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ABSTRACT 

The degenerate ~ystems having Lagrangians depending on time derivatives of arbitrary 
order and on time explicitly are investigated, the highest order of the involved derivatives 
being assumed to be generally different for various generalized coordinates. First, the 
equivalent Lagrangians ale discussed and it is shown how the Lagrangian formalism can 
be developed and the relevant Lagrangian constraints obtained for such systems. After 
this, the corresponding Hamiltonian formalism, based on the Dinc's theory of degenerate 
systems, is given. 

In this manner, one obtains two types of primary constraints, only one of which 
takes part in the equations of motion, the Hamilton~Dirac equations and corresponding 
secondary constraints, and a general relation between the primary and the Lagrangian 
constraints. Also, one achieves the separation of all the constraints into those of the 
first and of the second class, by a suitable definition of these notions. On this basis 
the generalized Dirac bracket is introduced and the meaning of the specific first-class 
constraints is given. Finally, the results obtained are illustrated by a comparatively simple, 
but characteristic example. 

1. INTRODUCTION AND HISTORY OF THE PROBLEM 

It is known that the term "degenerate systems" is used in analytical mechanics 
to designate systems having the Hessian of their Lagrangian with respect to 
generalized velocities zero, so that the conventional transition from Lagrangian to 
Hamiltonian formalism is no longer possible. P. DIRAC (1-4] was the first to study 
such systems, what originated from his previous analysis of homogeneous dynamic 
variables. He showed how the Hamiltonian formalism can be formulated in this case, 
and how the quantization of these systems can be subsequently realized. In contrast 
to the standard case, this canonical formalism is characterized by the presence of 
certain constraints among the canonical variables and by appearance of a number of 
arbitrary constraint multipliers in the general equation of motion, the role of Poisson 
bracket being taken over by appropriately generalized, so-called Dirac bracket. S. 
SHANMUGADHASAN (5-6] analysed the influence of degeneracy on the Lagrange 
equations, proving that a certain number of their linear combinations reduce to first
order differential equations, and on this ground he formulated the corresponding 
Hamiltonian formalism. K. KAMIMURA (7] established the interrelation between 
these two approaches, i.e. between Lagrangian and Hamiltonian constraints. The 
structure of Dirac bracket was investigted in detail, from a modern mathematical 
standpoint, by E. SUDARSHAN and N. MUKUNDA (8-9]. If one applies the calculus 
of functionals, developed by V. VOLTERRA (10], the majority of these results 
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1. Introduction and history of the problem 3 

can be systematically extended to classical field thery [11]. Degenerate systems 
and applications of this formalism to various domains of contemporary theoretical 
physics are dealt with in detail in some recent monographs [12-14]. 

On the other hand, the analytical mechanics of systems describable by La
grangians depending on arbitrary order time derivatives of the generalized coor
dinates, the so-called generalized mechanics, has recently received much attention. 
M. OSTROGRADSKIY [15] began to study these systems from the standpoint of the 
calculus of variations, and he demonstrated that the Euler-Lagrange equations may 
always be substituted by an equivalent system of first-order differential equations. 
Using his invariant theory of the calculus of variations, TH. DE DONDER [16] 
obtained the canonical form of the equations for the extremals, generalizing it 
subsequently to the case of several independent variables. Shortly after that, F. 
Bopp and B. PODOLSKI [17-18] attempted a generalization of electrodynamics, 
based on a Lagrangian depending on second-order time derivatives of electromag
netic potentials. Inspired by these papers, M. BORNEAS [19-20J was the first to 
formulate explicitly the corresponding generalized momenta and the Hamiltonian 
for one and several independent variables. Independently from the above authors, 
J. KOESTLER and J. SMITH [21] obtained generalized Hamilton equations for 
such systems, as well as the associated Poisson and Lagrange brackets, and L. 
and P. RoDRIGUES [22] formulated the corresponding canonical transformations. 
Simultaneously, K. THIELHEIM [23]' and C. DE SOUZA and P. RODRIGUES [24] 
extended these results to classical field theory, including the energy, momentum 
and angular momentum densities. Based on this, it is possible to construct a 
complete theory of canonical transformations, for discrete and continuous systems 
in classical and covariant formulation [25-26]. In a recent monograph, concerning 
the generalized mechanics and field theory [27], a geometrical approach of this 
formalism with a contemporary mathematical point of view is presented. 

However, the degenerate systems in generalized mechanics have so far received 
little attention and only a few papers dealing with this problem were published 
recently. This investigation was started by studies of equivalent Lagrangians by C. 
HAYES [28], C. RYAN [29] and D. ANDERSON [30]. The two last authors concluded 
that the Lagrangian of such a degenerate system has to be linear with respect to 
the highest order derivatives, and that in every class of equivalent Lagrangians it is 
always possible to find one which would correspond to a regular system. A critical 
analysis of these results given by H. TESSER [31] showed that this problem can be 
treated correctly only within the framework of Dirac's theory. 

The first to deal with the degenerate systems in generalized mechanics was T. 
KIMURA [32], who showed that a correct treatment of the constraints appearing 
in the process leads to a consistent formulation of the Hamiltonian formalism. D. 
GITMAN, S. LYAKHOVICH and L. TYUTIN [33, 141 in their analysis of correspoding 
canonical formalism also briefly discussed this problem and extended it to physical 
fields. V. TAPIA [34] investigated degenerate systems with Lagrangians depending 
on second-order time derivatives, and applied an immediate extension of Dirac's 
theory of the first-order systems to this case. He thus arrieved at the relevant 
Hamilton-Dirac equations a.nd Poisson bracket, and illustrated the results by two 
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characteristic Lagrangians linear with respect to the second-order derivatives. In 
these cases always exists an equivalent first-order Lagrangian, which represents 
a standard mechanical system. C. GALVAO and N. LEMOS [35] gave a critical 
analysis of these papers, particularly from the point of view of the quantization 
of these systems. They studied a special case of degenerate systems with second
order derivatives, the Lagrangian of which can be represented as a sum of a usual 
Lagrangian and an additional term having the form of a total time derivative. By 
systematical applying of Dirac's theory of degenerate systems, they showed that 
this canonical formalism here yields the same results as the ones obta.ined with the 
use of the Lagrangian of the equivalent non-degenerate system of the usual type. 

Independently from the above authors, V. NESTERENKO [36] analysed in more 
detail arbitrary systems with singular second-order Lagrangian, including the ca.se 
non-reducible to standard systems. He developed the corresponding canonical 
formalism, investigated the fundamental characteristics of these systems, a.nd 
applied the results to the action of a rela.tivistic pa.rticle with an additional term 
proportional to the curvature of the particle trajectory. In a similar way, Y. 
SAITO, R. SUGANO, T. OHTA and T. KIMURA [371 formulated the canonical 
formalism for singular Lagrangians with arbitrary order derivatives and showed, 
inter alia, that all secondary constraints can be classified into two groups, only 
one of which corresponds to analogous constraints for usual singular systems. In 
the case when all the constraints belong to the first class, these authors gave the 
procedure of constructing the generator of gauge transformations with the aid of 
these constraints. After this, they applied the obtained results to the case of 
gravitation interaction with a acceleration-dependent potential appearing in the 
Lagrangian. 

C. BATTLE, J. GOMIS, J. PONS and N. ROMAN-Roy [38-39] continued the 
study of these problems, primarily from the standpoint of the interrela.tion between 
Lagrangian and Hamiltonian formalism. They gave a strict proof of equivalence of 
the Euler-Lagrange and the Hamilton-Dirac equations in general case, and studied 
various sorts of constraints appearing in case of singular Lagrangians with second
order derivatives. The theory of degenerate systems obtained in this manner can be 
extended to classical field theory as well, which was carried out by V. TAPIA [40], 
J. BARCELOS-NETO and N. BRAGA [41] for the case where the Lagrangian density 
depends on second-order time derivatives. The former author extended the results 
of his previous work to physical fields, analyzing the non-standard Lagrangians 
linear with respect to the second-order derivatives, while the latter authors obtained 
similar results, which they applied subsequently to Klein-Gordon field. 

Recently, several papers concerning the applications of this generalized canonical 
formalism were published. They are based on the assumption that the physical 
system studied can be better described by some singular Lagrangian depending on 
time derivatives of higher order. This theory was thus applied to Bopp-Podolski 
electromagnetic field [42], to Hilbert-Einstein gravitational field [43] and to the 
relativistic model of string with rigidity [44}_ In all these investigations, the usual 
Lagrangian was complemented by adding an appropriate term depending on time 
derivatives of higher, usually the second order. The applicability of this method 
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to the cited and similar physical systems was discussed in a number of papers 
(see for example [35]) and, although it cannot completely eliminate the built-in 
disadvantages of the theory, it has already given some encouraging results. 

2. BASIC IDEAS OF THE GENERALIZED MECHANICS 

Consider any discrete physica.l system with N degrees of freedom, describable by 
a Lagrangian of the form 

£ £( ... (Mi) t) 
= qi,qi,qi,···.,qi " (i = 1,2, ... ,N) (2.1) 

depending on arbitrary order time derivatives of the generalized coordinates. It will 
be assumed here that the highest order of these derivatives M; are generally different 
for various values of the index i, the maximum of these order will be designated 
by M, i.e. M, ~ M. The behaviour of the system considered is determined by 
Hamilton's variational principle 

1
tl 

6W = 6 £dt = 0 
to 

(2.2) 

which yields the corresponding Lagrange equations 

8£ d 8£ d2 8£ M. dMj 8£ 
8g. - dt 8g·· + dt' 8g-' _···+(-1) . dtMi Q (Mi) =0. (2.3) 

1 •• vq; 

If one introduces the notion of the functiona.l (variational) derivative, which for the 
functionals of the form 

F[Yi(01)] = 1° r(Yi(Z),yi(z), ... ,y;M)(z);z)d:r: (2.4) 

is defined as 

6F del 8:Fa 8.1' M-m aM-m 8.1' 
6y;m)(z) = 8y;m) - d:z: 8y!m+l) +···+(-1) d:r:M- m 8y;M)' (2.5) 

these Lagrange equations can be compactly written as 

c5W 
--=0, 
c5qi(t) 

(2.6) 

To achieve the transition to the corresponding Hamiltonian formalism, the 
appropriate generalized momenta have to be introduced. They are defined by 

def c5W 8£ a 8£ aMi-m 8£ 
( l)M·-m 

Pi/m - 6qjml(t) = 8q;m) - dt 8qim+ll + ... + - · -::"dt-:M-:::-i--m- 8q!Mi) = 

= Mfm (-1); ::i 8Q,f:+il ' (~ : ~',~: ~ ~ ~ ',~J (2.7) 
j=O 
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and, for different values of the index i, this sum may have different number of terms. 
From this definition follows immediately a reccurence formula 

8L . 
Pi/m = ~ - Pi/m+! 

8qi 
(2.8) 

The Lagrange equations (2.3) may, then, be replaced by the following equivalent 
system of equations [15-16, 21J, 

. 8H 
Pi/m = - (m-l)' 

8qi 

.(m-l) 8H 
qi =--

8Pi/m 

(i= 1,2, ... ,N; m=1,2, ... ,Mi) 

where the corresponding Hamiltonian is given by 

H(q;m-l),Pi/m, t) = Pi/mq~m) - L(q~m-l),q~Mi), t) 

(2.9) 

(2.10) 

and the summation over the repeated indices is understood. These are the 
generalized Hamilton (canonical) equations for the case considered. They form 
a system of 2 E~l Mi first-order differential equations for the unknown functions 

. (Mj-l) 
qi,qi,··· ,qi jPi/l,Pi/2,'" ,Pi/Mj, 

which here play the role of canonical variables. Utilizing (2.7) the Lagrange 
equations (2.3) can be written in an alternative form 

8L . 
-8 = Pill' qi 

(i = 1,2, ... , N). (2.11) 

This Hamiltonian can be formed by elimination of the highest order derivatives 
qi(Mi) only and their substitution by corresponding generalized momenta. To this 
aim, the subsystem (2.7), consisting of the equations pertaining to m = Mi has to 
be solved explicitly with respect to q;M;) and these solutions have to be inserted into 
(2.10). In this manner, one obtains the Ha.miltonian as a function of the canonical 
varia.bles and such procedure is possible only if the Jacobian 

1
8Pi/Mi I I [J2 L I 

A = 8qiMk) = 8qrMi)8qiMk ) 
(2.12) 

is not zero. If, however, this Jacobian is zero, the subsystem mentioned cannot 
be completely solved with respect to all the highest order derivatives, and the 
transition to the Hamiltonian formalism is no longer possible. The systems 
exhibiting this property are degenerate in Dirac's sense [2]. 

3. EQUIVALENT LAGRANGIANS OF HIGHER ORDER 

First, let us consider the equivalent Lagrangians a.nd investigate the possibility 
to reduce the degenerate systems to the regular ones. From the equivalence of 
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the Lagrange equations and Hamilton's prfnciple itself, it follows that all the 
Lagrangians of the form 

L' L(' (M;») d 1(' (Mi-l») = qj,qj, ... ,q; ,t + dt qi,qi,··· ,q; ,t (3.1) 

are equivalent to one another in the sense that they all yield the same Lagrange 
equations. If the last term is written out explicitly 

L' L(' (Mi» 81 (m) 8/ = qi, qi,'" ,qi ,t + 8 (m-1) qj + at ' 
. qi 

(3.2) 

it can be seen that all Lagrangians of this type differ mutually by a term which is 
linear with respect to the highest order derivatives and are generally of the same 
order as L. Moreover, all the elements of the Hessian (2.12) are equal with both L 
and L', i.e. 

(3.3) 

Hence, one immediately concludes, that if the system considered is regular (A # 0) 
or degenerate (A = 0), the same will hold for all the systems described by any of 
the equivalent Lagrangians L' of the same order. ' 

However, it may happen that the terms containing the highest order derivatives 
in (3.2) cancel out and the equivalent Lagrangian L' will then be of the order 
smaller by unity than L. For this to occur, it is necessary that the Lagrangian L of 
the system considered be linear with respect to the highest order derivatives, i.e. 

L( ' (Mi) t) (Mi) + b qi, qi, ... ,qi , = <1jqi , (3.4) 

where the coefficients <1i and b may be functions of the remaining variables. In this 
case, the cancellation of all the terms containing q~Mi) requires that 

81 
-8--:":(M:-=-"i -""1"'-) = -ai 

qi 
(i = 1,2, ... ,N). (3.5) 

If the arbitrary function f in (3.1) is chosen so as to satisfy this set of requirements, 
the ensuing Lagrangian L' will be of the lower order, i.e. M - 1. The system 
described by this Lagrangia.n ma.y be either regular or degenerate, depending on 
the rank of its Hessian matrix (2.12), which is also of lower order. 

Hence, Ryan's statement [29] that the Lagrangian of any degenerate system of 
higher order has to be necessarily linear with respect to the highest order derivatives 
does not hold in general. This provides only sufficient and not necessary condition 
and corresponds to the case of maximim degeneracy, in which all the elements of the 
Hessian are identically zero. The same is valid for Anderson's statement [30] that 
it is always possible to find, within the class of equivalent Lagrangians, one of them 
which corresponds to the regular system. This is possible only if the Lagrangian of 
the system is linear with respect to the highest order derivatives. For example, for 
the degenerate system described by the Lagrangian 

L 1 (-2 2"" -2) = 2'a ql + ql q2 + q2 (3.6) 
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no equivalent Lagra.ngia.n of lower order exist, and this system is in no way reducible 
to some regular one. 

4. LAGRANGIAN FORMALISM FOR DEGENERATE SYSTEMS 

Let us analyse in some detail the Lagrange equations (2.3), by suitable generali
sation of the procedure given by Sudarshan and Mukunda in their monograph [9J. 
First, let us notice that the highest order derivatives of the genera.lized coordinates 
a.pper in the last terms of the left-hand side in (2.3). Their form can be obtained 

by successive derivation of 8L/8Qi
M

;). 

(4.1) 

where ("'**) denotes all the remaining terms, containing only lower-order deriva
tives. Thus the Lagrange equations may be presented in a concise form as 

(i,k = 1,2, ... ,N) (4.2) 

which are linear with respect to the highest derivatives, where 

Wi.l: = 8qiM;)8q~Mk) . 
(4.3) 

An equivalent form of these equations can be found by completing the equations 
(2.3) with terms up to the M-th derivatives, i.e. by replacing Mi by M 

(i,k= 1,2, ... ,N) (4.4) 

where 
W! = 8

2
L 

• .1: ;l (M) £\ (M.) . 
vqi vq.l: 

(4.5) 

The corresponding new Hessian is given by 

I I I I I 8
2 

L I 
Ll = Wik = 8qiM) 8q~M") (4.6) 

and it differs from the previous one (2.12) by the fact that, for any value of the 
index i corresponding to Mi < M the correspoding i-th line contains only zeros, so 
that in general the rank of this Hessian is RI 5 R. 
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If the system considered is degenerate, i.e. RI < N, the corresponding square 
matrix {WIk} is singular and there exist N - RI linearly independent null eigenvec-

tors dp
) (p = 1,2, ... ,pi = N - RI), so that among its rows (or columns) N - RI 

linear relations of the form 

e~P)W:k=O (p=1,2, ... ,PI=N-RI) (4.7) 

hold. Multiplying the Lagrange equations (4.4) by efp) and summing over the index 
i, the left-hand side vanishes, as a consequence of (4.7), and hence 

(p = 1,2, ... ,P = N - RI). (4.8) 

Consequently, a certain number of linear combinations of the Lagrange equations 
in this case is of lower order than the maximum, and this number is equal to 
the degree of degeneracy P = N - RI. They are the corresponding primary 
Lagrangian constraints and represent a generalization of those discovered by S. 
SHANMUGADHASAN [5J for degenerate systems with the Lagrangian of the usual 
form. 

If the functional matrix {8Fp /8qkM
I<+M-I)} has the rank pi = N - RI, the 

equations (4.8) contain all the variables mentioned, and the functions Fp are 
mutually independent. If, however, the rank of this matrix is PI < P, only PI 
of these equations contain the highest order derivatives, and the remaining pi - Pl 
equations do not, i.e. they are of an order lower by unity 

l:' (. (MI<+M-2» 0 (p I) 
,C'Pl qk,qk,··· ,qk ,t = I =PI +1, ... ,P . (4.9) 

By continuing this procedure, one successively obtains further relations with ever 
decreasing order of the highest derivatives, until the relations not containing them 
are arrived at. 

All these relations have to be preserved in time and this so-called consistency 
condition here assumes the form 

dFp 8F (m) 8Fp 
Tt = 8 (m-l)qj + at = O. 

qj 
(4.10) 

By applying this condition, the following may result: a) some new differential 
equations of the highest order, b) new relations of lower order of the type (4.8), 
and c) identities, either immediate or following from the previous relations, much as 
in the case of usual Lagrangians [7]. Applying the consistency condition repeatedly 
to these newly formed relations, one can continue the procedure until its further use 
yields identities only. Separating from the relations obtained solely the independent 
ones, one may classify them into two basic types: the relations containing only the 
canonical variables qfm-l) 

(kl = 1,2, ... ,Kd (4.11) 

and the ones containing their Mj-th time derivatives as well 

B « (m-I) (Mi+m - I ) t) - 0 (kit ) k" qj ,qj ,- = 1,2, ... ,K2 • (4.12) 
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These relations, all the corressponding Lagrangian constraints for the case studied, 
represent a. genera.lization of those of type A and Bj introduced by SUDARSHAN and 
MUKUNDA [9). 

5. TRANSITION TO HAMILTONIAN FORMALISM 
AND. PRIMARY CONSTRAINTS 

In order to formulate the corresponding Hamiltonian formalism, one should 
generalize Dirac's theory [2-4] of the canonical forma.lism for degenerate systems, 
as well as the results of other authors [34-37] related to systems describable by 
Lagrangians containing the derivatives of higher order. To this aim, let us consider 
the system of equations defining the generalized momenta (2.7) for m = Mi 

8L (. (M/o) ') ( ) 
Pi/M;=-{M') =h qJ:,qJ:, ... ,q, ,t i=1,2, ... ,N. 

8qi • 
(5.1) 

If the Hessian (2.12) of this system is of the rank R < N, it will be posible to solve 
only R of these equations with respect to as many highest derivatives 

{M,} (p (m-i) (Mp) t) ( 1 2 R R+l N) (5 2) qr = <Pr r'/M,., qlc ,qp' r = , , ... , ; p = , ... I • • 

Substituting the variables q~M.) by these functions into the Ha.miltonian (2.10), it 
takes the form 

(5.3) 

with N - R highest derivatives q~Mp), as they cannot be eliminated by their 
procedure. 

Since the Hamiltonian depends on the variables q~Mp), both directly and indi
rectly via q~M,), one obtains 

fJH ( 8L) 8<Pr ( 8L ) 
!l (M,,) = Pp/Mp - !l (Mp) +!l (M,) Pr/M. - fJ (M,) :::: 0, 
~ ~ u~ ~ 

(5.4) 

where the symbol:::: denotes weak equality in Dirac's sense [2]. Namely, under 
the weak equations are understood such relations which are not valid per se, 
but only as a consequence of the relations defining the generalized momenta., 
directly or indirectly, and this is denoted by symbol ::::. These relations restrict the 
independence of the canonical variables, they are valid solely in a corresponding 
subspace of phase space and ca.nnot be used before working out the Poisson brackets 
(see formula (6.10)), because then they would cease to be well-defined quant~ties. 
Hence, this procedure yields, as a first step, the Hamiltonian in the form of a 
"generalized canonical quantity" (5.3), according to terminology from [7], and 
just by using the definition of generalized momenta it becomes independent of 
the remaining highest derivatives q~Mp), i.e. 

8L H ( (m-i) 
Pi/M; = !l (M;) ==? :::: H q. ,Pi/m, t). 

uq. 
(5.5) 
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As the Jacobian (2.12) of the system of equations (5.1) has the rank R, from the 
theorem of dependence of functions it follows, that there must exist N - R relations 
among the generalized momenta p;/ Mi not containing the highest derivatives qlM;) , 
which can be obtained in the following manner. Solving the subsystem formed by 
the first R equations of the system (5.1) with respect to the variables q!Mr), and 
inserting the functions so obtained into the remaining N - R equations of this 
system, one finds 

(p=R+1, ... ,N). (5.6) 

These relations do not contain the highest derivatives q~Mp), since in the opposite 
case it would be possible to solve the system (5.1) with respect to more than R of 
the derivatives q;M;). They can be expressed, also, in the form of following weak 
equations 

4)(0)( (m-I) t) - .1. ( (m-I) ) ..... 0 
p qi ,Pi/Mp =Pp/Mp-'Ypql: ,Pr/Mr,t ..... 

(p=p-R=1,2, ... ,P=N-R). 
(5.7) 

In addition to these constraints, in this case other constraints among the cano
nical variables may also exist. For this reason, let us consider the complete set 
of equations (2.7), where the higher order derivatives appear in the last terms as 
q1MIt +

m
- I ), so that this system is of the form 

f ( . (MIt+m-l) ) 
Pi/m = i,m q/c, q/c, . .. , ql: ' t 

(i,k=1,2, ... ,Nj m=1,2, ... ,Mi)' 
(5.8) 

The possibility of solving this set of equations with respect to the higher order 
derivatives depends on the character of the corresponding J acobian 

- I 8Pi/m I .a. = 8qiMIt + m - 1) . 
(5.9) 

If its rank is R > R, one may solve any R of the equations (5.8) with respect 
to R variables q1MIt+m

-
1

) for k = 1,2, ... ,Ra and insert these functions into the 
remaining equations. The result of this procedure is 

( 
(m'-l) ) ( Pp/m = ,pp,m q/c 'Pr/m" t, P = Ro + 1, ... , Nj m = 1,2, ... , Mi)j (5.10) 

which can also be represented as 

(5.11) 

The obtained relations among the canonical variables could be called generalized 
primary constraints in Hamiltonian formalism, in analogy with the corresponding 
constraints in Dirac's theory. They include the relations (5.7), which are responsible 
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for the direct transition to Hamiltonian formalism, and which will be further on 
distinguished from the others by calling them fundamental primary constraints. It 
could be remarked here, that the primary constraints other than the fundamental 
ones are not even mentioned by the majority of authors. V. TAPIA [34] treats 
them on equal footing with the fundamental ones, and SAITO, SUGANO, OHTA 

and KIMURA [371 classify them as secondary constraints. 

6. HAMILTON-DffiAC EQUATIONS 
AND SECONDARY CONSTRAINTS 

Let us formulate now the Hamilton-Dirac equations, pertaining to the case stu
died, by generalization of the procedure given in [9]. To this aim, we replace q~M.) 
by (5.2) in the Hamiltonian (2.10) and, according to (5.7), put Pp/Mp = ,pp + q;,~o) 
(p = p - R). By separating the terms not containing the constraint functions q;,~o), 
the Hamiltonian can be written as 

H( (m-I) ) H ( (m-I) ) (MR+P)q;,(O)( (m-I) ) 
qi ,Pi/m,t = c qi ,Pi/m,t +qR+p p qi ,Pi/m,t (6.1) 

with 

H «
m-I) ) (m) ( (m-I) (Mp) ) 

eqi ,Pi/m,t =Pi/mqi +Pr/M.<PrPr'/M."q", ,qp ,t+ 

+ .1. (q(m-l) P /M t)q(Mp) _ L(q~m-l) q(M.) q(Mp) t) 
'f'p r , r .' p .' r '.p ,. 

(6.2) 

The differentiation of the function He with respect to canonical variables q!m-l) 
and Pi/m, bearing in mind that the dependence on these variables is both explicit 
and implicit, via <pr and ,pp, yields the following result 

8He _ . (M,) 8,pp 
II (m-I) - P./m-l + qp II (m-I) II (m-I) 
uqi uq, uqi 

8He = qfm) + q~Mp) 8,pp . 
8Pi/m 8Pi/m 

8L 

(6.3) 

Substituting here 8L/8q~m-l) for m = 1 from Lagrange equations (2.11) and for 
m > 1 from recurence formula (2.8), and using the constraint functions (5.7) instead 
of ,pp, one obtains 

8H 8~(O) • e p 
Pi/m = - II (m-I) - Up 8 (m-I)' 

uqi qi (6.4) 

(i=1,2, ... ,N; m= 1,2, ... ,Mi) 

where 
U _ q(Mp) _ q(MR+p) 

p - - p - - R+p (p = 1,2, ... , P) . (6.5) 

These equations can be written, more compactly, in the form of weak equations 

8Hp .(m-l),.... 8Hp 
Pi/m ~ (m-I)' q. ,.... ~ (6.6) 

8q. P./m 
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with the extended (total) Hamiltonian 

Hp = He + up4l~O). (6.7) 

These are the Hamilton-Dirac equations for this type of the degenerate .systems. 
They represent a generalization of the corresponding equations for systems with the 
Lagrangian of the first [2, 3] and the second order [34, 36]. These equations are 
also in agreement with the results of the work [37], obtained for the Lagrangians 
of arbitrary order, but given without any proof. Here, one has a total number 
of 2 Ef:l Mi eq~ations containing the same number of unknown functions q~m-l) 
and Pi/m. The second group of these equations reduces to identities for i = p > R 

and m = Mp, as He does not depend on Pp/M" and 84l~~) j8pp/Mp = Cpp/, and 
each of these identities corresponds to one of the quantities Pp/M" missing in the 
Hamiltonian. 

For any functions F of canonical variables q~m-I), Pi/m and the time t, its total 
time derivative is 

dt 
8F .(m-l) 8F. 8F 
(m-I) qi + -!l--Pi/m + -;:;;-. 

8qj VPi/m v, 
(6.8) 

dF 
-= 

• 
By substituting here tj!m-l) and Pi/m from the corresponding Hamilton-Dirac 
equations (6.4), one obtains 

dF ] (0) 8F Tt = [F, He + up[F, 4lp 1 + at' (6.9) 

where the generalized Poisson bracket is introduced by 

[F,G]*=f ~:'l)88~ -8p8~/ 8~':l) 
8qj PI/m 'm qj 

(6.10) 

and a more compact form of this equation is 

dF 8F 
Tt ~ [F,Hp] + at' (6.11) 

This is the corresponding general equation of motion for any dynamic variable, 
which includes the Hamilton-Dirac equations, in agreement with the results of [38]. 

All the primary constraints (5.11), both fundamental and others, have to be 
preserved in time, according to the so-called consistency condition. This condition 
can be expresed, with the aid of the equation (6.9), in the form 

(pi = 1,2, ... ,]5). (6.12) 

This is a system of P equations, linear with respect to the constraint multipliers 
uP' although it may happen that some, or even all, of the coefficients [4lp/, 4l~O)] are 
equal to zero. Consequently, if one excludes the possible inconsistent relations, this 
procedure may result in: a) relations determining some ofthe constraint multipliers, 
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b) new relations among the canonical variables, and c) identities, either directly or 
based on the previous relations, much as with the Lagrangians of the usual type 
[3, 7]. 

The resulting new relations among the canonical variables, denoted by 

(1)( (m-1) ) '" 0 
X.' qi ,Pi/m, t '" (s' =1,2, ... ,Sd (6.13) 

can be called secondary constraints of the first order. Since they have to be 
preserved in time as well, i.e. to be subject also to the consistency condition, 
this can give, among others, secondary constraints of the second order X~;} ::::: 0 
(s" = 1,2, ... ,52). If this procedure of applying the consistency condition is 
continued until, eventually, only identities are obtained, one may determine all the 
secondary constraints in Hamiltonian formalism, which also have the character of 
weak equations 

« m-l) )-0 X, qi ,Pi/m,t - , (s=1,2, ... ,5=2:S;). (6.14) 

The secondary constraints obtained in this manner are somewhat more genera.l than 
the ones derived by other authors, as they originate from applying the consistency 
condition to a.ll (not only fundamental) primary constraints. 

7. CONSISTENCY CONDITION 
AND LAGRANGIAN CONSTRAINTS 

By applying the consistency condition to the primary constraints, a relation 
between them and the Lagrangian constraints can be established. Therefore, let 
us find the first derivative with respect to time of any of the fundamental primary 
constraints (5.7) 

a",,(O) 8",,(0) 8",,(0) 8",,(0) 
'l!'p 'l!'p .(m-1) 'li'p. 'li'p 

at - 8 (m-1)q; + 8 PI:/Mk +~. 
q; PIr:/Mk 

(7.1) 

If these constraints are differentiated with respect to qfm -
1

) and the resulting 

expressions for 8~~0) /8q!m- lJ are inserted into the above equation, one obtains 

(7.2) 

Substituting here Pk/Mk from (2.7) and applying the relation (2.8) for m = Mlr: -1, 

bearing also in mind that 8L/8qiMk
) depends on time by way of all the variables 

q!m-1), one finds 



7. Consistency condition and Lagrangian constraints 15 

To elucidate the meaning oC the coefficients appearing before the brackets, one 
may differentiate the Cundamental primary constraints with respect to q1M ) 

(7.4) 

By comparing with the relations (4.7), one concludes that 

(P) 
o~(o) t _ P .. .\: -
OP.\:IM~ 

(p = 1,2, ... , P) (7.5) 

and this establishes a relation between the coefficients considered and the constraint 
functions. The derivative d?R~O) fdt thus becomes 

d~~O) (P) (BL d fJL ") o?R~O) o~~O) 
-;It = elc 0" (M~-l) - dt '" (Mk) - PIcIM~-l + --at" ~ --ai"' 

ql: vql: 
(7.6) 

as the expression in brackets is zero, according to the definition (2.7) of the 

generalized momenta. Furthermore, from the consistency condition d?R~O) f dt = 0, 
it follows directly that no such constraint can depend explicitly on time. 

If this relation is again differentiated with respect to time, one finds 

d2~~O) (P) (oL d fJL d2 oL ) 
---;ji2" = -e.\: '" (M~-2) - dt 0 (M~-l) + dt2 0 (M~) - PI:/M~-2 ~ O. (7.7) 

vq.\: ql: ql: 

The generalization oC these results leads to the conclusion that the n-th derivative 
of the fundamental primary constraint is of the form 

an ?R~O) n+l (p) (fJL d oL 
~ = (-1) el: 0 (M~-n) - dt 0 (Mk-n+l) + ... + 

ql: ql: 

d
n 

oL ) + (_1)n dtn fJqlMk) - PI:/M~-n ~ O. (n < (MI:)min == Mo). 

(7.8) 

Those among these relations in which the highest derivatives qiMk+m
) for m ~ 0 

are missing, after the consistency condition is applied, can give certain relations 
between the canonical variables. This can also be interpreted as an alternative 
definition of the non-fundamental primary constraints, which in this approach 
result here from the consistency condition, and coincide with the ones called in 
(37] secondary constraints contained in the definition of generalized momenta. 

Let us apply now this formula (7.8) to n = Mi - 1, dividing it into the sums 
witk le = i and le :f: i, respectively. If the ensuing expression is differentiated with 
respect to time, using again (2.8) and the Lagrange equations in the form (2.11), 
one obtains 

dM;~~O) :::; (-1)M;e~P) (OL _'. ). (7.9) 
dtM;" 'oqi P'/l 
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According to (2.11), the right-hand side of .(7.9) represents a linear combination of 
the Lagrange equations, with multipliers (7.5). Since we had demonstrated that 
this procedure lea.ds to the primary Lagrangian constraints (4.8), the preceding 
rela.tion reduces to 

dMi~iO) "'" (_I)M.+l.:(P)A'(q q' q(MIr+M-l) t) 
-d-tM~i- "'" '0., 1:, 1:"", It , • (7.10) 

From this result one can drawn the following conclusion: using the consistency 
condition of the fundamental primary constraints in Hamiltonian formalism in 
the form dMi~~O) JdtMi = 0, and substituting the generalized momenta by their 
expressions, one obtains the primary Lagrangian constraints, which are equivalent 
to the corresponding secondary constraints in Hamiltonian formalism. This is a ge
neralization of the previously established relation between primary and Lagrangian 
constraints in the cases where the Lagrangian is of the usual form [7, 13] or contains 
only second-order derivatives [36]. 

Finally, let us give a remark concerning the application of the consistency condi
tion to other, non-fundamental primary constraints. Since they do not a.ppear in the 
Hamilton-Dirac equations (6.4), which are equivalent to the Lagrange equations, 
the consistency condition applied to these constraints, in the general case, will not 
yield the corresponding Lagrangian constraints. 

8. FmST AND SECOND CLASS CONSTRAINTS 

Let us now show how one may apply here Dirac's theory, based on the separation 
of all the constraints into those of the first and the second class [2, 3}. Here we 
shall extend the corresponding notions to the case where the Lagrangian depends on 
derivatives of arbitrary order and on time explicitly. The separation of constraints 
into primary and secondary ones is not essential for this analysis, so that all the 
constraints (5.11) and (6.14) will be assembled and denoted by 

(I-' = 1,2, ... ,T = j5 + S). (8.1) 

For the Lagrangians of the usual type, not depending on time explicitly, Dirac 
defined the functions of the first class as the quantities satisfying, at least weakly, 
the conditions 

[F, e,,] :::::: 0, (I-' = 1,2, ... ,T); [F,Re}:::::: O. (8.2) 

The generalization of this definition to the case studied here most conveniently can 
be achieved by transition to the so-called homogeneous formalism [451, in which 
the time t is treated as a supplementary generalized coordinate qN+1 = t, and 
a new independent variable T is introduced putting t = f(T}. In this approach, 
homogeneous Lagrangian and Hamiltonian of the system are given by 

(8.3) 
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where the superscript + indicates the use of the formalism mentioned, and the 
prime denotes differentiation with respect to the variable T. 

In the case studied presently, the functional form of the Lagrangian L + also 
includes the higher-order derivatives. However, it can be seen that all the above 
relations here remain valid, provided that PN+l is replaced by PN+l/l' Then, in 
analogy with (8.2), a quantity F will be said to be a function of the first class if, 
within the homogeneous formalism, it satisfies, at least weakly, the conditions 

[F, e,.]+ ~ 0, (p = 1,2, ... ,T)j [F,Htl+ ~ O. (8.4) 

In the opposite case it will be of the second class. Afterwards, one may return to the 
standard, non-homogeneous formalism, by splitting the Poisson bracket [ j+ into 
the usual one and a supplementary term, bearing in mind that a/apN+l/l = a/aHc' 
In this manner, these conditions may be written as 

a(F,e,.) 
[F,e,.] + 8(t,Hc) ~ 0, (8.5) 

in accordance with the previously established result [46] for the Lagrangians of the 
usual type. Hence, as the constraint functions do not depend on the Hamiltonian 
He explicitly, a constraint S,. ~ 0 will pertain to the first class if 

[ 1 
ae,. 

E>,.,He + at ~ o. (8.6) 

For this, it is sufficient that its generalized Poisson brackets with all the other 
constraints are zero, the latter of the conditions is then identica.lly satisfied owing 
to the consistency condition aE>,./dt = O. 

Using these notions, one may transform the genera.l equation of motion (6.9) to 
a more convenient form, in which only the functions of the first class will appear. 
To show this, let us write out the consistency condition for all the constraints 

(1£ = 1,2, ... ,T = P + S) (8.7) 

which represents a system of equations determining the constraint multipliers up. 

Designating Up to be a particular solution of these equations, and letting Vop 
(a = 1,2, ... ,A) to be the complete set of independent particular solutions of 
the corresponding homogeneous equations, the general solution will be 

(8.8) 

with arbitrary coefficients Vo' If this expression is inserted into the general equation 
of motion, it will yield 

(8.9) 

where 
~(O) _ v. ~(O) 

o - 01' l' , (8.10) 
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much as in the case of Lagrangians of the usual type [2]. 

To investigate the nature of these quantities, let us put e iJ = ?J!~O) and up = Up 
in the equation (8.1), multiply this relation subsequently by Up or Velp , and carry 
out the summation over the index p, which gives 

(0) 8?J!p ( 
(0») 

Velp [q;P , He] + fit = O. (8.11) 

Using these auxiliary relations, it can be shown that the quantities 'P~O) (a = 
1,2, ... , A6) and H' are the functions oC the first class, i.e. that they satisfy the 
conditions (8.5). For example, if one forms the expression appearing in the left-hand 
side oC the second condition for the function H', one obtains 

I ] 8(H/, Hc) ([ (0) ] 8q;~O») 
[H ,He + 8(t,Hc) ~Up q;P ,He + fit ;::::0, (8.12) 

where the first auxiliary relation (8.11) was taken into account. 

9. DETERMINATION OF THE CONSTRAINT MULTIPLIER~ 

All the constraints may be replaced by an equivalent set separable into the 
ones of the first and second class and on this basis it is possible to transform 
the corresponding equation oC motion. If one takes the maximum number of linear 
combinations of the primary constraints 'P"'l = V""p?J!p ;:::: 0, belonging to the first 
class, the remaining constraints, denoted by ?J!Pl ;:::: 0 will be of the second class. 
In a similar manner, by taking linear combinations of all primary a.nd secondary 
constraints, they can a.lso be grouped into those of the first and second class, viz. 
X"'2 ~ 0 and Xlh ~ 0 respectively. This can be schematically represented by 

e",={'P"'llX",,}~O, ep={q;Pl'Xp,};::::O 

(a = 1,2, ... , Aj P = 1,2, ... , B = T - A). 
(9.1) 

Let us replace now the fundamental primary constraints by an equivalent set 
q;~O) ~ 0 (a = 1,2, ... , A~) and q;~O) ~ 0 (b = 1,2, ... , P - A~), belonging to the 
first and second class. Putting 

u q;(O) = 11 q;(0) + 1I6q;(0) 
p p eI a 6 (9.2) 

into the general equation of motion (6.9), one obtains 

dF [ (0) (0) 8F Tt= F,Hc]+lIa[F,q;eI ] + 1I6[F, q;6 ]+81' (9.3) 

Then, the consistency condition, applied to so formulated first and second class 
constraints, assume the form 

dea [ 1 8e", Tt = e""Hc + Tt = 0 (a = 1,2, ... ,A) 

d!p = rep, Hel + 1I6[ep, q;1°)] + 8:p = o. (p = 1,2, ... ,B) 
(9.4) 
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and this system is to be used to determine the constraint multipliers. All the 
mUltipliers Va related to the fundamental primary constraints ~~O) ::::: 0 disappeared 
here, which means that they remain completely undetermined. Thus, the number 
of the undetermined constraint multipliers coincides with that of the fundamental 
primary constraints of the first class. 

To determine the constraint multiplires Vb, let us form the matrix 

(9.5) 

the elements of which are the Poisson brackets of all the constraint functions of the 
second class and will be denoted by 

(,8 = 1,2, ... ,B). (9.6) 

We can also introduce its inverse matrix D-1 by 

D· D-1 = I ~ A(1(1'Ai'~1I = 8(1(111 , (9.7) 

which will exist only if the number of constraints of the second class is even, i.e. 
of the form B = 2Bo, since otherwise the ma.trix D is singular. Multiplying the 
second group of equations (9.4) by Ai'~ and summing them up subsequently with 
respect to the index ,8, it follows (for /3' = b ::s; P - A~) 

(b = 1,2, ... , P - A~). (9.8) 

The remaining equations, those for /3' > P - A~, as well as the ones obtained by 
multiplying the first group (9.4) with Ap'~, in a similar manner yield 

(P - A~ < ,8' ::s; B). (9.9) 

If we introduce the expression (9.8) for Vb in the general equation of motion (9.3), 
the result will be 

dF ,(0) -1 ([ ae(1) (0) 8F 
"dt=[F,HeJ+va[F,1?a l-.6ob,8 e,s, Hel+8t' [F~b J+Tt· (9.10) 

This equation can be written also in an alternative form, if the relation (9.9) is 
multiplied by [F, Sp'], summed with respect to /3' for ,8' > P - A~, and the ensuing 
expression is added to the right-hand side of (9.10) 

dF (0) -1 ( asp) 8F Tt=[F,Hc]+va[Fipa ]-.60,8',8 [e,8,Hc]+--at [F,Sp']+'8t. (9.11) 

The general equation of motion, obtained by this procedure, has the same form as 
in the case of the usual Lagrangian [13J. However, only fundamental (and not all) 
primary constraints of the first class appear here, while all the constraints of the 
second class are present. 
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Let us remark, that this asymmetry can be removed, as in the usual case [9], if 
one introduces all the constraints, primary and secondary, into the extended (total) 
Hamiltonian. In this case the number of determined constraint multipliers would 
remain the same, but these Hamilton-Dirac equations would not be equivalent to 
the Lagrange equations, in agreement with the results of the authors of [47,48] on 
their non-equivalence already being in the case of effective Hamiltonian. . 

10. GENERALIZED DIRAC BRACKET 

The form of the transformed general equation of motion (9.11) suggests the 
introduction of the following expression 

[F, G]* = [F, Gj- [F, epj~.8J/[ep', G], (10.1 ) 

in analogy with the generalized Poisson bracket introduced by Dirac [2, 3] for 
the usual degenerate systems. The above expression may, hence, be called the 
generalized Dirac bracket for the quantities F and G. Using this notion, the general 
equation of motion takes a compact form 

dF .. (0) -1 8Sp' Tt = [F, Hc] + lI .. [F,~ .. ] - [F, ep]~.8.8,Tt, (10.2) 

where the influence of the constraints of the second class is expressed here by way 
of this bracket. 

From the structure of both generalized Poisson and generalized Dirac bracket it 
follows that they are analogous to the corresponding brackets in the usual case, 
provided that the canonical variables qi and Pi are replaced by q~m-1) and Pi/m, 
and the summation over i is extended to embrace both indices i and m. Hence, it 
can be inferred that the generalized Dirac bracket has the same properties as the 
Poisson and Dirac bracket. The structure of the Dirac bracket was studied in detail 
by SUDARSHAN and MUKUNDA [8, 9], and all the results obtained by these authors 
remain here valid. 

In the case of Lagrangians of the usual form, it is known that the Dirac bracket 
is equivalent to the "truncated" Poisson bracket, in which the summation with 
respect to the index i is taken from 1 to No = N - Ba, where Ba is one half of 
the number of the second class constraints. This property can be extended to the 
generalized Dirac bracket, utilizing the quoted correspondence, i.e. explicitly 

N-Bo Mi (8F 8G 8F 8G) 
FG"= -----[ ,] I: I: 8 (m-1) &p', 8p', {J (m-I) . 

i=1 m=1 qi \ m 'm qi 
(10.3) 

This ,is equivalent to the replacement of the complete set of ca.nonical variables by 
the "truncated" one, non containing the canonical variables which can be eliminated 
by the constraints of the second class. 

It is easily verified, by direct evaluation, that certain relations expressible with 
the aid of the Dirac brackets here remain valid, in the same form as with the usual 
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Lagrangians. Thus, for example, for any function F of the canonical variables and 
any constraint function of the second class one has 

[F,0/d* = [F, 0r] - [F, 0 p}.c:l.B'J,.c:lp'p" = O. (lOA) 

An analogous result is arrieved at if the generalized Poisson bracket is taken instead 
of the Dirac's one used above, provided that F is replaced by 

F* = F - [F, 0p].c:l.B'J,0p, , 

whereby the following weak equation is obtained 

[F*, 0,811] ~ [F, 0p,,]- [F, 0p].c:l.B'J,.c:lp'p" ~ O. 

(10.5) 

(10.6) 

11. MEANING OF CONSTRAINTS OF THE FIRST CLASS 

Let us show that the constraints of the first class here have the same meaning 
as in the case of Lagra.p.gians of the usual type [4}. To this aim, let us consider a 
infinitesimal canonical transformation, the generating function of which is [25] 

G ( (m-l) --) (m-l)__ G ( (m-l) -- ) 
2 qi ,Pi/m,t = qi Pi/m +e 0 qi ,Pi/m,t, (11.1) 

where Go represents the so-called generator of this transformation, and the trans
formation itself is determined by the relations 

8Go 
6Pi/m = -e

8 
(m-I) . 

qi 
(11.2) 

Then, the variation of any fuction of the canonical variables will be given in the 
first approximation by 

def-
6F = F-F=e[F,Gol. (11.3) 

To determine the elementary change of any function F in the transition from 
arbitrary coefficients Va to other ones v~, let us find the value of this function for 
t = 6t. Expanding it into the Taylor series and substituting dF / dt from the general 
equation of motion (9.11), it follows 

F"G (6t) = F".(O) + 6t{ [F, Hc] + va[F, ~~O)l-

- [F, 6,8'].c:l.B"~ (r6,8' H.,J + 8:,8 ) + ~~ L=o . 
(1104) 

If the same relation is written out for some other set v~ of these arbitrary coeffi
cients, the substraction of these two relations gives 

(11.5) 

where 
(11.6) 
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From this we can conclude that, in the generalized mechanics, one obtains 
formally the same results as in Dirac's theory with the Lagrangians of the usual 
type. Hence, the above result can also be interpreted in the same manner, with 
the aim to preserve the validity of the causality principle. Accordingly, it will 
be taken that the values of F corresponding to various values of the arbitrary 
coefficients Va (a = 1,2, ... ,A~) pertain to the same physical state of the system. 
By comparison with (11.3) one concludes, then, that the first-class functions ~~O) 
of the fundamental primary constraints are the generators of the infinitesima.l 
canonical transformations which leave the physical state of the system unchanged. 

12. AN EXAMPLE 

To illustrate the results obtained, let us consider a comparatively simple example 
with the Lagrangian 

L = H~ + q2ql + (1 - a)qlq2 + t,8(ql - Q2)2, (12.1) 

which differs from the one studied in the SUNDERMEYER's monograph [13] only 
by the fa.ct that both first derivatives are replaced by the second ones. Although 
this Lagrangian does not have direct physical sense, same like the example in the 
cited monograph, because all the known physical systems of this type belong to 
the classical fields, by this example we would like to point the similarities a.nd 
distinctions in comparison with the case of degenerate systems of habitual form. 
The Hessian matrix and the Hessian itself are now given by 

W = W' = (~ ~), L\ = 'L\' = I ~ ~ I = 0 (12.2) 

and the system considered is degenerate with the rank R = R' = 1. Among the 
columns of this matrix there is exactly one linear dependence of the type (4.7), 

from where one gets the coefficients dp
} 

O· (~) + 1 . (~) = 0 => ejp) = {O, I}. (12.3) 

The corresponding Lagrange equations (2.3) for the generalized coordinates ql and 
Q2 in this case have the form 

'q~ + (2 - ex)Q2 + ,8(ql - q2) = 0 
(12.4) 

Since P = 1, there exists only one linear combination (4.8) of the Lagrange 
equations which is of lower order and this Lagrangian constraint coincides here 
with the second of these Lagrange equations. 

The corresponding generalized momenta (2.7) for m = 1 and M = 2 are 

oL d oL {-'!j't - 42 for i = 1 
Pill = oqi - dt oQi = (ex - l)l:h for i = 2 

(12.5 ) 
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and for m = 2 
8L {ill + q2 for i = 1 

Pi/2 = -_ = . 
8qi (1 - O')ql for i = 2. 

(12.6) 

Thi.s s~ste~ of eq~~tions cannot be solved completely with respect to all higher 
denvatIves qA: and qA: (k = 1,2), what originates from the last subsystem for m = 2. 
Consequently, from (12.6) immediately follows one fundamental primary constraint 

..y,.(O)( (m-1) 
'*'1 qi • Pi/M" t) == P2/2 - (1 - O')Ql ::::: 0 (12.7) 

and (12.5) gives another primary constraint 

if. ( (m-l) ) ( 
'*'2 qi ,Pi/m, t == P2/l - 0' -l)ql ::::: O. (12.8) 

The corresponding Hamiltonian (2.10) can be found, eliminating ill from the first 
of equations (12.5) and applying the definition of P2/2, whereby q2 disappears too. 
In this ma.nner one obtains . 

Hc(q~m-l) ,Pi/m, t) = Pilmq~m) - L ::::: 

~ Pl/lql + Hp!/2 - q2)2 + P2/1Q2 - t.B(ql - q2)2 

and the "total" Hamiltonian (6. 7) will be 

(12.9) 

(12.10) 

Let us apply now the consistency condition to fundamental primary constraint 
(12.7) and to its time derivative. The former of these conditions gives 

d~(O) T = [~~O), Hp] = (0' -1)q1 - P2/l = 0 (12.11) 

and this equation coincides with the non-fundamental primary constraint (12.8), 
in a.ccordance with [37]. Using this fact, the letter of the consistency conditions 
becomes 

(12.12) 

whence one obta.ins the corresponding seconda.ry constraint 

(12.13) 

This result is in full agreement with our conclusion from (7.10), so that the 

consistency condition d2~~O) Jdt 2 = 0, after putting Pt/2 = ql + Q2, yields the 
Lagrangian constraint (12.4b), which is equivalent to the secondary constraint 
(12.13). 

The consistency condition applied to the other prima.ry constraint (12.8) here 
also results in so obtained secondary constraint 

(12.14) 
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which can be explained in the following manner. In this case, by application of this 
condition, one obtained a linear combination of the Lagrange equations with the 
coefficients equal to er) (which is not valid in the general case) and therefore it 
coincides with the corresponding secondary constraint. Applying the consistency 
condition to the secondary constraint, it follows 

d~l ~ [xl' Hp1 = -{34:l + (a + {3 - 2)q2 - (2 - a)Pl/l = 0 

and that is a new secondary constraint 

X2(q~m-l)'Pi/m' t) == -{34:l + (a + {3 - 2)q2 - (2 - a)Pl/l ~ 0, 

which, subjected to the consistency condition, in its turn gives 

(12.15) 

(12.16) 

dX 
d/ ~ [x2' Hp1 = -(a-2)Xl-(Pl/2-Q2)[,B+(a-2)2]+ud{3-(a-2)21 = O. (12.17) 

Specially, if {3 = (a - 2)2, the last term cancels out and, bearing in mind that 
Xl ~ 0, from here follows a new secondary constraint 

( (m-l) t) - - ° Xa qi ,Pi/m, = Pl/2 - q2 - . (12.18) 

To examine the character of these constraints, i.e. to establish whether they 
pertain to the first or to the second class, let us form their Poisson brackets. For 
the primary and the first two of the secondary constraints one thus obtains 

[ (0) 1 CJ?l ,Xl = 0, (12.19) 

as well as 

If the constraint X3 ~ 0 is also present, its Poisson brackets with the others will be 

[ (0) 1 CJ?l ,X3 = 0, [xl' x31 = 0, [x2' X3] = -{3. (12.21) 

Summarizing all these results, three cases are to be distinguished here, according 
to the values of the parameters a and {3. For a = 2 and {3 = ° one has d2CJ?~0) /dt 2 == 
0, so that no secondary constraints are obtained, i.e. there exist only two primary 
constraints, and both pertain to the first class. For {3 = (a - 2)2 all the five 

constraints are present, with only CJ?~O) ~ 0 belonging to the first class, and all 
the others pertaining to the second class. For {3 =F (a - 2)2 only the first four 
constraints are present, and they all belong to the second class. The constraint 
multipliers pertaining to the fundamental primary constraints of the first class 
remain completely arbitrary functions of time (the first two cases), whereas those 
corresponding to the constraints of the second class are fully determined. 

Finally, let us discuss what would be changed in these results by including not 
only the fundamental, but all the primary constraints into the total Hamiltonian 
(as in the papers of V. TAPIA [34] and of BARCELOT-NETO and BRAG A [41]. 
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Repeating the same procedure as above, with HT = He + Ul ~(O) + U ~ • t d f 
H . r h h d' H '1 D' 1 2 2 lns ea 0 

p' one InLerS t at t e correspon Ing amI ton- lrac equations in this case are not 
any more equivalent to the Lagrange equations, except for a trivial value U2 = 0, 
and the number as well as the character of the constraints are partially altered. 
Namely, in the first two cases all the quoted conclusions remain unaltered, but in 
the case f3 #- (a - 2)2 the second and the third of the secondary constraints will be 

absent, and within the remaining constraints the fundamental primary one ~~O) ::::: 0 
now will be of the first class. 
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Dans cet article on a etudie les systemes degeneres avec une lagrangienne qui 
depend de derivees d'ordre queleonque par rapport au temps et explicitement de 
temps lui-meme. Ici on a suppose qu'en general l'ordre le plus ha ut de cettes 
derivees est different pour les diverses coordonnees generalisees. D'abord, les 
equivalentes lagrangiennes dans cette meca.nique generalisee sont discutees et on a 
montre comment pour tels systemes on peut developper le formalisme de Lagrange 
et obtenir les liaisons lagrangiennes associees. Ensuite, on a donne le formalisme 
d'Hamilton eorrespondant, base sur la theorie de Dirae pour les systemes degeneres 
de la forme habituelle. 

De eette fac;on, on a obtenu deux types de liaisons primaires, dont seulement 
un type participe dans les equations du mouvement, les equations generalisees 
d'Hamilton-Dirac et les liaisons secondaires correspondantes, et une relation 
generale entre les liaisons primaires et les liaisons lagrangiennes. De meme, on 
a realise la separation de toutes cettes liaisons aux liaisons de premiere et de 
seconde classe, en generalisant la definition de Dirae de cettes notions. A cette 
base, on a introduit les crochets generalises de Dirac et on a donne le sens de 
liaisons specifiques de premiere classe. A la fin, les resultats obtenus sont illustres 
par un exemple simple, mais caracteristique. 

REZIME 

U ovom radu proucavani su degenerisani sistemi sa lagranzijanom koji zavisi 
od vremenskih izvoda proizvoljnog reda i eksplicitno od vremena. Pri tome je 
pretpostavljeno da je red ovih najviSih izvoda u opstem slucaju razlicit za ra.zne 
generalisane koordinate. Prvo su analizirani ekvivalentni lagranzijani u ovoj gene
ralisanoj mehanici i pokazano je kako se za ovakve sisteme moze razviti Lagranzev 
formalizam i iz toga dobiti pridruzene Lagranzeve veze. Potom je dat odgovarajuci 
Hamiltonov formalizam, zasnovan na Dirakovoj teoriji za degenerisane sisteme 
uobicajenog vida. 

N a taj nacin, dobijena su dva tipa primarnih veza, od kojih samo jedan ucestvuje 
u jednacinama kretanja, uopstene Hamilton-Dirakove jednacine i odgovarajuce 
sekundarne veze i jedna opsta relacija izmedu primarnih i Lagranzevih veza. 
Sem toga, postignuto je i razdvajanje svih ovakvih veza na veze prve i druge 
klase, uopstavajuci Dirakovu definiciju ovih pojmova. N a toj osnovi uvedene su 
i generalisa.ne Dirakove zagrade i dat je smisao specificnih veza prve klase. N a 
kraju, dobijeni rezultati su ilustrovani na jednom prostom, ali karakteristicnom 
primeru. 
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