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Abstract: The results of the research on acceleration of the second order (a joke or a 

twitch) contained in two papers [3,4], published, in Serbian, half a century ago, are still 
presented, which are still current. The first paper is entitled: 

 

"Acceleration of the second order (jerk or jark) of a material point that moves at a 

constant sectoral velocity." 
 

Another paper is titled: 
 

''Acceleration of the second order (twitch) when the body rotates around a fixed poin''. 
  

The first part of this second work, shown using the matrix notation for description of 
the kinematics of motion, and authored by my brilliant Professor dr. Ing. Dipl. Math. Danilo 
Rašković (1910-1985). He was one of the head of the Department of Mechanics at 
Mathematical Institute of the Serbian academy of sciences and arts, and author of 150.000 
examples of different books in area of theoretical and applied mechanics, published in Serbian 
language, and used by numerous generations of students of technical sciences. The second 
part of this work is shown by the vector notation and represents the author's scientific results.  
And the entire work belongs to the classical field of the kinematics of the body rotation 
around a fixed point. 

This paper is expanded and amended work, first published in the Serbian language as: 
Rašković P. Danilo and Stevanović R. Katica (later merried family name Hedrih), Ubrzanje 

drugog reda (trzaj ili džerk) krutog tela pri obrtanju oko nepomične tačke (Acceleration of 

second order of a rigid body rotates around fixed point), Zbornik radova Tehničkog fakulteta 

Univerziteta u Nišu, 1966/1967. Also, it is very actual in present days. 
Acceleration of the second order – jerk (Ruch, Rucken,  Jerk, pulse)(Word forms: jerks, 

jerking, jerked) plays an increasing role in various domains of mechanics and physics. The 
aim of this paper is to determine this acceleration of the second order, or shorter jerk, when a 
rigid body rotates around a fixed point.  The corresponding relations for thee instantaneous 
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angular velocities, angular accelerations, velocities, acceleration of the second order and jerk 
are expressed in matrix form and referred to the fixed point and instantaneous axes. The 
Rivals  theorem is enlarged on the jerk also, and the natural components of the acceleration of 
the second order - jerk vector of a rigid body rotation around a fixed point are given. The case 
of the regular progressive precession is treated, also. 

In concluding remarks, the contents of the original and new results, will be displayed on 
the topic of the dynamics of rotating the rigid body around a fixed point using the vectors of 
mass moments that are related to the pole and axis, introduced by the author in 1992. From 
this area, in special cases of rigid body dynamics when rotating around a fixed point, the most 
famous works and solutions are: Euler's solution, Lagrange's solution and the solution of Sofia 
Kovaljevskya. The general solution of the dynamics of the rigid body differential equations 
when rotates around a fixed point has not been found to this date.  

About twenty years ago, the lecturer attended the Conference in Donetsk, organized by the 
Institute of Mechanics NANU from Donetsk, one Round Table and a discussion on one book 
and one paper, by two independent researchers, who individually claimed to have found a 
general solution a system of differential equations of the dynamics of a rigid body around a 
fixed point. It was a real "scientific octave" between the authors and the opponent’s important 
world scientist. The paper will make an attempt to display this discussion in Appendix of this 
paper.. 

 

Key words: Acceleration of the second order, jerk, rigid body that rotates around a fixed 
point, instantaneous  axis, angular velocity, matrix method, vector method, mass moment 
vectors. 
 

 

1. Introduction  

If one point A  of the rigid body, see Figure 1. and Reference [1], whose representative is 
a rigid triangle ABC , is immobile, then the other two points B  and  C  are moving along 
spherical surfaces, with centres in a fixed point A . If we assume that the radii of these 
spherical surfaces are equal, then both points B  and  C   move along one spherical surface - 
one sphere. If through the points A , B  and C  we set one straight plane, which is a fixation at 
a point A , then the points B  and C  are also located on the main bigger circle of the sphere, 
upon which they move. Then, the arch BC

∧  repels the rod, which means that the spherical 

movement of the rod BC  around the fixed point A  is realized. While the plane of the plane 
movement of the rigid body was transmitting the motion of one plane from the intersection 
with the rigid body, in this plane of the motion, here in the spherical motion of the rigid body, 
we observed the movement of the spherical triangle figure, the cross-section of the rigid body 
with a immobile spherical surface, on that surface. From this analogy we conclude, that the 
spherical motion of a rigid body around a fixed point has three degrees of freedom of 
movement, as well as a flat planar motion of a rigid body (see Reference [1] and Figure 1.). 



Let us mention a very well-known theorem defined by French scientist d’Alambert-s 
(Jean Le Rond d’Alambert, 1717-1783, “Reserches sur la prècession des equinoxes”, Paris, 
1749)  in following formulation: 
“A rigid body, whose one point is immobile, can be sung from one position to the other 

nearby position by rotating around the axis passing through the fixed point”. 

 

 
 
 
Figure 1.  Rigid body rotation around a fixed point - Spherical motion of a rigid body arounfd 
fixed point (Figure from Reference [1])  
 
 

If the rotation of a rigid body is made around an axis passing through a fixed point, for 
an infinite small angle, the axis is called the momentary-instantaneous - the rotation axis. The 
role that, in the plane motion, had the current instantaneous pole of rotation, in analogy, in 
spherical motion, has the instantaneous axis of rotation rigid body around fixed point. All of 
its points at that moment have no velocity. 

Position of a free rigid body is defined with the basic rigid triangle, i.e. with 9 
coordinates, so that it is rigid. It requires 6 coordinates, which are independent because there 
are three connections from the conditions of stiffness of the rigid body triangle. If the rigid 
body is fixed at one point, it has three links-constraints that prevent three translations, and the 
rigid body in the rotation around the fixed point has three degrees of freedom of movement. 

Thus, even the spherical movement of a rigid body has a three degrees of freedom of 
movement. The plane motion of a rigid body is represented by the coplanar motion of a rigid 
triangle and the analogous, spherical motion of a rigid body is represented by the motion of a 
rigid spherical triangle over the sphere. This means that the plane movement of the triangle 
can be considered a special case of spherical motion, when the radius of the sphere is 
infinitely large. The angular velocity of a rigid body in spherical motion is a sliding vector 
that falls in the direction of the current momentary axis of rotation, as well as in plane motion. 
Now, by analogy, the velocity v

r
 of each point B  of the rigid body, which rotates around a 

fixed point A , is determined by Euler's equation in the form: 

[ ]ABv ,ω
rr

=                                            (1) 

 



 
2. Matrix relations of the kinematics of the rotation of the rigid body around a fixed 

point 
 

In the fixed point O  of a rigid body, we will adopt the coordinate start of a fixed 
coordinate system 321 xxOx  (Figure 2). When rotating, this triad-fixed coordinate system, will 

move to the position 321 yyOy . The movements of the moving coordinate system are 

determined in the directions of the axes of the fixed coordinate system of the nine angles, that 
is, with the direction of the cosine of the directions. This is the matrix of coordinates of the 
unit vectors of the matrix of rows ( ) ( )

rrrr
j γβα=
r

, 3,2,1=r  , the moving coordinate 
system compared to the base coordinate system. This matrix, as it is known, is orthogonal, and 
will be: 
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Figure 2. Euler’s angles – generalized independent angle coordinates of three degrees of 
freedom of a rigid body rotating around a fixed point (Figure from paper [4]) 
 
 

Since, the unit vectors ( ) ( )
rrrr

j γβα=
r

, 3,2,1=r  are orthogonal of the respective 
coordinate axes, and three basic unit vectors of the orientation of the axes of coordinate 
system are orthogonal, there are six conditions between the matrix A  elements: 
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As far as the rigid body is concerned, it is free to have six degrees of freedom of 
movement, but as it is a rotation around a fixed point in which the body is fixed at fixed point, 
it follows that three constraints are imposed on him, that is, his number of degrees of freedom 
has been reduced movement to three degrees of freedoms. It follows because the binding to a 
fixed point eliminates three translations into three orthogonal directions, and that the body 
now has three degrees of freedom of movement, or three component rotations. 



All this indicates that the rotation of a rigid body around a fixed point for which it has 
three degrees of freedom of movement expressed over three angles, so that three Euler angles 
can be taken instead of the preceding angles: the angle of precession ψ , the angle of nutrition 
ϑ  and the angle of its own rotation ϕ . Using three consecutive successive rotations, by three 

Euler’s angles, the coordinate system 321 xxOx  can be moved to a moving coordinate system 

321 yyOy : 

1 * First rotation around the coordinate axis 3Ox  for the precession angle ψ , which is 

determined by the matrix 3A , whose rows- elements are the direction cosines of the unit 

vectors ( )e
r

, ( )c
r

 and ( )k
r

 . The 1Ox  axis rotates and this axis go in the axis with the unit vector 

( )e
r

, which we call the node axis, while the axis 2Ox  has passed into the axis with the unit 

orientation vector ( )c
r

; 
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2 * The rotation then proceeds around a node axis, oriented by a unit vector ( )e
r

, for 

the angle of nutrition ϑ , and this rotation is defined by a matrix 2A  , whose rows - elements 

are the cosines of the directions of the unit vectors ( )e
r

, ( )c
r

 и ( )k ′
r

 and measured in relation to 
the previous coordinate system; 
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3 * and the third rotation around the axis 3Oy  for the angle of its own rotation ϕ , 

which is determined by the matrix 1A , whose rows  elements are the cosines of the directional 

directions of the unit vectors ( )1j , ( )2j  and ( )3j ′
r

, and are measured in relation to the previous 

coordinate system; 
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The total resulting rotation, as the sum of the previously mentioned three successive 
rotations, is expressed by matrix A  of summarized rotation in the following form: 
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and this presents the product between matrices 1A , 2A  and 3A  of three components 

successive rotations. 
The position of a point in a rigid body can be determined by the position vector { }x  

relative to the immobile coordinate system 321 xxOx  and a vector relative to the moving 

coordinate system { }y . This is the same vector only displayed in both triads' coordinate 
system, so it will be: 
 { } { }xy A=  { } { } { }yyx AA ′== −1    1−=′ AA                 (8) 

3. Matrix expressions of the angular velocity, angular acceleration and angular 

accelerating of the second order  of the rigid body rotation around a fixed point 

 
 

Similar to the derivation in the article (Reference by Rašković, Sokolović  ]7]), a 
vector of total angular velocity, ( )ω  and ( )Ω ,  which is the same vector collinear with the 
current – instantaneous axis of rotation of rigid body around a fixed point, can be represented 
in matrixform in both coordinate systems, the fixed  321 xxOx  and the moving 321 yyOy  one[4]: 
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The preceding matrix equations (9) and (10) represent Euler's kinematic equations for 
the angular velocity ( )ω  as well as  ( )Ω  in the matrix form and in the fixed 321 xxOx   (9) or in 

the movable 321 yyOy  (10) system of the coordinates. 

By developing the previous matrix equations (9) and (10) for the instantaneous angular 
velocity ( )ω  as well as  ( )Ω  of the rigid body rotation around a fixed point, we obtain Euler's 
kinematic equations, which represent the components of the current angular velocity rotation 
of a rigid body around a fixed point in the fixed 321 xxOx  or in the movable 321 yyOy  

coordinate system [2]: 
ψϑϕψϑω sinsincos1 && +=   ϕϑψϕϑ sinsincos1 && +=Ω  

 ψϑϕψϑω cossinsin2 && −=   ϕϑψϕϑ cossinsin2 && +−=Ω               (11) 

ϑϕψω cos3 && +=    ϑψϕ cos3 && +=Ω  

 However, these Euler's kinematic equations can be easily obtained by a vector-matrix 
relation, expressing them by means of the derivation of the Euler angles by time and by the 

unit vector of the node axis orientation ( )e
r

, the axis of the precession ( )k
r

 and the figurative 

axis ( )k ′
r

: 
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or in a expanded form: 
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 Matrices S  and  P , defined by (16) and (17) are the matrices of single column of unit 

vectors of the node axis ( )e
r

, the axis of the precession ( )k
r

 and the figurative axis ( )k ′
r

, 

measured in relation to the immobile coordinate system 321 xxOx  and in relation to the moving 

triad-moving coordinate system 321 yyOy . 

 Now, by differentiating the previous expressions (14) and (15) for the angular 
velocity, ( )ω  as well as  ( )Ω , of rotation around the fixed point over time, projections of 

angular acceleration, ( )ω&  as well as  ( )Ω& ,  are obtained on the axes of both triads of the fixed 

321 xxOx  or in the movable 321 yyOy  coordinate system in the following form: 

 1* Projections of angular acceleration ( )ω& , in immobile triad-immobile coordinate 

system 321 xxOx , of a rigid body that rotates  around a fixed point O : 
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2* Projections of angular acceleration ( )Ω& , in mobile triad-mobile coordinate system 

321 yyOy , of a rigid body that rotates  around a fixed point O : 
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By again differentiating the preceding expressions (19) and  (21) for the angular 
acceleration, ( )ω&  and ( )Ω& ,  determined in the motionless and moving triad, we obtain 

projections of a vector of the angle jerk-the angular acceleration of the second order { }ω&&
r

 and 

{ }Ω
&&r   of the kinematics of a rigid body which rotates around a fixed point O , both in the 

immobile 321 xxOx  and the moving 321 yyOy triad - coordinate system. 

 1* Projections of angular acceleration of the second order { }ω&&
r

, in immobile triad-

immobile coordinate system 321 xxOx , of a rigid body that rotates  around a fixed point O  is in 

the form: 
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 By differentiating the preceding expression (16) for  S  and by simplifying expression 

(22), projections of angular acceleration of the second order { }ω&&
r

 in scalar form can be obtain, 

in immobile triad-immobile coordinate system 321 xxOx , of a rigid body that rotates  around a 

fixed point O , in the following forms: 

 
( ) ( ) ( )
( ) ( ) ψϑϑϕψψϑϕψϕψψϑϑϕϑϕ
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             (24) 

 
  ( ) ( ) ϑϑϕϑϕϑϕϑϕψω sin2cos2

3
&&&&&&&&&&&&&&&& +−−+=                   (25) 

 

2* Projections of angular acceleration of the second order { }Ω
&&r , in mobile triad-mobile 

coordinate system 321 yyOy , of a rigid body that rotates  around a fixed point O  is in the form: 
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By differentiating the preceding expression (17) for  P  and by simplification 

expression (26), projections of angular acceleration of the second order { }Ω
&&r  in scalar form can 

be obtain, in mobile triad-mobile coordinate system 321 yyOy , of a rigid body that rotates  

around a fixed point O  , in the following forms: 
( ) ( ) ( )

( ) ( ) ϕϑϑϕψϕϑϕψϕψϕϑϑψϑψ

ϕϑϕψψϑψϕϕϑϕϑϕϕϑϑ

coscos2cossin2sincos2

sinsinsin2cos 222
1

&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&

+++++

+−−++−−=Ω
                 (27) 

( ) ( ) ( )
( ) ( ) ϕϑϑϕψϕϑϕψϕψϕϑϑψϑψ

ϕϑϕψψϑψϕϕϑϕϑϕϕϑϑ

sincos2sinsin2coscos2

cossincos2sin 222
2

&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&

−+−++

+−−++−−−=Ω
                      (28) 

( ) ( ) ϑϑψϑψϑψϑψϕ sin2cos2
3

&&&&&&&&&&&&&&&& +−−+=Ω       (29) 

  
4. Matrix and scalar expressions of the acceleration of the second order  of a point 

of the rigid body rotation around a fixed point 
 

By differentiating the preceding equation { } { }yx A′=   and taking into account that 

{ } 0=y& , we can obtain the vector { }x&&  of the acceleration of a point point  B , 321 ,,( xxxrOB
r

=   



of the rigid body rotation  around fixed point O   in immobile coordinate system 321 xxOx  in 

the following form: 
{ } { } { } [ ]{ } { }ωω ==′′=′= xxyx AAA &&&             (30)

  
 { } { } [ ]{ } { }vyyx =Ω=′= AAA &&                (31) 

{ } [ ]{ } { }ωω == xx&  

{ } [ ]{ } [ ]{ } [ ] [ ]( ){ }xxxx
2

ωωωω +=+= &&&&&                          (32) 
From last expressions (30), (31) and (32), it can be seen that there is a qualitative and 

mathematical analogy: matrix [ ]ω  can be changed by matrix [ ]Ω  as well as matrix  { }x  by 

matrix { }y . 
Next by differentiating the preceding equation (32) and taking into account that (30), 

we can obtain the vector { }x&&&  of the acceleration of the  second order of a point B , 

321 ,,( xxxrOB
r

=   of the rigid body rotation around the fixed point O  in the immobile 

coordinate system 321 xxOx  in the following form: 

 { } [ ] [ ][ ] [ ][ ]( ){ } [ ] [ ]( ){ }xxx &&&&&&&&&
2

ωωωωωωω ++++=  

{ } [ ] [ ][ ] [ ][ ]( ){ } [ ] [ ]( )[ ]{ }xxx ωωωωωωωω
2

++++= &&&&&&&&  

{ } [ ] [ ][ ] [ ][ ] [ ]( ){ }xx
32 ωωωωωω +++= &&&&&&&  

{ } [ ] [ ][ ] [ ][ ] [ ]( ){ }xx ωωωωωωω 22 −++= &&&&&&&                      (33) 
 After presenting the necessary matrix expressions and obtaining necessary matrix 
products in the forms: 
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and introducing expressions  (36) and (36) into the equation (35) we can obtain projections 

1x&&& , 2x&&&  and 3x&&&  of the vector { }x&&&  or w
r  of the acceleration of the second order of a point  B , 

321 ,,( xxxrOB
r

=  of the rigid body rotation  around fixed point O  in immobile coordinate 

system 321 xxOx  in the following scalar form: 
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Figure 2. Components of the vector { } { } { } { } { }Ω=′++=
rr

&
r

&
r&

r
kke ϕψϑω  of angular velocity of a 

rigid body rotating around a fixed point A  (Figure from text book [1]) 
 
 

Multiplying equation (32) by matrix  A  in the form (7) we can obtain the vector w
r

 or 

matrix { }w  of the acceleration of the second order of a point B , 321 ,,( yyyrOB
r

=  of the rigid 



body rotation around fixed point O  in the mobile coordinate system 321 yyOy  in the following 

matrix form: 
 { } [ ] [ ][ ] [ ][ ] [ ]( ){ }xx ωωωωωωω 22 −++= &&&&&&& AA  

{ } { } [ ] [ ][ ] [ ][ ] [ ]( ){ }yxw ΩΩ−ΩΩ+ΩΩ+Ω== 22 &&&&&&&A      (41) 

 From previous matrix equation (41)  we can obtain projections 1w , 2w  and w  of the 

vector { }w  or w
r

 of the acceleration of the second order of a point B , 321 ,,( yyyrOB
r

=  of the 

rigid body rotation  around the fixed point O  in the mobile coordinate system 321 yyOy  in the 

following scalar form: 
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( ) ( )2332
2

33221

133223322123321 32

yyyy
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              (43) 
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Ω−ΩΩ−Ω+ΩΩ+

+ΩΩ+ΩΩ−Ω+ΩΩ+Ω−Ω=
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               (44) 

 
 

5.  The natural coordinates of the vector of acceleration of the second order of a 

rigid body rotating around a fixed point 

 
According to Rivals's theorem, an acceleration vector of a point determined by the 

position vector ρ
r

, of a rigid body rotating around a fixed point with instantaneous angular 

velocity ω
r

, can be decomposed into the natural components: the tangential Ta
v

, normal - 

axipetal Na
v

, and supplemental additional component  da
v

 of a point B  of the rigid body that 

rotates around a fixed point O  , from which we measure the help point vector for which the 
acceleration is determined (see Figure 3.a*, b* and c*): 

 [ ][ ] [ ] [ ][ ] [ ][ ] dTN aaau
dt

d
a

vvvrwrrrrrr
&

rrrr
r

r
++=Ω−+=+





= ωρρωωρωρωωρ

ω
,,,,,,,,                 (45) 

because the angular velocity ω
r

 of the rigid body rotating around fixed point O  is changeable 

in magnitude ωω =
r

 and in orientation by unit vector u
r

 , and then its derivative 
dt

dω
r

, is: 

 
( ) [ ] [ ]ωωωω
ωω rwr

&
rwr

&

rr

,, Ω+=Ω+== uuu
dt

ud

dt

d
                 (46) 

In previous expression Ω
w

 is the angular velocity of the rotation of the instantaneous 
axis, oriented by the unit vector u

r
, of rotation of the considered rigid body when rotating 

around a fixed point O . 
Since the angular velocity vector ω

r
 changes with both intensity ωω =

r
 and direction,  



oriented by unit vector u
r

,  this angular acceleration 
dt

dω
r

 of the rigid body, which rotates 

around a fixed point O , will be in the form (46). 

By differentiating the preceding vector expression (46 ) for angular acceleration
dt

dω
r

, 

we obtain a vector of the angular acceleration of the  second order 
2

2

dt

d ω
r

 of a rigid body that 

rotates about a fixed point O , in the form: 

( ) [ ] [ ] ( )ΩΩ+Ω+Ω+Ω−=
rrrr&rrrr

&&

r

,,,22
2

2

ωωωωω
ω

uu
dt

d
                (47) 

where Ω
r

 and ,Ω
&r  are the angular velocity and angular acceleration of the rotating of the 

current instantaneous axis of rotation of a rigid body, which rotates around a fixed point O , 
and around a instantaneous axis in space, passing through a fixed point O  of the rigid body. 
 
 

     
a*      b* 

  
c*     d* 

Figure 3. a*, b* and  d* Components of the angular velocity, angular acceleration and 
angular acceleration of the second order and a* velocity,  b* acceleration and c* acceleration 

of the second order of a body point of a rigid body rotating around a fixed point (Figures 
a*,b* and d* from Reference [1] and c* from Reference [4]) 



 

Since the angular acceleration vector 
dt

dω
r

 changes with both intensity and direction, 

and with changes of all terms in expression (46) oriented by unit vector u
r

,  this angular 

acceleration of second order 
2

2

dt

d ω
r

 of the rigid body, which rotates around a fixed point O , 

will be in the form (47). 
 
By differentiating the preceding vector expression (45) for acceleration a

r
 of a point of 

the rigid body,  we can obtain a vector of the acceleration of the  second order 
dt

ad

dt

vd
w

rr
r

== 2

2

 

of the point B  of a rigid body that rotating about a fixed point O , in the form: 
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ω
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dt
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d
w               (48) 

where 
→

= OBρ
r

 is the point position vector of the point B  of the rigid body when rotating 
around a fixed point O , with the instantaneous angular velocity ω

r
. 

 

 

Figure 4. Components of the angular velocity, angular acceleration and angular acceleration 
of the second order and velocity, acceleration and acceleration of the second order of a body 

point of a rigid body rotating around a fixed point in regime of regular progressive precession 
motion and axoids (polhodia and herpolhodia) (Figure from Reference [4]) 

 
 

Let us mark with the normal distance dBB =′  of the body point B  from the current 
instantaneous axis of rotation of the rigid body (Figure 3.a* and c*) rotates with instantaneous 
angular velocity ω

r
, then the unit vectors of the tangent and the normal directions in relation 

to the current instantaneous axis of rotation are defined: 



[ ] Tdu
rrr

=ρ, ,  [ ]ρ
rrr

,
1

u
d

T = ,    ( ) Nduu
rrrrr

+= ,ρρ  and  ( )uu
d

N
rrrrr

,
1

ρρ −=           (49) 

In view of the previous derived vector expression (48) , the expression for the 
acceleration of the second order w

r
 – jerk  of the observed point B  of the rigid body is 

obtained, which rotates around a fixed point O  expressed in natural coordinates, it is possible 
separate it in three components as follows: 
  dNT wwww

rrrr
++=                    (50) 

where the tangential Tw
r

, axial-normal Nw
r

 and complementary dw
r

+  componentary-additional 

of the vector of the acceleration of the second order of an observed point B ,  of a rigid body 
rotating around a fixed point O , are expressed in natural coordinate system: 
 1* tangent component 

( )Tdw
T

r
&&

r 32 ωωω −Ω−= −   [ ] BBud ′== ρ
rr

,                (51) 

2* normal (axipetal) component 

 Ndw
N

r
&

r
ωω3−=                     (52) 

3* complementary additional component 

( ) [ ] ( )( ) ( )

( ) ( )[ ] ( )[ ]ωρωρωρω

ρωρωωρωρω

rrrrrrrr&rrr

rrr
&

rrr
&

rrrrrr

,,,,,

,2,2,,2,

Ω+ΩΩ+Ω−

−Ω−+Ω+Ω+Ω= uuwd

                       (53) 

Since, in the general case, the rigid body's motion is around a fixed point O , and its 
instantaneous angular velocity ω

r
 is equal to the sum of the angular velocities of precession 

ψ& , around of the axis oriented by unit vector { }k
r

, nutrition ϑ&  , around of the axis oriented by 

unit vector { }e
r

, and its own rotation ϕ& , around of the axis oriented by unit vector { }k ′
r

, we can 
write the following expression: 

 { } { } { } { }kke ′++=
r

&
r

&
r&r

ϕψϑω  or   kke ′++=
r
&

r
&

r&
r

ϕψϑω               (54) 
 

 
6. The natural coordinates of the vector of acceleration of the second order of a 

rigid body rotating around a fixed point in the case of regular progressive 

precession 
 
 
In the case where a rigid body rotates around a fixed point O  amd realizes by a regular 

progressive precession, the angle of nutrition is constant, const=ϑ , and the angular velocity 

of the nutrient is equal to zero, 0=ϑ& , and its angular velocity is: 

kkkk s
′+Ω=′+=
rrr

&
r
&

r
ωϕψω                    (55) 

where: const=ϑ ,  0=ϑ&  and precession angular velocity Ω=ψ&  and  self-rotation angular 

velocity sωϕ =& around the figure axis. 

In the case of a regular progressive precession of the body rotation around a fixed 
point O , from the vector expression (46) for angular acceleration, and it follows that an 

angular acceleration is of a constant value 0=ω& , ( ) const
dt

d
ss =Ω= ϑω

ω
sin

r

 and always is in  



the direction of the node axis, oriented by a unit vector e
r

: 
 

 
( ) [ ] [ ] [ ] ( )eu
dt

ud

dt

d
sss

rrwrwrw
rr

ϑωωωω
ωω

sin,,, Ω=Ω==Ω=Ω==         (56) 

 

 

         a*             b*                   c* 
Figure 5. Axoils: stationary (herpolhoda) and movable (polhodia) of the rigid body rotation 
around fixed points in the case a* and b* regular progressive precession;  c* angular 
acceleration of the retrograde precession of a rigid body rotating around fixed point (Figures 
a*, b* and c* from Reference [1]) 
 

 
In the case of a regular progressive precession, the jerk or the angular acceleration of 

the second order 2

2

dt

d ω
r

, of the rigid body that rotates around the fixed point O , is also constant 

in value ( ) const
dt

d
ss =Ω= ϑω

ω
sin2

2

2 r

, obtained by expression (47), but it is in the direction of 

the transverse axis, oriented by the unit vector c
r

: 
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because of: 

  Ω== cc
dt

ed rr
&

r
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 Further, the velocity v
r

, acceleration a
r

 and acceleration of the second order (jerk) w
r

 
of an observed point B ,  of the rigid body, which rotates around a fixed point O , in the case 

of regular progressive precession kkkk s
′+Ω=′+=
rrr

&
r
&

r
ωϕψω , are:   

1* Velocity of an observed point B ,   

 [ ] [ ]ρωρωω
rrrrrrr

,, Ω+=== sTdv                              (59) 



2* Components of the vector a
r

 of acceleration of an observed point B ,   tangential 

Ta  , normal Na  (normal-axipetal) and additional  complementary da
r

, for the regular 

progressive precession  are in the following forms: 

 0=Ta   NdaN

r
2ω−=   [ ][ ] ( ) ( )

ssda ωρρωωρ
rrwrrrrwrr

,,,, Ω−Ω=Ω=              (60) 

3* Components of the vector w
r

  of the acceleration of the second order of an observed 

point B ,  tangential Tw
r

 , normal Nw
r

 (normal-axipetal) and additional  complementary dw
r

, 

for the regular progressive precession, are in the following forms: 

( )TdwT
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0=Nw
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V. Concluding remarks 

In concluding remarks, we move from kinematics to the dynamics of rotation of the rigid body 
around a fixed point, using mass moment vectors with respect to a pole and the axis passing through 
this pole, introduced by K. (Stevanović) Hedrih 1992 (see References [9-14]), for description of 
rotation dynamics of a rigid body rotating around an axis. 

Let us denote with r
r

  the position vector of a material point of the elementary mass 
dm   of the material rigid body in relation to the moment fixed point O  through which the 
instantaneous axis is oriented by the unit vector n

r
, which changes the direction, but always 

passes through one fixed point O , which we have chosen to be in the pole O . The axis 
around which the materially rigid body and its material point of elementary mass dm  are 

rotates, is the instantaneous axis of rotation, and of the body, both of the material points of 
the elementary mass dm . 

Let around this instantaneous axis of current rotation, oriented by unit vector n
r

 which 
changes orientation, rotates, with angular velocity n

rr
ωω = , that rigid body and this material 

point dm  of elemental mass, whose vector position r
r

 is determined at all times by its vector 
position r

r
 relative to the immovable pole at a fixed point O . The velocity v

r
 of the 

movement of this material point of the elementary mass dm  is equal to the vector product of 
the angular velocity n

rr
ωω =  and its position vector r

r
: [ ] [ ]rnrv

rrrrr
,, ωω == . The velocity v

r
of 

the rotational movement of the material point of the elementary mass dm  of the material 
heavy rigid body which rotates around the fixed point is governed by the instantaneous axis of 
the current rotation and its vector position, that is, on the vectors  n

r
 and  r

r
. 

The vector of linear momentum (of impulse of motion) of the material mass particle 
( )tpd
r

, which rotates at an angular velocity n
rr

ωω = , around the momentary axis of the unit 
vector n

r
, which passes through the moment fixed point O , is: 
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where notation is introduced for 
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n

O
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and vector definition for the vector ( )n

O
Sd

rr
 of the static moment of the mass of the material 

point of the elementary mass dm  relative to the fixed point O  and the axis oriented by the 
unit vector n

r
, which passes through this fixed point O . It is also the mass moment of the first 

order or the linear moment of the mass of the material point of the elementary mass dm  in 
relation to the moment point O  and the axis oriented by the unit vector n

r
, which passes 

through this fixed point O . 
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Figure 6. a* Graphical presentation of the vector  kinetic parameters of a rigid body 
and its elementary mass particle which rotates around a fixed point: Vevtors of linear and 
angular momentum; b* Euler’s angles and component’s angular velocities 

 
 
A vector ( )tp

r
 of the impulse of the motion of the system of material particles of an 

elementary mass dm , which consists of a rigid material body that rotates around a fixed point 
O , which can be represented as a rotation around the instantaneous axis of the current rotation 
oriented by the unit vector  n

r
, is written by the vector sum of the vector of impulses of 

motion of all material particles of elementary masses dm , which are elementary parts of a 
rigid material body, rotating at an angular velocity n

rr
ωω = , around an axis oriented by a unit 

vector n
r

, which passes through the momentary, immobile (fixed) point O . This vector sum is 
integral to the volume of the body: 
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where notation is introduced for 
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O dmrnS
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and the vector definition for the static moment vector ( )n

OS
rr

 of the mass of a rigid material 

body. 

An angular momentum  vector OL
r

 of the motion of a system of material particles of an 

elementary mass dm  that makes up a solid material body that rotates  around a fixed point O  
, that can be represented as a rotation around the instantaneous  axis of rotation oriented by a 
vector sum of moment of momentum vectors of all material particles  of elementary masses, 
which are elementary parts of a rigid material body rotating at an angular velocity n

rr
ωω =  

around an instantaneous axis oriented by a unit vector n
r

 that passes through a momentary 
point is: 
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where notation is introduced for 
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and vector definition for the mass moment vector ( )n

O
J

rr
 of the inertia of the mass of the 

material body relative to the moment fixed point O   and the axis oriented by the unit vector 

n
r

, which passes through this fixed point O . This is the vector ( )n

O
J

rr
 of the moment of the mass 

of the second order or the square moment of the mass of the material body in relation to the 
fixed point O  and the axis orientated by the unit vector n

r
, which passes through this fixed  

point (for details see References [8-14]). 

The vector ( )n

O
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 of the moment of inertia of the mass of a rigid material body in 

relation to the fixed point O  and the instantaneous axis oriented by a unit vector n
r

, which 
passes through this fixed point O , can be explained in two components, one 
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direction of the axis n
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 and the other ( )n
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D  orthogonal to that instantaneous axis n
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, and both in 

the deviation plane. The vectors ( )n
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D , we can write in the following form: 
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By using d’Alambert principle of the dynamical equilibrium or theorems of the change 
in time of the linear and angular momentum, two vector equations can be written, taking into 
account external forces and reaction applied to the rigid body in rotation motion around a 
fixed point, in the following forms [5, 6]: 
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or in the form 
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Taking that is ( ) ( ) ( )k

O

j

O
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OO JJJL
′′′ ++=
rrr rrrr

ζηξ ωωω  the following scalar equations, known in 

literature can be obtained: 

ξηζζηξ ωω OOOO LLL M=−+&  

 ηζξξζη ωω OOOO LLL M=−+&                              (67) 

 ζξηηξζ ωω OOOO LLL M=−+&  

These equations are the Euler’s differential equations of the dynamics of a rigid material body 
that rotates around a fixed point [2]. 

( ) 1323211 OOOO
JJJ M=−− ωωω&  

 ( ) 2123122 OOOO
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 ( ) 3212133 OOOO
JJJ M=−− ωωω&  

Problem is to solving previous three Euler’s differential equations of the dynamics of a 
rigid material body taking into account three kinematical equations containing three Euler’s 
angles. But up to these days, this problem hasn’t been solved in general case. Some special 
cases were presented by Euler, Lagrange  and Kovalevskaya: 

 

                 
a*    b*       c* 

Figure 7. a*Leonhard Paul Euler (Basel, 15 April 1707 – Sankt Peterburg, 18 September 
1783), b* Joseph-Louis Lagrange ( born Giuseppe Luigi Lagrangia or Giuseppe Ludovico 

De la Grange Tournier, 25 January 1736 – 10 April 1813), and c* Sofia Vasilyevna 

Kovalevskaya (Russian: Со́фья Васи́льевна Ковале́вская), born Sofia Vasilyevna Korvin-

Krukovskaya (15 January / 3 January] 1850 – 10 February 1891)) 

1 * Euler’s solution: Euler's solution refers to a rigid heavy body with a fixed point, 
around which the rigid body rotates, at the center of mass. This means that the rotation is 
without action of the gravitational force, because the resultant of the force of gravity passes 
through a fixed point (center of mass) of the body and affects only the hinge reaction and its 
moment at the fixed point is equal to zero.  



 

Figure 8. Leonhard Paul Euler (Basel, 15 April 1707 – Sankt Peterburg, 18 September 1783)  



2 * Lagrange’s solution: Lagrange's solution refers to an axially symmetric rigid 
body with the center of mass on it, and with a fixed point around which the rigid body faces 
the axis of symmetry. 

3 * Kowalewskaya solution: The Kowalewskaya solution relies on a rigid heavy 
body with two main axial mass moment inertia for the main axes through the center of mass 
equal, and the third major is twice as big as them. A center of mass, which lies at the 
equatorial plane of the frieze of the main axes of the mass inertia moments for which the axial 
moments of mass inertia are equal, and which passes through the fixed point around which the 
rigid heavy body turns. 

In 1889 Sophiya Kowalewskaya solved two problems. The first problem is: Find all 
rigid bodies, which rotate around a fixed point, in the presence of gravity, such that the system 
of differential equations of motion is integrable in the sense of Kovalevskaya. This means that 
the system has solutions, which can be expressed as Lauren's order in the function of time, 
containing a set of free parameters equal to the number of degrees of freedom minus one; the 
dimensional phase space for such a rigid body is. Strict conditions of integrability gave the 
following already known solutions. 

There are many attempts and the majority is reduced to numerical approximations for 
real bodies in a three-dimensional space. 
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APPENDIX 1.:  

            
 

           
 

Presentation of a collections with university books some as monograph, for Yugoslav and 
Serbian students, written by Profess and ScDr. Ing Danolo P. Rašković  (September 10, 

 



(August 28) 1910 in Užice-January 29, 1985 in Belgrade). Prof. Dr. Ing. Dipl. Math. Danilo P. 
Rašković was  the first head of the Department of Mechanics and Automatics within the 
Faculty of Mechanical Engineering of the University of NiŠ. This distinguished scientific 
figure of exquisite creative energy and inspired enthusiasm, a scholar deeply attached to the 
Yugoslav and Serbian scientific and cultural heritage and an exquisite pedagogist of high ethic 
principles is in the living memory of many generations of students whom he taught how to 
learn and love mechanics, as a basic scientific branch of mechanical engineering either 
directly, through his lectures, or through his various and numerous textbooks and collections 
of problems which circulate in more than 140.000 copies.  
Prof. Dr. Ing. Dipl. Math. Danilo P. Rašković lectured mechanics, strength  of materials and 
oscillation theory at the faculties of mechanical engineering in Belgrade, Niš, Kragujevac, 
Novi Sad and Mostar, as well as in the Faculty of Science in Belgrade, Faculty of Philosophy 
in Novi Sad, Faculty of Electronics in Niš and at the Military-Technical College in Belgrade.  
First and unique book in Theory of Oscillations (editions: 1957, 1965 – in 6.000 copies) 
written in Serbian language is authored by Danilo P. Rašković in 1957 and in the form of 
monograph. Last published books, authored by Danilo P. Rašković is Theory of elasticity 
(1985 edition, 2,000 copies. ) , Analytical Mechanics and Tensor Calculus. 
 
 

APPENDIX 2. :  
The Round Table discussion at 10th International Conference STABILITY, 

CONTROL AND RIGID BODIES DYNAMICS, Donetsk (Ukraine), June 5-10, 2008., organized by 

academician NANU Alexander Kovalev. 

http://www.iamm.ac.donetsk.ua/icscd.html 
 

  

 Institute of Applied Mathematics and Mechanics of National Academy of Sciences of 
Ukraine (IAMM NASU) together with Donetsk National University (DonNU) organizes the 
10th International Conference "Stability, Control and Rigid Bodies Dynamics" in Donetsk in 
June, 2008. Chairman of the Organizing Committee of the Conference is Alexander 

M. Kovalev (IAMM NASU. 

Not long ago D.L.Abrarov (Russia) has published two books and V.N.Onikiychuk 
(Russia) has published one book containing the authors results that give, by their opinion, the 
exact solution of the problem on motion of a rigid body with a fixed point in the field of 
gravity. This problem is one of the classical problems of mechanics and it was one of the main 
topics of the conference series "Stability, control and rigid bodies dynamics". Therefore the 
scientific community present at the 10th Conference had to express its attitude to these 
publications.  

For this purpose the Round Table discussion was held on the theme "Integrability 
problem for equations of rigid body dynamics". It was organized in the following way: at first 



D.L.Abrarov and V.N.Onikiychuk told about their results, and then the consideration of the 
theme took place. Following persons participated in this consideration: I.N.Gashenenko 
(Ukraine), A.A.Ilyukhin (Russia), M.P.Kharlamov (Russia), A.M.Kovalev (Russia), 
T.S.Krasnopolskaya (Ukraine), M.E.Lesina (Ukraine), V.V.Meleshko (Ukraine), V.V.Sokolov 
(Russia), V.N.Tkhai (Russia), H.M.Yehia (Egypt), Katica (Stevanović) Hedrih (Serbia) and 
others. 

They discussed the works of D.L.Abrarov on the exact solvability of the Euler-Poisson 
equations in terms of exponents of L-functions of elliptic curves over the field of rational 
numbers. Their opinions can be summarized in the following way. In his works, D.L.Abrarov 
makes an attempt to give a new mathematical description of the problem. It is necessary to 
interpret the obtained results in the Language which is accepted among the specialists in the 
given scientific area and to present the strictly grounded facts that can be verified.  

The abstract of V.N.Onikiychuk's communication was not published in the Book of 
abstracts, the Organizing Committee decided to give him an opportunity to speak at the Round 
Table. The participants of the conference suggested that the author should state his results in 
the scientific articles for submitting to the specialized journals, with attention to the opinion of 
reviewers and authoritative scholars.  

 
 
 



 



 



 



 



 



 





 
 

 



 


