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GEOMETRY IN THE PRE~SCIENTIFIC PERIOD

Throughout history there were always 1inks between geometry
and the art of painting. These links become especially evident
when in the study of ornamental art we apply the theory of
symmetry. Therefore, ornamental art is called by H.Weyl [38] the
“oldest aspect of higher mathematics given in an implicit form”
and by A.Speiser the "prehistory of group theory”.

The idea to. study ornaments of different cultures from the
point of view of the theory of symmetry, given by G.Pélya [28]
and A.Speiser [34], and supported by the intensive development of
the theory of symmetry in the 20th century, caused the appearance
of a whole series of works dedicated mostly to the ornamental art
of ancient civilizations, to the cultures which contributed the
most to the development of ornamental art (Egyptian, Arab,
Moorish,...) [2,14,16,17,26] or to the ornamental art of
primitive peoples [9,10]. Only in more recent works, research has
turned to the very roots, the origins of ornamental art: to the
ornamental art of the Paleolithic and Neolithic [22]. The
extensions of the classical theory of symmetry— the antisymmetry
and colored symmetry made possible the more profound analysis of
the “black-white” [19,20] and colored ornamental motifs in the
ornamental art of the Neolithic and ancient civilizations.

This work gives the results of a symmetry analysis of
Paleolithic and Neolithic ornamental art. It is dedicated to the
search for "ornamental archetypes®— the universal basis of
compltete ornamental art. The development of ornamental art
started together with the beginnings of mankind and represents
one of the oldest records of human attempts to note, understand
and express regularity— the underlying basis of every scientific
knowledge. -

The final conclusion of this work is that most of the-
ornamental motifs which have been discusséd from the standpoint
of the theory of symmetry are of a much earlier date than we can
expect. This places the beginning of ornamental art, the oldest
aspect of geometric cognition, back to several thousands years
before the ancient civilizations, i.e. in the Paleolithic and
Neolithic.

Since ornamental art is mostly limited to the two-
dimensional plane presentation of ornamental motifs, the subject
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of this art from the point of view of the theory of symmetry is
given by the plane symmetry groups: the symmetry groups of
rosettes, friezes and ornaments. The discrete groups of symmetry
of rosettes consists of two infinite classes of symmetry groups:
cyclic groups Cn generated by the rotation of order n (neN) and
dihedral groups Dn generated by two reflections, the reflection
lines of which cross in the invariant point, center of rotation
of order n. Seven discrete groups of symmetry of friezes can be
denoted by symbols: pi1, pig, p12, pmil, pim, pmg and pmm where
the symbol p denotes a translation, g a glide reflection, m a
reflection and n (n=1,2) a rotation of order n (n=1,2). A1l this
symbols are treated in the coordinate sense, so that on the first
position is the translation symbol p, the elements of symmetry on
the second position are perpendicular to the translation axis,
and the elements of symmetry on the third position are parallel
with the translation axis (Figure 1).

N e
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Ca (3) Cs (4) — p— _; __\, pim
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Figure 1. Tables of the graphic symbols of symmetry elements of
(a) rosettes; (b) seven discrete symmetry groups of the friezes.

Analogousiy, with the symbols of symmetry groups of
ornaments the symbol p denotes a two-dimensional translation
subgroup, while the symbois m, g, n (n=2,3,4,6) have respectively

. the same meanings as in the case of symmetry groups of friezes
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(Figure 2). When we talk about the continuous groups of symmetry
of friezes, the presence of a continuous translation is denoted
by "a subscript 0, while with the antisymmetry groups,
antigenerators are denoted by ’'. Antisymmetry groups are denoted
also by the group/subgroup symbols G/H [31].

By the term "pre-scientific period” we understand the
Paleolithic and Neolithic epochs, covering the period from the
end of the Quaternary epoch (around 12000-10000 B.C.) till the
end of the IV millennium B.C., when we have signs of the first
alphabet.

p4g p3 p3im p3m1 p6 pém

Figure 2. Table of the graphic symbols of symmetry elements of
the seventeen discrete groups of symmetry of ornaments.

In the absence of written sources, the study of geometry of
the prehistoric period is based on the analyses of artifacts,
which offer information on geometric knowledge in an 1implicit
form. Among the artifacts mentioned we distinguish: ornamental
motifs realized in the form of bone engravings, carvings and
drawings on stone from the Paleolithic and Neolithic, ornamental
motifs in ceramics obtained in the Neolithic phase by engraving,
pressing, drawing or coloring, as well as architectural objects
and constructions from the Neolithic period, so called megalithic
monuments.

The simplest ornamental form are the rosettes, figures
which correspond to the symmetry groups Cn and Dn, denoted in
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Shubnikov'’s notation by n and nm respectively.

The continuous symmetry group of rosettes De (om)
corresponds to the maximal symmetric rosette - the circle. Due to
" the maximal visual and constructional simplicity and maximal
symmetry, the circle represents a primary geometric shape, a
geometric archetype. Within ornamental art it appears in the
Paleolithic, as an 1independent rosette or in combination with
some concentric rosette of a lower degree of symmetry, usually
circumscribed or inscribed in a circle. Since the group De (om)
contains all the other groups of symmetry of rosettes as
subgroups, rosettes of a lower degree of symmetry are often
derived by the desymmetrization of a circle. Owing to its visual-
geometric properties: completeness, compactness, boundedness and
uniformity of its structural segments, the circle may serve as a
universal symbol of completeness and perfection. At the very
beginnings of ornamental art the circle becomes the symbol of the
Sun, remaining that throughout history (Figure 4).

OB %® K5
[§ oo o364+

Figure 4. Variations of the Sun symbol in the ornamental art of
the Paleolithic and Neolithic.

The continuous symmetry group of rosettes Ce (@), the
continuous group of rotation, a physical interpretation of which
could be a circle uniformly rotating around the center, is
visually interpretable exclusively by the use of textures [32]:
by applying the same asymmetric figures statistically distributed
in accordance with the desired symmetry Ce (®).

The spiral, one of the oldest dynamic visual symbols which
in the visual sense suggests the rotational motion around the
invariant point could be accepted as an adequate symbolic
interpretation of this continuous symmetry group. In ornamental
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art, the spiral appeared already in the Paleolithic as an
independent ornamental motif or in the form of a double spiral, a
motif with symmetry group Cz (2) generated by two-fold rotation
(Figure 5).
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Figure 5. Spiral ornamental motifs (Paleolithic, the
Magdalenian, about 10000 B.C.) from: (a) Arudy; (b) Isturiz;
(c) Maljta (USSR).

Among the elementary geometric forms we have the 1line
segment, usually placed in accordance with the basic natural
directions, vertical and horizontal line. To a line segment
corresponds the symmetry group Dz (2m), generated by two
reflections: one with the reflection line perpendicular and the
other with the reflection 1line collinear to the 1line segment.
However, from the point of view of visual perception, due to the
action of the visual and gravitational dominant — the vertical
line, we experience the symmetry of the line segment as the
D1 (m). In this case, the horizontal reflection is neglected. The
combination of the vertical and horizontal line segment results
in the cross form with symmetry group D1 (m), D2 (2m) or D4 (4m).
The rosettes with symmetry Dz (2m) and D« (4m) possess another
fundamental property: the existence of perpendicular, vertical
and horizontal reflection lines. The form of cross with symmetry
group Ds (4m) is often subjectively, visually perceived as
symmetry Dz (2m), neglecting the presence of four-fold rotation.

Static rosettes with symmetry group D1 (m) or D2 (2m) are
‘linked to the plane symmetry of man, its vertical attitude and
perpendicularity to the base. Besides the rational mirror
symmetry, which originated from motifs in nature, we have in the
ornamental art the different aspects of symbolic symmetry Di (m):
the duplicated figures, two-headed animals, etc. These examples
result mostly from the often use of the vertical mirror symmetry
as a visual dominant (Figure 6).
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Figure 6. Examples of rosettes with symmetry group D1 (m) and
D2 (2m) in the ornamental art of the Paleolithic and Neolithic:
(a) D1 (m), Paleolithic, E1 Pendo; (b) D1 (m), Paleolithic of
France and Spain; (c¢) stylizations of a face motif, Di (m); (d)
derivation of the rosettes with symmetry group Dz (2m) by the
superposition of rosettes with symmetry group D1 (m),
Paleolithic of France; (e) stylizations of a human figure,
D1 (m), Paleolithic and Neolithic of Italy and Spain; (f) the
two-headed winged 1ion, Tell Hallaf, about 5000 B.C.
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In Paleolithic ornamental art we have also the rosettes
with the symmetry group Dn (nm): Ds (3m), Ds (4m) and De (6m), as
well as the corresponding regular polygons: equilateral triangle,
square and regular hexagon (Figure 7). Although with rosettes the
principle of crystallographic restriction (n=t1,2,3,4,6) is not
respected, prevailing are the rosettes with the symmetry group
Dn (nm) for these values of n. In a later stage, the Neolithic
(Figure 8), we have also the rosettes with the symmetry group
Ds (5m) with the use of regular pentagon and pentagramme. The
first appearance of pentagramme is dated by H.S.M.Coxeter
[7, pp. 8] in the VII century B.C. The visual characteristics of
rosettes with symmetry group Dn (nm) are stability,
stationariness and absence of enantiomorphism. Enantiomorphism,
the existence of a "right” and "left"” modification of the same
figure, appears with all figures possessing a symmetry group
which does not contain indirect symmetry transformations.

(d)

Figure 7. Examples of rosettes with symmetry group Cn (n) and
Dn (nm) in the ornamental art of the Paleolithic: (a) Castilo,
Dz (m); (b) Paleolithic of France, Ds (4m); (c) Laugerie Basse,
Cz (2); (d) Maz d’ azil, Dz (2m) and Da (4m).



Geometry in the Pre-scientific Period : 9

Figure 8. Exampies of rosettes with symmetry group Cn (n) and
Dn (nm) in the ornamental art of the Neolithic: (a) Susa,
Hacilar, Catal HUjOk, Tell Hallaf, Eridu culture, about 6000-4500
B.C. (7500-5000 B.C.?); (b) Susa, Cs (6), about 5500-5000 B.C.;
(c) Samara, Ds (4m); (d) Samara, Cs+ (4); (e) Samara, Ce (6); (f)
Samara, the superposition of concentric rosettes with symmeiry
groups Cs (5) and Cs4 (4); (g) Susa, Ds (4m).

In contradistinction to the static rosettes with symmetry
group Dn (nm), the rosettes with symmetry group Can (n) (e.g.
triquetra with symmetry group Cs (3), swastika with symmetry
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group Cs (4)) are visually dynamic rosettes with the possibility
of construction of enantiomorphic modifications, which suggests
the impression of rotational motion (Figure 7,8,9,10).

Figure 9. Examples of rosettes with symmetry group Cn (n) and
Dn (nm) in Neolithic ceramics: (a) Aznabegovo-Vrshnik,
Yugoslavia, D4 (4m), about 5000 B.C.; (b) Samara, Cs (4), about
5500-5000 B.C.

In the next stage of the development of ornamental art, i.e.
in the Neolithic, after understanding the symmetry regularities
on which the symmetry of rosettes is based and solving their
elementary geometric constructions, the diversity of rosettes
increases. This is followed by the application of plant and
zoomorphic motifs and by varying the form of the fundamental
region. Also, the superpositions of concentric rosettes which
bring in a desymmetrization — a reduction to a lower degree of
symmetry — are very common (Figure 8f, 10).

In the Neolithic, with two-colored ceramics, we have the
antisymmetry “"black-white"” rosettes (Figure 11). In this case,
the antisymmetry can be treated either as the mode of
desymmetrization for obtaining the subgroups of index 2 of a
given symmetry group or as an independent form of symmetry. In
the table of antisymmetry groups every group is denoted by
the group/subgroup symbol G/H [31] and followed by a system of
(anti)generators. The factor-group G/H is isomorphic to a cyclic
group of order 2, the group of color change "black"-"white".

Table of antisymmetry groups of rosettes:
D2n/Dn (2nm/nm) (2n)’'m

Dn/Ca (nm/n) nm’
Czn/Cn (2n/n) (2n)’
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(b)

Figure 11. Neolithic antisymmetry rosettes: (a) Near East, Cs/Cs;
(b) Dimini, Greece, Cs4/C2; (c) Danilo, Yugoslavia, D4/Dz; (d)
Near East, Ds/D3; (e) Near East, D4/Cs; (f) Near East, D4/Cs;
(g), (h) Hadji Mohamad, Da/Cs, around 5000 B.C.
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In the case of antisymmetry groups, there is a possibility
for interpreting the color change "black“-“white” as the
alternating change of some physical or geometric bivalent
property. In ornamental art color change mentioned introduces a
space component, a suggestion of relations “in front"-"behind",
"up“-"down"”, “above"-"below". From the artistic point of view, it
introduces the contrast between repeating congruent figures and
specific equivalence of the “figure” and "background"” thus
expressing in a symbolical sense the dynamic conflict and
duality.

In ornamental art the use of color in the sense of regular
coloring, that means antisymmetry and colored symmetry, was
opened a large unexplored field. Hence, in the history of
ornamental art, we can consider the Neolithic as its peak, a
period in which after the basic technical and constructional
problems were solved, new possibilities for artistic research,
imagination, variety of motifs and decorativeness, were opened.

In the late Paleolithic (Magdalenian, about 12000-10000
B.C.) we find the oldest examples of the symmetry groups of
friezes, plane symmetry groups without invariant points and with
invariant l1ine. We have the examples of all the seven symmetry
groups of friezes: pi11, plg, p12, pmit, pim, pmg, pmm as well as
two visually presentable continuous symmetry groups of friezes
pom! and pomm.

Friezes are usually obtained by applying the rosettal
method of construction: translational multiplication of an
initial motif — a rosette, the symmetry of which directily
conditions the symmetry of the frieze obtained. The other origin
of the friezes are models found in nature which, by itself,
possess the symmetry of a frieze (Figure 12).

The way friezes are derived after models found in nature, is
illustrated by examples: a herd of deer reduced to the frieze
with symmetry group pi1, the motif of cult-dance rendering the
frieze with the symmetry group pml. Friezes with symmetry group
p12 and pmg can be considered as stylized waves. Models in nature
with symmetry group pilg and pim are found with the distribution
of leaves of certain plants; they have served as the pretext for
the construction of corresponding friezes in ornamental art. The
importance of the plane symmetry in nature and the number of
rosettes with the symmetry group Di (m) and D2 (2m) caused the
appearance and frequent occurrence of friezes with symmetry group
pmm. These friezes can be derived by a translational
multiplication of rosette with the symmetry group Dz (2m), where
the translation axis is parallel with one reflection line of the
rosette. The symmetry group of friezes pmm is the maximal
discrete group of symmetry of the friezes, generated by
reflections. A1l the other symmetry groups of friezes are
subgroups of the group pmm. Hence, the group pmm can serve for
derivation of all the symmetry groups of friezes by
desymmetrization. Examples of all the seven discrete symmetry
groups are found in Paleolithic ornamental art (Figure 13).
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Besides friezes with a concrete meaning,

which are based
on material models found in nature,

the appearance of certain
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Figure 12. The origin of friezes with symmetry groups pi1
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Figure 13. Examples of all the seven symmetry groups of friezes
in the ornamental art of the Paleolithic.
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friezes 1is caused also by the periodic change of many natural
phenomena (the change of day and night, seasons, the tides,
phases of the Moon...) so that friezes represent, at the same
time, the oldest attempts to register the periodical change of
natural phenomena, i.e. the first forms of calendars. These
friezes can also be understood as ways of registering quantities,
serving as tally boards, and thus indicating the beginnings of
counting and notifying the results of counting, i.e. the
appearance of the set of natural numbers.

Thanks to their symbolic meaning, certain “geometric"”
friezes became a means of visual communication. This is proved by
the preserved names of friezes in the ornamental art of primitive
peoples. This communication role of friezes, established in the
Paleolithic, was partly preserved in the Neolithic. With the
development of other communication forms, friezes lost their
primary symbolic function which was partly or .completely replaced
by their decorative function. The beginning of this process can
be registered already in Neolithic ornamental art (Figure 14).

The polarity, non-polarity and bipolarity of the translation
axis of the friezes, the presence or absence of enantiomorphism,
the presence or absence of the indirect symmetries within the
frieze symmetry group [22], represent some of the relevant
geometric properties which, in the same time, define the visual
characteristics of the friezes, thus conditioning also the
spectrum of symbolic meanings which friezes with the certain
symmetry groups possess.

With regard to the frequency of occurrence, besides friezes
originating directly from models found in nature, in the
ornamental art of the pre-scientific period, friezes which
satisfy the criterion of visual entropy [22]: maximal visual and
constructional simplicity and maximal symmetry, are dominant.

The oldest examples of antisymmetry friezes, so called
“black-white"” friezes, date back to the Neolithic epoch, in which
we have the examplies of most of the 17 antisymmetry groups of
friezes. Further investigations should show whether or not in
this period there existed examples of all the 17 antisymmetry
groups of friezes. With regard to the frequency of occurrence,
the most numerous are "black-white"” friezes derived from the
symmetry groups of most frequent friezes by the use of
antisymmetry desymmetrization method (Figure 14).

The frequency of occurrence of antisymmetry friezes depends
also on the antisymmetry properties. Therefore, more frequent are
antisymmetry friezes with oppositely colored adjacent fundamental
regions. A domination of the "geometric" antisymmetry friezes
over antisymmetry friezes inspired by models found in r.ature is
also evident, due to the absence of antisymmetry in nature among
models from plant and animal life. In contradistinction to this,
many natural alternating phenomena followed by bivalent changes
(e.g. the change of day and night, etc.) are represented by
antisymmetry friezes, already in Neolithic ornamental art.
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Figure 14. Examples of all the seven symmetry groups of friezes
in Neolithic ornamental art.
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A (h)
(a)

(9) (n)

Figure 15. Examples of 14 antisymmetry groups of friezes 1in
Neolithic ornamental art: (a) Greece, p11/pi1, about 3000 B.C.;
(b) Greece, p12/pi12; (c) Near East, pi12/p11, about 5000 B.C.;
(d) Near East, pim/pim, about 5000 B.C.; (e) Near East, pim/ptf;
(f) Anadolia, pim/ptg, around 5000 B.C.; (g) Near East, pmi/pmi;
(h) Near East, pmi/p1i1; (i) Greece, pmg/pmi1; (j) Near East,
pmg/pig, about 5000 B.C.; (k) Anadolia, pmg/p12; (1) Tell el
Hallaf, pom/pmm, about 4900-4500 B.C.; (m) Hacilar, pmm/pmi,
about 5500-5200 B.C.; (n) Near East, pmm/pmg.

There is a possibility of treating the antiidentity
transformation of order 2 (color change "black"-"white") as the
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way to represent space symmetry structures, the bands (three-
dimensional symmetry groups with invariant plane and included
line, and without invariant points), in the plane, whereby the
31 antisymmetry groups of the friezes (7 generating + 7 senior +
17 Jjunior antisymmetry groups) correspond to the 31 groups of
symmetry of bands. From the artistic point of view, that gives a
possibility to suggest space in a flat drawing plane. Besides
this possibility, there are also many different geometric or non-
geometric interpretations of the antiidentity transformation. In
prehistoric ornamental art a primary symbolic function of "black-
white" friezes, is evident.

In the theory of symmetry and ornamental art, the most
interesting field of study is the 17 groups of symmetry of
ornaments, two-dimensional symmetry groups without invariant
lines and points. The common characteristic of ornaments is the
presence of discrete two-dimensional translation subgroup,
generated by two independent <translations. How difficult it is
to discover and construct the examples of all the 17 symmetry
groups of ornaments is shown by the fact that many cultures with
a very rich ornamental art do not possess within their early
ornamental art the examples of all these groups [16,17]. The same
is proved by the fact that in the mathematical studies of
symmetry, the complete list of the 17 groups of symmetry of
ornaments are found only in 1890, in the works of E.S.Fedorov,
although this problem attracted also many other important
mathematicians (for example, C.Jordan, L.Sohncke).

This is the reason why it is rather surprising that already
in the ornamental art of the Paleolithic we can find examples of
the nine symmetry groups of ornaments: p1, p2, pm, pmm, pmg, cm,
cmm, p4m and p6ém [22]. In the Neolithic phase we have the
appearance of the other five symmetry groups of ornaments: pg,
pag, P4, p4g and p6, while examples of symmetry groups of
ornaments p3, p3mi and p31m can be found in the early ornamental
art of ancient civilizations, and probably also in the late
Neolithic.

According to the stated presence of the corresponding
symmetry groups p4m and pém in the Paleolithic, all the three
regular tessellations: {4,4} with symmetry group p4m, {6,3} and
{3,6} with symmetry group pém , are known. Besides the regular
square, hexagonal and triangular 1lattices, in Paleolithic
ornamental art we find the remaining two Bravais lattices: the
lattice of paralielograms with symmetry group p2 and the rhombic
lattice with symmetry group cmm.

In the ornamental art of the Paleolithic and Neolithic, with
regard to the construction methods used in obtaining the
ornaments we distinguish four construction methods:
multiplication of the friezes, multiplication of the rosettes,
the method of Bravais lattices and the desymmetrization method.
The first construction method is based on the translational
repetition of a certain frieze by means of a discrete
transiation, non-parallel to the frieze axis. Because of the
simplicity of this construction, and because of the existence of
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examples of all the seven discrete symmetry groups of friezes,
this method was probably often used for the construction of
ornaments. In the Paleolithic, it is probably used for the
construction of ornaments with symmetry group pt, p2, pm, (pg)*’,
pmg and pmm. The similar rosette method of construction is based
on the multiplication of a rosette by two independent discrete
translations. The symmetry of the ornament obtained is completely
defined by the properties of these translations and by the
symmetry group of the rosette. The appearance of the Bravais
lattices in the Paleolithic and Neolithic ornamentatl art
originates from the modeéels in nature (e.g. honeycomb, different
net structures). An other cause is a very high degree of visual
and constructional simplicity of the Bravais lattices. The most
frequent Bravais lattices, regular tessellations {4,4}, (6,3} and
{3,6}, to which correspond the maximal symmetry groups of
ornaments p4m and p6m generated by reflections, have often served
as the basis for the application of the desymmetrization method.
The importance of this construction method increases especially
with the appearance of (two) colored ceramics in the Neolithic,
i.e. with the beginning of antisymmetry and colored symmetry
ornaments. All these construction methods probably were used in
the ornamental art of the pre-scientific period.

Since they point out to the very roots of ornamental art,
ornaments from the Paleolithic, realized as bone engravings or
stone carvings and drawings, deserve special attention.

Ornaments with the symmetry group p1 are based on the
multiplication of the frieze with the symmetry group p11 by
discrete translation, or on multiplication of an asymmetric
figure by two discrete translations. Because of a low symmetry,
they occur relatively seldom, and most often appear with stylized
asymmetric models found in nature (Figure 16).

Ornaments with the symmetry group p2 appear in the most
elementary form: as a lattice of parallelograms. A high point of
Paleolithic ornamental art are ornaments with application of the
meander motif or double spiral, the rosette with symmetry group
Cz (2), which originates most probably on the territory of the
USSR. This motifs will be, later on, often used in the ornamental
art of almost all Neolithic cultures, mostly as a variation of
the motif of waves. Because the forms with symmetry group p2 are
very rare in nature, ornaments with symmetry group p2 are almost
completely limited to geometric motifs or to symbolic stylized
motifs (Figure 17).

Oornaments with the symmetry group pm, due to the presence of
the reflections, belong to the class of static ornaments. Besides
the geometric motifs, there is a frequent use of modelis with
plane symmetry which are found in nature (Figure 18).

*) Although according to [22] no examples of ornaments with symmetry group pg
have been found in Paleolithic, there are grounds to believe that they do
appear 1in Paleolithic ornamental art, as there are examples of the group
of symmetry of the friezes ptg.
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Figure 16. Examples of ornaments with the symmetry group pi in
Paleolithic ornpamental art: (a) Chaffaud; (b) bone engravings,
Europe. )

Regarding the frequency of occurrence and variety in

Paleolithic and Neolithic ornamental art, ornaments with symmetry
~group pmg and pmm are prevailing. Both of these ornaments can be
"obtained by the frieze method of construction, by translational
multiplication of the friezes pmg and pmm respectively. The
ornament with symmetry group pmg appears in in its primary form
almost always within the geometric ornaments as a stylization of
the wave motif. The symmetry group pmg offers the possibility for
different variations, expressing in the visual sense a specific
balance between the static visual component caused by the
presence of reflections and dynamic component resulting from the
presence of the glide reflection, which suggests the alternating
motion (Figure 19).

The static ornament pmm generated by reflections is realized
in its earliest form as the rectangular lattice, by the
multiplication of the frieze with the symmetry group pmm by means
of a translation perpendicular to the frieze axis or by the
rosette method of construction, i.e. by multiplication of the
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Figure 17. Examples of ornaments with the symmetry group p2 in
Paleolithic ornamental art: (a) Mezin, USSR, about 12000-10000
B.C.; (b) Western Europe; (c) the motif of double spiral,
Maljta, USSR; (d) the lattice of parallelograms, bone engraving
from Western Europe; (e) Arudy, Isturiz.

with the symmetry group Dz (2m) by means of two translations
perpendicular to the corresponding reflection lines of the
rosette (Figure 20).

Ornaments with the symmetry group cmm appear in the
Paleolithic in the form of the rhombic lattice. These ornaments
can be constructed from the ornament with symmetry group pmm by
centering, i.e. by the procedure in which the gaps between the
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Figure 18. Examples of ornaments with the symmetry group pm in
Paleolithic ornamental art (Ardales, Gorge d'enfer, Romanelli
cave).
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Figure 19. Examples of orfiaments with the symmetry group pmg in
Paleolithic ornamental art: (a) Mezin, USSR; (b) Western
Europe; (c) Pernak, Estonia; (d) Shtetin.
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Figure 20. Examples of ornaments with the symmetry group pmm
in Paleolithic ornamental art: (a) the Bravais lattice of
parallelograms, Lasco cave; (b) Mezin, USSR, about 12000 B.C.;

(¢) Laugerie Haute.

rosettes Dz (2m) forming this ornament are filled with the same

rosettes (Figure 21).

The ornaments with the symmetry group cm are obtained from
the ornaments with the symmetry group pm by the same procedure —

by centering (Figure 22).

(c)

(d)

Figure 21. Examples of ornaments with the symmetry group cum in
Paleolithic ornamental art: (a) Polesini cave; (b) Laugerie

Haute; (c) Pindel; (d) Vogelherd.

-
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Figure 22. Example of the ornament with the symmetry group cm in
Paleolithic ornamental art.

The symmetry groups of ornaments p4m and pém correspond to
the regular tessellations {4,4}, (6,3} and {3,6}. The regular
tessellation consisting of regular hexagons, three of which are
incident with each vertex of tessellation, most probably
originates from its model in nature: the honeycomb (Figure 23).
The regular tessellations (3,6} (Figure 23) and {4,4} (Figure 24)
are from the same period, the Paleolithic.

VAV

(@ o

Figure 23. Examples of the regular tessellations with the
symmetry group pém: (a) {3,6}; (b) {6,3}, Yeliseevichi, USSR.

ER

Figure 24. Example of the regular tessellation {4,4} and the
ornament with the symmetry group p4m in Paleolithic ornamental
art.
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The principle of visual entropy: maximal visual and
constructional simplicity and maximal symmetry is a common,
universal characteristic of all Paleolithic ornaments. Hence,
among Paleolithic ornaments five of the nine existing symmetry
groups of ornaments correspond to the Bravais lattices, seven of
the nine groups contain reflections and belong to a class of
static ornaments. The almost complete absence of the dynamic
elements of symmetry: polar translations, polar rotations and
glide reflections, is evident.

In the Neolithic period we have the appearance of almost all
the remaining symmetry groups of ornaments. A special place in
Neolithic ornamental art have the antisymmetry, “black-white"
ornaments. The majority of the 46 antisymmetry groups appear in
Neolithic ornamental art, in particular in the ornamental art
of the Near and Middle East (Tal el Hallaf, Hacilar, Catal
HOjik,...). If we treat antisymmetry ornaments with the
antisymmetry group p6ém/p3m1 as the classical-symmetry ornaments
obtained by the method of antisymmetry desymmetrization, we can
add to the list of symmetry groups of ornaments appearing in the
Neolithic, also the symmetry group p3mt (Figure 25).

Figure 25. Example of the antisymmetry ornament with
antisymmetry group p6m/p3mi in Neolithic ornamental art. From
the point of view of the classical theory of symmetry this
ornament can be treated as an example of appearance of the
symmetry group p3m1 in Neolithic ornamental art.

Neolithic ornamental art is one of the richest sources of
different ornaments in all the history of ornamental art. The
examples of 14 symmetry groups of ornaments (Figure 26) and 23
antisymmetry groups of ornaments (Figure 27) found in Neolithic
ornamental art are the most complete testimony about the artistic
creativity of Neolithic peoples.

ornaments with the symmetry group p3, p3mi1 and p3im
represent quite a problem with regard to their construction. In
classical-symmetry ornamental art they first appear in the
ornamental art of ancient civilizations, or maybe earlier, in
late Neolithic ornamental art (Figure 28).
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Figure 25. The examples of 14 symmetry groups of ornaments in
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cmen/
Figure 26. Examples of 23 antisymmetry groups of ornaments in
Neolithic ornamental art.

The information on the geometric constructions, technical
means and instruments used in the pre-scientific period cannot be
gathered from the study of ornamental art, because the relatively
small dimensions of ornaments did not require any use of
instruments. Implicit data are reached by the study of megalithic
monuments, stone constructions found mainly in Western Europe,
the oldest examples of which date from the IV millennium B.C,.
Having in mind the independent development of Neolithic cultures
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in Western Europe and their later appearance with respect to the
culturally superior East, even the study of somewhat younger
monuments (about 3000 B.C.) can serve as a record of the original
geometric-astronomic knowledge. A synthesis of the results of the
archaeological studies of megalithic monuments is given by
J.E.Woods [25].

Poles and ropes were the first geometric instruments used in
this period for the construction of circles, spirals and ovoids.
These constructions were realized with a very high degree of
precision. The deviations occurred because the ropes of animal or
plant origin, stretched by pulling. Therefore, the circles
constructed in Stonehenge has a constructional deviation of less
than 0,4% while the circle in Brodgar has a deviation of 1%.

The construction of the ellipse was discovered, most
probably, by accident during the construction of a circie, when a
rope got stuck against some obstacle. The shape obtained was
interesting enough, and motivated the architects of megalithic
monuments to investigate further the construction of ellipse.

The equidistant, Archimedes spiral, was constructed in the
Neolithic by winding a rope around the pole. The ovoids were the
result of combination of the circle and ellipse construction.

For the construction of the right angle the Pythagorean
triangle (3,4,5) and the approximate Pythagorean triangles
(8,s8,12), (11,13,17), (12,35,37), are used. They are very often
found in the basic length elements for the construction of the
ellipse. The application of approximate Pythagorean triangles
shows that the theorem of Pythagoras was not known. Geometric
knowledge was of an empiric character, based on noticing in
practice the triangles suitable for the construction of the right
angle and remembering their dimensions. B

By studying the metric characteristics of megalithic
monuments we come to the hypothesis of the existence of a metric
standard, the length unit: the megalithic yard, which is also
indicated by the dimensions of megalithic monuments in Carnac
(Bretagne), Avebury (England) and Brodgar (Orkney Islands).

The megalithic constructions, circles of stones, “"temples”
and "platforms” most probably had a function of solar and lunar
observatories. It was noticed that in the "temple” in New Grange,
in the day of the winter solstice, sun beams shine through the
opening on the roof part, and illuminate the room. Platforms had
a similar function. In the case of platforms as the reference
points for astronomic observations outstanding points on the
horizon of the landscape (e.g. tops of mountains, mountain
passages) were used. Such use of natural reference points
considerably increased the precision of the results of astronomic
observations.

New data on the geometric knowledge of the pre-scientific
period can be obtained from more detailed recent studies of the
Neolithic monuments.
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Very interesting and insufficiently explored fields related
to the geometry of the pre-scientific period are still the
following: dating of the appearance of all the plane symmetry
structures and corresponding classical-symmetry, antisymmetry and
color-symmetry groups, the registering of the most significant
archaeological exavation sites from the point of view of the
theory of symmetry and ornamental art, the 1inks between the
ornamental art of different cultures, the links between the
friezes, natural numbers and calendars, etc. Al11 these and many
other similar questions relevant to the history of mathematics
of the pre-scientific period should become a common field of
research for mathematicians, archaeologists and specialists of
different sciences.
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ORNAMENT TODAY

The origins of ornamental art date back to the Paleoliithic
(Magdalenian, about 10000 B.C.) and represent one of the first
human attempts to perceive, understand and express symmetry,
regularity and harmony. Already at this stage, we have examples
of the symmetry groups of rosettes, all the seven discrete
symmetry groups of friezes and most of the 17 discrete symmetry
groups of ornaments (Figure 1).

Figure 1. Examples of rosettes, friezes and ornaments 1in
Paleolithic ornamental art.
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In this period as well as in the Neolithic and in the art of
the ancient civilizations (Egypt, China, Japan...) ornamental art
is flourishing, so examples of all plane symmetry groups of
isometries are being realized.

In the oldest phases of ornamental art, the symbolic role of
ornaments is prevailing, so that ornaments became an aspect of
communication. By history, symbolic meanings gradually disappear,
retreating before other means of communication. After geometric
rules on which ornaments are based have been understood and
construction problems solved, ornamental art offers possibilities
for a playing, artistic imagination and decorativeness (Figure 2,
3). .

Figure 2. Ornaments of primitive peoples, New Guinea.

Ornamental art was of great 1importance 1in several pre-
Renaissance cultures (e.g. Egyptian, Arab, Moorish...). The
recent Western art brought the division of the fine arts into the
“fine" and “"decorative” arts, with ornamental art playing a role
of a second-rate decorative art. Thus, unfortunately, the title
“Ornament Today" is associated with everyday decorative products
such as wallpapers, decorative fabrics, rather than with fine art
creations. However, the 20th century art itself and its
connections with natural sciences, mathematics, crystallography
and the theory of symmetry, have opened new possibilities for a
development of ornamental art, which are beyond reach of
empirical studies.

After the studies of the space symmetry structures and
corresponding symmetry groups, the 32 crystal classes, the 14
Bravais lattices and the 230 space symmetry groups (Fedorov
groups) the interest of mathematicians and crystallographers
turned in the thirties, towards so-called "small crystallographic
groups"” and “sub-periodic groups” - plane symmetry groups of
rosettes, friezes and ornaments. Besides the rosette symmetry
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Figure 3. A choice of ornaments of different cultures,
1{1lustrating unlimited possibilities of variety of ornamental
motifs.

groups Cn and Dn, which were discovered earlier, the
mathematicians like G.P6lya, P.Niggli A.Speiser [37] and others
prove the existence and completeness of the 1list of the seven
discrete symmetry groups of friezes and the 17 discrete symmetry
groups of ornaments as well as the list of the corresponding
semicontinuous and continuous symmetry groups. The research then
began based on the new possibilities arising from these
discoveries (Figure 4).

Looking for examples, visual illustrations of corresponding
symmetry groups, mathematicians make use of the rich ornamental
heritage of ancient civilizations, mainly Egyptian, Arab and
Moorish ornaments. The idea of studying ornaments belonging to
different cultures from the point of view of the theory of
symmetry distinctly differs from the previously accepted
descriptive method of ornament classification. The new 1idea of
classifying ornaments, announced in the work of A.Speiser, is
quickly accepted and applied in the works of E.MUller. H.Weyl
[39], A.V.Shubnikov and V.A.Koptsik [34], D.K.wWashburn [38],
D.W.Crowe [7,8] and others. Contrary to the former descriptive
methods of classification, which divided ornaments according to
motifs into the "geometric”, “plant” or "animal"”, ornaments are
now classified in accordance with corresponding symmetry groups.
One of the most interesting investigations referred to the
question of the appearance of all the 17 symmetry groups of
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ornaments in the ornamental art of Egypt [39,16]. A more detailed
studies of the ornamental art of individual cultures, based
mainly on archaeological sources from Africa are given 1in the
works of D.W.Crowe [7,8] (Figure 5) and D.K.Washburn [38], who
discusses the ornamental art of American Indians (Figure 6).

]

Figure 5. Ornamental motifs from Africa, Bakuba art.

In the search for the origins of ornamental art, in the
monograph [24] it is stated the existence of examples of
symmetry groups of rosettes, all the seven discrete groups of
symmetry of friezes and the 11 of the 17 symmetry groups of
ornaments in Paleolithic ornamental art. In that way, the empiric
geometric heritage preserved in ornamental art, becomes
accessible for a detailed analysis and classification making use
of the theory of symmetry, offering at the same time the
authentic information on the origins of mathematical thinking in
the pre-historic period, and thus opening a whole new chapter for
the study of the mathematical knowledge history.

The analysis of ancient ornaments, in particular that from
Paleolithic and Neolithic ornamental art, brings up the
hypothesis that the visual-geometric properties of ornaments
define the time of the first appearance and the frequency of
occurrence of certain symmetry groups in ornamental art. In
accordance with the contemporary studies of visual perception
from the standpoint of the gestalt-psychology [1], it is possible
to formulate the principle of visual entropy — principle of the
maximal constructional and visual simplicity and maximal
symmetry. In its wider sense, this principle can also be applied
to the studies of aestethic grounds on which different works of
art are based and for a creation of more exact aesthetic
criteria and analytic approaches to fine art works.

After the appearance of non-figurative art (abstraction,
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Figure 6. Ornamental motifs 1in the ornamental art of American
Indians, Upper Gila Area.

especially geometric abstraction) of the 20th century, the
classical descriptive language and criteria of the fine art
aesthetics, containing numerous elements which do not refer to
visual characteristics (e.g. subject, motif, degree of
reality...), become -dnsufficient or completely inadequate for
contemporary aesthetic analyses. When observing the blank, white
square by K.Malevich, and when trying to find out what makes it a
unique, unrepeatable work of art, we have to apply visual
criteria, closely connected to the laws of the theory of symmetry
in its widest sense, that means, in the sense of “well organized
forms" [1].

when searching for such criteria and looking for universal
laws of the "well organization", harmony and accord, the simplest
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symmetry forms to which isometric symmetry groups correspond, can
be used. Isometric ornamental plane figures: rosettes, friezes
and ornaments, represent only the most elementary form of
regular, symmetry plane structures. Other visual components such
as a color, relation "figure"-"back-ground”, convexity,
concavity, topological equivalence, etc., can be discussed by
extending the classical theory of symmetry to the antisymmetry,
colored symmetry, curvilinear symmetry, similarity symmetry,
conformal symmetry, non-Euclidean symmetry...

The first of these extensions — antisymmetry, i.e. two-
~colored “black-white” symmetry, includes besides geometric.
symmetry transformations an involutional, often non-geometric
bivalent change (e.g. color change “"black"-"white") commuting
with all symmetry transformations (Figure 7).

Figure 7. Examples of antisymmetry ornaments.

Antisymmetry ornaments from Neolithic ornamental art, are
the result of artist’s wish to enrich the ornament, express the
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mutually opposite alternating features — forms of duality in
nature, to create the contrast and suggestion of space. They
became a subject of mathematical studies in the thirties, and are
discussed in the works of H.Heesch, A.V.Shubnikov [34,35],
N.V.Belov [35], A.M.Zamorzaev [41,42] and others. As a starting
point for introducing the antisymmetry, Weber “black-white"
diagrams of bands are used. The color change "black"-"white"
served as a possibility for the dimensional transition, i.e. for
the interpretation of the three-dimensional space in a plane. An
analogue approach results in the 46 antisymmetry groups of
ornaments which together with the 17 generating and the 17 senior
antisymmetry groups correspond to the 80 symmetry groups of
layers. Applied to the n-dimensional symmetry groups,
antisymmetry becomes a tool for derivations and analyses of sub-
periodic symmetry groups of the (m+1)-dimensional space.

From the artistic point of view, multi-dimensional symmetry
structures and their plane interpretations open a large
unexplored field (Figure 8).

Figure 8.The projection of the four-dimensional polytope {3,3,5}.

Further generalizations of the theory of symmetry lead over
the multiple antisymmetry to the colored symmetry, discussed in
the works of N.v.Belov [35], A.Loeb [28])], A.M.Zamorzaev,
A.F.Palistrant and E.I.Galyarskii [42], M.Senechal, T.W.Wieting
{40] and others. The colored symmetry is a polyvalent symmetry,
which besides symmetry transformations includes a "color change”,
i.e. the change of any polyvalent feature (e.g. some physical
property) commuting with symmetries.

The antisymmetry and colored symmetry offer at the same time
a possibility to study and visualize various symmetry structures
together with their physical properties. In that way, besides
their symmetry - regular geometric organization of structures
(e.g. crystal structures) it 1s possible to analyze different
physical characteristics, whose change can be interpreted by
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color permutations. In spite of high scopes of the theory of
colored symmetry, many problems originating from the ornamental
art studies (e.g. such color-symmetry stuctures, where quantities
of different colors are used in the given ratio p:q, or p:q:r),
still remain unsolved [19].

The next series of problems refers to geometric and visual
characteristics of ornaments considering the form of the
fundamental region, elementary asymmetric figure by
multiplication of which, using symmetry transformations of the
given group, a plane isohedral tiling can be achieved (Figure 9).
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Figure 9. Examples of isohedral tilings.

Tilings, ideal mosaical coverings of a plane without gaps
and overlaps, used in ornamental art of different cultures
(Egyptian, Arab, Moorish...) (Figure 10, 11) have find its
mathematical interpretation in the tiling theory. Of a special
interest is the problem of the periodic monohedral tilings —
isohedral tilings discussed in the works of H.Heesch [20],
B.Grinbaum and G.C.Shephard [17,18], as well as similar problems
related to the uniform tilings (Figure 12), tilings with star
polygons (Figure 13), isogonal tilings (Figure 14), n-hedral
tilings and colored tilings (Figure 15).
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Figure 10. Mosaics from Alhambra.

Although a considerable progress has been made in this
field, there are still numerous unsolved (and maybe unsolvable)
problems. They are, e.g. to define the universal criterion
offering an answer to the question whether the given figure can
be a protile for constructions of monohedral tilings. The similar
question 1is: how many 1isohedral tilings with different symmetry
groups generate the chosen protile (Figure 16).



43

AY

(3%,32.69) * (32.4.3.4;3.4.6.9)

XX KX

B O B R T e
(3°.4%3.4.6.4) (3%.42:4%, . (3.4%.6;3.6.3.6),

Figure 12. The six of the 20 types of 2-uniform tilings.

A separate chapter of the tiling theory represent the
aperiodic tilings. In the case of aperiodic tilings the principle
of crystallographic restriction (n=1,2,3,4,6) does not hold. The
importance of aperiodic tilings becomes evident when quasi-
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crystal structures as well as organic structures, like the DNA-

structure called by E.Schrédinger "the aperiodic crystal™, are
discussed (Figure 17).
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Figure 15. Different monohedral and 2-hedral "black-white”
tilings obtained by the use of the multiple antisymmetry.
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Figure 16. A survey of protiles which can be used for
constructions of monohedral tilings. Some of them generate two or
more different tilings.
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Figure 17. “Penrose chickens" and the schemes corresponding
to Penrose aperiodic tilings.

Besides the structures mentioned, relatively uninvestigated
e interlaced symmetry structures which find their place in
ornamental art and the theory of symmetry (Figure 18).
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Figure 18. Different interlaced ornaments.

] An advantage of the theory of symmetry as a scientific
discipline is a possibility to formulate most of problems,
assumptions and theorems in a simple language, enabling
specialists of different scientific profiles, even the amateurs,
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to take part in their solving.

Similarity symmetry groups are discussed in the works of
H.Weyl [39], A.V.Shubnikov [34], A.M.Zamorzaev, E.I.Galyarskii
and A.F.Palistrant [42] and others. After the inspiring book of
H.Weyl [39] in which appearances of the similarity symmetry in
nature (the symmetry of Nautilus shell, sunflower Heliantus
maximus, pineapple) are analyzed, the similarity symmetry groups
are studied by different authors. Many examples of these groups
are present in the ornamental art of different cultures. The
appearance of all the plane similarity symmetry groups belonging
to the five infinite classes CnK, CaL, CnM, DnK and Dnl, can be
traced in the history of ornamental art [24]. Probably the most
interesting in the visual sense are the similtarity symmetry
groups CnL and DnlL, connected with the use of the logarithmic,
equiangular spiral — invariant 1ine of the group of 1linear
transformations. The logarithmic spiral, geometric properties of
which J.Bernoulli has described by the words “"Eadem mutata
resurgo”, occurs in ornamental art from the ancient times, in
particular in Greek-Roman ornamental art (Figure 19).

The further generalization — conformal symmetry groups, due
to the absence of models in nature, indicates a different
approach, which is characteristic for the 20th century science: a
path from an abstract theory towards corresponding visual
interpretations, understood as a model of this abstract theory.
Such an approach, occurring in geometry at the beginning of non-
Euclidean geometries, results in the theory of conformal symmetry
groups and in visual models of all finite and infinite conformal
symmetry groups. Since these groups are isomorphic with the
symmetry groups of tablets and, comprising the similarity
symmetry groups, with the symmetry groups of rods — three-
dimensional line symmetry groups, there is, besides by
antisymmetry, another possibility for interpretation of three-
dimensional symmetry structures in a plane (Figure 20).

A1l symmetry groups afore mentioned can be extended by the
antisymmetry and colored symmetry.

The non-Euclidean crystallography represents a special field
of the theory of symmetry. The symmetry groups of the hyperbolic
plane can be interpreted within Poincaré or Klein model of the
hyperbolic plane. In these models, circle inversions have a role
of line reflections in the hyperbolic plane [9,10]. In
contradistinction from the 17 symmetry groups of ornaments of the
Euclidean plane, in the case of hyperbolic ornaments there is an
infinite number of symmetry groups.

The 20th century fine arts are characterized by absiraction.
The geometric abstraction first appeared in the works of cubists
and was developed further on in the works of many artists, in
particular by the Russian constructivists, and suprematists
(V.Suetin, K.Malevich and others). Parallel to this goes the
development of geometric ornamental art. The problems of
construction of different kinds of ornaments (antisymmetry,
colored symmetry, similarity symmetry, conformal symmetry, non-
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Figure 19. The similarity symmetry in nature (Nautilus shell) and

in ornamental art.
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Euclidean symmetry ornaments) has led artists to the study of
principles of the theory of symmetry. That strengthened the links
between the science and art and some borders between them have
disappeared. So, for example, we have a complete derivation of
the 46 antisymmetry groups of ornaments and their first
interpretation by antisymmetry mosaics in the works of H.J.Woods,
published in the Journal of the Textile Institute of Manchester
in 1936 [8] (Figure 21).

Significant results have been achieved in the field of
visual interpretations of symmetry groups, variations of the form
of the fundamental region, visual modellings of the symmetry
groups of a sphere, antisymmetry and colored symmetry groups, by
H.Hinterreiter [31], a constructivist painter. The research of
H.Hinterreiter on symmetry structures and their visual effect is
based on the works of the German chemist and philosopher
W.0stvald. Besides by isometric transformations, many of the
graphic works of H.Hinterreiter are realized by the use of
symmetry structures subjected to the action of affine and
projective transformations (Figure 22).

The highlights of the ornamental art of the 20th century
came from the Dutch graphic artist M.C.Escher. His first attempts
were to realize plane monohedral ornaments, based on the
experiences acquired from Moorish ornaments. In his long creative
work M.C.Escher solved a series of difficult geometric and
artistic probliems. Most of them belong to the field of the theory
of symmetry: constructions of monohedral, 2-hedral or n-hedral
tilings using as their protiles figures derived from models found
in nature, combined with the use of the antisymmetry, colored
symmetry, similarity symmetry, conformal symmetry, non-Euclidean
symmetry, topological symmetry... (Figure 23,24,25,26,27).

Although the contacts that M.C.Escher had with one of the
most significant contemporary mathematicians, H.S.M.Coxeter, and
its certain knowledge of literature from the field of the theory
of symmetry cannot be neglected, still remains the unavoidabile
fact that in many of his works M.C.Escher anticipated certain
main problems of the theory of symmetry and its generalizations,
having their almost visionary premonition. Some colored symmetry
groups, for example, had appeared in his works before they were
derived by mathematicians and crystallographers.

How difficult are the problems M.C.Escher had to face when
constructing monohedral tilings with zoomorphic protiles can be
seen if we try unaided to construct one of these tilings with the
protile based on a model found in nature, even if we are
familiar with the theory of tilings, which was still not
completed when M.C.Escher created his ornaments.

In the contemporary art, from the point of view of the
theory of symmetry and psychology of visual perception, the most
interesting is the "op-art"” (“optical art"), which reached its
top in seventies in the works of V.vVasarely, J.R.Soto, W.Fangor,
the group “"Abstraction-Creation”, B.Riley, J.Albers, F.Morellét
and others.
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Figure 21. Antisymmetry ornaments by H.J.Woods,
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Figure 23. Antisymmetry ornaments by M.C.Escher with the
antisymmetry groups pg/pl and pi1/pi.
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Figure 24. The transformation of the antisymmetry ornament with
the antisymmetry group cmm onto the antisymmetry ornament with
the antisymmetry group pg/pl.

Figure 25. A conformal antisymmetry ornament by M.C.Escher.
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Figure 26. "Circle Limit IV*, the hyperbolic plane ornament by
M.C.Escher with the symmetry group [3*,8] and the geometric
scheme which served as a basis for its construction.



58 Slavik V. Jablan

Figure 27. A hyperbolic plane ornament by M.C.Escher, obtained
using the Poincaré half-plane model of the‘Lobachevsky plane.

Being the synthesis of ideas of the geometric abstraction,
constructivism, suprematism and the principles of the psychology
of visual perception, the op-art makes experiments with visual
structures producing a programmed visual effect to the observer.
The planning of the visual effect and the adequate choice of the
visual parameters is based on the knowledge of the physiologic-
psychological laws of visual perception. Since the symmetry in
its widest sense 1is one of the most important visual parameters,
the op-art works are often symmetrical (Figure 28,29,30). Besides
the already discussed discrete groups of symmetry and generalized
symmetry (antisymmetry, colored symmetry...) an important role in
the op-art is given to superposed net-structures resulting in a
“moire effect” [34] and textures [35] (Figure 30b).
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Figure 28. “Blaze I" by B.Riley.

From the standpoint of the theory of symmetry, textures make
possible visual interpretations of all continuous symmetry groups
which are not visually presentable (e.g. Cs — the symmetry group
of a rotating circle). Since they are realized by the
statistically uniform distribution of an asymmetric figure in
accordance with the desired symmetry, in the physical terms they
can be understood as results of different accidental dynamic
processes, having a distinguished place in the modern physics and
in all natural sciences. Some of such op-art motifs are realized
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Figure 29. “Square of Three" by R.Neal.
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by the use of a random number generator, so that they represent
first applications of computers in art (Figure 31). In the last
few years we can follow the rising of the new art discipline —
computer art, which already deserved an independent study [33].
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(a) (b)

(c) (d)

Figure 30. Different rosettal motifs 1in op-art: (a) continuous
conformal antisymmetry rosette with the antisymmetry group
LiCsoZz/L1C302x; (b) graphic by M.Shutej; (c¢) graphic by
M.Apollonio; (d) graphic by F.Celentano.



62 _Slavik V. Jablan

N - oy 5
! A oo a h

- . .L M - - "
! H =5 >

i

= [} ]

iy

H T it 1
A :
3 3 » H

Figure 31. "Aleatoric Distribution” by F.Morellét. :

The theory of symmetry is now established as a scientific
discipline which does not offer almost any empirical research. In
contrast, ornamental art based on the intuitive-empirical
approach, centuries ago anticipated some knowledge of the theory
‘of symmetry. Today, the roles are changed, and the level of the
theory of symmetry mostly exceeds the mathematical range of
ornamental art. Therefore, it is necessary to estimate the true
place and importance of ornamental art at the very moment. The
fact that the number and character of different possible symmetry
structures is determined and fully defined by symmetry laws (e.g.
the existence of exactly the 17 symmetry groups of ornaments, the
46 antisymmetry groups of ornaments, the 93 types of isohedral
plane tilings, etc.) does not mean that the construction of
ornaments is only a mechanical process deprived of any
creativity. That only means that an artist need not to solve the
technical construction problems anymore. Knowing the results of
the theory of symmetry and its generalizations, construction
rules and geometric possibilities for choosing visually relevant
characteristics of ornaments (e.g. the form of the fundamentail
region, different possibilities for regular colorings...) he can
direct all his creative potentials towards aesthetic aspects of
ornaments and achievement of the desired visual effect.

Oon the other hand, mathematics and all ofher natural
sciences can expect from ornamental art the most evident visual
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way of ‘interpreting.and modelling different symmetry structures
and the corresponding symmetry groups. It is for sure that
ornamental art, as a centuries old, inexhaustible source,
nourished by the inspiration of generations of artists, can offer
to the theory of symmetry a large number of relevant questions
seeking an answer.
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