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ABSTRACT

The degenerate systems having Lagrangians depending on time derivatives of arbitrary
order and on time explicitly are investigated, the highest order of the involved derivatives
being assumed tp be generally different for various generalized coordinates. First, the
equivalent Lagrangians are discussed and it is shown how the Lagrangian formalism can
be developed and the relevant Lagrangian constraints obtained for such systems. After
this, the corresponding Hamiltonian formalism, based on the Dirac’s theory of degenerate
systems, is given. ‘

In this manner, one obtains two types of primary constraints, only one of which
takes part in the equations of motion, the Hamilton-Dirac equations and corresponding
secondary constraints, and a general relation between the primary and the Lagrangian
constraints. Also, one achieves the separation of all the constraints into those of the
first and-of the second class, by a suitable definition of these notions. On this basis
the generalized Dirac bracket is introduced and the meaning of the specific first-class
constraints is given. Finally, the results obtained are illustrated by a comparatively simple,
but characteristic example.

1. INTRODUCTION AND HISTORY OF THE PROBLEM

It is known that the term “degenerate systems” is used in analytical mechanics
to designate systems having the Hessian of their Lagrangian with respect to
generalized velocities zero, so that the conventional transition from Lagrangian to
Hamiltonian formalism is no longer possible. P. DIRAC [1-4] was the first to study
such systems, what originated from his previous analysis of homogeneous dynamic
variables. He showed how the Hamiltonian formalism can be formulated in this case,
and how the quantization of these systems can be subsequently realized. In contrast
to the standard case, this canonical formalism is characterized by the presence of
certain constraints among the canonical variables and by appearance of a number of
arbitrary constraint multipliers in the general equation of motion, the role of Poisson
bracket being taken over by appropriately generalized, so-called Dirac bracket. S.
SHANMUGADHASAN [5—-6] analysed the influence of degeneracy on the Lagrange
equations, proving that a certain number of their linear combinations reduce to first-
order differential equations, and on this ground he formulated the corresponding
Hamiltonian formalism. K. KAMIMURA [7] established the interrelation between
these two approaches, i.e. between Lagrangian and Hamiltonian constraints. The
structure of Dirac bracket was investigted in detail, from a modern mathematical
standpoint, by E. SUDARSHAN and N. MUKUNDA [8-9]. If one applies the calculus
of functionals, developed by V. VOLTERRA [10], the majority of these results
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1. Introduction and history of the problem 3

can be systematically extended to classical field thery {11]. Degenerate systems
and applications of this formalism to various domains of contemporary theoretical
physics are dealt with in detail in some recent monographs (12-14].

On the other hand, the analytical mechanics of systems describable By La-
grangians depending on arbitrary order time derivatives of the generalized coor-
dinates, the so-called generalized mechanics, has recently received much attention.
M. OSTROGRADSKIY [15] began to study these systems from the standpoint of the
calculus of variations, and he demonstrated that the Euler-Lagrange equations may
always be substituted by an equivalent system of first-order differential equations.
Using his invariant theory of the calculus of variations, TH. DE DONDER [16]
obtained the canonical form of the equations for the extremals, generalizing it
subsequently to the case of several independent variables. Shortly after that, F.
BorP and B. PODOLSKI [17-18] attempted a generalization of electrodynamics,
based on a Lagrangian depending on second-order time derivatives of electromag-
netic potentials. Inspired by these papers, M. BORNEAS [19-20] was the first to
formulate explicitly the corresponding generalized momenta and the Hamiltonian
for one and several independent variables. Independently from the above authors,
J. KoESTLER and J. SMITH [21] obtained generalized Hamilton equations for
such systems, as well as the associated Poisson and Lagrange brackets, and L.
and P. RODRIGUES [22] formulated the corresponding canonical transformations.
Simultaneously, K. THIELHEIM (23], and C. DE SouzA and P. RODRIGUES [24]
extended these results to classical field theory, including the energy, momentum
and angular momentum densities. Based on this, it is possible to construct a
complete theory of canonical transformations, for discrete and continuous systems
in classical and covariant formulation [25~26]. In a recent monograph, concerning
the generalized mechanics and field theory [27], a geometrical approach of this
formalism with a contemporary mathematical point of view is presented.

However, the degenerate systems in generalized mechanics have so far received
little attention and only a few papers dealing with this problem were published
recently. This investigation was started by studies of equivalent Lagrangians by C.
HaYEs [28], C. RyaN {29] and D. ANDERSON [30]. The two last authors concluded
that the Lagrangian of such a degenerate system has to be linear with respect to
the highest order derivatives, and that in every class of equivalent Lagrangians it is
always possible to find one which would correspond to a regular system. A critical
analysis of these results given by H. TESSER [31] showed that this problem can be
treated correctly only within the framework of Dirac’s theory.

The first to deal with the degenerate systems in generalized mechanics was T.
KiMURA [32], who showed that a correct treatment of the constraints appearing
in the process leads to a consistent formulation of the Hamiltonian formalism. D.
GITMAN, S. LYAKHOVICH and L. TYUTIN [33, 14] in their analysis of correspoding
canonical formalism also briefly discussed this problem and extended it to physical
fields. V. TAPIA [34] investigated degenerate systems with Lagrangians depending
on second-order time derivatives, and applied an immediate extension of Dirac’s
theory of the first-order systems to this case. He thus arrieved at the relevant
Hamilton-Dirac equations and Poisson bracket, and illustrated the results by two



4 1. Introduction and history of the problem

characteristic Lagrangians linear with respect to the second-order derivatives. In
these cases always exists an equivalent first-order Lagrangian, which represents
a standard mechanical system. C. GaLvAO and N. LEMos [35] gave a critical
analysis of these papers, particularly from the point of view of the quantization
of these systems. They studied a special case of degenerate systems with second-
order derivatives, the Lagrangian of which can be represented as a sum of a usual
Lagrangian and an additional term having the form of a total time derivative. By
systematical applying of Dirac’s theory of degenerate systems, they showed that
this canonical formalism here yields the same results as the ones obtained with the
use of the Lagrangian of the equivalent non-degenerate system of the usual type.

Independently from the above authors, V. NESTERENKO {36] analysed in more
detail arbitrary systems with singular second-order Lagrangian, including the case
non-reducible to standard systems. He developed the corresponding canonical
formalism, investigated the fundamental characteristics of these systems, and
applied the results to the action of a relativistic particle with an additional term
proportional to the curvature of the particle trajectory. In a similar way, Y.
SaiTo, R. Sugano, T. OHTA and T. KIMURA [37] formulated the canonical
formalism for singular Lagrangians with arbitrary order derivatives and showed,
inter alia, that all secondary constraints can be classified into two groups, only
one of which corresponds to analogous constraints for usunal singular systems. In
the case when all the constraints belong to the first class, these authors gave the
procedure of comstructing the generator of gauge transformations with the aid of
these constraints. After this, they applied the obtained results to the case of
gravitation interaction with a acceleration-dependent potential appearing in the
Lagrangian. ,

C. BATTLE, J. Gowmis, J. Pons and N. RoMAN-RoOY [38-39] continued the
study of these problems, primarily from the standpoint of the interrelation between
Lagrangian and Hamiltonian formalism. They gave a strict proof of equivalence of
the Euler-Lagrange and the Hamilton-Dirac equations in general case, and studied
various sorts of constraints appearing in case of singular Lagrangians with second-
order derivatives. The theory of degenerate systems obtained in this manner can be
extended to classical field theory as well, which was carried out by V. TAPiA [40},
J. BARCELOS-NETO and N. BRAGA [41] for the case where the Lagrangian density
depends on second-order time derivatives. The former author extended the results
of his previous work to physical fields, analyzing the non-standard Lagrangians
linear with respect to the second-order derivatives, while the latter authors obtained
similar results, which they applied subsequently to Klein-Gordon field.

Recently, several papers concerning the applications of this generalized canonical
formalism were published. They are based on the assumption that the physical
system studied can be better described by some singular Lagrangian depending on
time derivatives of higher order. This theory was thus applied to Bopp-Podolski
electromagnetic field [42], to Hilbert-Einstein gravitational field [43] and to the
relativistic model of string with rigidity [44]. In all these investigations, the usual
Lagrangian was complemented by adding an appropriate term depending on time
derivatives of higher, usually the second order. The applicability of this method




2. Basic ideas of the generalized mechanics 5

to the cited and similar physical systems was discussed in a number of papers
(see for example [35]) and, although it cannot completely eliminate the built-in
disadvantages of the theory, it has already given some encouraging results.

2. BASIC IDEAS OF THE GENERALIZED MECHANICS

Consider any discrete physical system with N degrees of freedom, describable by
a Lagrangian of the form

L=L(g ¢ G --- a0, (i=12...,N) (2.1)

depending on arbitrary order time derivatives of the generalized coordinates. It will
be assumed here that the highest order of these derivatives M; are generally different
for various values of the index ¢, the maximum of these order will be designated
by M, i.e. M; € M. The behaviour of the system considered is determined by
Hamilton’s variational principle

31

§sW=6[ Ldt=0 (2.2)

to
which yields the corresponding Lagrange equations

8L d 8L d* 8L

oL _d 9L & oL M gL
8q; dt 8¢;  dt? 8§;

*"'+(—1)M‘T-—T‘=0. (2.3)
diMi 3q'§ i)

If one introduces the notion of the functional (variational) derivative, which for the

functionals of the form

b .
Fyaon = | Fis(@), .. ()2 do (2.4)
a .
is defined as
§F  4et OF d 8F Mem 4™ O8F
- = - o+ ()T e —— (2.5)
these Lagrange equations can be compactly written as
134 ‘1
—_—=0, W= / Ldt. 2.6
Ta0) b | (2.6)

To achieve the transition to the corresponding Hamiltonian formalism, the
appropriate generalized momenta have to be introduced. They are defined by

def OW 8L d &L M; dMi-m  gJ,
Pifm = ™ = T A (m +--+(=1) T e e =
if 5q§ )(t) 6q‘gm) dt qu +1) dtMi-m ang.)
M;—-m

3

) i=1,2...,N
= -1y — —— y &y 3 .
jgo (1) dtl 8q§m+"), (m=1,2,,,, ,M-) (2.7)



6 3. Equivalent Lagrangians of higher order

and, for different values of the index ¢, this sum may have different number of terms.
From this definition follows immediately a reccurence formula

oL

5;‘_(;7 = Pifm+1 (2.8)

Pijm =
The Lagrange equations (2.3) may, then, be replaced by the following equivalent
system of equations [15-16, 21],

Pir = = O0H q.(m_l)_ 8H
YT g 09ifm (2.9)

(i=12,...,N;m=12..., M)
where the corresponding Hamiltonian is given by

H(g™ ™Y, pifms 1) = piymai™ — L(a™ ™V, g™, 1) (2.10)

3 1 3

and the summation over the repeated indices is understood. These are the
generalized Hamilton (canonical) equations for the case considered. They form
a system of 2 ZN M; first-order differential equations for the unknown functions

i=1
. (M;-1)
T (SRR yPij1sPif2s-- -y PifM;
which here play the role of canonical variables. Utilizing (2.7) the Lagrange
equations (2.3) can be written in an alternative form

8L
——=..- .=1,2,...,N. 2.
This Hamiltonian can be formed by elimination of the highest order derivatives
qi(M") only and their substitution by corresponding generalized momenta. To this
aim, the subsystem (2.7), consisting of the equations pertaining to m = M; has to
be solved explicitly with respect to qi(M") and these solutions have to be inserted into
(2.10). In this manner, one obtains the Hamiltonian as a function of the canonical
variables and such procedure is possible only if the Jacobian
oL
M; M,
9g{"" g™

Opism;
8 qiM x)

A= (2.12)

is not zero. If, however, this Jacobian is zero, the subsystem mentioned cannot
be completely solved with respect to all the highest order derivatives, and the
transition to the Hamiltonian formalism is no longer possible. The systems
exhibiting this property are degenerate in Dirac’s sense [2].

3. EQUIVALENT LAGRANGIANS OF HIGHER ORDER

First, let us consider the equivalent Lagrangians and investigate the possibility
to reduce the degenerate systems to the regular ones. From the equivalence of
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the Lagrange equations and Hamilton’s principle itself, it follows that all the
Lagrangians of the form

. d, . -
L'=L{g, ¢>- - LM 1) + F7RACCE IR i S ) (3.1)

are equivalent to one another in the sense that they all yield the same Lagrange
equations. If the last term is written out explicitly

. 8 m 8
L= L(g, .., a™M 1)+ ———-,f.1 i+ (3.2)
q( ) ot
%

it can be seen that all Lagrangians of this type differ mutually by a term which is
linear with respect to the highest order derivatives and are generally of the same
order as L. Moreover, all the elements of the Hessian (2.12) are equal with both L
and L', ie.

oL’ &L

Wi = : . (3.3)
(M‘)aq(Mk) aqEM-)aq,EMh)

Hence, one immediately concludes, that if the system considered is regular (A 3 0)
or degenerate (A = 0), the same will hold for all the systems descnbed by any of
the equivalent Lagrangians L’ of the same order.

However, it may happen that the terms containing the highest order derivatives
in (3.2) cancel out and the equivalent Lagrangian L' will then be of the order
smaller by unity than L. For this to occur, it is necessary that the Lagrangian L of
the system considered be linear with respect to the highest order derivatives, i.e.

L(Qi;di,--- )q| M:) t)_aq(M')'*'b) ‘ (34)
where the coefficients a; and b may be functions of the remaining variables. In this
case, the cancellation of all the terms containing q,gM") requires that

of .
-a—m.—_-U:—a,‘ (2=—'1,2,...,N). (35)

q;

If the arbitrary function f in (3.1) is chosen so as to satisfy this set of requirements,
the ensuing Lagrangian L' will be of the lower order, i.e. M — 1. The system
described by this Lagrangian may be either regular or degenerate, depending on
the rank of its Hessian matrix (2.12), which is also of lower order.

Hence, Ryan’s statement [29] that the Lagrangian of any degenerate system of
higher order has to be necessarily linear with respect to the highest order derivatives
does not hold in general. This provides only sufficient and not necessary condition
and corresponds to the case of maximim degeneracy, in which all the elements of the
Hessian are identically zero. The same is valid for Anderson’s statement [30] that
it is always possible to find, within the class of equivalent Lagrangians, one of them
which corresponds to the regular system. This is possible only if the Lagrangian of
the system is linear with respect to the highest order derivatives. For example, for
the degenerate system described by the Lagrangian

L = }a(d + 24142 +43) (3.6)
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no equivalent Lagrangian of lower order exist, and this system is in no way reducible
to some regular one.

4. LAGRANGIAN FORMALISM FOR DEGENERATE SYSTEMS

Let us analyse in some detail the Lagrange equations (2.3), by suitable generali-
sation of the procedure given by Sudarshan and Mukunda in their monograph [9].
First, let us notice that the highest order derivatives of the generalized coordinates
apper in the last terms of the left-hand side in (2.3). Their form can be obtained

by successive derivation of 0L /3q§M‘).

d 8L _ 8L q(m.H) + 8°L )

di aqEMi) aqui)aql(:m) k aq‘gMi)at
.............................................. («1)
i BL 8L (My+M;)

. > = . q U (),
dtM: 3q§M') 34,-(M') 5(1,(,M") k

where (*#*} denotes all the remaining terms, containing only lower-order deriva-
tives. Thus the Lagrange equations may be presented in a concise form as

Wikql(,Mk‘*Mi) =Ai(q1crdky~" ’ngr{.M;_l)ii), (lak =1,2,... 7N) (42)

which are linear with respect to the highest derivatives, where
2L
M; M) *
3q( ) aq£ %)

Wi = (4.3)

An equivalent form of these equations can be found by completing the equations
(2.3) with terms up to the M-th derivatives, i.e. by replacing M; by M

. Mi+M- .
Whal ™ = Agr,dr, g0, GE=1,2,..0,N)  (44)

where oy

(]

= TS (4.5)

k aq‘.(M ) 8 ql(cM X) .
The corresponding new Hessian is given by
8L
A= W;'I=|—————— (4.6)
Wi 8¢ ag(*)

and it differs from the previous one (2.12) by the fact that, for any value of the
index i corresponding to M; < M the correspoding i-th line contains only zeros, so
that in general the rank of this Hessian is R' < R.
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If the system considered is degenerate, i.e. R’ < N, the corresponding square
matrix { W/, } is singular and there exist N — R linearly independent null eigenvec-
tors f,(p) (p=1,2,...,P'=N — R'), so that among its rows (or columns) N — R’
linear relations of the form

EPwW,L=0 (»=12,...,P=N-R) (4.7)

hold. Multiplying the Lagrange equations (4.4) by ESP ) and summing over the index
i, the left-hand side vanishes, as a consequence of (4.7), and hence

(Mr+M-1) ) =0

FPE£,'(p)AI'(QE:q.k)-" y 9 (P=1,2, ,PI=N—Rl). (48)

Consequently, a certain number of linear combinations of the Lagrange equations
in this case is of lower order than the maximum, and this number is equal to
the degree of degeneracy P = N — R'. They are the corresponding primary
Lagrangian constraints and represent a generalization of those discovered by S.
SHANMUGADHASAN [5] for degenerate systems with the Lagrangian of the usual
form.

If the functional matrix {aF,,/aqiM"*M“)} has the rank P/ = N — R/, the
equations (4.8) contain all the variables mentioned, and the functions Fj, are
mutually independent. If, however, the rank of this matrix is P, < P', only P,
of these equations contain the highest order derivatives, and the remaining P’ — P,
equations do not, i.e. they are of an order lower by unity

Folger ey a0 ™ D ty=0 (o =P +1,...,P). (4.9)
By continuing this procedure, one successively obtains further relations with ever
decreasing order of the highest derivatives, until the relations not containing them
are arrived at. .
All these relations have to be preserved in time and this so-called consistency
condition here assumes the form
dF, oF m) OF,
-Jtl ;9—(-;:3,( )+'—5t£=0. (4.10)
By applying this condition, the following may result: a) some new differential
equations of the highest order, b) new relations of lower order of the type (4.8),
and c) identities, either immediate or following from the previous relations, much as
in the case of usual Lagrangians [7]. Applying the consistency condition repeatedly
to these newly formed relations, one can continue the procedure until its further use
yields identities only. Separating from the relations obtained solely the independent
ones, one may cIassxfy them into two basic types: the relations contammg only the
canonical variables q,"' =1

Akl(qi(m_l),t) =0 (F=1,2,... ,Ky) (4.11)
and the ones containing their M;-th time derivatives as well

Bun(g™ VMV =0 (¥ =1,2,...,K,). (4.12)
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These relations, all the corressponding Lagrangian constraints for the case studied,

represent a generalization of those of type A and B; introduced by SUDARSHAN and
MukunDa [9].

5. TRANSITION TO HAMILTONIAN FORMALISM
AND PRIMARY CONSTRAINTS '

In order to formulate the corresponding Hamiltonian formalism, one should
generalize Dirac’s theory [2—4] of the canonical formalism for degenerate systems,
as well as the results of other authors [34-37] related to systems describable by
Lagrangians containing the derivatives of higher order. To this aim, let us consider
the system of equations defining the generalized momenta (2.7) for m = M;

8L . : .
Pi/M.' o= 5—-(—;!—.—)- E= fi(qk,Qk,... ,szk),t) (l = 1,2, can ,N). (5.1)
og;

If the Hessian (2.12) of this system is of the rank R < N, it will be posible to solve
only R of these equations with respect to as many highest derivatives

QSM') = ‘Pr(pr’/M,n ql(gm‘-l),q;(:M’))t) (r =12,... ,R;»P = R+1,...,N). (5'2)

Substituting the variables qSM') by these functions into the Hamiltonian (2.10), it
takes the form (et}
H=H(g™ ", ¢™ pijmi 1) (5.3)

]
with N — R highest derivatives ng’)

procedure.

Since the Hamiltonian depends on the variables q,(,M’), both directly and indi-

rectly via q,gM'), one obtains

8H 8L Do, 8L

3q£M') = (PP/M, - ang’)) + 8q,(,‘w’) (Pr/Mr - quM’)> =0, (‘5-4)
where the symbol ~ denotes weak equality in Dirac’s sense [2]. Namely, under
the weak equations are understood such relations which are not valid per se,
but only as a consequence of the relations defining the generalized momenta,
directly or indirectly, and this is denoted by symbol =. These relations restrict the
independence of the canonical variables, they are valid solely in a corresponding
subspace of phase space and cannot be used before working out the Poisson brackets
(see formula (6.10)), because then they would cease to be well-defined quantities.
Hence, this procedure yields, as a first step, the Hamiltonian in the form of a
“generalized canonical quantity” (5.3), according to terminology from [7], and

just by using the definition of generalized momenta it becomes independent of
»)

, as they cannot be eliminated by their

the remaining highest derivatives q,(, , L.e.

8L m—
Pism; = -a-qﬁ;j = H = H(g 1),Ps/m,t)- (5.5)

3
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As the Jacobian (2.12) of the system of equations (5.1) has the rank R, from the
theorem of dependence of functions it follows, that there must exist N — R relations
among the generalized momenta p;/M; not containing the highest derivatives q(M")

which can be obtained in the following manner. Solving the subsystem formed by
the first R equations of the system (5.1) with respect to the variables qﬁM'), and
inserting the functions so obtained into the remaining ¥ — R equations of this

system, one finds

Po/M, =¢p(q/(=m-l):Pr/Mr-‘) (p=R+1,...,N). (5.6)

These relations do not contain the highest derivatives q,(,M’) , since in the opposite

case it would be possible to solve the system (5.1) with respect to more than R of

the derivatives qu‘). They can be expressed, also, in the form of following weak
equations

Q}(:())(q;(m_l)11’1'/1|l."t) = Po/Mm, — ¢ﬂ(Q£m—1)1pr/M..1t) =0

(5.7)
(p=p—R=1,2,..., P=N-R).

In addition to these constraints, in this case other constraints among the cano-
nical variables may also exist. For this reason, let us consider the complete set

of equations (2.7), where the higher order derivatives appear in the last terms as

qlEM;.+m—1)’ so that this system is of the form

. M, -
Pitm = fi,m(qk; gk, - - - »QE, Kt 1)’.‘)

(5.8)
G, k=12,... ,N; m=1,2,...,M).

The possibility of solving this set of equations with respect to the higher order
derivatives depends on the character of the corresponding Jacobian

-~

(5.9)

8pi/m ’
aqiMk'i"m-l)

If its rank is B > R, one may solve any K of the equations (5.8) with respect
to R variables q,(‘M""'""l) for k = 1,2,..., Ry and insert these functions into the
remaining equations. The result of this procedure is

Po/m = ¢p,m(q,£m -l)xpr/m‘)t)’ g (P =Ry+1,...,N; m= 1,2,... rMi); (5-10)

which can also be represented as

QP(Q:(m-l)spi/m:t) = Ppim — ¢P,M(QI(gm -1);pr/m’, t) ~0

(p=1,2,...,ﬁ=EﬁMP2P) (5.11)

The obtained relations among the canonical variables could be called generalized
primary constraints in Hamiltonian formalism, in analogy with the corresponding
constraints in Dirac’s theory. They include the relations (5.7), which are responsible
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for the direct transition to Hamiltonian formalism, and which will be further on
distinguished from the others by calling them fundamental primary constraints. It
could be remarked here, that the primary constraints other than the fundamental
ones are not even mentioned by the majority of authors. V. TAPIA [34] treats
them on equal footing with the fundamental ones, and SalTo, SUGANO, OHTA
and KIMURA [37] classify them as secondary constraints.

6. HAMILTON-DIRAC EQUATIONS
AND SECONDARY CONSTRAINTS

Let us formulate now the Hamilton-Dirac equations, pertaining to the case stu-
died, by generalization of the procedure given in [9]. To this aim, we replace q,(.M')
by (5.2) in the Hamiltonian (2.10) and, according to (5.7), put p,/ar, = ¥, + ‘DS))
(p = p— R). By separating the terms not containing the constraint functions Q,(,o),
the Hamiltonian can be written as

- - M, -1
H(Qim 1):Pi/m)t) = Hc(q;‘m U:Pi/m)t) + q}(?.+:+p)(bi(-"°)(%gm )1Pi/m’t) (6'1)
with
-1 -1
Hc(qgm )aPi/m: t) = Pi/mqggm) + Pr/M,‘Pr(Pr’/M,: ’ Q£m )) Q,(;M’),t)“‘“

+ 950V, pr s, g = L(g{™ ™D, g M), (M0 1),
The differentiation of the function H, with respect to canonical variables q§m'1)

and p;/,, bearing in mind that the dependence on these variables is both explicit
and implicit, via ¢, and ¥p, yields the following result

(6.2)

OH ay aL
E .("':1) = Pifm-1 +q‘(’M9)a .("'il) T g™V
% % % (6.3)
OHe _ om) ) O
OPifm P Opitm

Substituting here 6L/6q,-(m_1) for m = 1 from Lagrange equations (2.11) and for
m > 1 from recurence formula (2.8), and using the constraint functions (5.7) instead
of ¥,, one obtains

. ___OH. 28" m-vy _ OH. 83"
Pifm = aq‘(m—l) P aqgrn—‘l.)’ 4 - 8P5/m P 31-’:/1» ’ (6.4)
(i=12...,N;m=12,... , M;)
where (Mren)
p = —qMe) = —qp o (p=1,2,...,P). (6.5)
These equations can be written, more compactly, in the form of weak equations
. oK, e 8H
Pifm = : (m=1) oy 2 (6.6)

T ag™ Y’ & Opifm
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with the extended (total) Hamiltonian
Hy = H. +u,d". (6.7)

These are the Hamilton-Dirac equations for this type of the degenerate systems.
They represent a generalization of the corresponding equations for systems with the
Lagrangian of the first [2, 3] and the second order [34, 36]. These equations are
also in agreement with the results of the work [37], obtained for the Lagrangians
of arbitrary order, but given without any proof. Here, one has a total nu(mbe;'
m-1

of 2 Ef;l M; equations containing the same number of unknown functions g¢;

and p;/m. The second group of these equations reduces to identities for i=p>R
and m = M,, as H. does not depend on p,;»s, and 3@53)/811,,1“’ = §,,, and
each of these identities corresponds to one of the quantities p,/as, missing in the
Hamiltonian.

For any functions F of canonical variables qf"'
time derivative is

-, Pi/m and the time ¢, its total

dF BF .(m_

1) éF . 8F
— = " b —piym + = 6.8
dit 84;("'-1) q api,mp /m ot (6.8)
By substituting here q'f"'-‘) and p;/,, from the corresponding Hamilton-Dirac
equations (6.4), one obtains
dF o oF
= = B H] + wlF, (] + 5 (6.9)

~ where the generalized Poisson bracket is introduced by

def OF G aF aG

F,G] & - 6.10
[ ] 3q§m-1) aPi/m aPi/m 3q§m-1) ( )
and a more compact form of this equation is
dF 8F
< RIEHl+ 50 Hy=Hetupd). (6.11)

This is the corresponding general equation of motion for any dynamic variable,
which includes the Hamilton-Dirac equations, in agreement with the results of [38].

All the primary constraints (5.11), both fundamental and others, have to be
preserved in time, according to the so-called consistency condition. This condition
can be expresed, with the aid of the equation (6.9), in the form -

d®,,
dt

8%, ~
= [Qp’y Hc] + up[Qp‘, q,}(’O)] + -é-t?— =0, (p’ =12... ’P). (6_]_2)

This is a system of P equations, linear with respect to the constraint multipliers
up, although it may happen that some, or even all, of the coefficients [®,, Q,(,D) ] are
equal to zero. Consequently, if one excludes the possible inconsistent relations, this
procedure may result in: a) relations determining some of the constraint multipliers,
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b) new relations among the canonical variables, and c) identities, either directly or
based on the previous relations, much as with the Lagrangians of the usual type
3, 7).

The resulting new relations among the canonical variables, denoted by

XE})(q,gm—l),Pi/mst) z‘O (3' =12,... 151) (613)

can be called secondary constraints of the first order. Since they have to be
preserved in time as well, i.e. to be subject also to the comsistency condition,
this can give, among others, secondary constraints of the second order xf?,) =0
(s" = 1,2,...,5,). If this procedure of applying the consistency condition is
continued until, eventually, only identities are obtained, one may determine all the
secondary constraints in Hamiltonian formalism, which also have the character of

weak equations

-1 -~
X’(q'gm ))pi/m)t)z()’ (5=1121'-' )S=ZS|) (614)
The secondary constraints obtained in this manner are somewhat more general than
the ones derived by other authors, as they originate from applying the consistency
condition to all (not only fundamertal) primary constraints.

7. CONSISTENCY CONDITION
AND LAGRANGIAN CONSTRAINTS

By applying the consistency condition to the primary constraints, a relation
between them and the Lagrangian constraints can be established. Therefore, let
us find the first derivative with respect to time of any of the fundamental primary
constraints (5.7)

‘I@;(’) = aél(’O) ,:gm-l)_‘_ aQI(’O) P + aQS)) (7 1)
dt aqim-l)u' 3Pk/M,. kM o )

If these constraints are differentiated with respect to q,-('"-l) and the resulting
: (0) y5 (m-1)
expressions for 8, ' /8q;

5 are inserted into the above equation, one obtains

dq;’(,") - 6@,(,0) (3PI:IM» (m-1) _ - + aQ’(’O). (7.2)
di Opxjan, \ogi™ V"™ P o |

Substituting here p;/ar, from (2.7) and applying the relation (2.8) for m = M; — 1,

bearing also in mind that 8L/ aqiM") depends on time by way of all the variables

qi(m-l), one finds

d<I>,(,°)= a<I>£0)( 8L 4 8L LIS i)
dt Ok /m, aq,EM"'l) dt 6q,£M*) Pr/Mu-1 | T —5— 7.
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To elucidate the meaning of the coefficients appearing before the brackets, one
may differentiate the fundamental primary constraints with respect to q‘-(M)

88" Opep, _ 08"
O, 9g™  Oprym,

4 =0, (1.4)
By comparing with the relations (4.7), one concludes that

=1,2,...,P 75
k apk/M,. P ) ( )

and this establishes a relation between the coefficients considered and the constraint
functions. The derivative d<I>§,°) /dt thus becomes

(©) L A . 50  9p®
4% _ 5,(:)( d oL )+aq>,, 138 (1.6)

; ety = Pk/M -1 = )
at 8q0 1) dt 9y (M) /M at at
as the expression in brackets is zero, according to the definition (2.7) of the
generalized momenta. Furthermore, from the consistency condition d<I>§,°) /dt =0,
it follows directly that no such constraint can depend explicitly on time. ’

If this relation is again differentiated with respect to time, one finds

29 (P,( aL d 8L & 8L )
=% PR ) gD t g™ = Pi/My-2 ) R 0. (1.7)

The generalization of these results leads to the conclusion that the n-th derivative
of the fundamental primary constraint is of the form

ol o f 0L d oL
=GO s - g e Tt
. oLt ogM Y (7.8)
8L
+ (1) 7 ‘f;q-’(:g;’)' - Pk/M;,-n) 0.  (n<(Mi)min = Mo).

Those among these relations in which the highest derivatives q,(‘M“"'"') form >0
are missing, after the consistency condition is applied, can give certain relations
between the canonical variables. This can also be interpreted as an alternative
definition of the non-fundamental primary constraints, which in this approach
result here from the consistency condition, and coincide with the ones called in
[87] secondary constraints contained in the definition of generalized momenta.
Let us apply now this formula (7.8) to n = M; — 1, dividing it into the sums
witk k = i and k # 1, respectively. If the ensuing expression is differentiated with
respect to time, using again (2.8) and the Lagrange equations in the form (2.11),

one obtains I )
d4id ) 8L . :
dth = (-1)Mig® (0—q- - Pi/l) : (7.9)
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According to (2.11), the right-hand side of (7.9) represents a linear combination of
the Lagrange equations, with multipliers (7.5). Since we had demonstrated that
this procedure leads to the primary Lagrangian constraints (4.8), the preceding
relation reduces to
M;: (0

% ~ (DM P Al g, gD, ). (7.10)
From this result one can drawn the following conclusion: using the consistency
condition of the fundamental primary constraints in Hamiltonian formalism in
the form dM‘Q,(,O) JdtMi = 0, and substituting the generalized momenta by their
expressions, one obtains the primary Lagrangian constraints, which are equivalent
to the corresponding secondary constraints in Hamiltonian formalism. This is a ge-
neralization of the previously established relation between primary and Lagrangian
constraints in the cases where the Lagrangian is of the usual form (7, 13)] or contains
only second-order derivatives [36]. _

Finally, let us give a remark concerning the application of the consistency condi-
tion to other, non-fundamental primary constraints. Since they do not appear in the
Hamilton-Dirac equations (6.4), which are equivalent to the Lagrange equations,
the consistency condition applied to these constraints, in the general case, will not
yield the corresponding Lagrangian constraints.

8. FIRST AND SECOND CLASS CONSTRAINTS

Let us now show how one may apply here Dirac’s theory, based on the separation
of all the constraints into those of the first and the second class [2, 3]. Here we
shall extend the corresponding notions to the case where the Lagrangian depends on
derivatives of arbitrary order and on time explicitly. The separation of constraints
into primary and secondary ones is not essential for this analysis, so that all the
constraints (5.11) and (6.14) will be assembled and denoted by

0,a™ YV, pifm ) =0 (u=1,2,...,T=P+5) (8.1)

For the Lagrangians of the usual type, not depending on time explicitly, Dirac
defined the functions of the first class as the quantities satisfying, at least weakly,
the conditions

[F,0,]=0, (u=1,2,...,T); [FH]=~o0. (8.2)

The generalization of this definition to the case studied here most conveniently can
be achieved by transition to the so-called homogeneous formalism [45], in which
the time t is treated as a supplementary generalized coordinate qy4; = ¢, and
a new independent variable 7 is introduced putting ¢ = f(r). In this approach,
homogeneous Lagrangian and Hamiltonian of the system are given by

LY =t L(g,q/t,1), HY =t'(H 4+ pry1) = 0, (8.3)
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where the superscript + indicates the use of the formalism mentioned, and the
prime denotes differentiation with respect to the variable .

In the case studied presently, the functional form of the Lagrangian L% also
includes the higher-order derivatives. However, it can be seen that all the above
relations here remain valid, provided that py 4 is replaced by pyy1/1- Then, in
analogy with (8.2), a quantity F will be said to be a function of the first class if,
within the homogeneous formalism, it satisfies, at least weakly, the conditions

[F,e =0, (6=1,2,...,T); (FHI =0. (8.4)

In the opposite case it will be of the second class. Afterwards, one may return to the
standard, non-homogeneous formalism, by splitting the Poisson bracket [ ]* into
the usual one and a supplementary term, bearing in mind that 8/8py 411 = 8/9H..
In this manner, these conditions may be written as

(F,0,] + %%{—’% ~0, (FH]+ %((f II; )) 0, (8.5)

in accordance with the previously established result [46] for the Lagrangians of the
usual type. Hence, as the constraint functions do not depend on the Hamiltonian
H, explicitly, a constraint ©, = 0 will pertain to the first class if

ae~

[©4,04] =0, [©4, H

0. (8.6)

For this, it is sufficient that its generalized Poisson brackets with all the other
constraints are zero, the latter of the conditions is then identically satisfied owing
to the consistency condition d©,/dt = 0.

Using these notions, one may transform the general equation of motion (6.9) to
a more convenient form, in which only the functions of the first class will appear.
To show this, let us write out the consistency condition for all the constraints

do, 89, ~ =
- [@,,,Hc]+up[6,,,<1>(°)]+ =0, (u=12,...,T=P+5) (8.7)

which represents a system of equations determining the constraint multipliers u,.
Designating U, to be a particular solution of these equations, and letting V,,
(8 = 1,2,...,A) to be the complete set of independent particular solutions of
the corresponding homogeneous equations, the general solution will be

up =Up + 0.V, _ (8.8)
with arbitrary coefficients v,. If this expression is inserted into the general equation
of motion, it will yield

dF F

= [F,H' + v [F, 8] + 5 ‘ (8.9)

where
H =H +U,20, o0 =V,8D, (8.10)
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much as in the case of Lagrangians of the usual type {2].

To investigate the nature of these quantities, let us put ©, = <I>§,°) and u, = U
in the equation (8.7), multiply this relation subsequently by U, or V,,, and carry
out the summation over the index p, which gives

(0) (0}
v, (10, 1+ 232-) =0, ap(vb“’ff 2 )=o)

Using these auxiliary relations, it can be shown that the quantities 3 (a =
1,2,...,Ap) and H' are the functions of the first class, i.e. that they satisfy the
conditions (8.5). For example, if one forms the expression appearing in the left-hand
side of the second condition for the function H’, one obtains

8(H', H., 85"
[H',H] + _é(TF)—) xU, ([Q(" H)+— B ) 0, (8.12)

where the first auxiliary relation (8.11) was taken into account.

9. DETERMINATION OF THE CONSTRAINT MULTIPLIERS

All the constraints may be replaced by an equivalent set separable into the
ones of the first and second class and on this basis it is possible to transform
the corresponding equation of motion. If one takes the maximum number of linear
combinations of the primary constraints ®,, = V, ,®, =~ 0, belonging to the first
class, the remaining constraints, denoted by ®5, = 0 will be of the second class.
In a similar manner, by taking linear combinations of all primary and secondary
constraints, they can also be grouped into those of the first and second class, viz.
Xa, ® 0 and x5, = 0 respectively. This can be schematically represented by

O, = {(Pauxa,} = 0, ©p = {fonXp,} ~0
(a=1,2,... ,4; B=1,2,..., B=T-A).

Let us replace now the fundamental primary constraints by an equivalent set

(9.1)

<I>,(,°) =0 (a=1,2,...,Ap) and @go) =0(=12,...,P — A}), belonging to the
first and second class. Putting
upi>§,°) = v,@ﬁo) + v;,(I?ﬁo) (9.2)
into the general equation of motion (6.9), one obtains
p ;
82 o (7, H + vl F 80 + i, 2 + (9.3)

Then, the consistency condition, applied to so formulated ﬁrst and second class
constraints, assume the form

de as ae =0 (a=1 2,...,A)

di '

(9.4)
d@
—> =10 H c1+vz,{eﬁ,<1>‘°’1+ =0 (8=1,2,...,B)
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and this system is to be used to determine the constraint multipliers. All the
multipliers v, related to the fundamental primary constraints () 2z 0 disappeared
here, which means that they remain completely undetermined. Thus, the number
of the undetermined constraint multipliers coincides with that of the fundamental
primary constraints of the first class.

To determine the constraint multiplires v;, let us form the matrix

_ [ 126,%5] (P51, xp,)
b= ([Xﬁ,’Qﬁll [Xp,!Xﬁ;])

the elements of which are the Poisson brackets of all the constraint functions of the
second class and will be denoted by

Bppr =[0p,0p] (B=1,2,...,B) (9-6)

We can also introduce its inverse matrix D~ by.

(9.5)

. D.-Dl'=1] Aﬂﬂ'AEllﬁu = gpgn , (9.7)

which will exist only if the number of constraints of the second class is even, i.e.
of the form B = 2B, since otherwise the matrix D is singular. Multiplying the
second group of equations (9.4) by AE}B and summing them up subsequently with
respect to the index B, it follows (for #' =b < P — Ap)

00
v,-—Ab,,((eg, H]+ ") (6=1,2...,P—4.). (9.8)

The remaining equations, those for 8’ > P — A}, as well as the ones obtained by
multiplying the first group (9.4) with AE.lﬂ, in a similar manner yield

AE’}B ([eﬁ’ c] + a@ﬁ) =0 (P - A:) <p'< B). (9.9)

If we introduce the expression (9.8) for v, in the general equation of motion (9.3),
the result will be

dF F

= [F, H] + vo[F, 8] - A7} ([ep, Hl+ 2L 99 )[m‘”)] +% w1

This equation can be written also in an alternative form, if the relation (9.9) is
multiplied by [F, ©g/], summed with respect to f’ for f' > P — Aj, and the ensuing
expression is added to the right-hand side of (9.10)

aF
at

= [F, B + 0, [P30) - A3 ([9/3, am “’eﬁ)[F opl+ 5. (o)

The general equation of motion, obtained by this procedure, has the same form as
in the case of the usual Lagrangian {13]. However, only fundamental (and not all)
primary constraints of the first class appear here, while all the constraints of the
second class are present.
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Let us remark, that this asymmetry can be removed, as in the usual case [9], if
one introduces all the constraints, primary and secondary, into the extended (total)
Hamiltonian. In this case the number of determined constraint multipliers would
remain the same, but these Hamilton-Dirac equations would not be equivalent to
the Lagrange equations, in agreement with the results of the authors of {47, 48] on
their non-equivalence already being in the case of effective Hamiltonian. '

10. GENERALIZED DIRAC BRACKET

The form of the transformed general equation of motion (9.11) suggests the
introduction of the following expression

[F1 G]‘ = [Fl G] - [F, eﬂ]AEﬁl' [eﬁ'i G] ' (10'1)

in analogy with the generalized Poisson bracket introduced by Dirac {2, 3] for
the usual degenerate systems. The above expression may, hence, be called the
generalized Dirac bracket for the quantities F' and G. Using this notion, the general
equation of motion takes a compact form

904

dF
=4 = [FHL + vlF, 90 - [F, 05855, =, (10.2)
where the influence of the constraints of the second class is expressed here by way
of this bracket.

From the structure of both generalized Poisson and generalized Dirac bracket it
follows that they are analogous to the corresponding brackets in the usual case,
provided that the canonical variables ¢; and p; are replaced by qg""l) and p;/pm,
and the summation over 1 is extended to embrace both indices i and m. Hence, it
can be inferred that the generalized Dirac bracket has the same properties as the
Poisson and Dirac bracket. The structure of the Dirac bracket was studied in detail
by SUDARSHAN and MUKUNDA [8, 9], and all the results obtained by these authors
remain here valid. .

In the case of Lagrangians of the usual form, it is known that the Dirac bracket
is equivalent to the “truncated” Poisson bracket, in which the summation with
respect to the index 7 is taken from 1 to Ny = N —~ By, where B; is one half of
the number of the second class constraints. This property can be extended to the
generalized Dirac bracket, utilizing the quoted correspondence, i.e. explicitly

N-Bq M;
OF oG oF G
F,G]" = ( - ) 10.3
I ) B

i=1 m==1

This is equivalent to the replacement of the complete set of canonical variables by
the “truncated” one, non containing the canonical variables which can be eliminated
by the constraints of the second class.

It is easily verified, by direct evaluation, that certain relations expressible with
the aid of the Dirac brackets here remain valid, in the same form as with the usual
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Lagrangians. Thus, for example, for any function F of the canonical variables and
any constraint function of the second class one has

[F,©p4]" = [F,Op4] — [F,0p]A55, App0 = 0. (10.4)

An analogous result is arrieved at if the generalized Poisson bracket is taken instead
of the Dirac’s one used above, provided that F' is replaced by

F*=F - [F,64]A550p, . (10.5)
whereby the following weak equation is obtained

[F*,©p0] = [F,0p:] ~ [F,©5]A75.Ap:pn 0. (10.6)

11. MEANING OF CONSTRAINTS OF THE FIRST CLASS

Let us show that the constraints of the first class here have the same meaning
as in the case of Lagrangians of the usual type [4]. To this aim, let us consider a
infinitesimal canonical transformation, the generating function of which is [25]

G2(q1§m-1)1pi/rn!t) = ‘Lgm—l)l’i/m + EGO(Qi(m-I);Pi/mxi) ' (111)

where G represents the so-called generator of this transformation, and the trans-
formation itself is determined by the relations

(m=1) _ 3G, per = — 9G,
6q: = Eapi/m ; Pi/m e——"aqgm_l) . . (11.2)

Then, the variation of any fuction of the canonical variables will be given in the
first approximation by

SFEF —F=¢[F,Gy. (11.3)

To determine the elementary change of any function F' in the transition from
arbitrary coefficients v, to other ones v/, let us find the value of this function for
t = §t. Expanding it into the Taylor series and substituting d F/dt from the general
equation of motion (9.11), it follows

F,.(8t) = F.,(0) + &{ [F, B + valF, @]~
(11.4)
80 oF
- JAzk 6 L &
[F,©p]Agp ((eﬂ:Hc]"‘ 5t )+ e }t=
If the same relation is written out for some other set v/, of these arbitrary coeffi-
cients, the substraction of these two relations gives

6F =€Q[F)®l(10)]) (115)

where
: €a = 6t(v4(0) = v(0)). (11.6)
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From this we can conclude that, in the generalized mechanics, one obtains
formally the same results as in Dirac’s theory with the Lagrangians of the usual
type. Hence, the above result can also be interpreted in the same manner, with
the aim to preserve the validity of the causality principle. Accordingly, it will
be taken that the values of F' corresponding to various values of the arbitrary
coeflicients v, (6 = 1,2,...,Af) pertain to the same physical state of the system.
By comparison with (11.3) one concludes, then, that the first-class functions 3
of the fundamental primary constraints are the generaiors of the infinitesimal
canonical transformations which leave the physical state of the system unchanged.

12. AN EXAMPLE

To illustrate the results obtained, let us consider a comparatively simple example
with the Lagrangian

L=13+qq+Q-a)nd+38(a ~ o), (12.1)

which differs from the one studied in the SUNDERMEYER’s monograph {13] only
by the fact that both first derivatives are replaced by the second ones. Although
this Lagrangian does not have direct physical sense, same like the example in the
cited monograph, because all the known physical systems of this type belong to
the classical fields, by this example we would like to point the similarities and
distinctions in comparison with the case of degenerate systems of habitual form.
The Hessian matrix and the Hessian itself are now given by

1 0 10

— ,-—
W“W"(o 0 00

), A=A"=

l =0 (12.2)

and the system considered is degenerate with the rank R = R’ = 1. Among the

columns of this matrix there is exactly one linear dependence of the type (4.7),

from where one gets the coefficients f?’ )

0. (é) +1- (g) —0 = ¢ ={0,1}. (12.3)

The corresponding Lagrange equations (2.3} for the generalized coordinates g, and
g2 in this case have the form

G+ 2-a)g+8(n—g)=0

(2~ o)1 — Bler —q2) = 0.

Since P = 1, there exists only one linear combination (4.8) of the Lagrange
equations which is of lower order and this Lagrangian constraint coincides here

with the second of these Lagrange equations.
The corresponding generalized momenta (2.7) for m =1 and M = 2 are

8L d 8L {—'d}—qz fori=1
Pin=gr— 52— = : .
(a—1)¢y fori=2

(12.4)

(12.5)
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and for m =2

8L a+ fori=1
{ LT ' (12.6)

Pip =g =
T 56 (1 —a)g; fori=2.

This system of equations cannot be solved completely with respect to all higher

derivatives §; and q; (k = 1,2), what originates from the last subsystem for m = 2.
Consequently, from (12.6) immediately follows one fundamental primary constraint

Q -1
2 (g™ ) pijagint) = P2 —(l—a)g =0 (12.7)

and (12.5) gives another primary constraint

82(¢"™ ), pifmrt) = P21 — (@ — 1)1 & 0. (12.8)

The corresponding Hamiltonian (2.10) can be found, eliminating §, from the first
of equations (12.5) and applying the definition of py/,, whereby ¢, disappears too.
In this manner one obtains )

Hc(Qi(m-l)lpi/m;i) =pi/m9§”|) ~L=

. . (12.9)
= pijdr + 3(P1ya — ©2)* + pajrde — 38(01 — 02)°
and the “total” Hamiltonian (6.7) will be
Hy = He + wfpays — (1 — o)1} (12.10)

Let us apply now the consistency condition to fundamental primary constraint
(12.7) and to its time derivative. The former of these conditions gives

43!
dt
and this equation coincides with the non-fundamental primary constraint (12.8),

in accordance with [37]. Using this fact, the letter of the consistency conditions
becomes

= (8, Hy) = (¢ = 1)d1 — paj1 = 0 (12.11)

d2<p(°) .
= B, Byl = (@ = D(py/2 = ) + Ala — @) = 0, (12.12)
whence one obtains the corresponding secondary constraint
X1 (@7 Y, Pim 1) = (@ = 2)(pryz — 92) + Blq1 — g2) = 0. (12.13)

This result is in full agreément with our conclusion from (7.10), so that the
consistency condition d’@&o) /dt? = 0, after putting pyj2 = §1 + ¢z, yields the
Lagrangian constraint (12.4b), which is equivalent to the secondary constraint

(12.13).
The consistency condition applied to the other primary constraint (12.8) here
also results in so obtained secondary constraint

23

o~ (@2, Bl = (2~ o)(pry2 —92) - Blor — ) = 0, (12.14)
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which can be explained in the following manner. In this case, by application of this
condition, one obtained a linear combination of the Lagrange equations with the
coefficients equal to 5?’ ) (which is not valid in the general case) and therefore it
coincides with the corresponding secondary constraint., Applying the consistency
condition to the secondary constraint, it follows

d . .
[y, Hy) = i + (@ + B = Dip — (2 = a)papy =0 (12.15)
and that is a new secondary constraint
Xz(‘Iim_l):Pi/mst) = _ﬂdl + (a + ﬂ - 2)42 - (2 - a)plll =0, (12'16)

which, subjected to the consistency condition, in its turn gives

%2 o g, Bl = ~(= D3, ~(rja =)+ o=2) [ (o=2)?] = 0. (12.17)

Specially, if § = (a — 2)?, the last term cancels out and, bearing in mind that
X, = 0, from here follows a new secondary constraint

%@, Bijm ) = 0173 — g2 2 0. (12.18)

To examine the character of these constraints, ie. to establish whether they
pertain to the first or to the second class, let us form their Poisson brackets. For
the primary and the first two of the secondary constraints one thus obtains

[@&0)’ Qz] =0, [ng): X1] =9, [Qi) X‘] = (a - 2)2 - 13 (1219)
as well as
@, x5]l=(@=-2°-8  [@x)=0 [x, x]=-20(a-2). (12.20)

If the constraint x, = 0 is also present, its Poisson brackets with the others will be

[Q?): Xa] =10, [‘1’2, X3] =2-aq, [Xp X3] =0, [le X3] =—p. (12.21)

Summarizing all these results, three cases are to be distinguished here, according

to the values of the parameters & and 8. For @« =2 and # = 0 one has d2‘1>§°) /di? =
0, so that no secondary constraints are obtained, i.e. there exist only two primary
constraints, and both pertain to the first class. For 8 = (a — 2)? all the five

constraints are present, with only ng) = 0 belonging to the first class, and all
the others pertaining to the second class. For 8 # (a — 2)? only the first four
constraints are present, and they all belong to the second class. The constraint
multipliers pertaining to the fundamental primary constraints of the first class
remain completely arbitrary functions of time (the first two cases), whereas those
corresponding to the constraints of the second class are fully determined.

Finally, let us discuss what would be changed in these results by including not
only the fundamental, but all the primary constraints into the total Hamiltonian
(as in the papers of V. TAPIA [34] and of BARCELOT-NETO and BrAGA [41].
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Repea.tirfg the same procedure as ?,bove, w'ith HT.= H, +u1<I>§°) + 4B, instead of
H,, one infers that the corresponding Hamilton-Dirac equations in this case are not
any more equivalent to the Lagrange equations, except for a trivial value uy = 0,
and the number as well as the character of the constraints are partially altered.
Namely, in the first two cases all the quoted conclusions remain unaltered, but in
the case B # (a — 2)? the second and the third of the secondary constraints will be

absent, and within the remaining constraints the fundamental primary one <I>(1°) ~0
now will be of the first class.
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RESUME

Dans cet article on a étudié les systémes dégénerés avec une lagrangienne qui
dépend de dérivées d’ordre quelconque par rapport au temps et explicitement de
temps lui-méme. Ici on a supposé qu’en général l'ordre le plus haut de cettes
dérivées est différent pour les diverses coordonnées géméralisées. D’abord, les
équivalentes lagrangiennes dans cette mécanique généralisée sont discutées et on a
montré comment pour tels systémes on peut développer le formalisme de Lagrange
et obtenir les liaisons lagrangiennes associées. Ensuite, on a donné le formalisme
d’Hamilton correspondant, basé sur la théorie de Dirac pour les systémes dégénerés
de la forme habituelle.

De cette fagon, on a obtenu deux types de liaisons primaires, dont seulement
un type participe dans les équations du mouvement, les équations généralisées
d’Hamilton-Dirac et les liaisons secondaires correspondantes, et une relation
générale entre les liaisons primaires et les liaisons lagrangiennes. De méme, on
a réalisé la séparation de toutes cettes liaisons aux liaisons de premiére et de
seconde classe, en généralisant la définition de Dirac de cettes notions. A cette
base, on a introduit les crochets généralisés de Dirac et on a donné le sens de
liaisons spécifiques de premiére classe. A la fin, les résultats obtenus sont illustrés
par un exemple simple, mais caractéristique.

REZIME

U ovom radu prougavani su degenerisani sistemi sa lagraniijanom keji zavisi
od vremenskih izvoda proizvolinog reda i eksplicitno od vremena. Pri tome je
pretpostavljeno da je red ovih najvisih izvoda u opitem slutaju razlicit za razne
generalisane koordinate. Prvo su analizirani ekvivalentni lagranzijani u ovoj gene-
ralisanoj mehanici i pokazano je kako se za ovakve sisteme moze razviti Lagraniev
formalizam i iz toga dobiti pridruiene Lagranieve veze. Potom je dat odgovarajuéi
Hamiltonov formalizam, zasnovan na Dirakovoj teoriji za degenerisane sisteme
uobiajenog vida.

Na taj naéin, dobijena su dva tipa primarnih veza, od kojih samo jedan ugestvuje
u jednadinama kretanja, uopstene Hamilton-Dirakove jednaiine i odgovarajule
sekundarne veze i jedna opsta relacija izmedu primarnih i Lagranievih veza.
Sem toga, postignuto je i razdvajanje svih ovakvih veza na veze prve i druge
klase, uopstavajuéi Dirakovu definiciju ovih pojmova. Na toj osnovi uvedene su
i generalisane Dirakove zagrade i dat je smisao specifiénih veza prve klase. Na
kraju, dobijeni rezultati su ilustrovani na jednom prostom, ali karakteristi¢nom
primeru.
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