solution.

For the estimation of the convergence rates, usualy complex norms of the form

®) (e 0oy + |52 w;-wm)”2

Lea(0,T)
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or
() " ("u( - Ollivseay + "_32_‘6(7;‘) li,(n)) " Loo(0,T)
are used.

For the difference schemes, approximating the first initial-boundary-value
problem for second-order linear hyperbolic partial differential equations with con-
stant coefficients, with :
' cth<r<ecah,

the convergence rate estimates of the form
) lle = ol < €&~ llullwzca)

were obtained by Jovanovié, Ivanovié & Sili [49], [52)for r=0,1,2 and r+1<
s <r+3. Here ||||§r2m is the discrete analogue of the norm (4). Since by transition
from the function u(z, t) to its ¢ = const trace in Sobolev spaces W; one loses
1/2 order of smoothness, so we may conclude that in the estimates of the form (6)
an additional 1/2 order of smoothness is lost.

Estimates in discrete norms of the form (5) for r = 1 and r = —1, with the
interpolation for —1 < r < 1, were derived by Dzhuraev & Moskal’kov [19].

Equations with variable coefficients a;; € W2 1(Q), a € Wi 3(Q) were ex-
amined by Jovanovié, Ivanovi¢ & Siili [53], and an estimate of the form (6) was
derived for r =1 and 2 < s < 4. Here the constant C depends on the norms of
the coefficients.

The paper by Dzhuraev, Kolesnik & Makarov [18] also considers an equation
with variable coefficients, using the method of straight lines for its solution. An
estimate of the form (6) was obtained for » = 0 and a fixed, integer value s = 2.

The Paragraph 2 was written following refs. [53] by Jovanovié, Ivanovi¢ &
Siili, and [48] by Jovanovié. -
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