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Throughout history there were always links between geometry 
and the art of painting. These links become especially evident 
when in the study of ornamental art we apply the th eo ry of 
symmetry. Therefore, ornamental art is called by H.Weyl [38] the 
"oldest aspect of higher mathematics given in an implicit form" 
and by A.Speiser the "prehistory of group theory".

The idea to study ornaments of different cultures from the 
point of view of the theory of symmetry, given by G.Pblya [28] 
and A.Speiser [34], and supported by the intensive development of 
the theory of symmetry in the 20th century, caused the appearance 
of a whole series of works dedicated mostly to the ornamental art 
of ancient civilizations, to the cultures which contributed the 
most to the development of ornamental art (Egyptian, Arab, 
M o o r i s h , . . . )  [ 2 , 1 4 , 1 6 , 1 7 , 2 6 ]  or to the o r n a m e n t a l  ar t of 
primitive peoples [9,10]. Only in more recent works, research has 
turned to the very roots, the origins of ornamental art: to the 
o r n a m e n t a l  ar t of the P a l e o l i t h i c  and N e o l i t h i c  [22]. The 
extensions of the classical theory of symmetry—  the antisymmetry 
and colored symmetry made possible the more profound analysis of 
the "black-white" [19,20] and colored ornamental motifs in the 
ornamental art of the Neolithic and ancient civilizations.

This work gives the- results of a s y m m e t r y  anal ys is of 
Paleolithic and Neolithic ornamental art. It is dedicated to the 
search for "ornamental archetypes"—  the universal basis of 
complete ornamental art. The de ve lo pm en t of ornamental art 
started together with the beginnings of mankind and represents 
one of the oldest records of human attempts to note, understand 
and express regularity—  the underlying basis of every scientific 
knowledge.

The final conclusion of this work is that most of the 
ornamental motifs which have been discussed from the standpoint 
of the theory of symmetry are of a much earlier date than we can 
expect. This places the beginning of ornamental art, the oldest 
aspect of geometric cognition, back to several thousands years 
before the ancient civilizations, i.e. in the Paleolithic and 
Neolithic.

S i n c e  o r n a m e n t a l  art is m o s t l y  l i m i t e d  to the two- 
dimensional plane presentation of ornamental motifs, the subject



of this art from the point of view of the theory of symmetry is 
given by the plane symmetry groups: the s y m m e t r y  groups of 
rosettes, friezes and ornaments. The discrete groups of symmetry 
of rosettes consists of two infinite classes of symmetry groups: 
cyclic groups Cn generated by the rotation of order n (neW) and 
dihedral groups Dn generated by two reflections, the reflection 
lines of which cross in the invariant point, center of rotation 
of order n. Seven discrete groups of symmetry of friezes can be 
denoted by symbols: p11, pig, p12, pm 1, p1m, pmg and pmm where 
the symbol p denotes a translation, g a glide reflection, m a 
reflection and n (n=1,2) a rotation of order n (n=1,2). All this 
symbols are treated in the coordinate sense, so that on the first 
position is the translation symbol p, the elements of symmetry on 
the second position are perpendicular to the translation axis, 
and the elements of symmetry on the third position are parallel 
with the translation axis (Figure 1).
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Figure 1. Tables of the graphic symbols of symmetry elements of 
(a) rosettes; (b) seven discrete symmetry groups of the friezes.

A n a l o g o u s l y ,  w i t h  the s y m b o l s  of s y m m e t r y  g r o u p s  of 
ornaments the symbol p denotes a tw o- di me ns io na l t r a n sl at io n 
subgroup, while the symbols m, g, n (n=2,3,4,6) have respectively 
the same meanings as in the case of symmetry groups of friezes



(Figure 2). When we talk about the continuous groups of symmetry 
of friezes, the presence of a continuous translation is denoted 
by a s u b s c r i p t  0, w h i l e  w i t h  the a n t i s y m m e t r y  groups, 
anti generators are denoted by Antisymmetry groups are denoted 
also by the group/subgroup symbols G/H [31].

By the term "pre-scientific period" we un de rs ta nd the 
Paleolithic and Neolithic epochs, covering the period from the 
end of the Quaternary epoch (around 1200Q-10000 B.C.) till the 
end of the IV millennium B.C., when we have signs of the first 
alphabet.

p1 p2 pm pg cm Pmm

p4g P3 p31m p3mi p6 p6m

Figure 2. Table of the graphic symbols of symmetry elements of 
the seventeen discrete groups of symmetry of ornaments.

In the absence of written sources, the study of geometry of 
the prehistoric period is based on the analyses of artifacts, 
which offer information on geometric knowledge in an implicit 
form. Among the artifacts mentioned we distinguish: ornamental 
motifs realized in the form of bone engravings, carvings and 
drawings on stone from the Paleolithic and Neolithic, ornamental 
motifs in ceramics obtained in the Neolithic phase by engraving, 
pressing, drawing or coloring, as well as architectural objects 
and constructions from the Neolithic period, so called megalithic 
monuments.
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Figure 3. (a) Seventeen "black-white" antisymmetry groups of 
friezes; (b) visually presentable continuous groups of symmetry 
of friezes pom1 and pomm.



Shubnikov’s notation by n and nm respectively.

The c o n t i n u o u s  s y m m e t r y  gr ou p of r o s e t t e s  D- (®m) 
corresponds to the maximal symmetric rosette - the circle. Due to 
the maximal visual and constructional si mp li ci ty and maximal 
symmetry, the circle represents a primary geometric shape, a 
geometric archetype. Within ornamental art it appears in the 
Paleolithic, as an independent rosette or in combination with 
some concentric rosette of a lower degree of symmetry, usually 
circumscribed or inscribed in a circle. Since the group D» (®m) 
c o n t a i n s  all the o t h e r  g r o u p s  of s y m m e t r y  of r o s e t t e s  as 
subgroups, rosettes of a lower degree of symmetry are often 
derived by the desymmet.rization of a circle. Owing to its visual- 
geometric properties: completeness, compactness, boundedness and 
uniformity of its structural segments, the circle may serve as a 
universal symbol of completeness and perfection. At the very 
beginnings of ornamental art the circle becomes the symbol of the 
Sun, remaining that throughout history (Figure 4).

Figure 4. Variations of the Sun symbol in the ornamental art of 
the Paleolithic and Neolithic.

The continuous symmetry group of rosettes C« (=>), the 
continuous group of rotation, a physical interpretation of which 
could be a circle uniformly rotating around the center, is 
visually interpretable exclusively by the use of textures [32]: 
by applying the same asymmetric figures statistically distributed 
in accordance with the desired symmetry Cm (®),

The spiral, one of the oldest dynamic visual symbols which 
in the visual sense suggests the rotational motion around the 
i n v a r i a n t  p o i n t  c o u l d  be a c c e p t e d  as an a d e q u a t e  s y m b o l i c  
interpretation of this continuous symmetry group. In ornamental



art, the spiral appeared already in the 
independent ornamental motif or in the form 
motif with symmetry group Cz (2) generated

P a l e o l i t h i c  as an 
of a double spiral, a 
by two-fold rotation

(Figure 5).

Figure 5. Spiral ornamental motifs (Paleolithic, the 
Hagdalenian, about 10000 B.C.) from: (a) Arudy; (b) Isturiz;
(c) Maljta (USSR).

Among the elementary geometric forms we have the line 
segment, usually placed in accordance with the b a si c natural 
directions, vertical and horizontal line. To a line se gm en t 
c o r r e s p o n d s  the s y m m e t r y  g r o u p  Dz (2m), g e n e r a t e d  by two 
reflections: one with the reflection line perpendicular and the
other with the reflection line col linear to the line segment. 
However, from the point of view of visual perception, due to the 
action of the visual and gravitational dominant -  the vertical 
line, we experience the symmetry of the line s e g m e n t  as the 
Di (m). In this case, the horizontal reflection is neglected. The 
combination of the vertical and horizontal line segment results 
in the cross form with symmetry group Di (m), Dz (2m) or D« (4m). 
The rosettes with symmetry Dz (2m) and D< (4m) possess another 
fundamental property: the existence of perpendicular, vertical
and horizontal reflection lines. The form of cross with symmetry 
group D* (4m) is often subjectively, vi su al ly p e r c e i v e d  as 
symmetry Dz (2m), neglecting the presence of four-fold rotation.

Static rosettes with symmetry group Di (m) or Dz (2m) are 
linked to the plane symmetry of man, its vertical attitude and 
perpendicu1arity to the base. Besides the rational mi rr or 
symmetry, which originated from motifs in nature, we have in the 
ornamental art the different aspects of symbolic symmetry Di (m): 
the duplicated figures, two-headed animals, etc. These examples 
result mostly from the often use of the vertical mirror symmetry 
as a visual dominant (Figure 6).
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Figure 6. Examples of rosettes with symmetry group Di (m) and 
Dz (2m) in the ornamental art of the Paleolithic and Neolithic: 
(a) Di (m), Paleolithic, El Pendo; (b) Di (m), Paleolithic of 
France and Spain; (c) stylizations of a face motif, Di (m); (d) 
derivation of the rosettes with symmetry group Dz (2m) by the 
superposition of rosettes with symmetry group Di (m), 
Paleolithic of France; (e) stylizations of a human figure, 
Di (m), Paleolithic and Neolithic of Italy and Spain; (f) the 
two-headed winged lion, Tell Hallaf, about 5000 B.C.



In Paleolithic ornamental art we have also the rosettes 
with the symmetry group Dn (nm): D3 (3m), D4 (4m) and De (6m), as 
well as the corresponding regular polygons: equilateral triangle, 
square and regular hexagon (Figure 7). Although with rosettes the 
principle of crystallographic restriction (n=1,2,3,4,6) is not 
respected, prevailing are the rosettes with the symmetry group 
Dn (nm) for these values of n. In a later stage, the Neolithic 
(Figure 8), we have also the rosettes with the symmetry group 
D5 (5m) with the use of regular pentagon and pentagramme. The 
first appearance of pentagramme is dated by H .S .M .Coxeter 
[7, pp. 8] in the VII century B.C. The visual characteristics of 
r o s e t t e s  w i t h  s y m m e t r y  g r o u p  Dn (nm) are s t a b i l i t y ,  
stationariness and absence of enantiomorphism. Enantiomorphism, 
the existence of a "right" and "left" modification of the same 
figure, appears with all figures p o ss es si ng a s y m m e t r y  group 
which does not contain indirect symmetry transformations.

Figure 7. Examples of rosettes with symmetry group Cn (n) and 
Dn (nm) in the ornamental art of the Paleolithic: (a) Castllo, 
Da (m); (b) Paleolithic of France, D* (4m); (c) Laugerie Basse, 
C2 (2); (d) Maz d’ azil, Da (2m) and D« (4m).



Figure 8. Examples of rosettes with symmetry group Co (n) and 
Dn (nm) in the ornamental art of the Neolithic: (a) Susa, 
Hacilar, Catal Hujuk, Tell Hallaf, Eridu culture, about 6000-4500 
B.C. (7500-5000 B.C.?); (b) Susa, Ce (6), about 5500-5000 B.C.; 
(c) Samara, D4 (4m); (d) Samara, Ce (4); (e) Samara, Ce (6), (f) 
Samara, the superposition of concentric rosettes with symmetry 
groups Cs (5) and Ce (4); (g) Susa, D* (4m).

In contradistinction to the static rosettes with symmetry 
group Dn (nm), the rosettes with sy mm et ry group Cn (n) (e.g. 
triquetra with symmetry group C 3 (3), s w a s t i k a  with symmetry



group C4 (4)) are visually dynamic rosettes with the possibility 
of construction of enantiomorphic modifications, which suggests 
the impression of rotational motion (Figure 7,8,9,10).

Figure 9. Examples of rosettes with symmetry group Cn (n) and 
Dn (nm) in Neolithic ceramics: (a) Aznabegovo-Vrshnik,
Yugoslavia, D4 (4m), about 5000 B.C.; (b) Samara, C4 (4), about 
5500-5000 B.C.

In the next stage of the development of ornamental art, i.e. 
in the Neolithic, after understanding the symmetry regularities 
on which the symmetry of rosettes is based and solving their 
elementary geometric constructions, the diversity of rosettes 
increases. This is followed by the application of plant and 
zoomorphic motifs and by varying the form of the fundamental 
region. Also, the superpositions of concentric rosettes which 
bring in a desymmetri zation —  a reduction to a lower degree of 
symmetry —  are very common (Figure 8f, 10).

In the Neolithic, with two-colored ceramics, we have the 
antisymmetry "black-white" rosettes (Figure 11). In this case, 
the a n t i s y m m e t r y  can be t r e a t e d  e i t h e r  as the m o d e  of 
desymmetrization for obtaining the subgroups of index 2 of a 
given symmetry group or as an independent form of symmetry. In 
the table of antisymmetry groups every group is de noted by 
the group/subgroup symbol G/H [31] and followed by a system of 
(anti)generators. The factor-group G/H is isomorphic to a cyclic 
group of order 2, the group of color change ,'black"-"white".

Table of antisymmetry groups of rosettes:

D2n/Dn ( 2 nm/nm) ( 2 n ) ’ m
Dn/Cn ( n m /n )  nm’
Cz n / Cn ( 2 n / n ) ( 2 n ) ’



Figure 11. Neolithic antisymmetry rosettes: (a) Near East, Ca/CU; 
(b) Dimini, Greece, C4/C2; (c) Danilo, Yugoslavia, D4/D2; (d)
Near East, D8/D3; (e) Near East, D4/C4; (f) Near East, D4/C4;
(g), (h) Hadji Mohamad, Da/Ca, around 5000 B.C.



In the case of antisymmetry groups, there is a possibility 
for i n t e r p r e t i n g  the c o l o r  c h a n g e  ’’ b 1 ac k " - " wh iite " as the 
alternating change of some physical or g e o m e t r i c  bi valent 
property. In ornamental art color change mentioned introduces a 
space component, a suggestion of relations in front — behind , 
"up"-"down", ”above"-"below". From the artistic point of view, it 
introduces the contrast between repeating congruent figures and 
specific equivalence of the "figure" and b a ck gr ou nd thus 
e x p r e s s i n g  in a s y m b o l i c a l  s e n s e  the d y n a m i c  c o n f l i c t  and 
duality.

In ornamental art the use of color in the sense of regular 
coloring, that means antisymmetry and co lo re d symmetry, was 
opened a large unexplored field. Hence, in the hi story of 
ornamental art, we can consider the Ne ol i t h i c  as its peak, a 
period in which after the basic technical and co ns tr uc ti on al 
problems were solved, new possibilities for artistic research, 
imagination, variety of motifs and decorativeness, were opened.

In the late Paleolithic ( H a g d a l e n i a n , about 1200 0- 10 00 0 
B.C.) we find the oldest examples of the sy mm et ry groups of 
friezes, plane symmetry groups without invariant points and with 
invariant line. We have the examples of all the seven symmetry 
groups of friezes: p11, pig, p12, pm 1, p1m, pmg, pmm as well as 
two visually presentable continuous symmetry groups of friezes 
p0m1 and p0mm.

Friezes are usually obtained by appl yi ng the rosettal 
method of construction: translational m u l t i p l i c a t i o n  of an 
initial motif -  a rosette, the sy mmetry of which di re ct ly 
conditions the symmetry of the frieze obtained. The other origin 
of the friezes are models found in nature which, by itself, 
possess the symmetry of a frieze (Figure 12).

The way friezes are derived after models found in nature, is 
illustrated by examples: a herd of deer reduced to the frieze 
with symmetry group p11, the motif of cult—dance rendering the 
frieze with the symmetry group pm1. Friezes with symmetry group 
p12 and pmg can be considered as stylized waves. Models in nature 
with symmetry group pig and p1m are found with the distribution 
of leaves of certain plants; they have served as the pretext for 
the construction of corresponding friezes in ornamental art. The 
importance of the plane symmetry in nature and the number of 
rosettes with the symmetry group Di (m) and Dz (2m) caused the 
appearance and frequent occurrence of friezes with symmetry group 
pmm. T h e s e  f r i e z e s  can be d e r i v e d  by a t r a n s l a t i o n a l  
multiplication of rosette with the symmetry group D2 (2m), where 
the translation axis is parallel with one reflection line of the 
rosette. The symmetry group of fr iezes pmm is the maximal 
d i s c r e t e  g r o u p  of s y m m e t r y  of the f r i e z e s ,  g e n e r a t e d  by 
r e f l e c t i o n s .  All the o t h e r  s y m m e t r y  g r o u p s  of f r i e z e s  are 
subgroups of the group pmm. Hence, the group pmm can serve for 
d e r i v a t i o n  of all the s y m m e t r y  g r o u p s  of f r i e z e s  by 
desymmetrization. Examples of all the seven discrete symmetry 
groups are found in Paleolithic ornamental art (Figure 13).



Besides friezes with a concrete meaning, which are based 
on material models found in nature, the appearance of certain

pmg
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Figure 13. Examples of all the seven symmetry groups of friezes 
in the ornamental art of the Paleolithic.



friezes is caused also by the periodic change of many natural 
phenomena (the change of day and night, seasons, the tides, 
phases of the Moon...) so that friezes represent, at the same 
time, the oldest attempts to register the periodical change of 
natural phenomena, i.e. the first forms of ca lendars. These 
friezes can also be understood as ways of registering quantities, 
serving as tally boards, and thus indicating the beginnings of 
c o u n t i n g  and n o t i f y i n g  the r e s u l t s  of c o u n t i n g ,  i.e. the 
appearance of the set of natural numbers.

Thanks to their symbolic meaning, certain "geometric" 
friezes became a means of visual communication. This is proved by 
the preserved names of friezes in the ornamental art of primitive 
peoples. This communication role of friezes, established in the 
Paleolithic, was partly preserved in the Neolithic. With the 
development of other communication forms, fr ie ze s lost their 
primary symbolic function which was partly or completely replaced 
by their decorative function. The beginning of this process can 
be registered already in Neolithic ornamental art (Figure 14).

The polarity, non-polarity and bipolarity of the translation 
axis of the friezes, the presence or absence of enantiomorphism, 
the presence or absence of the indirect symmetries within the 
frieze symmetry group [22], represent some of the relevant 
geometric properties which, in the same time, define the visual 
characteristics of the friezes, thus co n d i t i o n i n g  also the 
spectrum of symbolic meanings which friezes with the certain 
symmetry groups possess.

With regard to the frequency of occurrence, besides friezes 
o r i g i n a t i n g  d i r e c t l y  f r o m  m o d e l s  fo un d in n a t u r e ,  in the 
ornamental art of the pre-scientific period, fr ie ze s which 
satisfy the criterion of visual entropy [22]: maximal visual and 
constructional simplicity and maximal symmetry, are dominant.

The oldest examples of antisymmetry friezes, so called 
"black-white" friezes, date back to the Neolithic epoch, in which 
we have the examples of most of the 17 antisymmetry groups of 
friezes. Further investigations should show whether or not in 
this period there existed examples of all the 17 antisymmetry 
groups of friezes. With regard to the frequency of occurrence, 
the most numerous are "black-white" friezes de ri ve d from the 
s y m m e t r y  g r o u p s  of m o s t  f r e q u e n t  f r i e z e s  by the use of 
antisymmetry desymmetrization method (Figure 14).

The frequency of occurrence of antisymmetry friezes depends 
also on the antisymmetry properties. Therefore, more frequent are 
antisymmetry friezes with oppositely colored adjacent fundamental 
regions. A domination of the "geometric" antisymmetry friezes 
over antisymmetry friezes inspired by models found in nature is 
also evident, due to the absence of antisymmetry in nature among 
models from plant and animal life. In contradistinction to this, 
many natural alternating phenomena followed by bivalent changes 
(e.g. the change of day and night, etc.) are re pr e s e n t e d  by 
antisymmetry friezes, already in Neolithic ornamental art.
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Figure 15. Examples of 14 antisymmetry groups of friezes in 
Neolithic ornamental art: (a) Greece, p11/p11, about 3000 B.C.; 
(b) Greece, p12/p12; (c) Near East, p12/p11, about 5000 B.C.; 
(d) Near East, p1m/p1m, about 5000 B.C.; (e) Near East, p1m/p11; 
(f) Anadolia, p1m/p1g, around 5000 B.C.; (g) Near East, pm1/pm1; 
(h) Near East, pra1/p11; (i) Greece, pmg/pm1; (j) Near East, 
pmg/p1g, about 5000 B.C.; (k) Anadolia, pmg/p12; (1) Tell el 
Hallaf, pmm/pmm, about 4900-4500 B.C.; (m) Hacilar, pmm/pm1, 
about 5500-5200 B.C.; (n) Near East, pmm/pmg.



way to represent space symmetry structures, the bands (three- 
dimensional symmetry groups with invariant plane and included 
line, and without invariant points), in the plane, whereby the 
31 antisymmetry groups of the friezes (7 generating + 7 senior + 
17 junior antisymmetry groups) correspond to the 31 groups of 
symmetry of bands. From the artistic point of view, that gives a 
possibility to suggest space in a flat drawing plane. Besides 
this possibility, there are also many different geometric or non- 
geometric interpretations of the anti identity transformation. In 
prehistoric ornamental art a primary symbolic function of "black- 
white" friezes, is evident.

In the theory of symmetry and ornamental art, the most 
interesting field of study is the 17 groups of s y m m e t r y  of 
ornaments, two-dimensional symmetry groups w i t h o u t  i n va ri an t 
lines and points. The common characteristic of ornaments is the 
presence of discrete two-dimensional t r a n s l a t i o n  subgroup, 
generated by two independent translations. How difficult it is 
to discover and construct the examples of all the 17 symmetry 
groups of ornaments is shown by the fact that many cultures with 
a very rich ornamental art do not possess wi th in t h ei r early 
ornamental art the examples of all these groups [16,17]. The same 
is proved by the fact that in the ma th em at ic al s t u d i e s  of 
symmetry, the complete list of the 17 groups of s y m m e t r y  of 
ornaments are found only in 1890, in the works of E.S. Fedorov, 
although this problem attracted also many ot he r i m po rt an t 
mathematicians (for example, C.Jordan, L.Sohncke).

This is the reason why it is rather surprising that already 
in the ornamental art of the Paleolithic we can find examples of 
the nine symmetry groups of ornaments: p 1 , p2, pm, pmm, pmg, cm, 
cmm, p4m and p6m [22]. In the Neolithic phase we have the 
appearance of the other five symmetry groups of ornaments: pg,
P99, p4, p4g and p6, while examples of sy mm et ry gr ou ps of
ornaments p3, p3m1 and p31m can be found in the early ornamental 
art of ancient civilizations, and probably also in the late 
Neolithic.

According to the stated presence of the c o r r e s p o n d i n g  
symmetry groups p4m and p6m in the Paleolithic, all the three 
regular tessellations: {4,4} with symmetry group p4m, {6,3} and
{3,6} with symmetry group p6m , are known. Besides the regular 
square, hexagonal and triangular lattices, in P a l e o l i t h i c  
ornamental art we find the remaining two Bravais lattices: the
lattice of paral1 elograms with symmetry group p2 and the rhombic 
lattice with symmetry group cmm.

In the ornamental art of the Paleolithic and Neolithic, with 
regard to the construction methods used in o b t a i n i n g  the 
o r n a m e n t s  we d i s t i n g u i s h  f o u r  c o n s t r u c t i o n  m e t h o d s :  
multiplication of the friezes, multiplication of the rosettes, 
the method of Bravais lattices and the desymmetrization method. 
The first construction method is based on the tr an sl at io na l 
r e p e t i t i o n  of a c e r t a i n  f r i e z e  by m e a n s  of a d i s c r e t e  
translation, non-parallel to the frieze axis. B e ca us e of the 
simplicity of this construction, and because of the existence of



examples of all the seven discrete symmetry groups of friezes, 
this method was probably often used for the c o ns tr uc ti on of 
ornaments. In the Paleolithic, it is pr ob ab ly used for the 
construction of ornaments with symmetry group p 1 , p2, pm, (pg)*>, 
pmg and pmm. The similar rosette method of construction is based 
on the multiplication of a rosette by two independent discrete 
translations. The symmetry of the ornament obtained is completely 
defined by the properties of these t r a n s l a t i o n s  and by the 
symmetry group of the rosette. The a p pe ar an ce of the Bravais 
l a t t i c e s  in the P a l e o l i t h i c  and N e o l i t h i c  o r n a m e n t a l  art 
originates from the models in nature (e.g. honeycomb, different 
net structures). An other cause is a very high degree of visual 
and constructional simplicity of the Bravais lattices. The most 
frequent Bravais lattices, regular tessellations {4,4}, {6,3} and 
{3,6}, to w h i c h  c o r r e s p o n d  the m a x i m a l  s y m m e t r y  g r o u p s  of 
ornaments p4m and p6m generated by reflections, have often served 
as the basis for the application of the desymmetrization method. 
The importance of this construction method increases especially 
with the appearance of (two) colored ceramics in the Neolithic, 
i.e. with the beginning of an tisymmetry and colored symmetry 
ornaments. All these construction methods probably were used in 
the ornamental art of the pre-scientific period.

Since they point out to the very roots of ornamental art, 
ornaments from the Paleolithic, realized as bone engravings or 
stone carvings and drawings, deserve special attention.

Ornaments with the symmetry group p1 are based on the 
multiplication of the frieze with the sy mmetry group p11 by 
discrete translation, or on m u lt ip li ca ti on of an as ym me tr ic 
figure by two discrete translations. Because of a low symmetry, 
they occur relatively seldom, and most often appear with stylized 
asymmetric models found in nature (Figure 16).

Ornaments with the symmetry group p2 appear in the most 
elementary form: as a lattice of parallelograms. A high point of 
Paleolithic ornamental art are ornaments with application of the 
meander motif or double spiral, the rosette with symmetry group 
C2 (2), which originates most probably on the territory of the 
USSR. This motifs will be, later on, often used in the ornamental 
art of almost all Neolithic cultures, mostly as a variation of 
the motif of waves. Because the forms with symmetry group p2 are 
very rare in nature, ornaments with symmetry group p2 are almost 
completely limited to geometric motifs or to symbolic stylized 
motifs (Figure 17).

Ornaments with the symmetry group pm, due to the presence of 
the reflections, belong to the class of static ornaments. Besides 
the geometric motifs, there is a fr eq ue nt use of models with 
plane symmetry which are found in nature (Figure 18).

*) Although according to [22] no examples of ornaments with symmetry group pg 
have been found in Paleolithic, there are grounds to believe that they do 
appear in Paleolithic ornamental art, as there are examples of the group 
of symmetry of the friezes pig.
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Figure 16. Examples of ornaments with the symmetry group p1 in 
Paleolithic ornamental art: (a) Chaffaud; (b) bone engravings, 
Europe.

R e g a r d i n g  the f r e q u e n c y  of o c c u r r e n c e  and v a r i e t y  in 
Paleolithic and Neolithic ornamental art, ornaments with symmetry 
group pmg and pmm are prevailing. Both of these ornaments can be 
obtained by the frieze method of construction, by translational 
multiplication of the friezes pmg and pmm respectively. The 
ornament with symmetry group pmg appears in in its primary form 
almost always within the geometric ornaments as a stylization of 
the wave motif. The symmetry group pmg offers the possibility for 
different variations, expressing in the visual sense a specific 
b a l a n c e  b e t w e e n  the s t a t i c  vi su al c o m p o n e n t  c a u s e d  by the 
presence of reflections and dynamic component resulting from the 
presence of the glide reflection, which suggests the alternating 
motion (Figure 19).

The static ornament pmm generated by reflections is realized 
in its e a r l i e s t  f o r m  as th e r e c t a n g u l a r  l a t t i c e ,  by the 
multiplication of the frieze with the symmetry group pmm by means 
of a translation perpendicular to the frieze axis or by the 
rosette method of construction, i.e. by multiplication of the



Figure 17. Examples of ornaments with the symmetry group p2 in 
Paleolithic ornamental art: (a) Mezin, USSR, about 12000-10000 
B.C.; (b) Western Europe; (c) the motif of double spiral, 
Maljta, USSR; (d) the lattice of parallelograms, bone engraving 
from Western Europe; (e) Arudy, Isturiz.

with the symmetry group D2 (2m) by means of two t r an sl at io ns 
perpendicular to the corresponding re flection lines of the 
rosette (Figure 20).

O r n a m e n t s  w i t h  the s y m m e t r y  g r o u p  c m m  a p p e a r  in the 
Paleolithic in the form of the rhombic lattice. These ornaments 
can be constructed from the ornament with symmetry group pmm by 
centering, i.e. by the procedure in which the gaps between the
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Figure 18. Examples of ornaments with the symmetry group pm in 
Paleolithic ornamental art (Ardales, Gorge d’enfer, Romanelli 
cave).
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(b)
Figure 20. Examples of ornaments with the symmetry group ptnm 
in Paleolithic ornamental art: (a) the Bravais lattice of
parallelograms, Lasco cave; (b) Mezin, USSR, about 12000 B.C.;
(c) Laugerie Haute.

rosettes Dz (2m) forming this ornament are filled with the same 
rosettes (Figure 21).

The ornaments with the symmetry group cm are obtained from 
the ornaments with the symmetry group pm by the same procedure — 
by centering (Figure 22).



v V v v
V V V

V \/ \S 'S
V V

Figure 22. Example of the ornament with the symmetry group cm 1n 
Paleolithic ornamental art.

The symmetry groups of ornaments p4m and p6m correspond to 
the regular tessellations {4,4}, {6,3} and {3,6}. The regular
tessellation consisting of regular hexagons, three of which are 
i n c i d e n t  w i t h  e a c h  v e r t e x  of t e s s e l l a t i o n ,  m o s t  p r o b a b l y  
originates from its model in nature: the honeycomb (Figure 23). 
The regular tessellations {3,6} (Figure 23) and {4,4} (Figure 24) 
are from the same period, the Paleolithic.

Figure 23. Examples of the regular tessellations with the 
symmetry group p6m: (a) {3,6}; (b) {6,3}, Yeliseevichi, USSR.



The p r i n c i p l e  of vi su al e n t r o p y :  m a x i m a l  v i s u a l  and
constructional simplicity and maximal symm et ry is a common, 
universal characteristic of all Paleolithic ornaments. Hence, 
among Paleolithic ornaments five of the nine existing symmetry 
groups of ornaments correspond to the Bravais lattices, seven of 
the nine groups contain reflections and belong to a class of 
static ornaments. The almost complete absence of the dynamic 
elements of symmetry: polar translations, polar rotations and
glide reflections, is evident.

In the Neolithic period we have the appearance of almost all 
the remaining symmetry groups of ornaments. A special place in 
Neolithic ornamental art have the antisymmetry, "black-white" 
ornaments. The majority of the 46 antisymmetry groups appear in 
Neolithic ornamental art, in particular in the ornamental art 
of the Near and Middle East (Tal el Hallaf, Hacilar, Catal 
Hujiik,...). If we t r e a t  a n t i s y m m e t r y  o r n a m e n t s  w i t h  the 
antisymmetry group p6m/p3m1 as the classical-symmetry ornaments 
obtained by the method of antisymmetry desymmetrization, we can 
add to the list of symmetry groups of ornaments appearing in the 
Neolithic, also the symmetry group p3m1 (Figure 25).

Figure 25. Example of the antisymmetry ornament with 
antisymmetry group p6m/p3m1 in Neolithic ornamental art. From 
the point of view of the classical theory of symmetry this 
ornament can be treated as an example of appearance of the 
symmetry group p3m1 in Neolithic ornamental art.

Neolithic ornamental art is one of the richest sources of 
different ornaments in all the history of ornamental art. The 
examples of 14 symmetry groups of ornaments (Figure 26) and 23 
antisymmetry groups of ornaments (Figure 27) found in Neolithic 
ornamental art are the most complete testimony about the artistic 
creativity of Neolithic peoples.

O r n a m e n t s  w i t h  the s y m m e t r y  g r o u p  p3, p3m1 and p 3 1 m  
represent quite a problem with regard to their construction. In 
classical-symmetry ornamental art they first appear in the 
ornamental art of ancient civilizations, or maybe earlier, in 
late Neolithic ornamental art (Figure 28).



Figure 25. The examples of 14 symmetry groups of ornaments 1n 
Neolithic ornamental art.
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Figure 26. Examples of 23 antisymmetry groups of ornaments in 
Neolithic ornamental art.

The information on the geometric constructions, technical 
means and instruments used in the pre-scientific period cannot be 
gathered from the study of ornamental art, because the relatively 
small d i m e n s i o n s  of o r n a m e n t s  did not r e q u i r e  an y use of 
instruments. Implicit data are reached by the study of megalithic 
monuments, stone constructions found mainly in Western Europe, 
the oldest examples of which date from the IV millennium B.C. 
Having in mind the independent development of Neolithic cultures



in Western Europe and their later appearance with respect to the 
culturally superior East, even the study of so mewhat younger 
monuments (about 3000 B.C,) can serve as a record of the original 
geometric-astronomic knowledge. A synthesis of the results of the 
archaeological studies of me galithic monu me nt s is given by 
J.E.Woods [25].

Poles and ropes were the first geometric instruments used in 
this period for the construction of circles, spirals and ovoids. 
These constructions were realized with a very high degree of 
precision. The deviations occurred because the ropes of animal or 
plant origin, stretched by pulling. Therefore, the circles 
constructed in Stonehenge has a constructional deviation of less 
than 0,4* while the circle in Brodgar has a deviation of 1*.

The c o n s t r u c t i o n  of the e l l i p s e  was d i s c o v e r e d ,  m o s t  
probably, by accident during the construction of a circle, when a 
rope got stuck against some obstacle. The shape obtained was 
interesting enough, and motivated the architects of megalithic 
monuments to investigate further the construction of ellipse.

The equidistant, Archimedes spiral, was constructed in the 
Neolithic by winding a rope around the pole. The ovoids were the 
result of combination of the circle and ellipse construction.

For the construction of the right angle the Py th ag or ea n 
triangle (3,4,5) and the approximate Pyth ag or ea n triangles 
(8,9,12), (11,13,17), (12,35,37), are used. They are very often 
found in the basic length elements for the construction of the 
ellipse. The application of approximate Pythagorean triangles 
shows that the theorem of Pythagoras was not known. Geometric 
knowledge was of an empiric character, based on noticing in 
practice the triangles suitable for the construction of the right 
angle and remembering their dimensions.

By s t u d y i n g  the m e t r i c  c h a r a c t e r i s t i c s  of m e g a l i t h i c  
monuments we come to the hypothesis of the existence of a metric 
standard, the length unit: the megalithic yard, which is also 
indicated by the dimensions of megalithic monuments in Carnac 
(Bretagne), Avebury (England) and Brodgar (Orkney Islands).

The megalithic constructions, circles of stones, "temples" 
and "platforms" most probably had a function of solar and lunar 
observatories. It was noticed that in the "temple" in New Grange, 
in the day of the winter solstice, sun beams shine through the 
opening on the roof part, and illuminate the room. Platforms had 
a similar function. In the case of platforms as the reference 
points for astronomic observations o u t s ta nd in g points on the 
horizon of the landscape (e.g. tops of mountains, mountain 
passages) were used. Such use of natural reference points 
considerably increased the precision of the results of astronomic 
observations.



Very interesting and insufficiently explored fields related 
to the geometry of the pr e-scientific period are still the 
following: dating of the appearance of all the plane symmetry
structures and corresponding classical-symmetry, antisymmetry and 
color-symmetry groups, the registering of the most significant 
archaeological exavation sites from the point of vi ew of the 
theory of symmetry and ornamental art, the links be tween the 
ornamental art of different cultures, the links between the 
friezes, natural numbers and calendars, etc. All these and many 
other similar questions relevant to the history of mathematics 
of the pre-scientific period sh ou ld become a co mm on field of 
research for mathematicians, archaeologists and specialists of 
different sciences.
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ORNAMENT TODAY

The origins of ornamental art date back to the Paleolithic 
(Magdalenian, about 10000 B.C.) and represent one of the first 
human attempts to perceive, understand and ex press symmetry, 
regularity and harmony. Already at this stage, we have examples 
of the symmetry groups of rosettes, all the seven discrete 
symmetry groups of friezes and most of the 17 discrete symmetry 
groups of ornaments (Figure 1).

Figure 1. Examples of rosettes, friezes and ornaments 1n 
Paleolithic ornamental art.
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In this period as well as in 
the ancient civilizations (Egypt, 
is flourishing, so examples of 
isometries are being realized.

the Neolithic and in the art of 
China, Japan...) ornamental art 
all plane sy mm et ry groups of

In the oldest phases of ornamental art, the symbolic role of 
ornaments is prevailing, so that ornaments became an aspect of 
communication. By history, symbolic meanings; gradually 
retreating before other means of communication. After geometri 
rules on which ornaments are based have been u n de rs to od and 
construction problems solved, ornamental art o f f e r s ^ ( F i g u r e 2 
for a playing, artistic imagination and decorativeness (Figure 2,
3).

Figure 2. Ornaments of primitive peoples, New Guinea.

Ornamental art was of great importance i n several pre 
Renaissance cultures (e.g. Egyptian, Arab, Moorish...). The 
recent Western art brought the division of the fine arts into the 
"fine" and "decorative" arts, with ornamental art playing a role 
of a second-rate decorative art. Thus, unfortunately, the title 
"Ornament Today" is associated with everyday decorative Products 
such as wallpapers, decorative fabrics rather than with fine art 
c r e a t i o n s .  H o w e v e r ,  the 2 0 t h - c e n t u r y  art i t s e l f  and its 
connections with natural sciences, mathematics, crystalography 
and the theory of symmetry, have opened new possibilities tor a 
d e v e l o p m e n t  of o r n a m e n t a l  art, w h i c h  are b e y o n d  reach of 
empirical studies.

After the studies of the space sy mmetry s t ru ct ur es and 
corresponding symmetry groups, the 32 crystal
Bravais lattices and the 230 space sy mmetry groups (Fedorov 
groups) the interest of ma th ematicians and c r y s t a l l o g r a p h e r s  
turned in the thirties, towards so-called small crystallograph 
groups" and "sub-periodic groups" -  plane symmetry groups of 
rosettes, friezes and ornaments. Besides the rosette symmetry



Figure 3. A choice of ornaments of different cultures, 
illustrating unlimited possibilities of variety of ornamental 
motifs.

g r o u p s  Cn and D n , w h i c h  we re d i s c o v e r e d  e a r l i e r ,  the 
mathematicians like G.Pdlya, P.Niggli A.Speiser [37] and others 
prove the existence and completeness of the list of the seven 
discrete symmetry groups of friezes and the 17 discrete symmetry 
groups of ornaments as well as the list of the c o rr es po nd in g 
semicontinuous and continuous symmetry groups. The research then 
be ga n b a s e d  on the new p o s s i b i l i t i e s  a r i s i n g  f r o m  th es e 
discoveries (Figure 4).

Looking for examples, visual illustrations of corresponding 
symmetry groups, mathematicians make use of the rich ornamental 
heritage of ancient civilizations, mainly Egyptian, Arab and 
Moorish ornaments. The idea of studying ornaments belonging to 
different cultures from the point of view of the theory of 
s y m m e t r y  d i s t i n c t l y  d i f f e r s  f r o m  the p r e v i o u s l y  a c c e p t e d  
descriptive method of ornament classification. The new idea of 
classifying ornaments, announced in the work of A.Speiser, is 
quickly accepted and applied in the works of E.Muller, H.Weyl 
[39], A .V .Shubn i kov and V.A.Koptsik [34], D.K. Wa sh bu rn [38], 
D.W.Crowe [7,8] and others. Contrary to the former descriptive 
methods of classification, which divided ornaments according to 
motifs into the "geometric", “plant" or "animal", ornaments are 
now classified in accordance with corresponding symmetry groups. 
One of the most interesting investigations referred to the 
question of the appearance of all the 17 symmetry groups of



Figure 4, The 17 symmetry groups of ornaments.



ornaments in the ornamental art of Egypt [39,16], A more detailed 
studies of the ornamental art of individual cultures, based 
mainly on archaeological sources from Africa are given in the 
works of D.W.Crowe [7,8] (Figure 5) and D.K.Washburn [38], who 
discusses the ornamental art of American Indians (Figure 6).

Figure 5. Ornamental motifs from Africa, Bakuba art.

In the search for the origins of ornamental art, in the 
m o n o g r a p h  [24] it is s t a t e d  the e x i s t e n c e  of e x a m p l e s  of 
symmetry groups of rosettes, all the seven discrete groups of 
symmetry of friezes and the 11 of the 17 sy mmetry groups of 
ornaments in Paleolithic ornamental art. In that way, the empiric 
g e o m e t r i c  h e r i t a g e  p r e s e r v e d  in o r n a m e n t a l  art, b e c o m e s  
accessible for a detailed analysis and classification making use 
of the theory of symmetry, offering at the same time the 
authentic information on the origins of mathematical thinking in 
the pre-historic period, and thus opening a whole new chapter for 
the study of the mathematical knowledge history.

The analysis of ancient ornaments, in particular that from 
P a l e o l i t h i c  and N e o l i t h i c  o r n a m e n t a l  art, b r i n g s  up the 
hypothesis that the visual-geometric properties of ornaments 
define the time of the first appearance and the frequency of 
occurrence of certain symmetry groups in ornamental art. In 
accordance with the contemporary studies of visual perception 
from the standpoint of the gestalt-psychology [1], it is possible 
to formulate the principle of visual entropy — principle of the 
m a xi ma l c o n s t r u c t i o n a l  and vi su al s i m p l i c i t y  and maximal 
symmetry. In its wider sense, this principle can also be applied 
to the studies of aestethic grounds on which different works of 
art are based and for a creation of more exact aesthetic 
criteria and analytic approaches to fine art works.

After the appearance of non-figurative art (abstraction,



Figure 6. Ornamental motifs in the ornamental art of American 
Indians, Upper Gila Area.

especially geometric abstraction) of the 20th century, the 
classical descriptive language and cr it er ia of the fine art 
aesthetics, containing numerous elements which do not refer to 
vi su al c h a r a c t e r i s t i c s  (e.g. subj ec t, mo ti f, d e g r e e  of 
reality...), become insufficient or completely inadequate for 
contemporary aesthetic analyses. When observing the blank, white 
square by K.Malevich, and when trying to find out what makes it a 
unique, unrepeatable work of art, we have to apply visual 
criteria, closely connected to the laws of the theory of symmetry 
in its widest sense, that means, in the sense of "well organized 
forms" [1].

When searching for such criteria and looking for universal 
laws of the "well organization", harmony and accord, the simplest



symmetry forms to which isometric symmetry groups correspond, can 
be used. Isometric ornamental plane figures: rosettes, friezes
and o r n a m e n t s ,  r e p r e s e n t  o n l y  the m o s t  e l e m e n t a r y  f o r m  of 
regular, symmetry plane structures. Other visual components such 
as a color, r e l a t i o n  " f i g u r e " - " b a c k - g r o u n d " ,  c o n v e x i t y ,  
concavity, topological equivalence, etc., can be discussed by 
extending the classical theory of symmetry to the antisymmetry, 
colored symmetry, curvilinear symmetry, s i mi la ri ty symmetry, 
conformal symmetry, non-Euclidean symmetry...

The 
colored 
symmetry 
bivalent 
with all

first of these extensions — antisymmetry, i.e. two- 
"black-white" symmetry, includes besides geometric 
transformations an involutional, often non-geometric 
change (e.g. color change "black"-"white") commuting 
symmetry transformations (Figure 7).

Figure 7. Examples of antisymmetry ornaments.



mutually opposite alternating features -  forms of duality in 
nature, to create the contrast and s u g g e s t i o n  of space. They 
became a subject of mathematical studies in the thirties, and are 
discussed in the works of H.Heesch, A .V .Shubn i kov [34,35], 
N.V.Belov [35], A .M .Zamorzaev [41,42] and others. As a starting 
point for introducing the antisymmetry, Weber “b 1a c k - w h i t e " 
diagrams of bands are used. The color change ,,black"-"white" 
served as a possibility for the dimensional transition, i.e. for 
the interpretation of the three-dimensional space in a plane. An 
analogue approach results in the 46 an t i s y m m e t r y  groups of 
ornaments which together with the 17 generating and the 17 senior 
antisymmetry groups correspond to the 80 sy mm et ry groups of 
layers. A p p l i e d  to the n - d i m e n s i o n a  1 s y m m e t r y  groups, 
antisymmetry becomes a tool for derivations and analyses of sub- 
periodic symmetry groups of the (n+1)-dimensional space.

From the artistic point of view, multi-dimensional symmetry 
s t r u c t u r e s  and t h e i r  p l a n e  i n t e r p r e t a t i o n s  o p e n  a large 
unexplored field (Figure 8).

Figure 8.The projection of the four-dimensional polytope {3,3,5}.

Further generalizations of the theory of symmetry lead over 
the multiple antisymmetry to the colored symmetry, discussed in 
the w o r k s  of N . V . B e l o v  [35], A . L o e b  [29], A .M .Z a m o r z a e v , 
A. F .Palistrant and E .I .Galyarskii [42], M.Senechal, T.W.Wieting
[40] and others. The colored symmetry is a polyvalent symmetry, 
which besides symmetry transformations includes a “color change", 
i.e. the change of any polyvalent feature (e.g. some physical 
property) commuting with symmetries.

The antisymmetry and colored symmetry offer at the same time 
a possibility to study and visualize various symmetry structures 
together with their physical properties. In that way, besides 
their symmetry —  regular geometric organization of structures 
(e.g. crystal structures) it is possible to analyze different 
physical characteristics, whose ch an ge can be in te rp re te d by



color permutations. In spite of high scopes of the theory of 
colored symmetry, many problems originating from the ornamental 
art studies (e.g. such color-symmetry stuctures, where quantities 
of different colors are used in the given ratio p: q, or p: q: r), 
still remain unsolved [19].

The next series of problems refers to geometric and visual 
c h a r a c t e r i s t i c s  of o r n a m e n t s  c o n s i d e r i n g  the f o r m  of the 
f u n d a m e n t a l  region, e l e m e n t a r y  a s y m m e t r i c  f i g u r e  by 
multiplication of which, using symmetry transformations of the 
given group, a plane isohedral tiling can be achieved (Figure 9).

Figure 9. Examples of isohedral tilings.

Tilings, ideal mosaical coverings of a plane without gaps 
and overlaps, used in ornamental art of di ff e r e n t  cultures 
(Egyptian, Arab, Moorish...) (Figure 10, 11) have find its 
mathematical interpretation in the tiling theory. Of a special 
interest is the problem of the periodic mo nohedral tilings — 
isohedral tilings discussed in the works of H. He es ch [20], 
B.Grunbaum and G.C.Shephard [17,18], as well as similar problems 
related to the uniform tilings (Figure 12), tilings with star 
polygons (Figure 13), isogonal tilings (Figure 14), n-hedral 
tilings and colored tilings (Figure 15).
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Figure 10. Mosaics from Alhambra.

Although a considerable progress has been made in this 
field* there are still numerous unsolved (and maybe unsolvable) 

rhsv are e q to define the universal criterion 
offering 'an answer to the question whether the given figure can 
he a Drotile for constructions of monohedral tilings. The sim 
question Vs: how many isohedral tilings with different symmetry
groups generate the chosen protile (Figure 16).



Figure 11. Floor ornamental tilings, Portugal, the XV century.

Figure 12. The six of the 20 types of 2-uniform tilings.

A separate chapter of the tiling theory represent the 
aperiodic tilings. In the case of aperiodic tilings the principle 
of crystallographic restriction (n=1,2,3,4,6) does not hold. The 
importance of aperiodic tilings becomes e v id en t when quasi-



crystal structures as well as organic structures, like the DNA 
structure called by E.Schrodinger "the aperiodic crystal", are 
discussed (Figure 17).

Figure 13. Uniform tilings by regular and star polygons.

Figure 14. Isogonal tilings.
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Figure 15. Different monohedral and 2-hedral "black-white 
tilings obtained by the use of the multiple antisymmetry.
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Figure 17. "Penrose chickens" and the schemes corresponding 
to Penrose aperiodic tilings.

Besides the structures mentioned, relatively uninvestigated 
are interlaced symmetry structures which find their place in 
ornamental art and the theory of symmetry (Figure 18).
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Figure 18. Different interlaced ornaments.

An advantage of the theory of symmetry as a sci en tific 
discipline is a possibility to fo rm ul at e most of problems, 
a s s u m p t i o n s  and t h e o r e m s  in a s i m p l e  l a n g u a g e ,  en a g 
specialists of different scientific profiles, even the amateurs,



to take part in their solving.

Similarity symmetry groups are di sc us se d in the wo rk s of 
H.Weyl [39], A .V .Shubnikov [34], A.M.Zamorzaev, E .I .Galyarskii 
and A .F .Palistrant [42] and others. After the inspiring book of 
H.Weyl [39] in which appearances of the similarity symmetry in 
nature (the symmetry of Nautilus shell, su nf l o w e r  He li a n t u s  
maximus, pineapple) are analyzed, the similarity symmetry groups 
are studied by different authors. Many examples of these groups 
are present in the ornamental art of d i ff er en t cultures. The 
appearance of all the plane similarity symmetry groups belonging 
to the five infinite classes CnK, Cn L, CnM, DnK and DnL, can be 
traced in the history of ornamental art [24]. Probably the most 
interesting in the visual sense are the s i m i l a r i t y  sy mm et ry 
groups CnL and DnL, connected with the use of the logarithmic, 
equiangular spiral — invariant line of the group of linear 
transformations. The logarithmic spiral, geometric properties of 
which J.Bernoulli has described by the wo rd s “Eadem mu ta ta 
resurgo", occurs in ornamental art from the ancient times, in 
particular in Greek-Roman ornamental art (Figure 19).

The further generalization —  conformal symmetry groups, due 
to the absence of models in nature, indicates a di ff e r e n t  
approach, which is characteristic for the 20th century science: a 
path from an abstract theory towards c o r r e s p o n d i n g  visual 
interpretations, understood as a model of this abstract theory. 
Such an approach, occurring in geometry at the beginning of non- 
Euclidean geometries, results in the theory of conformal symmetry 
groups and in visual models of all finite and infinite conformal 
symmetry groups. Since these groups are is om or ph ic with the 
symmetry groups of tablets and, c o mp ri si ng the si mi la ri ty 
symmetry groups, with the symmetry groups of rods — three- 
d i m e n s i o n a l  line s y m m e t r y  gr oups, t h e r e  is, b e s i d e s  by 
antisymmetry, another possibility for interpretation of three- 
dimensional symmetry structures in a plane (Figure 20).

All symmetry groups afore mentioned can be extended by the 
antisymmetry and colored symmetry.

The non-Euclidean crystal 1ography represents a special field 
of the theory of symmetry. The symmetry groups of the hyperbolic 
plane can be interpreted within PoincarS or Klein model of the 
hyperbolic plane. In these models, circle inversions have a role 
of line r e f l e c t i o n s  in the h y p e r b o l i c  p l a n e  [9,10], In 
contradistinction from the 17 symmetry groups of ornaments of the 
Euclidean plane, in the case of hyperbolic ornaments there is an 
infinite number of symmetry groups.

The 20th century fine arts are characterized by abstraction. 
The geometric abstraction first appeared in the works of cubists 
and was developed further on in the works of many artists, in 
particular by the Russian constructivists, and s u p r e m a t i s t s  
(V.Suetin, K.Malevich and others). Parallel to this goes the 
d e v e l o p m e n t  of g e o m e t r i c  o r n a m e n t a l  art. The p r o b l e m s  of 
construction of different kinds of o r na me nt s (antisymmetry, 
colored symmetry, similarity symmetry, conformal symmetry, non-
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Figure 20. Examples of the conformal symmetry rosettes.



Euclidean symmetry ornaments) has led artists to the study of 
principles of the theory of symmetry. That strengthened the links 
between the science and art and some borders between them have 
disappeared. So, for example, we have a complete derivation of 
the 46 a n t i s y m m e t r y  g r o u p s  of o r n a m e n t s  and t h e i r  f i r s t  
interpretation by antisymmetry mosaics in the works of H.J.Woods, 
published in the Journal of the Textile Institute of Manchester 
in 1936 [8] (Figure 21).

Significant results have been ac hi ev ed in the field of 
visual interpretations of symmetry groups, variations of the form 
of the fundamental region, visual m o d e l l i n g s  of the symm et ry 
groups of a sphere, antisymmetry and colored symmetry groups, by 
H . H i nterrei ter [31], a constructivist painter. The research of 
H.Hinterreiter on symmetry structures and their visual effect is 
ba se d on the w o r k s  of the G e r m a n  c h e m i s t  and p h i l o s o p h e r  
W.Ostvald. Besides by isometric trarisf ormati o n s , many of the 
graphic works of H.Hinterreiter are realized by the use of 
s y m m e t r y  s t r u c t u r e s  s u b j e c t e d  to the a c t i o n  of a f f i n e  and 
projective transformations (Figure 22).

The highlights of the ornamental art of the 20th century 
came from the Dutch graphic artist M.C.Escher. His first attempts 
w e r e  to r e a l i z e  p l a n e  m o n o h e d r a l  o r n a m e n t s ,  b a s e d  on the 
experiences acquired from Moorish ornaments. In his long creative 
work M.C.Escher solved a series of di ff i c u l t  ge o m e t r i c  and 
artistic problems. Most of them belong to the field of the theory 
of symmetry: constructions of monohedral, 2-hedral or n-hedral
tilings using as their protiles figures derived from models found 
in nature, combined with the use of the antisymmetry, colored 
symmetry, similarity symmetry, conformal symmetry, non-Euclidean 
symmetry, topological symmetry... (Figure 23,24,25,26,27).

Although the contacts that M.C.Escher had with one of the 
most significant contemporary mathematicians, H .S .M .Coxeter, and 
its certain knowledge of literature from the field of the theory 
of symmetry cannot be neglected, still remains the unavoidable 
fact that in many of his works M.C.Escher anticipated certain 
main problems of the theory of symmetry and its generalizations, 
having their almost visionary premonition. Some colored symmetry 
groups, for example, had appeared in his works before they were 
derived by mathematicians and crystal!ographers.

How difficult are the problems M.C.Escher had to face when 
constructing monohedral tilings with zoomorphic protiles can be 
seen if we try unaided to construct one of these tilings with the 
pretile based on a model found in nature, even if we are 
f a m i l i a r  w i t h  the t h e o r y  of t il in gs , w h i c h  w a s  still not 
completed when M.C.Escher created his ornaments.

In' the contemporary art, from the point of view of the 
theory of symmetry and psychology of visual perception, the most 
interesting is the "op-art" ("optical art ), which reached its 
top in seventies in the works of V.Vasarely, J.R.Soto, W.Fangor, 
the group "Abstraction-Creation” , B.Riley, J.Albers, F.Morell^t 
and others.





Figure 22. Graphic works by H.Hinterreiter.





Figure 24. The transformation of the antisymmetry ornament with 
the antisymmetry group cmm onto the antisymmetry ornament with 
the antisymmetry group pg/p1.



Figure 26. "Circle Limit IV", the hyperbolic plane ornament by 
M.C.Escher with the symmetry group [3+ ,8] and the geometric 
scheme which served as a basis for its construction.



Figure 27. A hyperbolic plane ornament by M.C.Escher, obtained 
using the Poincar6 half-plane model of the Lobachevsky plane.

Being the synthesis of ideas of the geometric abstraction, 
constructivism, Suprematism and the principles of the psychology 
of visual perception, the op-art makes experiments with visual 
structures producing a programmed visual effect to the observer. 
The planning of the visual effect and the adequate choice of the 
visual parameters is based on the knowledge of the physiologic 
psychological laws of visual perception. Since the symmetry in 
its widest sense is one of the most important visual parameters, 
the op-art works are often symmetrical (Figure 28,29,30). Besides 
the already discussed discrete groups of symmetry and generalized 
symmetry (antisymmetry, colored symmetry...) an important role in 
the op-art is given to superposed net-structures resulting in a 
"moire effect" [34] and textures [35] (Figure 30b).



Figure 28. "Blaze I" by B.Riley.

From the standpoint of the theory of symmetry, textures make 
possible visual interpretations of all continuous s y m m e t r y  groups 
which are not visually presentable (e.g. C- —  the symmetry group 
of a r o t a t i n g  c i r c l e ) .  S i n ce  they are r e a l i z e d  by the 
statistically uniform distribution of an asymmetric figure in 
accordance with the desired symmetry, in the physical terms they 
can be understood as results of different accidental dynamic 
processes, having a distinguished place in the modern physics and 
in all natural sciences. Some of such op-art motifs are realized



Figure 29. "Square of Three" by R.Neal.

by the use of a random number generator, so that they represent 
first applications of computers in art (Figure 31). In the last 
few years we can follow the rising of the new art discipline - 
computer art, which already deserved an independent study [33].



Figure 30. Different rosettal motifs in op-art: (a) continuous 
conformal antisymmetry rosette with the antisymmetry group 
L1CB0Z1/L1C3 0Z1 ; (b) graphic by M.Shutej; (c) graphic by
M.Apollonio; (d) graphic by F.Celentano.



Figure 31. "Aleatoric Distribution" by F.Morell§t.

The theory of symmetry is now established as a scientific 
discipline which does not offer almost any empirical research. In 
contrast, ornamental art based on the in tu it ive-empirical 
approach, centuries ago anticipated some knowledge of the theory 
of symmetry. Today, the roles are changed, and the level of the 
theory of symmetry mostly exceeds the mathematical range of 
ornamental art. Therefore, it is necessary to estimate the true 
place and importance of ornamental art at the very moment. The 
fact that the number and character of different possible symmetry 
structures is determined and fully defined by symmetry laws (e.g. 
the existence of exactly the 17 symmetry groups of ornaments, the 
46 antisymmetry groups of ornaments, the 93 types of isohedral 
plane tilings, etc.) does not mean that the c o ns tr uc ti on of 
o r n a m e n t s  is o n l y  a m e c h a n i c a l  p r o c e s s  d e p r i v e d  of any 
creativity. That only means that an artist need not to solve the 
technical construction problems anymore. Knowing the results of 
the theory of symmetry and its ge neralizations, cons tr uc ti on 
rules and geometric possibilities for choosing visually relevant 
characteristics of ornaments (e.g. the form of the fundamental 
region, different possibilities for regular colorings...) he can 
direct all his creative potentials towards aesthetic aspects of 
ornaments and achievement of the desired visual effect.



way of interpreting and modelling different symmetry structures 
and the correspondi ng symmetry groups. It is for sure that 
ornamental art, as a centuries old, in ex ha us ti bl e source, 
nourished by the inspiration of generations of artists, can offer 
to the theory of symmetry a large number of relevant questions 
seeking an answer.
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