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PREFACE

The title of this monograph could read modification of the rheonomic systems dy-
namics or revision of the rheonomic systems as these titles more closely point to
the subject of this study. The monograph changes the essential formulae, equations
and pr1nc1ples of analytical mechanics of rheonomlc systems which is evident from
the comparison below:

Widespread and adopted Contained
in analytical mechanics in this monograph

Rheonomic constraints

fulry,...,rN;t) =0 or fulry,... e 7(t)) =0 or
ry = rv(qll- 1 q )t) ry, = rV(qo)ql)“' ,qn), qo = T(t)
Generalized momenta
Pa = gaﬁdﬁ + Ja0 Pa = gaﬂ_dp + gaqdo
po=-H, ¢ =t Po = gogd® + goog®
and consequences
i = ¢**(ps — Fpo) ¢ = g'p; ‘
908 #0, a=1,...,n l9;i1#0,5=0,1,...,n

Kinetic energy

T= %gaﬂq.aq.ﬁ + Joaq” + ‘;‘?00 T= %gijq.iq'j
= 19050%6° + 9204°¢° + Lg004°¢°

T = 19*P(ps ~ Gpo)ps — Tpo) ~To | T = 34" pipj
= 39popo + 9%°Papa + 9% paps
Lagrangian
L=T-1 L=T-V=T-(I+P)

where P is rheonomic potential
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Hamiltonian
H=pg*-L HEE=1dipp; +V
N, s’

P =T+V=T2+T1+T0+H+P‘
H=T-Ty+1 . T
(a=1,...,n) E=pg-L (i=0,1,...,n)
not invariant invariant

Legendre-Hamiltonian transformations

oL oH not necessary becaq§e the relations

Pa=5q—a/\é°=5£ pi = gij¢ ~ ¢ =g¢"p;

are sufficient

Lagrange differential equations of motion

doL oL _, B
dt g Bg doc or
a-—l,...,n 2;3;-6—-3—&?
Hamiltonian equations
j% = f?ff_ 3= _5_}:5'_
= a a 7= 6?;
;. = 08 = _9E
Pa="%¢ ="
a=1,...,n i=0,1,...,n
Coupled differential equations of motion
and differential equations of perturbation
w_ OH _OH
q "'8palp0" aqa! .i—aﬂ . 67-[
‘o 8°H ¢ 4 9*H _-6_17-,-’ Pz'--'a?,
- aqpapa apaapﬁ s E's' = 2& i = __3_7{_
. _O°H  9H ap;’ " o¢
= 54258 " ~ 5gedgP

Generalized differential equations of motion

9z L .92 _,
gar T Pgan =
2Z = gij(@’ - Q)@ - Q)

for holonomic system

8z .
5 =0(=01,..,n)
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Appell’s equations
9s* _ 95 _q.
a5 ad
5'=§Es—12k—1"-h'h“ 95 = giidid
+Z;-1§:k—12r-1[’ k; flql‘lk‘lr = 9:4%
4—2"_'x '=l(—4'=+g§':' e )qrq'.
+Zr—1 %%'f)q
D’Alembert-Lagrange’s principle
D¢ \si =
. (Ql = 9ij dt )6q 0
Dg D
(e = s B e =0 (Qu-sei g B Yo
D
(Qo—yo; d‘f)&q =0
Gonditions for equilibrium
Qa =
a= 0
Q Qo+ Ro=
Principle of least action
131
0 5 / (T-P)dt=0
to
Hamilton’s principle
11 i 31
) Ldt=0 § Ldt=0
to to

or

(@=1,... ) (i=0,1,...,n)

Gauss prihciple
zZ

—6¢* = \ 6Z——g—75a =0

a® = D§°/dt = §* + D¢

1y i
5/ pidd —Edt=0
t




PREFACE 5

When a comparison is made with the standpoints adopted in analytical me-
* chanics the major changes entered here appear both substantial and formal and
they may not be easily accepted due to the nature of inerfia. They are substantial
because the cause of change in constraints is now introduced into the description
-of motion and they are formal because the relations and expressions for rheonomic
systems are reduced to homogeneous harmonic forms of relations and expressions
for scleronomic systems. Namely, it is not only the matter of improving the forms
of some analytical expressions, but also improving the entire description of the mo-
-tion of rheonomic systems and their constraints. The term ”modification” would
imply a comparative listing of the original texts with those adopted that needed
correction, as I am doing in this foreword but this approach I did not consider a
useful one. That is why I opted for a more purposeful title The dynamics of rheo-
nomic systems. It may happen that such a title has already been used somewhere,
but I think that the subject matter practiced here has not been covered anywhere
since that probably would have been known. From the classics o modern scientists
there have been attempts to solve this problem, but as shown in the comparative
analysis, the search for solutions took another route that led to “another mechan-
ics”. The most widespread approach was the one which introduced time as the
(n+1)-st coordinate ¢"*! =t and, corresponding to this, the (n+1)-st momentum
Pn+1 = —H as the negative Hamilton’s function. Corresponding to them is the
(n 4 1)-st differential equation
40T _OT_,
dtor - ot
where T is the transformed Langrange’s function of L. However, it has been proved
that this equation is a dependent one and that it only formally fills the gap in the
enlarged configurational space.

Debates at scientific conferences induced me to provide some details, which
may have been left out of research papers or to prove some results in two or three
ways comparatively. For the same reason, several simple and clear examples have
been included. I recognized this need at the above mentioned conferences and
where the reader is concerned this will make it easier for him to compare the
widespread viewpoints from the analytical mechanics of rheonomic systems with
the ones offered here. I hope that such a book will be useful to the advanced
students studying analytical mechanics.

Some results appearing in this monograph have already been published in my
papers [11-20] which I explained and proved at the sessions of the Department for
Mechanics of the Mathematical Institute in Belgrade, the Seminar for Analytical
Mechanics on the Faculty of Mathematics in Belgrade, the Institute of Physics on
the Faculty of Mathematics, the Yugoslav Congresses for Theoretical and Applied
Mechanics, the XVII Congress of the International Union for Mechanics in Greno-
ble, the Department for Mechanics in the Computer Centre of the Academy of
Sciences of USSR, the Institute dealing with problems in mechanics of the same
Academy, Moscow, and the Mathematical Institute of the Georgian Academy of
Science, Thilisi, USSR. ;



SURVEY OF ELEMENTARY MODIFICATIONS

The concept of rheonomic system first appeared in the book of L. Boltzmann
“Vorlesungen iber die Prinzipe der Mechanik”, Part II, Leipzig, 1922, meaning a
system of material particles whose motion is limited by the constraints changing
with time. C. Lanczos in his book “The Variational Principles of Mechanics”?!
(1962) states that Boltzmann introduced the terms “rheonomic” (péos — flow,
flowing, vépos — law, decree) and “scleronomic” (cxAnpés — hard, strong). But,
apart from the terms, which are not even today used often and uniformly, the impact
of time-dependent constraint upon the transformation of differential equations of
motions and principles were also considered earlier by e.g. Ostrogradski? (1848) and
Sophus Lie® (1877). As regards the way in which variable (rheonomic) constraints
are described in the theory of mechanics we find them in the classics, for instance A.
M. Ljapunov? (1893). In numerous papers on system mechanics, however, the term
“rheonomic constraints” is often replaced by the term “non-stationary constraints”.
Scazrce are the books in which the general term “constraints” is covered that these
constraints, beside coordinates and velocities also depend on time ¢.

Even more important than the title itself for these dynamic systems is the
knowledge gained in classical mechanics which ought to be modified. To this end,
it is necessary not only to clearly define the rheonomic constraints but to make their
geometrical and dynamic meanings clearer. It is well known that the constraints
are the source of the forces which act upon material particles in the system and
limit their motion. As for the constraints which themselves undergo changes, there
must be a cause of their change. Related to this fact, which was either overlooked
or bypassed in analytical mechanics are the basic and general viewpoints in dy-
namics which are reflected upon the subsequently derived relations on the system
motion. Because of that, non-uniformity, non-equivalence and non-invariance have
appeared in the analytical description of the rheonomic systems motion. Differ-
ences were noticed among Newton'’s, Lagrange’s and Hamilton’s mechanics though

: ! C. Lanczos, The Variational Principles of Mechanics, sec. edition, Toronto,
1962. ‘
. 2 M. B. Octporpagckust, Mémoire sur les équations différentielles relative auz
problémes des isoperiméires, St. Peterburg, 1848.
3'S. Lie, Die Stérungstheorie und die Berihrungstransformationen, Arch. for
Math. T. 2, s. 2, Kristiania 1877, 129-156.
4 A. M. Jlanynos, Kypc meopemuueckoii mexanuxku, TeXHONOrMIeCKUA HHCTUTYT,

Xapekos, 1893.

|



1. LIMITING THE MOTION OF A POINT 7

they all described the same natural phenomena. They were not of mere formal
nature. When the motions of systems with invariable (scleronornic) constraints are
described the harmony, uniformity and invariance are absolute in the choice of the
methods of description and the choice of coordinate systems. This harmony is dis-
turbed when talking of the rheonomic systems for the very reason that the cause
of change of the constraints is overlooked. An attempt was made in this study to
overcome this deficiency and make the principles of mechanics invariant both for
scleronomic and rheonomic systems. The causative attributes related to the change
of constraints are named here: “The changing force of constraint”, “the changing
power of constraints”, and “the potential of rheonomic constraints” depending on
the context in which the said term is used. The true meaning of these phenomena
can be noticed from the description of motion of a material particle over a variable
surface, this matter being devoted much attention in the beginning of this paper.

" 1. Limiting the motion of a point

The area in which a particle of mass m moves is in the general case a three
dimensional space E3 with an orthogonal vector base e = ey, ez, e3:

1 i=y
(1.1) e;-ej=6,-j={0 it
satisfying
de;
. —_ L, =1,2,
(1.2) % (1,5 =1,2,3)

where time ¢ (tempus) is considered homogeneous. If the set of all real numbers is
denoted by R, then we can always write ¢ € R. The values of ¢ form an axis which
is named the time axis, denoted by T'. Then time has one dimension i.e.

(1.3) [dimt] = T.

The common origin O of base vectors e; may belong to any inertial basis so
that when related to the arbitrarily chosen pole O the position of the particle can
be determined by the position vector

(1.4) r=y'e; + vler + yles = ves = r(y, 4%, %)

where y* (i = 1,2,3) are Descartes rectilinear coordinates. The motion of a point
M in space E® may be limited by constraints of the form

(15) f(ylyyzxyasr)zo; fecl-

In the case when parameter T is constant, the relation (1.5) i.e. f(y*, 3%, 3,
70) = 0 represents a surface Sy C E3, whose dimension equals the number of
coordinates of a point reduced by the number of constraints i.e.

6 dimS, = 2.
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However, if 7 = 7(t) is a variable parameter, the considered surface will change
depending on the parameter 7 = r(t). Hence, the dimension of the variable surface
18

(1.7) dimSy41(t) =2+ 1.

where an additional dimension defines the parameter r as a function of time ¢. Using
the relation (1.5) it is possible to determine one of the coordinates y* as a function
of the other two y* (& = 1,2) and of parameter 7, provided that 8f/3y’ # 0. The
parameter 7 is free until we chose its dependence on time, i.e. 7= 7(2).

It means that the constraint f(y!,y?,y3;7) = 0 permits a solution in a neigh-
bourhood of a stationary non-singular point M(yd, 3, ¥3) € B3 if

. Of
(1.8) 3= G.
Really, the solution y® = ¢(y*,y?,7) exists in a neighbourhood of point My if

there exists the differential
o = gl + ghit + gL+ Sar=o,

hence it follows that

dy __6f af dp _ 6f L Of 8 _ Of of

oy T oy 8B G By By Br  ar oy

Therefore a change in the function y® = p(y!, y?, 7) occurs even if the coordi-
nates y} and y3 are fixed, only if 8f/0r # 0. The constraint f(y!,%, 33,39 =0,
y° = 7(t), is non-singular for the point Mo(yd,v2, ¥3) if the gradient of the function
f for point My differs from zero, i.e.

5f(Mo) 3f(Mo) 3f(M0)

(1.9) grad f(Mo) =

The following simple examples ought to make clearer the nature and character
of parameter 7, which satisfies the dimensional equation for the constraint.

1. A heavy particle moves over a horizontal smooth plane y3 = ¢(t). The
function ¢(t) shows that the plane itself moves vertically during time. It can be
seen that parameter 7 is a function of time and the constraint (1.5) is in the form:

(1.10) f@B, (1)) =0.

' Hence it clearly follows that parameter T has physical dimension of coordinate
y® i.e. [dim7] = L. The parametric form of this constraint: y® = r(t) should be
distinguished from the motion of a free point according to the law 3 = 3(¢) in the
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sense that the constraint (1.10) limits the motion of the point by the force named
the constraint reaction.

The same horizontal plane may be considered in some other rectilinear co-
ordinate system z!,22%,2® for which we have linear homogeneous transformation
¥ =cizk, b #£0. Iy = 32! + c32? + c32° is substituted into (1.10), the rheo-
nomic constraint equation is f = ¢;2° — 7(t) = f(z?, 2%,23,7) = 0, or in parametric
form

(1.11) (2, 2, 7) = 8320 + 8322 4+ B3,

where it is obvious that 33 = ~c}/c3, b3 = ~c3/c3, b3 = ~1/c3.
2. A point moves over the plane

(Li2) a(t)y* + @)y +cy® = 0, c€R,

which rotates around point Mgy(0,0,0). The equation of the constraint may be
written in the form (1.5) i.e.

(1.13) f=rt +6(r)y’ + e =0

where for T the coefficient a(t) = 7(t) — ¢t = ¢(7) is chosen.” Here, as in (1.10) or
(1.12), the constraint (1.12) can be written in parametric form

T b
¥=9(nyy)=—cy' -2y

or

(1.14) ¥ =0 %)

where it is established that 7 = y°. Here 7 is not a coordinate y!, 2 or 33, as
chosen in the relation (1.10), but a symbol for that function of the coordinates with
zero index: y° = 7(t) = y°(¢).

Let us assume further that in (1.13) the coefficient b = 0 and a = tgw?, where
w is the frequency of rotation of the plane y® = —(tgwt/c)y! about y? axis. It is
suitable to choose wt for the function 7, i.e. wt = 7 = y® . Thus the equation of
that surface can be written in the form

(1.15) . F° 6t 9% = 4% + (tg v’ e)yt = 0.
Time ¢ itself could have been chosen for 7 such that r = t = y°(t), but one

should pay attention that the dimensional equation of constraints is satisfied. In
this case the relation (1.15) in the general expression is not changed because

(1.16) (%007 = v + (tgwy/e)y! = 0.
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The only change is in the dimension of function 7, that is y°, depending on
the selection of geometrical or kinematic coefficients. In case (1.10) the dimension
of parameter = was the length dimension and in cases (1.14) and (1.15) the same
coordinate stood for angle. The given examples for the motion of a point over
two-dimensional movable planes S, shows that the motion of a point over those
planes is defined by one “coordinate” more, dim Sa4; = 24 1, as is generalized in
the relation (1.7). Still more obvious is the meaning of that one dimension more if
the motion of a point is observed on a straight line, which can be determined by
two movable planes

{fl(y‘, o) =0 ¢ =r(t)
Ay v %) =0 ‘

or one movable plane, let it be fi = 0 and one stationary plane f3(y*,3%,3°) = 0.

Movements of dif about a non-singular point M € f; N fo will satisfy the
constraints

(1.17)

df, = 3f1d1 gf;dz 6f‘dy31+af1d° gf;yx 0

(1.18)
dfs = ._1;3,,= (i=0,1,2,3).

For non-singular two-dimensional matrix

2

9fo |

oy J,
it is always possible to find two coordinates v’ using the third one and the time
coordinate y°. Such an equation for a moving line, or a more generalized line if

the relations (1.17) represent surfaces, when given in parametric form will be, for
instance,

2 2¢,,0 .1
v =y (y,y)
1.19) {
( . v =" vY).

Pursuant to this it can be said that the dimension of a rheonomic straight-line
(or a more generalized line) p = fi N fa equals two, i.e.

dimp=1+1.

An example of such a constraint is the relation (1.15) together with another
constraint: y% = const. or y% = 7(2).

Limiting the displacement of a point using three rheonomic con-
straints. In classical mechanics it is known that the number of degrees of freedom
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of a material particle on retaining constraints is equal to n = 3 — k where k is the
number of constraints. Therefore, if there are three constraints

(1.20) fwhy% ) =0 (¢ =1,2,3)

it would follow that the number of degrees of freedom of so limited motion equals
zero. That is correct if the constraints are scleronomic ones

(1.21) Yo, 4% %) = 0.

In this case the material particle remains in the fixed intersection of three surfaces
(1.21) in a region. In order to have displacement in the neighbourhood of a common
point the following three equations should be satisfied

s , i _ _
(1.22) 5 =0 (@=1,23).

It is obvious that these homogeneous equations are satisfied for dy* = dy* =
dy® =0, and there is no displacement. For other possible solutions for dy* # 0 the
determinant

3

(1.23) l 9%.

oy

3

of the system (1.22), should equal zero, but this is not the case because it is assumed
that the constraints (1.21) are mutually independent. However, the common point
of the three independent rheonomic constraints (1.20) is not fixed but moves into
E3 in the course of time t € T, if the following three equations

Ofo i _ _9fs 0o F
(1.24) Gl = -5, (7i=123),

permit the solution for dy* other than zero. And this is precisely possible when
|6f,/0%'|3 # 0. Using three independent non-homogeneous algebraic equations
(1.24) with 3 + 1 magnitudes dy* and dy° it is possible to determine the motions
of dy’ dependent on dy®. Furthermore, the intersection itself p(t) = fiN fa N fa
is a function of time if at least one of the constants change with time. Therefore
the point M, at which three rheonomic constraints act, can move as caused by
the limiting constraints. In other words, it is the additional dimension denoted
by 7 or y° = y°(t), which extends the space in which the point moves by that
one dimension. One should not overlook the fact that the possibility of motion is
conditioned by constraints and as such it represents by itself a constraint acting on
the particle.

Similarly to the notion of retaining rheonomic constraints (1.20) the unilateral
constraint will be recorded with f(y',3%,4% %) >0, y° = (¢).
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Transformation of constraint equations. By making a good choice of the
coordinate system, the holonomic constraints (1.5) can be reduced to simple coor-
dinate forms as shown on following pages. The rectilinear coordinate systems y*
are convenient for movable planes and straight lines. The changing of constraints
makes curved surfaces in the course of time so it is more convenient to introduce
curvilinear coordinates z;, z, 3, for such constraints which are oriented by coor-
dinate vectors g;, g, g3. It is necessary to determine the inertiality of the vector
base, introduced in this way, which can be done by comparing them with the iner-
tial basis arranged by the relations (1.1) and (1.2). That is always possible if there
exists interdependence of coordinates

(1.25) ¥ =iz}, 22, 2% and ' =zi(yh, 4% 0).
The position vector of the point may in such a case be written in the form

or 0z or 0zt

d { = i-—-—- e —— Y T
yel y ayi y ay‘ azk y ayl gk1

where obviously for arbitrary and independent coordinates 3,

or

(1.26) 8= 5.7 = ge(z*, 2%, 2%
and
Oz* o
(1.27) e = -a—y?gk = g = e
under condition
v
(1.28) 5:—,, #0.

Pursuant to the derived relations, the vector derivative (1.27) in time ¢ may
be represented in the following way
des _ 0 (0ck\oyidsl  oc*dg,
dt ~ Oyi \ 8y ) 0z dt &t 8yt dt
Partial derivatives beside g may be further transformed as follows:
D(EVG ooy (k10mmdy (koo
Ay \ Oy' ] 0z’ ~— 0yidy Oz T \pvf 8y 0y 8z T \plf Oy’

{
!
{
|
|

since
8z* k ) 8z™ 9z”
O8yidy ~ \muvf 8y Gy’
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“where {m’.cu} are Christoffel syrnbols of the second kind. Therefore we obtain that

doi _ (dgm [ k\de! \oem
at  \dt \mifdt %) ey
Composing this with dy'/0z* it follows

dg, [kldz' _ Dg, Oy de;

dt \sif @B T Tdt T bz dt

which means that for the inertiality of the vector base g,, g5, g3 of a curvilinear
coordinate system, the following will be necessary

(1.29) %fi:o (s =1,2,3).

If the relations (1.25) are substituted into relations (1.5) an equation of the
retaining rheonomic constraint is obtained in the curvilinear coordinate system z*
with the vector base g;, i.e.

(1.30) f(zl, 22, 37y =0.

This equation is equivalent to equation (1.5) of the rheonomic constraint for each
z' € E for which (1.28) is valid and for which the gradient of the function f is
different from zero. The rheonomic constraint equation (1.30) has considerably
simpler forms for curved surfaces than equation (1.5). When a convenient coordi-
nate system z;,z2,z3 is chosen the constraint equation (1.30) may be reduced to
a simple form of a movable or variable coordinate surface z = z(t).

Ezample. An equation of the sphere whose radius changes with time in a co-
ordinate system y* is &;;3'y? = r2(t), while with respect to the spherical coordinate
system z! = ¢, 22 = 4, 23 = r, this equation of the constraint has a much simpler
form namely z3 = z° = r(¢), where the zero index shows that for the “rheonomic
coordinate® z° = r(2) just the radius of the sphere changing with time was cho-
sen. It should not be forgotten that, when passing from one coordinate system to
the other, i.e. when the rheonomic constraint equations (1.5) are transformed into
(1.30) then the form of the constraint equations is changed while the constraint as
a mechanical object limiting the motion of a point remains as it is, because objec-
tively it is independent of any coordinate system and its transformations. Thus the
equations of rheonomic constraints in curvilinear coordinate systems should also be
distinguished, for example

(1.31) f(z*,2°t) =2F —2%(t) =0 fork=1lork=1,2,

from the finite equations of motion z* = z¥(t), regardless of the fact that they are
identical in form. The dimension of the space in which the limited motion of a point
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- (L.7) is observed does not change transformation (1.25). When the constraint is
active (1.30) the number of possible displacements is the same as (1.7), 2 + 1, and
when the point moves on a variable curved line the dimension of the space is 1+ 1.

In the cases when one rheonomic constraint has the form (1.31), for instance
z3 = £0(t), the equations of the pointwise transformation may be given parametric
form of the rheonomic constraint equations -

(1.32) ¥ =y'(zh, 2%, 2%(t), (i=1,2,3).
When two independent rheonomic constraints are active
filat,2%,5%,2% =0 and fa(a!,2?2%5%) =0

then two coordinates can be expressed by means of the third known function of
z%t), which is called “rheonomic coordinate”, and in this case the parametric
equations of the rheonomic constraint are

(133) yi = yi(zorzl)x (‘l = 1)2)3)

The relations (1.32) are parametric equations of a variable surface (a cylinder for
instance: y! = z%(¢) cos 2!, y® = z%(t)sinz?, y® = 2?), while the equations (1.33)
are parametric equations of a curved line (for instance of a circle: y* = 2%(¢) cos z?,

y? = z9(¢) sinz?, y3 = 2® = const.). Then the vector equations
(1.34) r=r(z%z!,2%)q r=r(z0 )

can be considered as parametric equations of the retaining rheonomic constraints
which limit the motion of a material point.

By substituting (1.23) or (1.33) into expression (1.4) equations (1.34) are ob-
tained. With such rheonomic constraints (1.32) it is easily noted from (1.34) that
the coordinate vector '

or
(1.35) gO = -a—za

is a function of two variables z!, z? and a rheonomic coordinate, while in the case
when the point moves on a variable line, (1.33) is a function of one independent
coordinate and one rheonomic coordinate i.e. gy = go(z°(t),z*). A statement can
be made after a synthesis of the study of the rheonomic coordinate properties that:
when the motion of a particle is limited by double sided rheonomic constraints,
the dimension of the space is enlarged by one; that the added coordinate function
known in the general case has the kinematic properties given to it when chosen.
The parametric constraint equations, let us repeat, z* ~ z%(t) = 0 differ by quality
from the definite equations of motion 2’ = z’(t), even when condition that time ¢
is chosen for the n + 1-th coordinate zq.
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2. Motion of a material particle over the rheonomic surface

The essence of generalizing the description of the motion of systems of particles
on multi-dimensional manifolds lies in the description of the motion of a particle
over a smooth rheonomic (variable or movable) surface. For this reason and due
to modification of classical standpoints about rheonomic systems in mechanics it is
in the interest of methodology to carry out a detailed analysis of the motion of a
point of mass m which is constrained by surface. The resultant force acting on the
particle is F. The equation for a rheonomic constraint, a variable surface in this
case, may be described by means of

a) general relation

(2‘1) f(yl’yzt y3) T(t)) = 0

related to Cartesian inertial coordinate system y', 9%, ¥° (for example, a variable
sphere f = §;;y'y! — 4a%* = 0);
b) by equation

(2.2) f(zt, 23,23, 1) =0

with respect to a curvilinear coordinate system (for example, a sphere: related to
polar spherical system z! = p, 22 = ¢, 8 = § the sphere being given by the
equation f = p — 2at? = 0), or

¢) in parametric form

(23) yi = yi(zl,zZ, T) (i = 1’2) 3)

(an example of the observed sphere of a variable radius is y* = 2at?sinpcos?9,
y? = 2at?sinpsind, y® = 2at? cosp). In mechanics the equations (2.3) are often
written in the form

(2.4) r = r(z°, £}, z%), 2% = r(t),

in order to determine analytically the coordinate vectors (1.26) including the vector
(1.35).

According to the fundamental law of dynamics the differential equation

(2:5) %(mv) =F

describes the motion of each point of mass m, where v = dr/dt is the velocity of
motion of each point, ¢ is time, and F resultant vector of all the forces acting on
each point. However, this differential equation itseif does not help to determine the
motion without additional conditions and an analysis of all the factors influencing
the motion, which figure in the differential equation of motion (2.5). 4
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Let us take for the moment that the mass is a function of time ¢, namely

i
d
(2.6) m = mg +/ ptydt,  p=
0

The velocity v = dr/dt of a particle must be consistent with the constraint
limiting the motion and therefore it is necessary to determine the condition of
consistency. This can be achieved in two ways: a) by dynamic method of constraint
elimination and b) by the method of satisfying kinematic conditions of constraints.
Let us analyze both methods.

a. Dynamic elimination of constraints. The motion is limited by the objects
of constraints. The rheonomic constraints act towards a change in motion and the
force is, as seen in (2.5), the cause of a change in motion. Therefore, it is logical that
the constraints can be thought as replaced by a force which is called the reaction
of constraints. Judging from the physical nature of the reaction of constraints it
is known that this vector of force may be divided into two components. One is
R., which lies in the plane tangent to the surface at the point which touches the
particle and the other is Ry normal to that plane i.e.

(2.7) R =R, + Ry

Since the force R replaces the time-change constraint it can be logically as-
sumed that the vector of force R also depends on time.

By replacing, as comes to mind, the constraint (2.1) by the force (2.6) the
differential equation of the motion of a point (2.5) now becomes more determinate

(2.8) %(mv) =F+R

where the vector F represents the resultant, namely the main vector of active and
known forces, appearing in a general case as a function of the position r, the velocity
v and time ¢. The vector of velocity v which figures in equation (2.9) equals the
time derivative of r:

d dy .
(2.9) v= :i; = —g-e,- = g'e;, (i=1,2,3)

or due to (1.26) and (1.27)

de  Or .; _ Or
(2.10) vEg=gat =4, &=g

Therefore by eliminating, in thoughts, the surface which limits the motion of a
material particle and by replacing the reaction of the constraint (2.6), the motion
of a point may be considered as the motion of a free point in E3 which should be




2. MoTION OF A MATERIAL PARTICLE OVER THE RHEONOMIC SURFACE 17

preceded by the choice of a coordinate system. If we first substitute the expression
for velocity (2.9) into the differential equation of motion (2.8) it will become

d,
(2.11) G(mi'e)=F+R.

Scalar multiplication of this relation by coordinate vectors e while equation
{1.2) should be considered, gives three scalar differential equations for the motion
of a material particle over the surface namely

d dy’
(2.12) dt( oix ;;) =Y +Re (k=1,23)
where
(2.13) 3 =me; - e,
(2.14) Yk =F * €k, Rk =R- eg.

When the motion y* = y*(¢) is known from the law of mass and force Y*, then
the reactions R; = Ri(t) as a function of time can be determiped from (2.12). It
is also explicit that the motion y* = y*(t) can be determined if the forces Y;, R
and mass m are known. It is also possible to combine the above. And when by
entering more than three known magnitudes which figure in equations (2.12) the
other three magnitudes are determined. Thus, if one knows, for example, the forces
Y; (1 = 1,2,3), R, (s = 1,2) and the final equation of motion, as well the mass
m, one can determine from the differential equations of motion (2.12): y! = y'(¥),
y> = y*(t), and consequently the reaction Rj as a function of time because of

(2.15) Rs = %(myg) -Y3= R3(i).

The assumption that the vector coordinates of the reactions of the constraints
Ry and Rj are known is probable for flat surfaces. However, for the rheonomic
curved surfaces such an assumption can hardly be realized. Therefore in order to
facilitate the determination of motion and reactions of the constraints it is con-
venient to transform the differential equation of the motion of a point (2.8) with
respect to the curvilinear coordinate system z', z2, z3 with the basis (1.26). The
scalar multiplication of the equation (2.8) by the coordinate vectors g;, gives

) d
(2.18) ‘é‘t‘(m") g = (F+R) g

where

dg;
dt(mV) & = di (mv gk) my - di
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If we consider the expression for velocity (2.10) and the relation (1.29) it comes
out that

d, J da:
a(mv) - gk (g‘kz ) g’] {k I} dt

_ D(g;kz) - Dzt
- dt = gik dt

where
(2.17) ' Gir =mg; - g

and Dg;;/dt = 0 for m = const.

If the projections of the vector of force F are marked off on the coordinate
direction z* with the letter X, i.e. if it is considered that covariant coordinates of
the vector of force F and reaction R are determined by the following inner products

(2.18) Xe=F-g,, Ri=R-g,

it follows that from the equation (2.14) three differential equations of the motion
of a point can be obtained in covariant form

D#
(2.19) k?t— = X + Ry, (k=1,2,3)
where

D#  dit i) .,dzF .
(2.19a) - T + {] k}z’—at—- (1=1,2,3)

are the vector coordinates for acceleration of the observed particle.

The form of these differential equations of motion is more general than the
form of differential equations (2.2) as much as the tensor of inertia

oy By
(2.20) gir = gir(z!, 2%, 2%) = 45T Bk

is more general than the tensor (2.13) and by as much as the curvilinear coordinates
offer more possibilities to describe motion in Euclidian space E3. The equations
(2.12) are consequences of equations (2.19) because in the case where z* = y* the
form of equations (2.12) follows from equations (2.19) and then because g;; = 35

j'k} = 0 and so D§ = dif. Namely both
equations (2.19) and (2.12) describe the motion of a particle as it was a free point,
over a variable surface on the assumption that the point is acted upon by the
equivalent force (2.18) instead of by the constraint (2.2). But in order to provide

all Christoffel’s symbols equal zero,
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a solution for this problem, some additional conditions have to be met as seen in
example (2.15). It is necessary to know all the coordinates of the active forces Xy,
the nature of the constraints, the coefficients of possible friction, and the law of the
change of constraints.

Ezample. A heavy particle of mass m = const. moves over a vertical circular
cylinder whose radius changes according to the law r = ki2, k > 0. The cylinder is
smooth. '

The requirement of smoothness of the cylinder surface makes this problem
more definite, because this condition also determines the direction of the constraint
reaction. If the motion is described in the cylindrical .coordinate system z! = r,
z? = 6, z3 = 2, then the coordinate vectors are g, = g,, g, = 8¢, &3 = g, With
respect to such a coordinate system in which the z-axis is vertical, the reaction
of the constraint has only the component in the direction of the normal to the
surface i.e. R = Rg,, and the active force only in the direction of the vertical line
F = —mgg,. The inertia tensor in this example is

1 0 0
(2.21) gi; =40 r2(t) 0
0 0 1

so the differential equations of motion (2.19) are

(2.22) m%'- =R, mrzg—g =0, m-g—tz- = —myg,

hence it simply comes out that:
(2.23) 8=8y, z=z2~mgt, and R=m(2k + 460/t — kt®).

The above example clearly shows that, by applying the method of constraint
substitution by their reactions, it is not possible to obtain from the differential
equations (2.19) three definite equations of motion z* = z*(t) and three vector
coordinates of the reaction of constraint R; without any additional conditions.
Such a condition here was the given rheonomic coordinate z® = r(t) = kt.

b. Kinemalic conditions for the constrainis. If the holonomic constraints are
given in any analytical form they should satisfy the conditions of point velocity on
a surface. If the surface is in the form of (1.5) the condition for the point velocity
on the variable surface will be

Bf i, 8f o .
(2.24) GVt =0 (=123)

or if (2.9) and (1.9) are considered then

of .
(2.25) grad f-v= -a—;;y°.
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Should the transformation (1.25) be substituted into (2.24) it shows that the
condition for velocity of motion of a particle over the described variable surface in
a curvilinear coordinate system is

Of i Of .o
(2.26) 61:'3: + 55 350"
this being the derivative in time of the function (2.2) which describes the variable
surface.

From the equation (2.24) or (2.26) it is possible to define one coordinate of the
velocity vector as a function of the other two and of the derivative #(t) providing
that the corresponding partial derivative of the function f on the corresponding
coordinate is not zero. Since the indices ¢ = 1,2, 3 can be arbitrarily chosen, nothing
is lost from the generality if it is assumed that 8f/3y® # 0 holds in equation (2.24)
and in the equivalent equation (2.26) 8 f/dz3 # 0, which is always possible for the
functions f € C!. Then it is possible to determine

=0,

P (g 00, Of of
(2.27) ¥’ = (ao P gt + f) a5 70
or

. a 9 . d
(2.28) &= - (azfo °+ af, +-an2-a:2) :bz—f;'

If (2.27) is substituted into (2.9) or (2.28) into (2.10) then the velocity vector
of point motion over the surface f = 0 is obtained

of of of
(2.29) v=g (el - a—y-e:s) +y (ez - 53;;83) - yoé?eay
or with respect to curvilinear system
. 0 .2 a 0
(2.30) v =g <g1 - 5{783) +z° (gz 3 fzga) 5’55g3-

If a common notation ¢ = (g%, ¢*, ¢?) is introduced for independent coordinates
y°, y!, y? and independent curvilinear coordinates z°, !, z2 where for the function
¢°(t) we will keep the name of generalized rheonomic coordinate or simply rheo-
nomic coordinate, the expressions for velocity (2.29) or (2.30) may be written in
the form

(2.31) v=¢g (i=0,1,2)

where g; are base vectors which are in the cases (2.29) and (2.30) equal to

a .
(2.32) g = (s, - a—f, ) =g(®¢4¢%"); =0
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wherefrom it becomes clear that these base vectors are functions of ¢!, ¢* and
time ¢ through the influence of the rheonomic coordinate ¢° = (t), and that their
structure depends on the structure of the surface f = 0. The Greek letters a, 3, v for
the indices will denote the independent coordinates and the corresponding vector
and tensor coordinates, and will take the values of natural numbers 1,2,... |n.

If the equation of the rheonomic constraint is determined by parametric rela-
tion (2.4) which is in this notation written as

(2.33) ‘ r= r(qo, ¢, q2),

then the velocity of motion of the point limited by the rheonomic surface (2.33)
will obviously be
or W o _3_5_.0 2{_.1 or 2 JOr .0 or o

@30 v=ggl =ppt ot togt = o7t T o

A comparison with (2.31) and (2.32) shows that the base vectors may be writ-
ten as partial derivatives of the position vectors (2.33) on generalized coordinates

or
(2.34a) g = 3

The structure of these base vectors is considerably more complex than the
structure of coordinate vectors (1.26) and in general they do not satisfy the inertial
relation (1.29). The vectors g; and g, from (2.34a) as seen in (2.34) correspond to
the coordinates ¢! and ¢? and lie in the plane tangent to the surface at the observed
point M(q?, ¢°) at any moment of the surface change. The vector g, however, does
not lie in the plane tangent to the surface except its origin which coincides with the
intersection of the tangent plane and the surface. If ¢ are generalized coordinates z*
or ¥ from (1.32) it follows that the vector g, for the coordinate surface z¥ = z0(2)
is proportional to the vector 3, i.e. gg = xag. For the example of the motion of
a point on a circular variable cylinder f = r — z°(¢) = 0, for which 8f/0z! # 0
holds, it follows from the relation (2.32) that

) .
g = (ao - a__,;:f(fal) =9, =93,, (30 = 0).

The same thing follows from (2.34a) because parametric equation (2.33) in the
cylinder coordinate system for a circular variable cylinder is r = r(t)s, + z3, =
2%, + z3,. For the example of the constraint (1.10) g, = a3; for the constraint
(1.15) gy = (scy’/c)es. For the example (2.3) 8f/dz! # 0 and it follows that
g0 = 91 = 9, if it is chosen z¥ = 2¢.

Real variable surfaces which limit the motion of a point in general are not
smooth and as such oppose the motion of a point by a resisting or friction force.
Those resistant forces R; are most often determined experimentally and are in-
cluded in the active forces. However the surface described by the relations (2.1) or
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(2.33) is smooth and therefore a priori recognized as frictionless i.e. that R, =.0
and as written in (2.7) the reaction of the constraint R has the direction of the
normal to the surface at a given point, R = Ry. The direction of that force is
determined by the gradient of the observed surface. Therefore, the vector R of the
surface reaction (2.1) or(2.2) is '

(2.35) R=Agrad f

where X is a multiplier to be determined. For this reason the equation of the motion
of point (2.9) over the surface (2.1} or (2.2) becomes more determinate namely

(2.36) g—t-(mv) =F+Agrad f, f(r,t)=0.

The coordinate form of these equations is reduced. to the equations (2.19) on
the understanding that here

of

Rk=/\gradf-9k=/\5;;,

so there follow three differential equations of the motion of point

Di of
(2.37) sieg = Fet Ags

f(z, % z%) =0.

(G, k=1,2,3)

With a given force F there are enough equations to determine the motion
z' = z'(t) and the multiplier A since it is necessary that the constraint equation
satisfies the condition of acceleration

COf(DE [ i), 0
31:‘( {jk}xz) 6::‘6::1

_(8f .. O Pf 0.0
= (6:c°z+316$°$] + 520950 2

(2.37a)

When using the parametric equations of the constraint (2.34a), the differential
equation of the motion of a point (2.36) will be reduced to the covariant coordinate
form after the scalar multiplication by the base vectors g, (o = 1,2) and the vector
go- As the accepted standpoints are deviated from and for the purpose of better
clarity some more details are used to prove this statement. To this end we can
multiply the differential equation (2.36) by the vector g; and it follows

d
(2.38) 81" (mv) =g, -F +Ag, -grad f.
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Due to the orthogonality of the vectors g, and grad f it follows that g;-grad f =
0. The inner product of the vector of force F and vector g; represents the covariant
coordinate of the generalized force

(2.39) Q=g -F=Qi(d", ¢".¢).

It is indispensable to comment that if force F depends on time 2, apart from
the constraints, then the generalized force (2.39) may be written in the form

(2.396) Ql = Ql(t) qoqurqz)

since the rheonomic coordinate ¢° is introduced during the transformation of rheo-
nomic constraints. Naturally, the very expression for the force (2.39a) may be
reduced to the form (2.39) because of the relation ¢® = ¢%(¢) «— t = (¢%), but
one should distinguish the dependence of force upon time apart from the constraints
and the dependence which results from the rheonomic constraints.

In the same way the left-hand side of the equation (2.38) can be transformed.
If the expressions (2.34) and (2.35) are considered, this side of the equation for
m = const. may be reduced to the analytical form by the following procedure:

d o d or .
__8r ord¢ or & ..
- m6q1 d¢* dt +m6q1 dgiog " 7

.Analogous to the formula (2.13) let

dr Or
(2.41) m-a—qi- . ‘a—q-; = ais. ,
The inner products
or 9°r

— ATk
(2.42) = alkrji

o dgog
are obviously functions of coordinates ¢°, ¢, and ¢?. If (2.42) and (2.41) are
returned into (2.40) we get

d dg* g
8- E(m") =auor + alkrfiq]q‘-

By substituting this expression, and the expressions from (2.39) and (2.38)
into the equation (2.37) we get the differential equations of motion in scalar form

d¢*

(2.43) as (—dt— +T5d'd ) =Q1
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or shorter

Dg*
(2.44) - alk——'.—- Q1

where the notations are obvious.

In the same way the vector equation (2.36) is projected on the direction of
vector g, and the following is obtained

D 2
(2.45) , | azk—‘ﬁ- = Q2.

Let us multiply the vector equations (2.36) by the vector g, = 8r/d¢%:
(2.46) 8 (mV) =g F+ '\go -grad f.

In this case the term g, - grad f does not vanish.
If we denote

8
(2.47) : Q=g-F=F- al;
and v
(2.48) Ro = Mgy - grad f

then from (2.46) we obtain the third differential equation of the motion of a point
on a moving surface namely

D¢
(2.49) a0 = Qo+ Ro

in which an unknown force Ry appears as a new unknown factor which does not
figure in the first two differential equations of the motion (2.44) and (2.45). In a
concise form these three differential equations may be written as a system

Déi
(2.50) o = Qi Ry (=012 Ri=Ry=0)
where _

dr Or
(2.51) G =MEE B = a;i(¢°,¢',¢)

are covariant coordinates of the inertia tensor and

(2.52) — = ,,,q’
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are covariant coordinates of the acceleration vector of the point. Prior to any
analysis of the equation (2.49) or of the magnitude Ry it should be noted that the
system of differential equations (2.50) describes the same motion as the system of
equations (2.37) together with the equation of the surface.

In a curvilinear coordinate system z* the equation for the rheonomic surface
can be described by the equation f = 23 — z%(t) = 0 for instance. Then the system
of differential equations (2.37) is reduced to

D¢t D¢ Dgt
(2.53) 31id_z = f, 32i*d—3' = F_’z, 93.'-'83— =F3 4,
and the conditions of acceleration to
»3 . ) )
(2.53a) % = T aia* - 6—2%50 =34 T} 272"
since
of of 0; of =1.

8zt 9z ' 923
Written in this way, differential equations (2.37) are fully similar with the dif-
ferential equations (2.50) or one to one correspondently with (2.44), (2.45) and
(2.49). They are identical if curvilinear coordinates z are chosen for generalized
coordinates ¢ and the known function of time for the zero rheonomic coordinate
¢® = z3(t) = r(t), which is possible. In such a case, as it can be seen, the gen-
eralized force Ry equals the multiplier A of the rheonomic constraint. Though the
differential equations of the motion (2.37) and (2.50) describe the same motion and
are identical in some of the examples, from the mathematical point of view we speak
of two geometries: Euclidian E3 in which motion is described by means of relations
(2.37) and the variable interior geometry on (2 + 1)-dimensional manifolds Ma4,
by which the same motion is described by means of differential covariant equations
(2.50). For the case of invariable constraints the equation (2.49) is nullified and
the motion of a point over a surface is described with only the two equations (2.44)
and (2.45) in the spaces My, but in the number and structure of equations (2.37)
in E® no change occurs. The essential difference between the equations (2.37) and
(2.50) lies in the inertia tensors (2.51) and (2.17). This further involves a differ-
ence among the Christoffel symbols { j'k} in equations (2.37) and the coefficients of
connection in equations (2.50). In order to estimate this difference it is necessary
to identify the coefficients of connection I‘;'- k» Which are introduced here with the
relation (2.42). And the identity relation implies that:

1) the covariant derivatives Viaj; of the tensor aj; on coordinates q" equal
2€ro;

2) the coefficients of connection I‘,’-‘j are Christoffel symbols of the second kind
over tensor (2.51) i.e. that the relations

(2.54) Viaj; =0



2_6 SURVEY OF ELEMENTARY MODIFICATIONS

and

: H k _ kip _ L wf0an  Oaq Oa
(2.55) PI] =a rij,] = Ea -a—qll- + a_ql- — a—q}-
hold.

If we start from the known relations in affine geometry in which the factor of
a normal n, |n| = 1, to the surface figures, i.e. from the relations

. 621' . .
(2.56) Err =T ,p8, + bagn

where bag is the second metric tensor of the surface, the equation (2.36) if (2.34)
is kept in mind, may be written in the following developed form

m[gad” + (T8, + bapn)g*¢’]

&r r

50 00 -0 -0

(2.57) + [goq + 23q°6q" q.9° + 309890 q4 ]
=F+Agradf =F + Ryn.

For a scleronomic surface the second square bracket in the preceding equation
vanishes and the constraint reaction normal to the surface is obtained:

Ry = mbogi®¢® — F,

where Fiy = F-n. However, for the variable (rheonomic) surface the expression for
the constraint reaction Ry is considerably more complex, namely

% r '
] — ba - 0 9 .0 .0 .o) ] _ )

Therefore, the reaction Ry of the rheonomic constraint depends on the accel-
eration of the change in the constraint § = 0, because in general gy - n # 0. This
more clearly separates the notions of the constraint reaction Ry from the “reaction

of the constraint change” Rq.
If the reaction of an smooth rheonomic surface is written in a vector form

R=Agadf = Ryn

it follows that
Ry=R:'n,

and

(2-59) Ro =R gy = Ryn -gq = Rngocos(n, g).
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~ If the above is multiplied by the vector g, the equation (2.57) shows that
Ry depends on the complex sum of different terms including all other derivatives
of generalized coordinates. The covariant equation (2.49) gives this in a concise
covariant form.

Ezample. A heavy particle of mass m = const. moves on a steep plane making
angle o with a horizontal line and moves translationally at a constant velocity v
on a horizontal plane. If a coordinate system is chosen so that y® is the vertical
axis, the coordinate y* = z! = ¢* is independent and y? makes an angle a with the
steep plane, then the motion is limited by the rheonomic constraint

vs .
= -t =0.
f ——" ga=10

If we choose that ¢° = vt, the parametric equation of the rheonomic constraint
is
r = ¢®ez + ¢'ey + ¢*(cos ey + sin aes).

The coordinates of the inertia tensor (2.51) are constants

m 0 mcosa
ai; = 0 m 0
mceosa 0 m
The generalized forces are Qo = @1 =0, @2 = —mgcos a.

Since all coefficients a;; are constant, the differential equations of motion (2.50)
are easy to write, since D¢’ = d¢*, and it follows

m(§® + cos ¢§®) = Ry,
(2.592) mi =0,

m({® cosa + §*) = ~mgsina.

Then we have
) .
Ry = m§”° cosa = —mgsinacos a.

For the case where time is chosen for the rheonomic coordinate, ie. ¢° = ¢,
from the constraint equation it would follow that

Ry = —mgvsinacosa.
Kinetic energy. When describing the motion of a point by means of analyti-

cal expressions it is necessary to first opt either for a) dynamic method of constraint
elimination (2.6)~(2.20), or for b) kinematic conditions of constraint (2.25)-(2.50).



28 SURVEY OF ELEMENTARY MODIFICATIONS

The kinetic energy in the motion of a material particle with inertia is a scalar
invariant

(2.60) T=imv?= iimv -v>0, for every v # 0

As such, it neither changes the physical substance nor the mathematical form on
the occasion of various transpositions from one coordinate system into another.
However, a question arises: if the velocity vector is described by various expressions
and is subjected to the conditions such as (2.9), (2.10), (2.29), (2.30) or (2.34) would
the analytical expressions for the form (2.0) not differ for the same motion of a point
over the rheonomic surface? In method a) motion is considered as motion of a free
material particle whose velocity is given in the expressions (2.9) or (2.10). By
substituting (2.9) into the expression (2.60) it follows, as already known,

(261) T= %Cufl'f/’; €5 = méij_) (1y] = 1’ 21 3):

and, if the curvilinear coordinate system z* is chosen in which the velocity vector
of the point is determined by the expression (2.10), then we have

(2.62) T = oyl
where, as in (2.17):

dy' 8y
(2.63) Okl = eijé%;é{y = ap(zt, 2%, 2%).

In such a procedure for describing motion of a particle over a variable surface,
expressions for kinetic energy (2.61) and (2.62) are the same as for the motion over
an invariable (scleronomic) surface.

When describing the motion on expanded configurational manifolds M3, i.e.
by method b) corresponding velocities (2.34) or adequately (2.27) and (2.28) should
be substituted into the expression for kinetic energy (2.60) or (2.61) and (2.62)
accordingly. By substituting (2.34) into (2.60) we get

(264) T= %aijqidj (17.7 =0, 1:2),
or in a developed form
(2.65) T = 460pd*¢" + 600d°¢™ + $0004°¢°, (@,8=1,2)

where the inertia tensor a;; is determined by formula (2.51). All these formulas for
kinetic energy are homogeneous quadratic forms. They should be so written even
if we chose ¢° = t. Only for the purpose of final calculation of kinetic energy, if
necessary, the velocity values will be introduced into formula (2.65) and with them
¢® = 1. In other words, doing different mathematical operations in the expression
for kinetic energy, which is a function of the coordinates ¢°, ¢!, ¢? and the respective
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velocity vector coordinates ¢°, ¢*, ¢ it will be necessary to retain the form (2.65)
regardless of the accepted and widespread expression in mechanics

(2.66) T = }aqpi®d® +aj¢ + Lao,

when it is emphasized that ag ='ao(gq!,a?,2) is a function of coordinates and time.
Then, independently of the definition of inertia coefficients (2.51), the coefficient
ag is attributed the energy dimension E i.e.

(2.67) [dima] = [dim E] = ML2T~2.

The weakness of expressions (2.66) and (2.67) will become clearer when the link

between generalized velocities and momentum covector coordinates is determined
(3.30).

Differential equations of motion in Lagrange form. The differential
equations of motion of a point over a surface (2.37), as differential equations of
the form (2.50), can be written in the form known as Lagrange equations of the
first kind and Lagrange equations of motion of the second kind. Indeed, differential
equations (2.37) in more developed forms are ’

dz* _ of
3"‘( at +{J 1}’”’) =t Agg

d E 63115 k = af
5(3,‘*2 )— 9z ] IJ +[_71 k]l"’l‘ Fk-l-/\-a——

or

If the indices are developed:

Oon | Oojx _ Do
.k = (azl + oz T dz*

after a permitted substitution of addition indices, we get

d 1935 .; af
di(’kx)_E(? 7 = Fk-i-/\ak.

On the other side, based on (2.62), it can be seen that

oT _ . 9T _10sy
5z =t g =gt

and the preceding relations are then reduced to three differential equations of mo-
tion of a particle over a variable surface

(2.68)

d T oT aof
(2.69) EEF-—B—;_F‘: +/\'('9? (k=1,2,3)
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which are, together with constraint equation f(z!,z2,z3,t) = 0, equivalent to
equations (2.37).

Analogous to the above transformation of differential equations from one form
into another the covariant differential equations of motion (2.50), with regard to
(2.64) and (2.65), can be written in the form

d gy 106Gk . c
dt(askq )"’2 aq,- qu —Qi+Ri (zrjsk—0a112)'
However, if o oT 5
or _ & OT _ 106 .
a'—a;kq, 3q'—23q'q]q

then Lagrange’s differential equations of motion of the second kind will follow

d 0T 0oT
(2.70) HoF o " Q;
or
d 9T OT
(2.70a) d_té_q—“ - -5(1—0; = Qa (a=1,2)
d oT oT
(2.70Db) HIP P Qo + Ro,

which are equivalent to equations (2.64). This differential form of motion equations
enables a clearer analysis of the law of change of energy of the particle moving over
a rheonomic surface, which will be useful for an understandable generalization later.

The law of change and conservation of energy. A parallel description in
two ways of motion of a particle over a variable surface contributes considerably to
clarify the need for modification of laws of energy of point motion constrained by
a rheonomic constraint.

a) It is first assumed that active forces F} have a potential I and

ol
. = ——— =1,2,
(2.71) v Fy 5ok (k=1,2,3)
where II = II(z!,z2%,23,1) is a function of position z and time t. Multiplying each
equation (2.69) by corresponding differential dz* = £* dt and summing by index k
it follows that

. oT oT on af
kg OS2 ) 2L gk = gk 2 dgk
z d( ) azkdz = 32"dz +/\azkdz .
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it follows that

@12) | dT=_g£d Ty

If we take condition (2.26) into consideration then

_ of 4
dT +dIl = — adt+,\at
or
(2.73) T4O= /(at )\at)dt.

This relation represents the law of change of energy for the motion of a point
over a theonomic surface f(z?,z?,z3, r(t)) = 0. It is evident that this law (2.73)
has a somewhat simpler form if the potential energy does not explicitly depend on
time ¢ in which case

(2.73a) T+o= /z\%—‘tf dt

Since we also call the differential equation (2.72) by the name “law of change of
energy”, which it surely is, the relation (2.73), may be called the “law of energy in
integral form” or more simple the “law or integral of energy”. This is different from
the notion of the “first integral of differential equations of motion (2.69)” or the
notion “law of energy conservation”. The relation (2.74) will be the first integral
of differential equations of motion if one of the following conditions is satisfied:

X
2) %Itl- =0A aa‘tf =90, or
(2.74) 3) %—? =0A Ag{ R(t)
when R(t) is an integrable function, i.e. when there is a function P(t) for which
(2.75) | | R(r)=-9E,

In this case integral (2.73) could be reduced to
(2.76) T+ 0O+ P=C = const.,

where

(2.77) P@) = / Rdt.
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In general, the derivative 3f /8t is a function of three position coordinates of
a particle and time ¢. However, since one dependent coordinate can be expressed,
from a constraint equation, as a function of the remaining two and one rheonomic
coordinate 7(t), then only two unknowns will appear in two independent differen- -
tial equations and they can be determined dependent on time. By substituting
into a third equation, in which partial derivative df /8t appears with a constraint
multiplier, the constraint reaction at the end appears in the form of a function
of the rheonomic coordinate, because the multiplier can be determined from the
conditions of acceleration. However, in order to determine the first integral (2.77)
it is necessary that R is a priori a known function of the rheonomic coordinate and
that the natural potential does not generaly depend on time. The same result is
obtained by means of differential equations (2.70).

b) If the differential equations of motion (2.70) are combined with differentials

d¢' = ¢' dt (1 =0,1,2) it follows that
; 0T aT | ; .
. fdl = )| - —d¢ = (Q: + Ri)d¢'.
(.79 #4(55) - o dd = @+ R)dy

For a potential system of force with the natural potential II = II(¢°, %, ¢%)
and generalized forces

on

for which the following conditions are satisfied
0Q; _ 9Q; C '
(280) aqj - aq,' (7':.7 - 0’1!2)

the expression (011/9¢) dg* will represent the total differential of potential II. This
means that

(2.81) Q; d¢’ = —dII.

On the other hand, for the accepted formula of kinetic energy (2.64) or (2.65)
the kinetic energy differential is

oT .,  OT .,
(2.82) dT = 5o dg' + 5dd

SO

L (OT\ _ (LOT\ OT . . = o .
¢ 4(g5) =¥ 5 ) - aped = 40 - gt

Because of this and relation (2.81) differential expression (2.78) is reduced to

(2.83) d(T + 1) = Ry dg’,
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or
(2.84) T+Io= /Rodq°+0,
which coincides with integral relation (2.73). On the assumption that Rg is an

integrable function of the rheonomic coordinate ¢°, which has its own rheonomic
potential

(285) PE) ¥~ [ Rale?) e’
and also

_ éprP
(2.86) Ro=~35

the integral of energy for the motion of a point over a rheonomic surface there will
exist the integral

(2.87) T+0+P=C
or
(2.88) T+V =0,

where V is the potential
(2.89) V=10+P

consisting of natural potential Il and the potential P resulting from the change of
constraint [16].

Ezample. Let the first differential equation of the system (2.59a) is multiplied
by differential dq°, the second by dg!, and the third equation by d¢3; adding one
obtains

m(¢® dg® + ¢° cos @ dg® + ¢° cos a dg® + ¢! dg* + ¢ dg?)
= —-mgsinadg® + Ry dg°.

On the other hand kinetic energy T = }a;;¢'¢’, since the tensor a;; (given
before (2.59a)) is determined, is

T = (m/2)(¢"{" + ¢*¢* + ¢*¢* + 2¢°¢* cos a).
Hence it follows that

dT = —mgsin a dg® + R dq®.
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If it is known that Q2 = —0I[/8¢*> = —mgsina = const., then it results that
II = mgq®sin @ and integral (2.84) is obtained. Since in this case Ry = const., the
law of energy is

(2.90) ' E#T+H+mvgtsinacosa=C=_ const.

This agrees with integral (2.73), as in this example

on _ ¢ . _ of _viga
ot ‘at(mgfs‘““)_’o’ 3" ga-ut’
= M9y —vt) 9 _ mavsi

A= I +ta 50 '\at = mgvsinacosa.

Conditions for the absolute rest of a point on the rheonomic surface.
For any holonomic constraint f(r,t) = 0 the conditions of rest of a particle are:
velocity of the observed particle equals zero and the sum of all forces acting on
that point equals zero. For equations (2.36), therefore, the conditions of rest are
as follows:

(2.91) F+Agradf=0 and v=0.

But, as v = 0, another condition results from the relation (2.25):

0y e
(2.92) aTT_O ie. = =0.

This condition does not show, as it is often understood, that a constraint must
not depend on time if a point is to rest in equilibrium, but only that for any time
t, a partial derivative of a constraint in time or on a rheonomic coordinate should
be zero at the point of rest.

In coordinate form conditions (2.91), as seen from the equations (2.37) or
(2.69), are '

Ofx
(2.93) F +'\5:;I = (k = 1,2,3)
which together with (2.92) represent the conditions of a point resting on a rheonomic
surface f(z!, 22, 23,7(2)) = 0.

With respect to independent generalized coorllinates the conditions of a point
at rest, while a variable surface is active and has parametric ~equations r =
r(¢°, ¢*, ¢%) are reduced to three equations

(2.95) Q°+ Ro =0,




2. MOTION OF A MATERIAL PARTICLE OVER THE RHEONOMIC SURFACE 35

which is obvious if the motion is described with the ald of differential equatxons
(2.50).

For a scleronomic retaining constraint-surface, two equations (2.94) are suffi-
cient to determine the conditions for point equilibrium. The same two conditions
are also sufficient for equilibrium on a variable surface when observed with respect
to that surface, i.e. if change or motion of the constraint itself is not considered.
Therefore, one should distinguish two notions of equilibrium for a point on a rheo-
nomic surface namely

1) relative equilibrium determined by: either equations (2.93), provided that
all velocity coordinates are ' = 22 = 3 = 0 or equations (2.94) provided that
generalized velocities are ¢* = ¢% = 0;

2) equxhbrium determined by: either equations (2.92) and (2.93) provided
that #! = 22 = 3 = 0, or equations (2.94) and (2.95) provided that generahzed
velocities are ¢* = ¢* = 0. :

Ezample. A particle of mass G on a variable ellipsoid. Depending whether
variable ellipsoid is determined by equation

(2.96) f(,1) = (8 +13) + a*(t)y3 ~ > @*(1) =0,
or relations (2.3), i.e.
(2.97) Y1 =a(t)cosfsing, y2 =a(t)sinfcosp, ys=a(t)cosyp

the problem should be solved with appropriate equations (2.92) and (2.93) for the
case (2.96), namely with the aid of equations (2.94) and (2.95) for the case of
constraints in form of (2.97). In either case, the simplest solution is to select time
t for a rheonomic coordinate.

Let the half-axis ¢ be vertical and axis y3 be directed upwards. Then it follows
from equation (2.93) for z = y that

. | ¢
(298) n= 01 y2 = 0! ya = 262A’
and from condition (2.92) .

(2.99) oy + 3 +a’)e +a(yi - ¢%)a =0,

where ¢ = dc/dt = dc/0t. By substituting (2.98) into (2.99) we get
. o
A= iiﬁ? = Y3 = +ec.

Therefore, the points (0,0,%c) are equilibrium positions on an ellipsoid pro-
vided condition (2.99) is satisfied, namely that the ellipsoid axis under the influence
of force of gravity is not changing i.e. that

de
Z{O
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In the case of parametric constraints (2.93) let the generalized coordinates be
¢ = pand ¢ = 0, ¢° =t. As the force vector is F = ~Ge3 = Y3eg, it follows
that Qo = Y3(0y/99) = ~Gécosyp, Q1 = Ge(t)sing, Q, = Y3(8y*/88) = 0. By
substituting into conditions (2.94) and (2.95) it comes out that in equilibrium:
sing = 0 and Ry = Gécospj,=px. As shown, equilibrium positions ¢ = kr
(k=0,1,2,...) are possible provided that a heavy particle is acted upon by power
Ry = G¢ at points 2k and Ry = —Gé at points ((2k+ 1)) or if ¢ = 0, which agrees
with the above result. It is convenient to note here that the power of a rheonomic
constraint Ro(t) = |G¢| differs from the reaction of the point on the surface.

3. Rheonomic systems

- Main concepts. The concept of a rheonomic system means a non-empty set
of particles whose motion is limited by a non-empty set of rheonomic constraints.
Therefore, there is at least one particle whose motion is limited by at least one
rheonomic constraint. ‘With this definition, even the motion of one particle over a
rheonomic surface represents a rheonomic system. If there is a notion which defines
a system more precisely, then such a more definite notion will be used; for example,
the motion of a point over a smooth retaining surface, or the motion of a point on
a retaining curved line or a pendulum varying in length etc. It is stated by relation
(1.7) that the position of a point on a rheonomic surface may be defined with the
use of 2 + 1 parameters. That is why it can be said that the motion of a point
over a surface is the motion in 2 + 1 dimensional space. However, the notion of
a 2 + 1 dimensional space is much more general than the concept of motion of a
point over 4 variable surface. This may be a 2 + 1 dimensional manifold (several
particles whose motion is limited by a definite number of rheonomic constraints).
However, there is no arbitrariness in understanding the systems cited. Just as the
rheonomic system has a strict definition so should other notions characteristic for
rheonomic systems be as strictly defined. A rheonomic system is composed of a
set of N particles M,, mass m, (v = 1,2,...,N), whose motion is limited by
non-empty set of k& rheonomic constraints

Ful®1 oo eV V) =0, (8=1,2,...,k k < 3N)

where r, are position vectors of points M, and v, their velocities.

If we assume that constraints do not depend on velocities or that the con-
straints may be reduced by integral calculation to a form of the so-called holonomic
constraints '

(3.1) fu(ri,...5en,t) =0

then the system is more precisely termed as a holonomic system but, if it is wished
to emphasize that constraints on it do depend on time then one says a holonomic
theonomic system. Also related to the motion of these systems is the following text
unless otherwise indicated, It is always possible to introduce such a function

T=1(t) — t=1t(1)
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that constraints (3.1) can be written depending on the function 7(2), i.e.
(3.2) . fy(rla'-' ,l'N,T)=0-

An analysis of the above subject matter in which function r was introduced as
T = y°(t), 7 = z%(¢), 7 = ¢°(¢) directs one to introduce the name of a rheonomic
coordinate for function 7. Corresponding to it is the zero or n+1-st index ¢° or g"+!.
It appears as such for rheonomic systems only. In this sense and with respect to a
rectilinear coordinate system, same as in (1.4), the holonomic rheonomic retaining
constraints (3.2) can be recorded in the form

(3.3) fuh 3,08, U VR R YY) = 0
or after transformations (1.25),
(34) f,‘(z},zf,zf,... ,z;,,zfv,z,i,;z°)=0

If a simpler single-index notation of coordinates is wanted then the following
can be written

(3.5) gl =% l=21 2=

When denoting coordinates in this way, constraint equations (3.4) can be more
simply written

(3.6) fu(z® 24,22, 23y =0, f,eCh

(8.7) rank{%}:k, k<3N, pu=1,2,...,k i=0,1,...,3N.

In this way a rheonomic system of N material particles M, of mass m, whose
motion is limited by a set of & holonomic rheonomic constraints (3.3) is reduced,
analogous to the motion of a point over a rheonomic surface (2.2), to the study of
motion of a representative point on a (3N — k + 1)-dimensional manifold M4,
where n = 3N — k. On every point of this manifold, a set of constraints (3.6)
enables motion of a system of particles with velocities 2°,%,... , 23/, for which the
determinant of the matrix (3.7) is not zero. Conditions for velocities are obtained
from time derivatives of constraints (3.4) in time, i.e.

%‘.ii_?_f_&

(3.7a) dz'~ T Ozi

X afu.o LR
-'L’J""azoz) (1—1)2""73N);

which can be rewritten as

azt” +"’+azkz.,"-6z°'z —a”qz
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where indices « have values k + 1,k +2,... ,3N. As regards the condition that

(3.8) det{af“};éo (g0 =1,2,...,k)

the k velocity coordinates £7 are determined as a linear combination of the other
3N — k + 1 velocity coordinates #* and 2°.

In the neighborhood of point = for which condition (3.8) is satisfied, the k
coordinates z° can be obtained from the set (3.6) as function of the remaining
coordinates:

(3.9) z% = z%(2%, 5+, ., %),

In the same way, the set (3.4) when det{8f,/0y’} # 0 can serve to determine
the following

(3.10) v =" (%0 ),

where y**1,... 43N are independent rectilinear Cartesian coordinates. Due to
transformations (1.25) it follows that

(3.11) y° = y°(z% 2. 23N),
If some more general notations ¢°, ¢%,... ,q" are introduced for rectilinear co-
ordinates y°, y**+!,... , 4" and for curvﬂmea.r coordinates 20, z¥+1 ... 23V rela-

tions (3.10) and (3.11) can be written in the form .

(3.12) ya = ya(qo)ql’ M lqn)’ qo = T(t))

where n = 3N — k. A set of dependent coordinates y* or z¥ may be determined
as a function of a rheonomic coordinate or they are constant. In this way, the
rheonomic manifold is given by a set of constraints of the form

(3.13) 27 =27(¢") or z* =comst., ie.
z! = const.

(3.14) g =2(¢°), ¢ =)
z*F = const,

where at least one dependent coordinate is a function of time ¢.
The set of parametric constraints (3.13) and definite equations of motion

(3.15) ¢ =q%(t)

1
|
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on configurational manifold M, C E3¥ define a motion of a rheonomic system of
points in Euclidian space E3N. The sets (3.11) or (3.10) are parametric forms of
rheonomic constraints (3.3) or (3.4) and they may be written in vector form:

(3_16) Ty = r”(qo,qll ve e ,qn)’ 0 = T(t)-

Indeed, a position vector of any v-th point will be r, = yle; + y2e; + yles.
With the use of indices as in (3.5) these vectors can be written as

(3.16a) r, =y %6 + 3 leg + y¥e;.

The relations (3.12) are followed by the written forms (3.13) which, analogous
to parametric equations of surface (2.33), represent here parametric equations of a
rheonomic n+1 dimensional manifold, named an expanded conﬁgura.tlonal manifold
or a rheonomic configurational manifold.

Velocity vectors of particles of a theonomic system at any point of an expanded
configurational manifold are

dr, _Or,. it or, ., Or 4
Vy = —- dt 61 + '+aqnq +aqoq 1
or written in a more concise form

or, ., Or,., Or,
3g=? Tap? Tag

(3.17) v, = (e=1,2,...,n;i=0,1,... ,n).

Therefore, velocity vectors of particles (3.17) on an M,4; rheonomic man-
ifold are decomposed into n + 1 components made up of generalized velocities

¢°,¢,...,¢" and the base or coordinate vectors corresponding to them.
» .. a a8y’
Since the position vector of the v-th point is r, = yle, — 6;: = #e,,

and velocity vector is v, = e, from (3.17) it follows that

ByJ ayJ 6y-7 j=1,...,3N

=L+ LTP="¢  i=0,1,...
(3.18) = 6q°’q + 30 3 q i=0,1,...,n
s=1,2,3

where it can be seen that the rank of the matrix of transition (from one coordinates
to the others) {8y /¢’ } equals the number of dimensions of a rheonomic manifold

Mn+1

(3.18a) rank{g%:—} =n+1

The remaining 3N — (n+ 1)} = k coordinates of velocity vectors are determined
from the set (3.14).
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Momentum. In rheonomic mechanics, the question of momenta has great
importance. The more so, since the definition of this essential notion is not uniform
in analytical mechanics. The basic (Newton’s) definition of momentum p, of a v--
particle of mass m,, moving at velocity v, is:

(3.19) P, f':'_' m,v,.

For the motion of a point limited by rheonomic constraints, the momentum of
each v-th point with respect to velocity (3.17) is

' or, . Ory .
(3.20) p,=m, 3q: §* +Amy#q"
or in a more concise form (3.21)
(3.21) p, =m, ‘;’ng". (i=0,1,...,n).

Since momenta of material particles are related to these points they cannot
simply be mathematically reduced, by simple vector additions to one point. Not for
the momentum p of such a system can it be said that it represents a vector sum of
momenta of the particles in this system. To avoid the difficulty of vector addition,
the scalar product of momentum p of each point with the corresponding coordinate
vectors Or, /8¢, gives projections of all point momenta on each corresponding
coordinate ¢*. The sum of all these images p,-(8r,/dg'), which essentially represent
projections of momentum vector p on coordinate directions, make up the system
momentum covector. Therefore, if each scalar product of each momentum vector
(3.20) with the corresponding vectors dr, /8¢’ is made and then all these products
are added, the j-th coordinate of the system momentum is obtained

3.22) w3y, 2
( . p; = ”=1p,, aqj
N ; N
_ or, 0Ory ., dr, Or, 4
L™ ot e
N
— ary ary 13 .
(3.23) p,—;m,aq,. Sk (G=0,1,...,n)

If analogous to inertia tensor (2.51), the corresponding inertia tensor is denoted
on (n + 1) dimensional manifold

3.24) a..-im@”_v LU SRR
(' ’J-”=L Vaqi aqj“ajtq’q 1o q




3. RHEONOMIC SYSTEMS 4]

the momentum covector coordinates (3.22) can be written in a more concise form
as

(3.25) Py = Gaj§” + agjg’
or as (3.23) S
(3.26) pj =ai¢.  (4,5=0,1,...,n)

The tensor (3.24) is covariant, of the second order, symmetrical, and its deter-
minant is

(3.27) det(ai;) # 0, (1,=0,1,...,n)

which is not difficult to prove if one has (3.18a) in mind. Therefore, system momen-
tum covector coordinates are linear combinations of inertia tensors on configura-
tional and generalized velocities ¢* in that system. With regard to (3.27) contravari-
ant coordinates a’* of inertia tensor (3.24) can be determined, too. By composing
the momentum covector (3.26) with contravariant tensor a’* (k = 0,1,...,n) gen-
eralized velocities are obtained as functions of momenta. Indeed,

(3.28) otp; = daiyd = 8F§ = ¢,
or
(3.29) . ¢ = a**py + a*Opo.

If time is chosen for rheonomic coordinate ¢°, ¢° = ¢, which is possible, the
corresponding momentum pqg is

(3.30) Po = @0ad” + aco

which can be seen from formula (3.25) since in this case ¢° = 1.

In the case of holonomic scleronomic constraints from formula (3.24) it follows
that all coordinates of inertia tensor ag and agg, which correspond to rheonomic
coordinate ¢° are zero. The physical dimensions of the momentum vector are
MLT™!. This comes out from its definition (3.19) since

[dimp] = [dimm] - [dimv] = MLT"!.

*In classical analytical mechanics the time momentum coordinate pg is given
the value of the negative of Hamilton’s function H, i.e. pg = —H, which cannot be
made harmonious with momentum definition (3.22) neither by its physical meaning
nor the form of expression (3.30).
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The momentum covector dimension, how=ver, is not always the same. If the
generalized coordinate has the dimension c! lenght, [dim¢*] = L, then the di-
mension of the respective coordinate pj of tie momentum covector will equal the
momentum vector dimension since in this case, due to (3.22):

[dimpi] = [dimp] - [dim~] : [dim ¢*¥] = MLT" 1.

If the generalized coordinate ¢/ is angle, the corresponding coordinate p; of
the momentum covector has the dimension of impulse momentum ML2T-?, as in

this case
[dimp;} = MLT! . L = ML2T™!.

The physical dimension of the momentum covector coordinate py depends on
the dimension of the chosen rheonomic coordinate ¢° because then

(3.30) [dimpo] = ML2T-! : [dim¢°].
If time ¢ is chosen for the rheonomic coordinate, then
| [dimpo] = ML?T~2,

which coincides with energy dimensions. But even with this statement one should
bear in mind that po is only one of the momentum covector coordinates (3.26).

Kinetic energy. According to the definition from classical mechanics the
kinetic energy T of a system of points is equal to the sum of kinetic energies of all
particles which means

N N
2 _ 1 :
T= Zm,,v, == Zm,,v,, V.
2
rv=1 v=1

Velocities of motion of particles limited by holonomic rheonomic constraints
are written as formulas (3.17) and substitution into the preceding expression for
kinetic energy of the system of particles gives

DO =

N .
1 dr, Oor, ,;.;
T== v__l/:_ . —1' i'q )
2 v=1m aqt an ! qJ
namely, with regard to (3.24),
(3.31) T=ia;¢¢, (i,j=0,1,...,n).

It is obvious that kinetic energy (3.31) of a rheonomic holonomic system repre-
sents a homogeneous quadratic form of generalized velocities ¢°, ¢*, ... ,¢", which
may be developed into the form

(3.32) T = 2aapd%¢® + 60ad®d® + 3a00°¢® (2,8=1,2,...,n).
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The form accepted in literature is
(3.33) T = $aapi®¢® + a0ad® + aco.

This is a consequence which comes out from the expression (3.32) where the
rheonomic coordinate ¢° is time ¢. In this case ¢° = 1 and formula (3.33).comes out
of (3.32). Still in this case, kinetic energy should be written in the form of (3.31) or
(3.32). If relations (3.28) are taken into consideration, it is not difficult to express
kinetic energy as a homogeneous quadratic form of generalized momenta p;. By
substituting (3.28) into (3.31) it follows that

(3.34) T = aija* pea’’ pr = 65 /' pepr = a¥' iy
or
(3.35) T = 1a* papp + a**popa + 10" popo.

For rheonomic coordinate ¢° =t based on (3.28) the relation is found to be
(3.36) a%p; = a%p, + a®py = 1.
In order to use this relation, kinetic energy can be written in the form

T = La®Ppops + L(a%ps + a"po + a"po)py,
SO

and in this case
(3.37) T = $a®papp + 5a°*popa + Lpo.

If this expression is used for kinetic energy, then equation (3.36) should be
joined to it. Also the relation ¢° = 1 should be joined to expression (3.33). In order
to avoid these additional conditions it is easier to use expressions of homogeneous
quadratic forms (3.31) and (3.34) for kinetic energy. '

Conditions of point acceleration; system acceleration covector. When
the motion of a particle over a rheonomic surface was described, the question of
acceleration was considered in relations from (2.9) through (2.60); and it was not by
chance that it was connected with forces and the constraint reaction. Constraints
are, inter alia, a source of forces. Rheonomic constraints, in particular as forces
are direct and reflexive causes of system point acceleration. Because of that, three
methods for the analysis of acceleration of constrained points, can be distinguished:

a) dynamic method of constraint elimination (as in 2.6),
b) kinematic conditions of constraint (same as in 2.37a), and
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¢) acceleration of point systems on manifolds (as in 2.52).

a) Dynamic method of constraint elimination understands the substitution
of constraints by vectors which should be determined by means of some dynamic
conditions. In this case, accelerations of system points are observed as accelerations
of free points which are subject to additional conditions. This method is as simple
as it is inapplicable to solving differential equations of motions since an excessive
number of unknown magnitudes of constraint reactions appears in them.

b) Kinematic conditions of constrainis limit the velocities, as in (3.7), and the
accelerations of systems points. Time derivatives of relation (3.7) are

3f,‘ az‘fu ol vt o o
. i ' 3! =0, .7 =0,1,...,3N).
(3.38) 5a7 + 57 a7 ¥ =0 #,i'=0 )

On the other hand, the vector coordinates of point acceleration, as seen in
(2.19a), in E3VN are

D& di | .dz* .

(3.39) -Et—-—-a{--l-rjkz’—a-t—-, (i,j=1,...,3N).
By substituting ordinary second derivatives ' = dz*/dt into equations (3.38)
the k conditions are obtained, which are to satisfy the point acceleration as follows:

06y (D), (Ll Oy Juizt -
(340) "a?( & )+(6:c]8:c" gk )FE =0,

As in the case of conditions for velocities (3.7a), because of (3.7) and (3.8)
respectively, it can be seen that k vector coordinates of acceleration Dz#/dt are de-
pendenf. of 3N —k independent acceleration vector coordinates Dz®/dt and Dz%/dt,
(a=1,...,3N = k).

¢) The acceleration of particles on rheonomic manifolds considerably differs
from the acceleration of points in system (3.39), which is characteristic for methods
a) and b). Accelerations (3.39) are the acceleration vector coordinates of particles
in the curvilinear coordinate system, which are, by means of indices (3.5}, extended
to all- 3V system coordinates, and there are 3V in number, just as many as there
are vector coordinates of all system point positions. Such accelerations are only
subject to conditions (3.40) which establishes dependence among the acceleration
coordinates. It is possible to solve the problem how to get freedom from such
dependence with equations (3.40) in which derivatives of holonomic constraints
appear in form (3.6), but similarly this problem can be solved in a more elegant
way using parametric forms of constraints (3.12) and (3.16) where the generalized
point velocities (3.17) on the observed configurational manifolds are determined.
Starting with just (3.17) and the definitions, the acceleration vectors a, or the v-th
particle in a system, i.e.

dv, or, .
=V i =0,1,...,
=0 dt(aq 1 ) (i=0, n)
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the following is obtained

6r., dq 0%, . dq’

(3.41) =9 &t “ogagt @

Vectors can be decomposed into n + 1 components along base vectors

d*r
34’
3 =, corresponding to relations (2.42), i.e.

d%r, =k O Or,

(3.42) 505 = Uiae

% Hhoiime  (k=0,1,...,n)

where Tf;, for the moment, are some coefficients of connection which are to be

determined, and b(,);; is the second basic tensor. By returning to (3.41) we have

dg* i d
(3.43) a, = (-37 + TS ¢ ) 5t bowsd'd
which can be written in 3 shorter way

Dq’= Or or
(3.43a) % = 55, = +byisd ¥, = aF ¢ aq: + a@)N Dy,
when acceleration vector coordinates are known to be equal to

(3.44) a":——z—:—-—.i.r..

Although the coefficients of connection are still unknown, it can be seen from
(3.43) that the acceleration vector of the v-th point has n + 1 independent coor-
dinates on as many dimensional manifold M, ;. It is convenient to determine the
coeflicients of connection I‘fJ in configurational space with the help of inertia tensor
(3.24). For this reason, one should multiply each vector (3.43) by scalar mass m
and then find the scalar product with vector dr, /d¢, i.e.

@_m ory 6r,,ak
¢ ' ogk an )

myay .

If these two relations are summed on v the j-th coordinate of the system
acceleration covector is obtained

fr, dr,
(3.45) "Z”‘”aqf _Z"‘”aqf 0"

v=l
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or, with respect to (3.24),
(3.46) a; = a,-ka".

Contrary to vector coordinates of acceleration which, as seen in (3.43) or (3.44)
is of kinematic nature, the acceleration covector (ag,a1,...,a,) of a holonomic
rheonomic system has kinetic characteristic since the inertia tensor, as it can be seen
in (3.24) and (3.45), contains masses of system points. Because of that, covariant
acceleration vector coordinates in configurational space qualitatively differ from:
contravariant coordinates of that vector physical dimension.

If inertia tensor (3.24) of an extended configurational space is used, then coef-
ficients of connection introduced in relations (3.42) can be determined. The partial
derivative of tensor (3.24) by coordinate ¢* is

daij 0%, oOr, Or, 0%,
(341) % " ; (W 9 T o7 '34"341’)'

- When indices i, j, k change places cyclicaly (by permutation) the relations ob-
tained are

daj; o, or, or, &r
98ik _ Jxy Or, Or, 0T,
o' ;my(aq"aqf ¢ * oy aq'aq">’
dagi _ Y ( i .61',, or, 9, )
8¢ Y\ 8¢id¢* O¢ Bq" d¢idg J°

(3.48)

If (3.47) is subtracted from the sum of relations (3.48) then we get

aajk 6(1]“' aa;,- — N 321‘., Qﬂ.
o " O o L™ agos ap

v=1

On the other hand, if the relations (3.42) are multiplied by vectors dr,/0q*
and corresponding masses m, and then everything is summed by indices v, then a
sum in the following form is obtained

N N
&%, Or, or, ar., r
> my 340 B¢ VZ v3¢ B¢t Lij

v=1

and with respect to (3.24),

ﬁ’: 8%r, o,

Iy Oy T =T
mll aq'aqj aqk a‘kru rl],k

v=1

|
|
|
|




3. RHEONOMIC SYSTEMS 47

These last symbols, as it can be seen in (3.47), are

1 3(1'); aak.-. aa"
4 = — L ANt
(349) A Figa 2(3q‘ T 6«1‘)

and are known as Christoffel symbols of the first kind. Thence, the coefficients
of connection I‘{-j would be F{-j = a/*T;; , Christoffel symbols of the second kind
over the inertia tensor of n + 1 dimensional configurational rheonomic manifolds.
In this way, vector (3.44) and covector (3.46) of acceleration on multidimensional
manifolds My are fully determined. '

. Acceleration in surrounding space. A more complete determination of covectors
and vectors of acceleration becomes clear in differential equations of motions, which
will appear below, but, here it is possible to formulate a somewhat clearer meaning
of acceleration vector coordinates (3.39) in E®N  and a considerably smaller number
of vector coordinates (3.44) upon manifolds Mn4+;. A general information is given
by the k relations (3.40) containing k dependent acceleration coordinates a? =
Dz? /dt and 3N — k independent ones a* = Dz%fdt (¢ = 1,... ,k; @ = k +
1,...,3N). For rheonomic constraints required by the coordinate form (3.13) i.e.

(3.50) fP=2"-2(t)=0 (¢=1,2,...,k)

it comes out from (3.40) that the dependent acceleration coordinates

Di® dz°  _ ..dzf |
(3.51) TRl + Iz 7 (z,].— 1,2,...,3N)
are determined as a function of velocities #!,...,z%" in each point in space
z, ..., 23N, The other 3N — k acceleration vector coordinates have the forms

of (3.39) and (3.44) respectively show this for the case when rheonomic constraints
are required in parametric form (3.16). Indeed, if the coordinates y* (i = 1,...,3N)
of the v-th point are indexed as in (3.5)

3v—2

=92 =y, E=y¥ (¥=1...,N)

and we will then position vectors may be written as vector functions of coordinates
yLy?, .., e

(3.52) r, = r,,(zl, cen ,zsN)
or due to transformation (1.25),

(3.52a) : r, =, (2}, ... ,z).

A choice of curvilinear coordinates can be done so that rheonomic constraints
are given the form of (3.13) or (3.14), namely more general (3.50). Let k of the
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coordinates so chosen be denoted by z! = z*(t), ..., z* = z*(t), and let the other
3N — k independent coordinates be denoted by ¢* (@ = k+1,...,3N). Thus

(353) r, ___ru(zl’“. ,zk;qk"'l,‘” ,an‘)
which corresponds to (3.16). The system point velocities are therefore

or, . + Or, . 4o
977 " +6 !

(3.54) v, =

(e=1,...  kl;e=k+1,...,3N).

0
Let vectors 5—:—%— = 9, make the base of space E¥ C E3V and vectors -g%

the base of the manifold M, C B3N (n = 3N - k). When introducing rheonomic
coordinate ¢° as in (3.13) the expression for velocities (3.54) is reduced to (3.17),

because
ory ., _ Ory 9z° £ = Or,

8z7 ~ Bze aq T 4¢° et

Acceleration of system points, based on (3.54), will be

d%r, 475 ory .o o’r, c
9270z~ t 0z° + 0z78¢° z
i Ty q.s, OFy g
Yoo 4 Togagpl ¥ Y gt

(3.55) a, =

e . . 0 .
Scalar multiplication of this relation by vectors m,,-L: and summation by
index v, -analogously to the procedures given for (3.44) to (3.46), will result in

N
Or, _ or, &%, iy r,, or, . 5
,;mua_xl; Bad Zm,, 9%  9zi0zi :c’+z "3 i 6:1:"

Furthermore if the relations (3.45) and (3.48) are considered, then one obtains

i

D& . ’
(356) ak—‘gha = Gk dztl‘ (Z)Jvk=112:"' )3N)
or
Dz? D¢?
(3.57) a, = 3#(!"5" +aug PR
where:
N .
. Or, Or,
(3.59) sp,=zm,,5z—#-5;;, (po=1,...,k)




3. RHEONOMIC SYSTEMS 49

N

' ) or, Or,
(3-60) S“p = ‘gmv—a; . EQF = a"ﬁ,
| Y or, Or
(361) aap=§my8qa '-a—q-E', (a,ﬁ=k+1,...,3N)

In this way the main tensor of subspace E* and M, is separated:

(3'62) gij = {%a up } ,

sy Gap

which enables a clear survey of acceleration distribution in the space E*V. By
composing relation (3.57) with a contravariant tensor (3.59) i.e. 9% (k =1,... ,k)
it results that

Dit 4

7 =3"%a, = 7 +I‘:-°j:i:ii‘j.

(3.63)

In a similar way we obtain

dq?
P4 g =Y prgi
(3.64) o =98 = +Iztel.

The acceleration vector of the v-th particle a, can be, therefore, decomposed
into components along covectors

' or, ory,
(365) Syg = 51';;1 © Brva = dq*
as follows
(3.66) a, = a’s,, +a%g,,-

A combination using relations (3.63) and (3.64) is also possible. Thus, if (3.63)
is substituted into (3.66) the acceleration vector of the v-th point will be

(3.67) a, = ax9) +a°g,q,
where the vectors are

(3.68) 8% = 5%%,,.

Accelerations (3.64) are equivalent to acceleration vector (3.44). To prove
this is simple in the case of rheonomic constraints (3.50). Acceleration vector
coordinates (3.44) and (3.64) are equal if following hold:
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(3.69) I'“ ‘3’7 I‘ﬁl /q q"f .
(Li=1,...,8N; a=1,...,n; ,v =0,1,...,n)

In a chosen coordinate system z!,...,z%; b+l = b+l | 23N = 2N
with respect to which the constraints are described by equa.tlons z* = a:"(qo)
(k =1,... k), the first time derivatives of these coordinates are

Vi 8:::" .8'
' = ar
il ¢

where dz'/0¢P = &} are Kronecker symbols. When returning to the left hand side
of relation (3.69) i.e.

l

(370) I"" ’IJ I‘sa L a ) qﬂ q ;I(S.Jrlqp q..’ =Fg:7lq'ﬂlq"y,
this proves the equality of acceleration vector coordinates (3.44) and (3.64).

Acceleration function. Under the notion of “acceleration function” we un-
derstand the function

ll“

Niv—-ﬂ

(3.71)

N
Z m,a, -ay,

which is in analytical mechanics known under the names: “energy of acceleration”,
“Gibbs function”, “Appell’s function” or “Gibbs-Appell’s function”. As the physi-
cal dimensions of this function

(3.72) [dim.4] = ML>T—*

are not equal to dimensions of energy E, {dim A] # [dim £}, and the final analyt-
ical expressions partly differ from the expressions accepted for Gibbs or Appell’s
function in generalized Lagrange coordinates, this function (3.71) is here named
“acceleration function”. The accelerations of points, as it can be seen in (3.66), are
distributed in the surrounding space EFt" and the acceleration function therefore
belongs to that space. In order to subdivide the acceleration functions into sub-
spaces, expressions for point acceleration (3.67) should be substituted into formula

(3.71),

wlr-l

Zm(ana +a°8,0)(a00% +a’g,p)

(3.73)

whereo,c=1,... ,kand a,f =k +1,...,3N.
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With reference to (3.68) the function A is reduced to
1 1 & :
(3.74) A= 3 Zm,,a,’f -alaga, + 3 Zm,,g,a -g,,ﬁa"'ap.
v=1

r=1

If linear transformation (3.68) is used once again it results in

N N
E m,a) -9 = E m, 3™y, - 9743, = 8,8 = §;37 = 37
v=1 v=1 '
where
N N
3.75 ory Ore
(3.75) Oyp = Zm,,azx i Zmue,,x -
v=1 v=1

If the inertia tensor of the n-dimensional rheonomic manifold is also considered

(3.76) a —im or, O,
. aﬂ'— llaqa aqﬂ

v=l

the acceleration function is obtained
(3.77) A= %s""a,an + %aaﬁa"aﬂ

as a sum of two homogeneous quadratic forms:

(3.78) Ag = %3"‘a,a,,
and
(3.79) Ay = Yagpa®dl.

On (n + 1)-dimensional rheonomic manifolds, where the point acceleration
vectors are as in (3.43), the acceleration function (3.71) gets the homogeneous
quadratic form of n + 1 vector coordinates of acceleration

(3.80) A—}Jf Ory, Qﬁa"aj-—l.a-- id,  (,j=0,1,...,n)
. —”=1mvaq‘- an -2 t]a H WJ =Wl e,
where, as seen in (2.24), the inertia tensor a;; = a;i(¢°,¢*,... ,q") is a function of

rheonomic and generalized coordinates.

P
1
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4. Nonholonomic rheonomic constraints

In the classics of analytical mechanics there are often comparative relations of
holonomic and non-holonomic constraints although they essentially differ one from
another. The degree of constraints is determined according to the degree of veloc-
ity coordinates which appear in constraint equations. In this agreed classification
the most widespread class is the class of linear constraints which are most often
analytically reduced to the form of

(4.1) Ou = bua@® +buo=0 (u=1,...,5a=1,...,n)
where the coefficients byq and byo are functions

(4.2) bpa = bpa(qla ooy qn;t)

(43) byO = b,‘JO(qlv" 1qn1t)

which eliminate the possibility of integrating the relations (4.1). If relations (4.1)
are nonhomogeneous, i.e. if byo # 0 then the nonholonomic constraints are in
general rheonomic ones independent of whether coefficients (4.2) and (4.3) depend
on time. This is because in such a case there is a time differential next to coefficients
buo and it follows that

(4.4) buadg® +bu0dt=0 (a=1,...,n)

By introducing rheonomic coordinates ¢® = ¢°(t) — t = t(¢°) nonhomoge-
neous constraints (4.4) are reduced to homogeneous form

dt

b,m dq"' + b,,oz&‘a qu =0
or
(4.5) budg =0  (i=0,1,...,n)
where b, = I‘J,,o(dt/dq°) = buo(q® ¢%, ... ,¢") now depend on rheonomic and gen-
eralized coordinates same as all coefficients (4.2) i.e. '
(46) bpi = bpl'(qqul"" )qn)'

Rheonomity of constraints (4.5) ensues from whether they contain either a
theonomic coordinate ¢° or its differential form.

If each relation (4.5) is divided by differential dt it becomes out
(4.7) : buid" = bpa‘ja + bpoéo =0
or
buida = —byﬁdoa
hence it can be seen that if det b | # 0, I of the generalized velocities ¢* can

be determined using the remaining n + 1 — [ independent velocities ¢° (¢ = 0,1 +
1,...,n).




PRINCIPLES OF MECHANICS

It is understood that principles, as fundamental and most general standpoints
in mechanics, equally apply to all mechanical systems regardless of the character
and functional dependence of the constraints. In systems with scleronomic con-
straints the mathematical harmony of analytical mechanics is really established by
the principles of mechanics, the variational ones in particular. Disharmony appears
in systems with rheonomic constraints which are the subject of study here. With-
out commenting in more detall the standpnmts of rlassu:a.l analytlcal dynamiere,
there is an effort in the ensuing text to show the equivalens Laiu.c oi ilte principles
of mechanics in the sphere where they apply as well as the invariance with respect
to various transformations most often used in mechanics.

5. Equivalence and invariance of principles

We say that two principles are equivalent if they have the same natural values
for the same atributes of motion, regardless of their formulation. And we say that
a principle is invariant if neither its content nor mathematical form changes when
transforming coordinates.

~ Galilean principle of relativity for equilibrium of dynamical particles can be
written in the form

(5.1) F,+R, =0, v, =0,

where F, and R, are forces and v, is the velocity of v-th particle. In inertial
coordinate systems, using the equations (5.1), we can find equilibrium of a system.
The constraints (3.1) are additional ones. The velocities of the particles should

satisfy

9 of
(5.2) Zgrad Sfuve + 6ft =0 1mphes at“ e =0.

The relations (5.1) and (5.2) together should be equivalent to the relation (the
principle of virtual displacements):

(5.3) Y (F, +R,) b1, =0.

53
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It is really so in the mechanics of scleronomic sys:ems, but it is not so in the
systems with rheonomic constraints. Here we shall remove the difference. Further-
more, the scalar invariant (5.3) should satisfy

3N . 3N i 3N-k )
Z(K‘FR?)&y':Z(X;-{-Rf)&z‘: Z Qjé¢ =0.
=1 i=1 j=0

But the relations Efivl(Y. + RY) 6y =0 and Z‘Z{:;k «89® =0 are used in
mechanics, although it can be proved that

aN . 3N-k
SWi+RNG £ Y. Qabe”.
i=1 a=1 .

Similarly, Galilean principle of relativity and the principle of least action are
equivalent in the mechanics of scleronomic systems, while in the mechanics of rheo-
nomic systems they are not usually considered equivalent. For scleronomic system
the principle of least action can be written in one of the forms

2 2 2
(5.4) 6/ 2Tdt=6/ aqpq'"‘dqﬂzéf psdg® =0, (e,8=1,...,n).
1 1 1
while for rheonomic systems we have
Jorai# [aopizai? # [oper?.

We shall show that it is possible to unify that and to write for rheonomic systems
the following

2 2 2
6/ 2Tdt=6/ aijq'idq’=6/ pjd¢ =0, (1,7=0,1,...,n).
1 1 1
The difference will be only in the dimension of the configuration space.

Similarly, the principle of stationary action for scleronomic systems can be
written in one of the forms

2 2 2
5/ (T-M)dt = 5/ (%aaﬂé"‘é” ~0)dt = 5/ (po dg® — H dt) = 0,
1 1 1
while for rheonomic systems we have

/(T+ M) dt # /(%aapé“q'ﬂ + 1) dt # /(pa dg® — H dt),
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where H is Hamiltonian and Il is the natural potential of forces. We shall also
show that for rheonomic systems the principle can be written in one of the following
invariant forms

(55)

5/ £dt—6/ T~ V)dt—&/(a,,qq’ V)dt= /(p,dq ~Edt)=0

where £ = T + II 4+ P is mechanical energy of the system and V = Il + P is the
potential of the forces. '

The relations (5.5) are equivalent to the modified relation expressing other
related principles of the mechanics. We shall demonstrate later that they are also
invariant.

6. D’Alembert’s principle

To determine the motion of a body with respect to various coordinate systems,
inertial and non-inertial ones, an important place is given to D’Alembert’s principle
in which the inertia force I & —ma has an eminent place and which states:

Each system of forces which act upon a body (particle) is balanced by the force
of inertia of that body.

Therefore, if on some v-th particle ‘M, there acts the resultant force F,, the
resultant R, of rheonomic holonomic constraints (3.2) and the force of inertia

(6.1) I, =-m,a,,
the principle asserts that the following equations must be satisfied

(62) Fu+Ru+Iv=0) (V=1)---)N)

a) These are basic equations of dynamics which, if (6.1) is taken into consid-
eration, are most often written in the form of (6.3) where it is understood that the
constraints are, in mind, “removed” and replaced by forces R,. However, equations
(6.3) do not solve the problem of motion without additional conditions. It is nec-
essary to know motion r, = r,(t) and forces F, in advance in order to determine
the constraint equations or to know the forces and sufficient conditions for con-
straint equations in order to determine motion. And preliminary determination of
rheonomic constraint reactions at any point by the direction and by the modulus,
without establishing a connection with motion is not always possible.

b) To simplify this task the constraint reactions are resolved into two com-
ponents. One in the direction of the gradient at the given point on a geometrical
constraint and the other normal to the constraint gradient, which is most often
called friction force and is included into the composition of force F,. In the case
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of smooth constraints the remammg reaction h% in the direction of the constraint
gradient fuy(ry,...,rn;7) =0, ie.

k
(6.4) R, = ) M grad,, fa.
p=1

As the friction force is most often determined experimentally according to the
laws of friction, mistakes will not be made if all holonomic rheonomic constraints
fu(r1, ..., rn;7) = 0 are considered smooth and the reaction force has the form of
(6.4) In this case together with differential equations of motion

k
(6.5) mya, =F, + Z Ay grad, o,
p=1

there appear the constraint reaction equations

(6.6) fulryy... ;7)) =0

which satisfy the conditions of velocity and acceleration. Since these equations for
holonomic rheonomic constraints are most frequently required in the form (3.3),
(3.6) or parametric form (3.16), then also the differential equations of motion can
be presented in scalar form on the same coordinate system. If the constraints are
required in Cartesian coordinate system (y,e), as in (3.3), the differential equations
of motion (6.5), if indices as in (3.5) are chosen, will be

(6.7) Y,+Z,\ ai‘; =1,...,3N)

which, together with k of the constraints (3.3) i.e.

(68) fu(yo,yl,--- ,y3N)=0

give a solution to the problem of motion of a system of points. There is a better
possibility in a curvilinear coordinate system (z,g) to reduce constraint equations
to a more simple form

(6.9) f“(zo,xl,...,zsN)=o (g=1,...,k)

In such coordinate systems, analogous to (2.19), if indices and notations are
as in (3.5), the differential equations of motion will be reduced to the form

Dzi a . .
(6.10) i —F+Z/\ f" (i,i=1,...,3N),
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where D2/ /dt are acceleration coordinates for each particle M, each of them de-
rived from formulas (3.39) and the inertia tensor g;; is derived from formulas (2.17)
or (2.20), the notations for points being taken from (3.5). The acceleration co-
ordinates from these differential equations (6.10) should satisfy k conditions of
constraint acceleration (3.40), i.e.

O i3 (o Sy 0o, (Ohu _ 0urs i
(6.11) 52i? \7 +§’\" 927 ) T \Bai0aF ~ 3o+ )7 E
0fso o 8fu iio_ O 0.0
820" —26::1'31:0213 829970
With these relations it will be possible to determine & of the multipliers of
constraints since, because of (3.8), the square of the gradient

i 0fu 0fu
oz fzi

of each constraint f, = 0 is not zero.

¢) If holonomic rheonomic constraints are given in parametric form (3.15)
and velocities of particles of the system are determined by vectors (3.17) from
D’Alembert principle, and from equation (6.2) respectively, then n+1 = 3N —k+1
differential equations on (n + 1)-dimensional manifolds may be isolated. The scalar
product of each equation (6.2) by corresponding vectors dr,/d¢' and summation
by index v

N
(6.12) > (F,+R,+L)-

r=1

dr,
dq

=0 (i=0,1,...,n)

should give scalar differential equation of motion in generalized coordinates P, ¢,
...,q". The first addends are covector coordinates of generalized force

N
(6.13) Q;:ZFy-g;:.

v=1

Covector of reaction generalized forces is

N or
6.14) ;= R, —-.
(6.14) R; .,§=1: 3¢

However, if the decomposing of reaction forces is adopted as in the preced-
ing section under b) and they are reduced to reactions of ideal constraints (6.4),
n coordinates R, will be zero due to the orthogonality of vectors grad, f and
or, [3q”

N &k
Or,
(6.15) Ra=)_> A grad,, [ e = 0.

v=1p=1
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Different from zero can be the coordinate
¥ g
_ v.
(6.16) Ro= VZE R, 5

because in general grad, f, - (8r,/3¢%) # 0.

The sum of inertia forces (6.1) of v-th points in a system and scalar product by
base vectors dr, /d¢*, with (3.45) in mind, is the acceleration covector coordinate
with changed sign, i.e.

4 N or, N 8 .
(6.17). J;:ZJv'é‘q.-‘=—2m,,a,,.—,-=_a,.=_aﬁai,
v=1 rv=1

where o/ is determined by expression (3.44). By substituting (6.17), (6.16), (6.15)
and (6.14) into relations (6.12) n + 1 differential equations for system motion are
obtained in the form

(6.18) Qi+R:"-ac"=0, Ry=---=Rp=0
or
(6.19) a,,j%%.’-- =Qs (a=12,...,n)
(6.20) do;%j- = Qo + Ro.
If generalized forces Qo (o = 1,...,n) are known in the system of equations

(6.19) then n coordinates ¢ = ¢*(t) can be determined because the required
function is ¢° = ¢%(t), and then the function Ry can be determined from equation
(6.20).

An example of these differential equations of motion (6.19) and (6.20) are
differential equations of point motion on 2 + 1 dimensional surface (2.44), (2.45)
and (2.49).

7. Principle of possible displacement

The notion of “possible displacement” here means an infinitely small displace-
ment of a particle which could occur if the given constraints allow that. Thus the
idea of “possible displacement” denoted & by Lagrange is in concordance with Lan-
grange’s “possible velocities” v of points “in the course of an infinitely small time

_interval 6t in which possible displacement might take place”

(7.1) br, = v3 5.
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Belonging to a set of displacements of a particle is the actual displacement
which would take place within time dt, so in the case of rheonomic constraints
which themselves are changing with time, the number of possible displacements ex-
ceeds the number of those displacements of a point under the action of scleronomic
constraints. But, independent from the above the principle of possible displacement
equally applies to the system of forces acting on the points whose displacements are
limited both by scleronomic and rheonomic constraints. The essence of this princi-
ple of possible displacement refers to eventual or possible work of forces which could
be realized on possible displacements and asserts: in order to retain the mechanical
system of points in equilibrium it is necessary and sufficient to have the total work
of all forces upon possible displacements non-positive.

More frequently this principle is used for the systems with retaining constraints
for which it reads: a mechanical system of points is in equilibrium if the total
work of all forces upon possible displacements is zero. According to this principle a
necessary and sufficient number of conditions required to determine the equilibrium
of a rheonomic system of points can be derived. To this end it is further assumed
that there are N dynamical points M,. On each v-th point acts the resultant force
F, which can be considered as a vector sum of resultant F, of active forces and
resultant R, of reaction forces. The displacement of points is limited by means of
k rheonomic holonomic constraints given in

a) vector relations (3.2) or forces only,
b) in scalar form (3.6), or
¢) in parametric form (3.16),

which physically is always be the same but dlfferent one from another in the math-
ematical approach

a) each u-th constraint f, =0 can always be abstracted on the v-th point and
substituted by the constraint reaction forces R,, so that the resultant reaction
force acts on the v-th point

R, = E Ry,.

p=1

In this sense the point M, is free and there are possible displacements dr, of
its position r,. Possible work 6 A of all forces of the v-th point upon elementary
displacements is 64, = F, - ér, and the total possible work of all forces upon
possible displacements according to the quoted principle is

N N
(7.2) §A=Y"F,-br,=) (F,+R,)-6r, =0

v=1 v=1

If (7.1) is taken into consideration, the principle of possible velocities is con-
tained in the following relation

N
(7.3) Y (F +R,) vt =0

v=1
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From the set of possible velocities v}, = ér, /6t the real velocities v, = dr, /dt
can be removed particularly in rheonomic systems requiring that the later ones all
equal zero, so that possible displacements remain arbitrary. Hence from (7.2) or
(7.3) the conditions of rest of points in the system are

(7.4) F,+R, =0, %":o

which is identical to the conditions (5.5).

b) If the analytical form of smooth holonomic rheonomic constraints (6.9) is
taken into account, then the set of “all forces” means active forces F;, and their
total work on possible displacements is

} 3N '
(7.5) §A=) Fibz' =0,

i=1

provided that the possible displacements satisfy the constraints (6.4), i.e.

(7.6) A )

The rheonomic coordinate z° has the same treatment as other coordinates as
regards possible displacements. Since the function of time z% = z°(t) is known, we

can write
8z°

(7.7) 62° = -E- &t.

If Lagrange’s indefinite multipliers of constraints are introduced, the principle
of possible displacement for the constraint form (6.4) can be determined by the
relation

. k
(7.8) SA+ Y X 8fu=0.
p=1

The consequences of this relation can easily be seen if (7.5) and (7.6) are
substituted into (7.8) i.e.

(7.9) Z(}‘,+ZA af“)& +Z,\,,gf';5$ =0
i=1 u=1

By using the Lagrange’s method of indefinite multipliers of constra.mts 3N+1
needed condxtlons of rheonomic systems will be obtained, namely

(7.10) ’r",+Z)« af“ = (i=1,:..,3N)

p=1
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k
(7.11) ZA,,%:—‘“)- =0,

p=1
which together with k of the constraints
(7.12) ful® 2!, ,z3) =0

determine the conditions of equilibrium for the rheonomic system of points.

It suffices for condition (7.11) to be satisfied in equilibrium if partial derivatives
of constraints f, = 0 on a rheonomic coordinate or in time equal zero

2/ 0fu _
(7.13) 5 =0 = E=0.

Thus these relations and equations (7.10) represent sufficient conditions for
equilibrium of a rheonomic system. In the case of scleronomic constraints, therefore,
equations (7.10) represent necessary and sufficient conditions of system equilibrium.
Conditions (7.13) correspond to the requirement that constraints should satisfy
velocities v, = 0, because in this case, as seen in (5.8),

Ofu _ Ofu Ot _ of _
520 = Bt B0 0 T ot o
This is only so for the equilibrium of the v-th point M, € f = 0 for which A, = 0.

Ezample. A double pendulum weighing G1 and Gg of variable lengths /; 6)
and l2(t) can oscillate in a vertical plane. Determine the position and conditions of
system equilibrium.

If the form of constraint (6.8) is chosen for this eﬁcample then

h=y+y -4 =0,
fa=(y3— yl_)_2+ (vs — 12)* = la(t) = 0.

Equations (7.10) for coordinates i = 3 are = . . Ty

G1+2\y1 — 222(ys — 1) =0
G2 +0+4+2\2(ys — ) =0
20191 — 2A2(y1 —92) =0
2X2(ys —12) = 0.

The condition (7.1) is

ol ol : ;
/\1‘5tl' + 323% = /\1v11 + Al =0
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or (7.13) ) _
i 11-‘—"0 and 12=0.

Then the anticipated results come: the pendulum is in equilibrium in the
position y = l;, y2 = hh + I3 on the condition that ly and l; are not changing with
time and that A, = (G1 -+ Gz)/(211), Az = —Gz/(?lz).

If polar cylindrical system of coordinates is chosen z! = p;, 2% = ¢y, 23 = p,,
z* = iy, the constraints (6.9) are

fi=pp—=L{t)=0, fa=py—1(t)=0.
Equations (7.10) in this case are

Grcospy + Gacospa + A =0 — 4. A;—(G1 +G'2)

(7.14) ~G1p1sing; — Gapysing; =0 — 3. p; =0, 7
GzCOS(pg + Az =0-—2. /\2 = —Gz
(7:15) Gapasingy =0 — Lpy=0,7

and relation (7.11)

aly

. ~ Oly
(7.16) )\1—67 + Ag

F T

or ) )
=0 and I3 =0.

The same conclusion follows as in the breceding coordinate system, but in this
coordinate system it is easily noticed that the reactions of rheonomic constraints
are directed along the variables p; = I;. ,

¢) On an expanded n + 1 dimensional manifold i.e. where the constraints are
holonomic and are given in parametric form of (3.15)

(7.17) r, =1,(¢ ¢...,q")

where ¢*,... ,¢" are Lagrange’s genera.lizéd independent coordinates and ¢° = ¢°(t)
is the known rheonomic coordinate, possible displacements (7.1) will be

or,
8q°

or,

8q°‘_6qa’ (a=1,...,n),

6¢° +

(7.18) or, =

since the possible point velocities are

dr, .o

* 3ry N
(7.19) v, = -a-q—oq, + &

oot
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Possible “generalized velocities” here are, as seen in (7.1) ¢i = 8¢'/6t. Real

velocities also belong to them. By substituting (7. 18) into the mathematical éx-
pression for the principle (7.2) we obtain

N
(7.20) Z(,-g’;;+R.,-ar")6 +Z(J-‘.,-§r—" y-g%f)aq":o.

v=1

If it is taken in consideration that covector of generalized forces (6.13) is

N
or :
2 = ), - —— =12,...,
(7.21) Qa Z;J-' 5 @=12...n)
Y Or
(7.22) and Q:,:”};n- i

and that generalized forces of constraint reactions (6.14) same as in (6.15) and
(6.16), Ry = 0 and :

4 or N k Or
(7.23) Ro= YR, g =Y ( o hared, 1) - 55

then relation (7.20) is reduced to
(7.24) (@) + Ro)68° +Quda® =0,  (a=1,...,n).

As all possible displacements §¢* are mutually independent there follow n + 1
conditions of equilibrium of a system of points on a (n + 1)-dimensional manifold
namely

(7.25) Q=0 f(a=1,...,n)
(7.26) Qi +Ry=0.

For a scleronomic system of points with retaining constraints the necessary
and sufficient conditions of equilibrium are (7.25). However, they are not suffi-
cient for a rheonomic system. Corresponding to the rheonomic coordinate ¢° of the
(n+1)-dimensional manifold is equation (7.26), whose structure should be analyzed
in detail. But before that, it is necessary to note that conditions (7.25) determine
the values of generalized coordinates ¢* of configurational manifold M,, which cor-
respond to an equilibrium. It means that they are also at rest with respect to this
manifold, under conditions ¢ = ¢*> = .-+ = ¢* = 0. However, such equilibrium
on manifold M, does not include the manifold itself. This invokes the need to
distinguish the notions “rest of particles of a system” for which v = 0 from “rest of
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a system of points on a manifold”. Before any further analysis of equation {7.26) .
it is useful to do the above problem of a double pendulum.

Let ¢® = ¢, ¢* = ¢*, ¢®> = ¢®. The parametric form of constraints (7.17) in
this case is . :

ry = Ly (t)(cos pye; + sin pe)
ry = ry + L(t)(cos pre; + sinpaey),

so corresponding to the conditions of equilibrium (7.25) two of which exist (a = 1,2) -
are the equations (7.14) and (7.15) namely

Q1= —(G1+Ga)lysing; =0
Q2 = Galysing; =0,

and hence the positions of equilibrium are ¢; = @3 = 0, 7.

With the values ¢, = const. and ¢, = const. the configuration is constant
and at rest as it follows that ¢, = 0 and ¢2 = 0, too. However, it is evident
that the points do not remain at rest with respect to the expanded space since the
lengths {,(t) and ly(t) are changing. The conditions of rest of points (7.4) contain
the conditions ,

dr, _Or, .,  Ory 4
(7.27) T ol Tl
equations (7.10) and also conditions (7.13). In addition to the conditions (7.25),
as it can be seen, condition (7.26) is needed as it corresponds to equilibrium of the
(n + 1)-dimensional configuration of the system. Namely the same n-dimensional
configurational manifold M, to which one variable coordinate over time ¢° # 0 is
added. Corresponding to this coordinate ¢° is the equation (7.26) as a condition
under which equilibrium can be realized for the system of points on a configurational
rheonomic manifold,. Therefore, if generalized force Qg is nullified by force Rq the
system of forces will remain in equilibrium in which it had been before the action
of forces Qg and Ry during the whole time ¢ > t,.

Concretely for the example of a double pendulum the power of constraint
change is ‘

(7.28) Ry = =@} = (G1 + G2)ly + Gals.

This may be interpreted as if the action of power (G, + Gz)i1 on the first
pendulum and power Gylz on the second pendulum than the system would be
balanced. Otherwise for I} = 0 and I = 0 the force o would be zero. In general
the requirement for velocities of particles to be zero also produce a condition that
the n 4+ 1 coordinates of generalized force are zero. Indeed it follows from the
conditions needed for the rest of all points in system (7.27) that

Or, Or, ﬂ

dq° - '_'3q°’ q° :
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" By substituting into (7.22) we get that during the rest of a system of points
Qotio = —Qada-

In equilibrium, during rest of a body, the effect of work of all generalized
forces, as it can be seen in relation (7.25) is zero, and hence it follows that either
the velocity of a rheonomic coordinate is zero or n + 1 coordinates of generalized
force are zero i.e. ' '

(7.29) Q =0, Ro=0,

which is in agreement with relation (7.26). This shows that the power of rheonomic
constraints in equilibrium of the system is zero which means that constraints in
equilibrium are not changing with time. For such equilibrium example (7.28) goes
together with the conditions {; = 0, I3 = 0 which coincide with general conditions
(7.13).

Ezample. The conditions of rest of a simple pendulum of weight G, whose
point of suspension moves vertically following the law Ay sinwt, w = const. and the
length of pendulum ! is a function of time, I = I(t).

Parametric equations of the constraint are

y' = hosinwt +I(t) cosp

(7.30) y? = I(t) sin p.

The conditions of pendulum resting in equilibrium according to (7.25) and
(7.26) are

(7.31) Q=-Glsing=0 = ¢=0,7
(7.32) Qo = ~Gholw coswt + i cosp) = 0

Hence it follows that the rest of an object M in equilibrium ¢ = 0 is realized
if the pendulum length is changing

(7.33) i(t) = —hg coswt.

Therefore to have the load at rest under the action of the given rheonomic
constraint the pendulum length should be changing at velocity (7.33) or according
to the law I(t) = —hgsinwt + lg.

For equilibrium of a nonholonomic rheonomic system the influences of con-
straints of form (4.7) are considered. The conditions for possible displacement of
constraints (4.7) car be written in the form

(7.34) bui g’ =0
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namely
(7.35) buo dg° + bua dg® =0, (n=1,...,D

If multiplied by indefinite multipliers A, and summed together with (7.24) we
get

k k
(7.36) (Q; +Ro+ Y ,\,,b,,o) 6¢° + (Qa +Y ,\,,b,,a> §g% = 0.
pu=1 p=1

Following Langrange’s method of indefinite multipliers the n + 1 conditions for the
determination of equilibrium of a rheonomic system of points is obtained as follows

. k
(7.37) Qat Y Mbpa=0
pu=1 .
k
(7.38) Qi+ Ro+ D Aubuo =0.
p=1

For condition (7.27) equation (7.38) is reduced, because of (7.31), to
E ,
(7.39) Y Aubuo = 0.
p=1

Therefore it comes out that the conditions in relation (7.37) and by = 0 are
sufficient for equilibrium of a rheonomic system.

8. Invariance of principle of lost forces

D’Alembert’s principle (6.2) is expressed by means of the effect of forces upon
possible displacements in Lagrange’s form (7.2) and is known under the name of
a general “equation” in dynamics or D’Alembert’s principle. The very fact that
D’Alembert’s principle can be formulated in terms of sum of force vectors, makes
it invariant with respect to coordinate transformations because the vector itself
makes a vectorial invariance. Similarly, the scalar product of vectors in expressions
(7.2) and (7.3) make scalar invariances. Because of that, D’Alembert’s principle
(6.2) written in Lagrange’s form (7.2) i.e.

N
(8.1) Y (F,+R, +3,)-6r,=0

v=1

represents a scalar invariance. “Invariance” here means that property of a math-
ematical expression or relation which retains its form during different transforma-
tions and keeps the physical properties of the original form. Therefore, an invariant




8. INVARIANCE OF PRINCIPLE OF LOST FORCES 67

relation (8.1) should produce at least all results obtained from D’Alambert’s princi-
ple (6.2). However, the first look upon relation (8.1) reveals that relations (6.2) and
(8.1) are not equivalent because D’Alembert’s principle in Lagrange’s form (8.1)
incompasses the work of only those components of forces which lie in the same
plane as vectors of possible displacements ér,. The scalar product of vectors of
forces (6.2) by vectors of possible displacements is limiting and means to project
relations (6.2) into the space made by possible displacements ér,, .

Through the scalar product of vectors of forces (6.2) by vectors of possible dis-
placements, those components of forces which are orthogonal on the space TM"*!
are lost. If all forces from (6.2) are decomposed into two components Fr and Ir
which belong to vectorial space TM™*!, and Fy and Jn which are normal to that
space, we can write

(8.2) F,=F,r +P,y,
where F,7 = F,r + R,7, Pun =.'F,,N.+ R.,~ and
(8.3) Y, =3 +JIun
With regard to the fact that ér, L F, 5 and ér, L J,n it follows that
(Funv + Jij br, =0

for each v and therefore their sum is zero, too, same as the scalar product of
orthogonal vectors

N
(8.4) D (Fuw + Jun) - b1, =0.

v=l1

This basically is D’Alembert’s principle in Lagrange’s form which reads: The
work of all lost forces upon possible displacements of retaining constrainis is zero.

Relation (8.1) follows from relation (8.4) and the principle is more often written
in form (8.1) than in form (8.4). Taking into account (8.2) and (8.3) D’Alembert’s
principle (6.2) leads to equations

Fovn +J3on = ~For + Ju7).

Substitution into (8.4) gives that

N N
(8.5) Y (Fur+dir)-br, =0 = > (F,+3,) 61, =0

v=1 v=1

and this relation follows from (8.1) if (8.4) is taken into account. Because of that,

D’Alembert’s principle which speaks of balancing of lost forces is most often reduced -
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to the form (8.1). Hence as a consequence comes the other formulation of the
principle: the work of all forces upon possible displacements, which make retaining
constraints possible, equals zero.

Therefore, it is worth repeating, that the relation (8.1) contains only those
attributes of motion which belong to configurational, that is, to the expanded
configurational space of the a system. That is why it is meaningful to discuss
invariance of the principle within the domain of configurational manifolds namely:

a) “Removal” of constraints by substituting the reaction forces R,, the dis-
placements 6r, may be considered independent so that differential equations of
motion (6.2) and (6.3) respectively will follow from (8.1).

b) In case constraint reactions are given in the form (6.4) equations (6.5) will
follow. For the scalar form of holonomic rheonomic constraints (6.8) relation (8.1)
will have the form

‘ aN a1, ‘
(8.6) Z(Y + Z Pyl 5 migi) 8y' = 0.
i=1 p=1

Hence it is possible for the 3N independent variations §y* to obtain the equa-
tion of system motion (6.7). When the constraints are given in curvilinear coordi-
nates by relations (6.9), the main relation of this principle (8.1) has the form

(8.7) }:(f- +Z,\,,a‘ 9= )w_o

i=1 p=1

which is equivalent to the preceding relation (8.6), since in the rectilinear Cartesian
coordinate system the acceleration coordinates are Dy'/dt = dy'/dt and g;; =
m;&;,- .

Both expressions (8.7) and (8.6) show that all forces in space E3V are con-
served and that they are balanced by means of constraint reactions. In this space,
therefore, forces are not lost and it may be said that there are no lost forces.

¢) When rheonomic constraints are required in parametric form (7.17) and
displacements are possible in relations (7.18) D’Alembert-Lagrange’s principle (8.1)
for the system with rheonomic constraints (7.17) will be

N
v a v
(88 © P (F AR +1)-3 Or 5 4’ +Z.1-'.,+R.,+Jy) ara “ =
v=1 y=1
or shorter
o Or, _ .
(8.9) Y (F +R+1,)- a: ¢=0, (i=0,1,...,n)

y=1




8. INVARIANCE OF PRINCIPLE OF LOST FORCES 69

Taking into account formulas (6.17), (7.21), (7 22) and (7.23) the general equa-
tion (8.8) which reflects D’Alembert’s principle in Lagrange s form is reduced to
the scalar invariance in the form

(8.10) (Q% + Jo + Ro) dg° + (Ja + Qa)bg™ = 0
or

(8.11) (Qi+R)é¢ =0  (i=0,1,...,n)
where |

(8.12) . Qo = Q5 + R,

and J; are the covariant coordinates of inertia force (6.17). Since possible dis-
placements §¢* are independent from relation (8.11) then differential equations of
motion (6.19) and (6.20) follow.

However when passing from D’Alembert’s principle (6.2) to its expression (8.1)
the coordinates of forces that figure in relation (8.4) are lost in the final calculation
and do not cause acceleration of points in space TM™*!. Invariant relations (8.6),
(8.7) and (8.11) sufficiently clearly show the worthiness of D’Alembert’s principle
in Lagrange’s form for the rheonomic system. Relation (8.10) shows that for a
scleronomic system the first addend vanishes because §¢° = 0 so that this relation
as well gets the form of relation (8.11) with only an addend less.

As the set of possible displacements 8¢* also includes real displacements dg’
relation (8.11) for actual displacement will be

(8.13) (Qi + Ji)dg' =0
or
(8.14) a2 4y = Qudd

The left hand side of this expression can still be simplified
(8.15) a;j¢ D = D(%aij¢'¢’) = d(Yai;4°¢),

because the absolute differential of the invariance equals its ordinary differential.

The expression in parenthesis in the preceding relation represents kinetic en-
ergy of a rheonomic system (3.31). Thus relation (8.14) represents the law of change
of energy of a mechanical system which can be written in the form

(8.16) dT = Q; d¢*
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ot
(8.17) dT = (Q}) dg® + Qo dg”
For the system of forces
' ol , ol
(8-18) QQ - -—a—;) QD —1 _-é?)-
with potential
(8'19) H=vn(q0)qli"° 1q")
relation (8.17) is reduced to
on , ; 0
dT—_aq" dq' + Rodg".
9 _ o'm

- the differential expres-

If potential II satisfies the conditions 3G 0¢ ~ dgog

sions on both sides of the equation

om

represent total differentials and the law of energy may be written in the integral
form

(8.20) T+H=]Rodq°+C.

In this way the worthiness of D’Alembert’s principle in Lagrange’s form for a
rheonomic system also confirms the law of energy of rheonomic system motion with
several degrees of freedom.

9. Principle of least constraint

From among all possible motions this actual motion least deviates from the
motion which would be free from any constraint.

According to this principle which is known as Gauss principle of least con-
straint, the constraints which limit motion compel the particles in a system to
deviate from motion which would occur at moment ¢ if the particles were released
from constraints. The measure (quadratic) of this deviation according to Gauss is

1S .
(9.1) Z=§Zm,,(a,, ~F,/m,)

v=1
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and is called constraint. (Zwang), Other notations are ordinary ones: m, — mass
and a, — acceleration of the v-th material particle of the system, F, — resultant
of all forces which act upon the »-th point. That is why this Gauss principle is often
~ called “principle of least constraint” and is formulated as: In a set of all possible
movements Gauss constraint Z has a minimum in actual motion. Relations in
which the first variation of the constraint is zero corresponds to this statement i.e.

(9.2) §2=0

As F, /m, in formula (9.1) also represents acceleration a}, the constraint may
vary with accelerations da,. Because of that with relation (9.2) one should have
in mind that ér, = 0 and év, = 0 for each particle in a system. The constraint
dimension is the same as the dimension of acceleration function (3.72)

- (9.3) [dim Z} = ML2T~4.

Since vectors of acceleration a, and force F, go out of tangential spaces on
configurational manifolds, the invariant analytical expression for the formula of
constraint (9.1) should be looked for in the expanded configurational space E3V.
To this end it can be assumed that the constraints are given in form of (3.53). For
this reason, acceleration vectors a, can be decomposed as in (3.66) or (3.67). In
the same way vectors F,/m, may be represented with m + k components. First
the resultant force F', is decomposed into active forces F, and constraint reactions
R, Le. :

(9.4) F,/m, = (1/m,)(F, +R.)
then analogous to expression (3.67) the following can be written

(9.5) F,/m, = Feo) + Q% 8va
(9.6) R, [my = Re9)

since constraint reactions R, do not have components in tangential space TM™.
By substituting (3.67), (9.5) and (9.6) into (9.1) we get

N
Zmy [(au - Qa)gva + (an - Fox — 7'\’«.,,;)9',5]2.

v=1

(9.7) Z=

D)=

Since g, - 95 = 65 = 0 (@ # x) it follows further that

- 2 1 2
Z my [(aa - Qa)gva] + by E m, [(a,; —-Fr - 'R,,;,)Sﬂ .
v=1 v

=1

98)  Z=

DO e
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Bearing in mind (3.94) and (3.95) the constraints can be written as two
quadratic forms

(99  Z=iaap(a® - Q°)(o” — Q%) + 1 (ay — Fu = Ryu)(ex — Fu — Ry)
where

(9.10) 71 = Jaap(a* - Q*)(a” - Q)

is the constraint on configurational manifold M,,, and

(9.11) 22 = ::,-a’“"‘(a“ —Fu=Ry)(ax — Fu = Rg)

is the constraint in the space E3%V-"1, :
According to principle (9.2) for which §¢® = 0, §¢* = 0 we get

07 .. 07 . _
i (9.12) E};éa + 3a, ba, = 0.

Due to independence of variations 6a* and éa,, the n + k equations follow

07 _

(9.13) Fae =0 a=1,...,n

az
9.14 — =0, p=n+1,...,3N.
(9.14 o

These are differential equations of motion of a holonomic system. Indeed,
partial derivatives of constraint (9.9) on coordinates of acceleration vectors reduce
the equations (9.13) to n covariant differential equations of motion

(9.15) gaiai =Qa
It follows from (9.14) another & equations
(9.16) #*(ax —Fe—Rx) =0

with the help of which it is possible to determine the reactions of smooth holonomic
retaining constraints

(9.17) R = —F* +a*,

as motion ¢® = ¢*(t) can be determined from n equations (9.15).

Ezample. A double pendulum of constant masses m; and m, and of variable
lengths 11 (¢) and I;(2) in a vertical plane z = 0 (example after (7.13)).
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Position vectors of the particles could be written in the form

ry = li(e1 cosp; + ezsingy)
ra =11 + 3(e1 cosp2 + ezsingpy).

Let coordinates be: z! = ¢* = ¢y, 22 = ¢* = 9, 23 = I}, z* = I,. Inertia tensor
(3.62) in this case is

myli+mayl} malyl3 cos(pa—ip1) 0. maly sin(pa—¢1)
. _ ) malilacos(pa~p1) mal3 malasin(a—¢;) 0
gij = . ,
0 mals sin(pa—1) mi+ma ma cos(ps—1)
maly sin(ipg—¢y) 0 m3 cos(pa—;) . ma

Generalized forces are:

Q1 = —gli(m1+m2)sinp;, Q2= —glama sin @,
F3 = (my + ma)glicos gy, Fa = magla cos .

Therefore the double constraint (9.9) is

= (a1 — Q1)(a' —= Q) + (a2 — Q2)(a® - Q%)
+(a® = F3 ~R3az — F3—R3) + (a* = F* <~ R¥)(ay = F4, — Ry).

Differential equations of motion (9.13) or (9.15) are

0z 8z
5‘;;‘01 Q=0 and = =ay-Qy=0

or in a more developed form

DI
(Ifm1 + 12 mg) L+ malils cos(pz — <p1) 2 4 maly sin(pz — (,al) 2
= gll(ml + mg)smgal,

2D DI
malyl cos(pg — <p1) LY mal3 % LA maly sin(pz — 901) !

= glamg sin ps.

Equations (9.14) or (9.17) may be reduced to covariant form
(9.18) Ru=ay,—~Fy (6 =3,4)

or in developed form

R3 = malasin(pz — 601) 2 4+ (my + mz)
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Di
+ m; cos(ipz — 801)Tt2‘ — gli{my + m3) cos 3,

. D¢ Diy Di '
Ra = mq [11 sin(yp2 — ¢1) dfl + cos(pz — 901)-3-{1- + —c-ﬂ—z' — gl cos gog] .

In general the equation (9.18) produces constraint reactions

Dg* Dz#
(9.19) Re =gm—dq7-+ga,,—5-—f,, (gyo=1,... , k;a=1,...,n).

If the constraints are invariable, z° = ¢’ = const., constraint reactions will be
M 3

: D o -
(9.20) Ro = .%a*ft— + gduI‘Zﬁqaqp - Fs.

If all coordinates z° € E3N—" are reduced to functions of rheonomic coorgiémte
g%, i.e. to the constraint 7 = z7(¢®) for which velocities are reduced to £% = -b—q'o

0
. Dz’  9z? D¢° ) q
to o = — .
and acceleration to pr 3P at the relations (9.19) become
_ D¢ dz* D¢°
Re = Joa=—0 + Iouges at Fo.

By composing this with 8z%/8¢° it follows that

_ Dg* D¢ . D¢ .
Ro = goa o T 90, - Qo =gio 5 - Q-

This equation together with n equations (9.15) creates a system of n+ 1 differ-
ential equation of motion of a rheonomic system which are equivalent to the system
of equations (6.18). In this case the constraint (9.9) is reduced to the form (9.13)
and the vectors have one coordinate more i.e.

Z=10;(0 -QY)Nd -Q) (4,j=0,1,...,n).
The principle of least constraint is abplicable to nonholonomic systems as well.
If it is assumed that the system of particles is acted upon by holonomic constraints
and / nonholonomic retaining constraints of the form
(9.21) we(r1, .o s IN, V1, , V) =0 (€=1,...,1<n)

then it is necessary that they satisfy the conditions of acceleration

grad, ¢¢-a, +O(v,r) =0.
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The conditions of variations according to Gauss ér = 0, §v = 0 will be
grad, ¢ -6a, =0
or, with regard to (3.67),
grad,, ¢ - o} ay + grad,, @ - 8,4 6% = 0.
If these relations are summed by index v and not;tions

N N :
by = Zgradw e 9%; bea = Zgradv., P¢ " Bua

v=l v=l]

are introduced, it follows
(9.22) b’e‘éa,,+bga6a°’ =0, (¢=1...,I<na=1,...,n;u=1,... ,k).l

With regard to the fact that the basic relations of principle (9.12) contain the
same variations of acceleration da, and §a“, their dependence is obvious. By the
method of Langrange’s multipliers of constraints A¢ the relations (9.12) and (9.22)
are reduced to ' ' ‘

' |
((f—f; - Z,\fba,)&a“ + (5622; - Z,\Ebg)aa“ =0.

Hence it follows that n + k differential equations of motion of a nonholonomic
system are of the form

07 <
(9.23) | 3os = 2 Aebea
§=1
92 <
# £=1

Then [ nonholonomic constraints (9.21) should be joined to them, namely
ve(qt,... &5 2t ... 25 ¢4, ... g5 &Y, ..., &%) = 0 so that the multipliers of con-
straints A¢ might be determined. However, by determining dependent variations of
acceleration in (9.22), by means of independent variations and by their elimination;
in this way from (6.12) it is possible to avoid unknown multipliers of constraints
A¢. In relations (9.21) it is possible to separate dependent variations of acceleration
da” from the independent ones éa” (y =+ 1,...,n) and it follows that

bey 6a” + bey 607 + bé‘ da, =0,
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where |bg, |} # 0. With this condition it is always possible to determine dependent
variations #a" by means of others and

(9.25) §a" = ¢ 6a7 + b7 §a,

where '
cy = —bey b7, BT = —bgbf", b = By /lben]

when Bg, is a cofactor of element b, of determinant |bey|. If dependent variations
are separated from independent ones in relation (9.12) there will be

92 ., .02 .., 87 . _
Fa7 Sa +aa7 éa +5&;50“—0

or with regard to (9.25)

97 92\ (92 LyenZ g, -
(6a7+c76af)6a +(6a,,+b 9at ) 00 = 0-

Hence follow two systems of differential equations of motion of nonholonomic
systems released from constraint multipliers namely

(9.26) g—cﬁ-+c$%§=0 (r=1l+1,...,n56=1,...,])
(9.27) ggz‘:wf“%:o E=1,....5p=1,...,k),

which together with constraint equations
‘pf(qli"' ’qn;xl,.“ axk;fil,--- nq.n;-'él)-" :z."k) =0.

solve the problem of motion.

Ezample. Motion of a heavy ball of mass m and radius r over an immobile
circular cylinder of radius R = const. Nonholonomic constraints in a cylindric
coordinate system z! = p, ¢ = x, ¢® = ¢ and Euler angles ¢* =, ¢* =9, ¢ =4
are given by the equations [6, p. 98]

(R—7)x + ¥+ rpcosd = 0,
¢ — résin(y — x) — repsin b cos(sp — x) = 0.

To solve the problem it is necessary to determine the generalized forces

.7'-,,20, Qx:'-Q‘p:st:QO:Oa ‘Qa=-myg
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and inertia tensor

m 0 0 0 0 0

0 mp> 0 0 0 0
_Jo 0o m o 0 0
%=Y0 0 0 I Icosé 0
0 0 0 Icosé I 0

0 0 0 0 0 I

where I is the main and central moment of the ball inertia.
The function of constraint

Z = }o' (a1 — F1 = R1)? + 394p(a® — Q%)(a” - QF).
is therefore
2Z = (a1 — R1)? + aza® + (as + mg)(a® + g) + asa* + asa® + aga®.
Differential equation of motion (9.23) are now simply reduced to five equations:

ay =M (R-r)

as =mg = A2

a, = Aircosd — Aarsiné cos(y — x)
ay = AT

ag = =Azrsin(y - x)

or three equations eqﬁivalent to them (9.26)

ay =ay(R—-r)/r
a, = ay cos b — (a¢ + mg)r cos 6 cos(¥ — x)

ag = —(a¢ + mg)rsin(y - x),
where
ax=mR-r)%, a =m
ag = I + cos)

a¢=I-c1—t(<p+¢cost9), ag = I(0 + pysind).

Equation (9.24) which coresponds to coordinate z! = const. is

0z
ﬁ = 9“(a1 - RI) = /\16% + /\zb%,
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hence it follows
Ry =a, =a, = —mRy?
since b} = b3 = 0, @, = a3 = T'ap,14°¢? = T22142¢2 = —mpx2.

Since the function of constraint has a physical dimensions of acceleration func-
tion (3.77), which is indicated by relations (3.72) and (9.3), it is easy to establish
an analytical relation between them. Constraint (9.8) may be written in a more
developed form

Z = }(aapa®a® + 57 a;0;) + a0pa® QP + 7 a; X; + @,

where ® = 6,5Q%QP + 57 X; X;, X; = Fj + R;.
If acceleration function (3.77) and constraint functlon (9.28) are compared,
then it is obvious that the relation

(929) Z = S—aaQa+aiXi+¢(q;z)éii)'

can be written.

Ensuing from (9 13) and (9.14) are the dxﬂ'erentlal equations for the motion of
a holonomic system in the form

as
(9.30) Fae = Qa
and
(9.31) aaf FE 4R
m

Similarly for the nonholonomic.system, equations (9.26) and (9.27) are reduced

to
as
(9-32) Far = Gr—e (30,. Qu)
and
as . uf 0S
(9.33) e =F +R - b“(-a—a-;—Q,,)

Since we have that

8S _ 85 8a* _ ., 8S _ 8S

857 ~ 8a= 9§ _ P Ba> 8P
relations (9.30) may be reduced to equations

o5

FE =Qa
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and relations (9.32) to equations

as as
aqa Qa (aq“ - Q#)

which are known as Appell’s or Gibbs’ equations of motion.

10. Principle of least action

“Action” is the central concept in integral variational principles of mechanics,
to which the principle of least action also belongs. Yet, some authors do not use
these terms still. Because of this and because it is characteristic of rheonomic
systems, it is necessary to clarify this important concept of analytical mechanics.
If one starts with the introduction of the concept “action”* it is useful to quote
the following sentences: “When a body moves from one position to-another, some
kind of action is required. And this action is dependent on both the velocity of
the body and on the path through which the body passes, but not on either one
separately.” “The quantity of motion is directly proportional to the velocity and
the distance covered.” “The least quantity of action gives, at the same time, the
shortest path and shortest time.” “The quantity of action™ is the product of the
body’s mass, its velocity and the total distance covered by the body. When the
body moves from one position to another the action is directly proportional to the
mass, velocity and total distance covered.”

The quantity of action of the forces™* that are present on point M can be
determined in the following way: “Each force V should be multiplied by the dif-
ferential of the line MC = v, oriented in the direction that force is applied, and
an integral of the product V dv should be formed and then the sum of all these
integrals

Vdo+V'dv' +V"dv" + ...

gives the quantity of action of all forces on point M.

From Euler a more general statement can be found about the functional [ & dt:
“As the expression appears in what Maupertuis calls the action of the body during

* As far as I know, the concept of action was introduced in physics by Pierre
Louis Moreau de Maupertuis in his work “Accord de différentes lois de la Nature
qui avaient jusqu’ici paru incompatibles” about which he reported to the Academy
of Sciences in Paris April 15th, 1744 and later published in “Histoire de I’Académie
des Sciences de Paris” 1744.

** Maupertuis, P., Les lois de mouvement et du repos dedultes d’un Principe
Metaphysique; “Histoire de I’A cadémie Royale des Sciences et Belles Lettres,” 1745,
Berlin.

*** Leonhard Euler, “Réflexions sur quelques lois générales de la nature qui
s’observent dans les effects des forces quelconques,” “Histoire de I’Académie Royale
des Sciences et Belles Lettrzs,” année 1748, Berlin. ‘
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an infinitely short time, so it can be rightfully said that ® denotes instantaneous
actions, if time is not considered, in which case ® corresponds to what is called ‘the
live force’” (‘the live force’ = double the kinetic energy — Leibnitz’s formulation).
D’Alembert wrote in his “Cosmology” “Mr Wolf (“Memoire de St. Petersburg”)
got an idea to multiply ‘the raw force’ and time and called that product action...”
Later on, that concept evolved into the integral f 2E). dt where E; is the kinetic
energy of the system. This integral will be marked by the letter J. i.e.

(10.1) J= / 2E; dt.

It is easiest to see from this that the physical dimension of action is
(10.2) [dimJ] = ML2T™?

which is equal to the dimension of the moment of momentum. The quantity of
action between two moments close in time ¢; and t; will be also designated by the
letter

ta
(10.3) = [ 2E.dt.

t

In general, this integral cannot be calculated because the kinetic energy of the
system, as seen from (3.31) or (3.34) is a function of a more compound structure,
so the quantity of action represents a function in the form

v 2
(10.4) J =/1 flg,d)dt.  (f = 2B, = 2T).

If one keeps in mind that doubled kinetic energy of the system can be written,
because of (3.26), in the form

(10.5) 2E; = pid’

and so the quantity of action can be written in the following way

2 2
(10.6) J= / D; dq" = / a,-,-q"d’ dt, (i,j =0,1,...,n)
1 1

where now it is obvious that the bounds 1 and 2 relate to the configuration of
system M™+!. In the case of constant kinetic energy Ep = const. the quantity of
action is proportional to the interval of time f; — t;. For equal intervals of time,
in that case, action is constant, and for t; > t; is not negative, because kinetic
energy is greater than zero in each instant of time. It can be seen from relations
(8.6) and (8.20) that kinetic energy of systems will always be constant if no forces
are applied to the system of points. Then the kinetic energy of the system is at
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the same time the total mechanical system energy E, so it makes sense to consider
function (10.6) separately in the absence of the potential of other forces. Then

2
(10.7) J= / aapd’ dg*
1

the constraints are absent, and the system is free, or, if we speak of smooth holo-
nomic scleronomic retaining constraints, then the functional of action on a smooth
multidimensional manifold is in question. The principle of least action, from the
historical point of view, just referred to in function (10.7) and it was established
that the action (10.7) has stationary value during real motion. It means that the -
first variation of function (10.7) equals zero, i.e.

g2
(10.8) 6J =6 / anpd® dg® =
N1
(10.9) 8¢7 =0, 6¢5 =0 and 6&dg” =déqg”

Relation (10.8) independent of the others, will not be changed if multiplied by any
positive natural number; it is of no importance whether

t3
5/ 2E, dt = 5 2Tdt J/aapquq
131

or

6 Tdt 6/ —aa,gq dg* (e,8=1,2,... ,n).

That is why the action (10.3) can be modified by 3/2 and adopt for action the
function

1 2 . . 1 2 . 2
(10.10) J=—/ aijd d =—/ pjdq]=/ T dt
2 1 2 1 1

where, as it is written, T is kinetic energy E;. Regarding that here the main atten-
tion is paid to systems with rheonomic constraint then indices i,5, £ = 0,1,2,....n.
Even without variational calculus it can be understood that function (10.10) can
have a minimum but not a maximum during real motion since J > 0 and is equal
to zero only when Ej = 0, which means it is in a state of rest for ¢ = 0. Really,
the differential equations of motion (6.19) and (6.20) in the absence of forces are
reduced to

Dqﬁ - Dpo _
(10.11) Bap =y =0 = 7 =0.

The first variation of functional (10.10) for conditions (10.9) is

2
67=1 / 69 dg® + pa 6dg°,
1
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or

6] = % f (aa"p ¢ dg®8q" — 2aqp¢° déq")

aq"
2
8aqp . , Oasp . N
= /1 ( aq.,” ¢* dg®6¢" - aq"f ¢ dg76¢™ — aap dg” g )

Since the second sum can be transformed as

fa da a .4 -
aﬂqﬁ (a?_}_ aa;pa)qﬂq'ygqadt

it follows that

2
(10.12) §J = —/ aap 6q°’clt / Dp° dq®dt

1 dt
because

Do _, D¥
a - *PTa

considering that the inertial tensor is covariantly constant for constant masses of
particles, Dasg = 0. But, as the differential equations (10.11) are valid for the
observed motion of the system, it is obvious that the first variation of the function
(10.10) equals zero, i.e.

(10.13) §J =0.

The conclusion that the extremum of the function is minimum is proved by
Legendre’s rule, because
8Er
9g=d¢p ~
is a covariant-constant positively definite tensor.

It is not easy to accept the concept of “action” without connecting them with
the concept of forces which cause a change of state of the motion or rest of the
body. For a free body other principles establish uniform motion along the shortest
line, but for restricted bodies the only constraints are sources of forces. That is why
the question is imposed, what is the importance of this principle with the action of
rheonomic constraints that both cause and restrict motion by a force from a change
of constraints. Before giving a general answer, it will be instructive to examine the
example of action of a rheonomic constraint, let us assume (1.17) i.e.

L8300 =0, P =r(1).

For this example, in accordance with (10.12) and (10.13) we have

2
(10.14) / mi 6y¥dt =0,  (k=1,2,3)
1
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but the variations must satisfy the constraints, i.e..
_Of o x O o
(10.15) | §f = B ok + 3y06y =0.
Relation (10.15) can be written without changing the essence, in the form

/( g;,‘ay +Aaf6y)dt=0,

where ) is the indefinite multiplier of constraint. Further,
2 af of 4
(10.16) /1 [(-—myk+z\a k)&y +/\a 5 ]dt:O.

Next, the necessary conditions for the minimum of functional (10.14) are

(10.17) mijg = z\-a%f; and
(10.18) o=,\;;3—;3 = % 0, AAO0.

However, if one introduces the curvilinear coordinate system it is possible to
write the same rheonomic constraint in the form (1.31), i.e.

af63 af60

f:za—ro(t)zo = 323 570

relation (10.16) is reduced to

[t Di' | Of .
/1 ( gkl‘a't"'i'/\a k)|z==r(z)6z dt = 0.

From there result three equations

Ds! D!
(10.19) = =0, 921—3% =0 (i=1,23)
D&l
(10.20) _ gu— =X

which are equivalent to equations (10.17)) and (10.18).

For generalized coordinates ¢' it is best to choose the just mentioned curvi-
linear coordinates z* and z? and ¢° = 7(¢). Thus, the given example shows that
the indefinite function A(8f/0z°%) = Ry corresponds to the rheonomic constraint.
Further, while looking for extremum of function (10.6) the “rheonomic coordinate”
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q° = 7(t) should be considered a constraint, to which corresponds some “reaction
of theonomic constraint” Ro. Then the first variation of action (10.6) equals

’ 2
(10.21) 67 = / (6T +Ro 6°) dt
1
or
*( Dpi
(10.22) / (——F 8¢ +Ro 6q°) dt=0, (i=0,1,...,n).
1 _

From here the system of differential equations of motion follows

Dpa_ Dpy
o =0 and % = Ry.

(10.23)

Principle of stationary action. The principle of least action can be gen-
eralized to the motion of a system in the field of potential forces (8.18) by the

assertion: Action J = fszdt reaches a minimum when the function

2
(10.24) / I dt,
1

which can be called the action of potential forces, reaches a stationary value. For
the minimum action of a rheonomic system relation (10.21) is needed, and for a
stationary value of function (10.24) the following function is needed

200 -
.25)° — 8¢* dt = 0.
(10.25) T q 0

Relations (10.21) and (10.25) according to statement of the principle should

be equated, and so
2 2
Dp;i . . om .
Lt L¥ P = — 6q* dt.
/1' (Ro 8q 5 éq ) dt /1 aF 6q* dt
This relation is further reduced to
2
/ [Roéq® +6(T-M)}dt=0
1
or more concisely

2
(10.26) / (6L +Roé¢")dt =0
1
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where I = T —1I is kinetic potential. Therefore we have arrived at the principle of
stationary action which maintains: the action
13

(10.27) J= Ldt

ty
under the conditions (10.9) on a real path is stationary. This also proves the validity
of this principle for rheonomic systems. Moreover, it is possible to reduce (10.26)
to the form

1]

(10.28) §Cdt =0

ty

where it is obvious only the kinétic potential £ is modified. Introducing the function
(10.29) P=- / Rodg’,  Ro=R(¢)

under the name rheonomic potential, the potential of forces can be extended to the
sum of the natural II and rheonomic potential (10.29), i.e.

(10.30) V=0+P=V(%d,....q").

Therefore, the action for the rheonomic system should be

ty
(10.31) J = Ldt,

ty

which, concerning the form, corresponds to the classic function (10.27) but under
the condition the function

(10.32) L=T-V=T-I-P=L[-P

is introduced for the Lagrangian.

By substituting £ into (10.28) we get, after varying, (10.26), which is the
condition for stationary action, according to Hamilton. Concerning the operation
of varying there is no distinction between (10.26) and (10.28). Variation of kinetic
potential is '

oL ac
§L = 3'6q+6'6
6[:6 +a£6°' aE&q-{-%—&o

=50 t o 50 3q°

That is why, under conditions (10.9), given previously, i.e. under conditions
5¢'(t1) = 0, 6¢*(t2) = 0, relation (10.28) is reduced to

oc oc
/ (aq‘ déqt +6 t6th) =0,
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that is, after partial integration of the first sum

7L dac\
[, (G- i) o

Next, n + 1 differential equations of motion in Lagrange’s form follow

d 9L oL .
(10.33) :&"a—‘;;—é-q-; =0, (i=0,1,...,n)

where the function £ is determined by formula (10.23). Based on (10.29) and
(10.32) from (10.33) it follows

d L 8L
(10.34) 553_45—5;5'—'0’ (e=1,...,n)
and
(10.35) d 8L 0L _

&

These differential equations of motion are equivalent to the covariant equations
(6.19) and (6.20) for the potential of forces of the system

on av
B - o - O

and
aq° d¢° 0¢°

The system of differential equations (10.34) and (10.35) contain n + 1 un-
knowns: n coordinates ¢ depending on time and the generalized “reaction of rheo-
nomic constraints” Ro. From the differential equations (10.34) for known force
potentials, it is possible to determine, independently of equation (10.35), n gener-
alized coordinates depending on time and the initial conditions. By substituting
them into the left-hand side of equation (10.35) we get Rg = Rg(t), also as a func-
tion of time or a function of rheonomic coordinate ¢°, where both are in accordance
with each other. In case ¢° = ¢ the magnitude Rg has the dimensions of power

[dim Rg) = ML2T 3

which can be seen from (10.35). In that case all the derivatives in equation (10.35)
should be calculated with ¢° and ¢° and after differentiation substitute ¢° =1, i.e.

d 0T 4L
- o= (555~ 3) o
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Law of energy. The law of energy (8.20) can be obtained by integration
of dlﬁ'erentla.l equations (10.33). Really, if we compose equations (10.33) with the
vector d¢' =¢* dt we get

ot ) 8¢ ™ T aF ™

that is, under the condition that

is the total differential of kinetic potential L of the mechanical system, we get
ac _
(Zi-c)=o

oL

a—d;.- * — L = ¢ = const.

so then

(10.37)

This integral is equivalent to the law of energy (8.20) under the condition that
one knows either the function Ry or the rheonomic potential P(¢°) which depends
on the rheonomic coordinate ¢°. This becomes clearer if we take into consideration
the potential (10.29) because integral (8.20) in that case can be written

(10.38) T+0+P=C,

and that is also the contents of integral (10.37) under the quoted conditions. That
is easy to prove. Regarding (10 32) and (3.31) it follows that 0L/0¢" = aijd’
so we obtain (0.L/d¢’ )q = a;;¢'¢ = 2T. By returning the obtained values for
the partial derivatives in (10.37) and taking into consideration definition (10.32)
integral (10.38) is obtained.

Similar to integral (10.37) from the n dlfferentlal equations of motion (10.30)
as is known, Jacobi’s integral .

(10.39) F=¢* - L=C}

is obtained under the condition that L is not explicitly dependent on time. It is
instructive to check that because of the subsequent proofs. If equations (10.30) are
composed with vector dg* = ¢~ dt it follows

d oL\ ., oL , . _
(i )i gy o =0
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oL . oL oL
dl =2g* ) = ( ZZds® + 22 de® | = 0.
(aq'«q ) (aq'ad" +aq°dq) 0

which gives

If the pa,rtié.l derivative —(0L/0t)dt is added to both sides, considering that
the Lagrangian L in general is dependent on n coordinates of position ¢, velocity
¢* and time ¢, then the previous expression is reduced to

oL ., _ 8L
(at-2) =5

or

(10.40) a%'% L =— / %tfi dt.

Under the condition that 0L/t = 0 when the rheonomic coordinate is not
introduced and equation (10.35) is not used, we get integral (10.39). However, it
should be noted that laws (10.40) and (8.20) are quite different as well as integrals
(10.39) and (10.37). From (10.37) follows the law of conservation of mechanical
energy (10.38). Integral (10.39) is reduced to

(1041) To—-To+1I=Ch.
In this integral total kinetic energy is not contained
(10.42) T = 1aapd*¢” + @0ad®™ + 3000 =T +T1 +To,

where

Ih= %aaﬂ dadﬁ)
Tl = aOadar
To = %aoo.

This originates from (0L/0¢%)¢* # 2T = (8L/d¢' )¢, and that means the
partial derivatives of kinetic energy 87/8¢° and 8T'/8¢° are not contained in equa-
tions (10.34). The essential and formal distinction between equations (10.33) and
(10.34) as well as between their relative integrals (10.38) and (10.41) can be clearly
seen from the schematic survey (see Schema 1).

Jacobi’s integral (10.41) is better known as the “generalized integral of energy”.
This term is abandoned here because: 1. it does not contain the total mechanical
energy of the system, 2. integral (10.38) is more general, and 3. other integrals of
the form of (10.41) can exist, so as such it is a partial or cocyclic integral of energy.
Integral (10.41) comes from integrating a reduced number of differential equations
of motion. We get it from the system of differential equations of motion (10.33) in
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k
d
[ E(m,,v,,) =F, + E Augrad, fu,
. u=1

f“(l‘l,...,l‘y,t)zo
dof 9T  _ov
#op " oF = or
dor _or _on
o o = o

on or

= = - | di, =

n-n+i= [(5-5)a
“energy integral” T, —To+ II = ¢ = const.

doL oL _

T \@oF “oF L &

b

T= %aapq'aq.ﬂ +a°0q.aq.0 <+ %aooq‘oq'o = %auq.'qJ - ————— |
N e et o’ \.——?.,—/
T2 4 o

the law of energy

"‘3T+H=/R0(q°)dq° = T+'H=/Rodt+C
J
L————L:3'T2+T1+T0+H+P=h=const.

P — potential of rheonomic constraints

Ro(t) — power of change of the rheonomic constraints

the case that £ is not dependent on time or on the rheonomic coordinate that is a
linear function of time. In that case Ry = 0, so from equation (10.35) follows the
first cyclic integral L/8¢° = const., and from the other n differential equations
(10.34) integral (10.41). It is not difficult to prove. If we assume, for better clarity,
that the system is scleronomic and that the Lagrangian L is not dependent on time
nor on any cyclic coordinate which is a linear function of time, for example ¢!, then
Lagrangian L can be decomposed as follows

(10.43)
L= L(qz)- .. an;q'lsq.~y"' ,q'n) = %allq'lq'l + a“‘q'lq‘ll
+ %a;wq.‘uq'y - H(qzy_qsl” . ,qn) = Tl +T12 +T> -1
where o
(10.44) Ty = %auq'lq'l, T2 = alpq'lq'", = %auuq.“q.y-

In that case the system of n independent differential equations of motion is
separated into one cyclic integral

a . .
(—9? = a11¢* + a144* = p1 = C; = const.
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and n — 1 differential equations of motion

d 0L 0L
(10.45) H5F " 5 =

By multiplying each of these equations by the corresponding differential dg* =
¢* dt and summing by index p we get, under the quoted conditions,

9L ., .\ _
d(aq,“q —L) =0.

Thus, from n — 1 differential equations of motion, it follows that

L
(10.46) %:;q'" =T, - Ty + (g% ... ,¢") = C, = const.

The related integral
(10.47) Ty — T + 0(d*, ... L L ,q") = Cr = const.

will correspond to any cyclic coordinate ¢* which is a linear function of time.-

Coupled differential equations. For the set of generalized coordinates
q',...,q" and generalized momenta p,,...,p, the broad term “canonical vari-
ables” is used and related to them in well developed analytical mechanics of sys-
tems. A clearer and more adequate term for these coordinates would be conjugate
coordinates. Namely, in the third chapter ((3.17)—(3.30)) generalized velocities and
generalized momenta were introduced and it was concluded that among them there
exists a connection of the form p; = a;;¢'

dgf

8T _ iy
o =@ P

(10.48)
This differential conjugation of generalized coordinates and generalized momenta
originates from accepted definitions of the velocity vector v = dr/dt and the mo-
mentum vector p = mv. Therefore, the relations (10.48) a priori exist in kinetics.
They can be determined one by the other only if the other independent relations,
based on the laws of motion or on the principles of mechanics, are not joined to
those relations. If we take, also defined, the concept of kinetic energy (3.34), it is
seen that the relations (10.48) can be enlarged as

. oT
—_— = aqdtp, =
(10.49) =d'pi =5,
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but new quality is not obtained. This is not realized even if we add an arbitrary
function of coordinates and time to the kinetic energy. Let the potential energy be
V=V(t4¢,¢,...,¢"). Then it is again

d¢ _ i _ 0T _0OE
(10.50) = P= =

where E, also a defined concept, is total mechanical energy of a system with po-
tential :

(10.51) E=T+0+P(" = %aijpipj + 1 + P(¢°).

The law of motion of potential system is reflected by the differential equations
of motion (10.33) in which kinetic potential £ is determined, as can be seen from
(10.32), by expression
(10.52) L=ta;d¢d -V, V=IO+P

Corresponding partial derivatives in agreement with relation (10.50) are

oL ;
(10.53) P aij¢’ = pi
ac _ 1 dajy, ok ﬂ_laaik il _km ov
(10.54) 3¢ ~ 2 9¢ q ¢ ~ 2 8¢ a’'pia”" pm — aqt
1 da'™ ov._ 9T av oF

"3 M i T o of T ag

Substitution (10.35) and (10.54) into (10.33) gives the differential equations of
system motion in the form

dp __OE

(10.55) A

While deriving these equations, coupling was used between the coordinates and
momenta (10.50), so together they make a system of 2n+2 independent conjugated
(canonical) differential equations of motion of first order

dg’ _0F
(10.56) i = o

dp; _ OF
(10.57) ik —5qi .

where E, the energy of the contemplated system, is given in the form of (10.51).
If we introduce the Hamiltonian by the modified definition

(10.58) H=1dpp; + I
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the system of differential equations (10.56) and (10.57) can be written in a more
developed form

dg® _9H d® 8H
(10.562) dt = dpa’ dt —  dpo
’ dpa _ 0H dpa _ OH

(10.57b) praliag praba v + R

With the help of the differential of generalized coordinates dg’, generalized
momenta p;, and total mechanical energy E, the function of action

J= hLZdt:/h(T-V)dt=/h[ZT—(T+V)]dt

1 1 31

can be easily transformed into the form
1y )
(10.59) J= / (p: dg' — E db).
t
Therefore, relation (10.28) also shows that the first variation of function

ts )
(10.60) § [ (pidg' —Edt)=0
4

is equal to zero for real motion, i.e. motion described by differential equations
(10.56) and (10.57). Really, since energy E is a function of coordinates ¢' and
momenta p;, it follows that

2
6J=/ [6p,- d¢* + pibdg’ — (g"f& +Q—E—6p,) dt].
1

By partial integration, under the conditions é¢i = 8¢5 = 0, we get

2 2
/ pi bdg* = ] pi déq* = —6q¢* dp;.
1 1

Substitution into the previous integral gives

(10.61) 87 = /[(d'—g——dt)ép, (dp, gﬁf )&1]

For the motion, whose equations are (10.56) and (10.57) it follows that 6J = 0.
If deviations 8¢° = £* and ép; = 7; exist between trajectories, it is possible to write
variation (10.61) in the form

2
(10.62) 6J=/ (nidg’ — € dp; —H)dt, (i=0,1,...,n)
1
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where

0FE ; O0E
(10.83) .  H=gatiagem =H(g,p,€,n)
is the variation of mechanical energy E. The second variation of action, therefore,
is

2
#i= [ [&ndq‘ — duibq — o' dp; + dE'opy
1

OH , M. BH . OH
_(ﬁaq +gptmi+ et + g 51;) dt],

or when it is put into the order of similar variations

2 . dH . OM
27 i_ . - .
827 = /1 {(dq " dt) on: + (de B dt) op;

M w\oe — (dns+ T at) ogf
_(dp.-+ —a-E-;dt) 6¢* ~ (dr;, + 37 dt) 5 }

Under the condition that the perturbed motion slightly deviates from the real
one, than the second variation of action is equal to zero. The expressions in paren-
thesis next to §7; and 6¢* equal zero because of the equations of motion (10.56) and
(10.57), and the expressions in parenthesis next to §¢' and ép; become invalid be-
cause of the differential equations of perturbation. Inversely from the requirement
that function (10.62) has extremum we get 4n + 4 differential equations of motion
and differential equations of perturbation and in coupled form

s _OH . O
9—57:;, Pi—-—'a—éz
T L . __OH
6—5};‘:: n = aq,

where H is the coupled function (10.63).



EPILOGUE

Initial detailed explanation of the introduction of theonomic coordinates had as
an aim to make an easier and clearer understanding of the meaning of the function
¢® = 7(t). Asit was shown, this coordinate is introduced by means of the rheonomic
constraints, so as it is, it represents constraint f = ¢° — 7(¢), to which, in equations
of motion, correspond the force Ry. In all variational relations this magnitude is
chosen in such a way to make all variations of coordinates independent. In the
absence of rheonomic constraints, the “rheonomic coordinate” also disappears and
all phrases, formulas, equations, and principles retain invariant form and physical
meaning. Time ¢ in this monograph retains the status of independent basic concept
of Newton’s mechanics. That is why it is possible in this approach that dependence
of dynamic and kinetic magnitudes on both time and rheonomic coordinate appear,
the dependence of generalized forces Q = Q(¢,¢°,¢%,...,q",¢°%...,¢") for exam-
ple. This comes from the nature of the forces and from calculating generalized
forces by means of parametric equations of rheonomic constraints. The rheonomic
coordinate also appears as an argument of various functions through transforma-
tion of coordinates and transformation of constraints in parametric form. Even if
we take time as the rheonomic coordinate, that corodinate should be distinguished
from the time which figures in equations independently from rheonomic constraints.
When choosing rheonomic constraint ¢® one must consider its dimension, because
the dimension of function Ry is the reflection of the dimension of the rheonomic
coordinate.

If time is chosen for the rheonomic coordinate ¢°, ¢° = t, where [dim¢®] = T
then function Rq has dimension of power, [dim Rg] = MLT~3. When the rheonomic
coordinate is chosen with the dimension of length, then the function Rg has the
dimension of force, [dim ¢°] = L, and [dim Ro] = MLT-2. In the case that an angle
is chosen for the rheonomic coordinate, function Ry has the dimension of moment
of force, ML2T~2. :

Therefore, the rheapomic coordinate is chosen according to the condition of
rheonomic constraints and the wish to describe an attribute of the change of con-
straints. It can also be understood if all rheonomic holonomic constraints were
substituted by the one constraint ¢° — 7(t) = 0, to which corresponds the general-
ized force Rg of constraint change.
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