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Abstract: The results of the research on acceleration of the second order (a jerk or 

jerking) of the mass particle moving with constant sector velocity in the plane are presented, 

in a published paper more than a  half a century ago, but in Serbian language. 

This paper is titled: 

"Acceleration of the second order (or jerk or jerking) of a material point that moves 

with a constant sector velocity." 

The first part of the article refers to the movement of the kinematic point along the 

path line, the change in velocity, and the acceleration of the point, when it is possible to talk 

about the change of the acceleration accelerator or the acceleration of the second order – 

jerk or jerking (or Ruch, Rucken, Jerk, pulse). The components of the vector of acceleration 

of the second order of the motion of a kinetic point in space, are in all three directions; of 

the tangent, of the normal and of the binormal direction of the path line, in the general case 

of motion of the kinematic point in the space will also be displayed.  

Then, the components of the kinematic point of the vector of the acceleration of the 

second order of the motion of a kinetic point in plane, under the action of central force, and 

with constant sector velocity are presented. 

Binet's formula is, also, used for necessary transformation in expressions of the 

components of the vector of acceleration of the second kind (Jacques Philippe Marie Binet 

(1786-1856)). A theorem on the relation between the circular component of the second-

order acceleration vector of the kinematic point that moves with a constant sector velocity 

and the radial component of its acceleration vector are defined and proofed. 
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For examples of the central motion of the kinematic point, in a plane, by constant 

sector velocity, the expressions for the angular acceleration of the second order and the 

components of the vector of the acceleration second order, along the Archimedes spiral, 

along the sinusoidal spirals and ellipses, are derived. These results are new in comparison 

with content of the source paper published half a century before. 

On the basis of previous results, as well as Kepler's third law, the angular 

acceleration of the second order and acceleration of the second order of the planets, which 

perform central movement along elliptical paths and which are moving with constant sector 

velocity, are shown. 

 

 Key words: Acceleration of the second order; kinematic point; constant sector 
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I. Introduction 

When moving the kinematic point along the path line in space, the velocity v
r

 and 

acceleration a
r

 of the point are changeable. Then you can talk about the change of the vector 

of acceleration or of the acceleration of the second order – jerk or jerking or twitching 

(Ruch, Rucken, Jerk, pulse). This vector now has its kinematic meaning in modern 

kinematics of the mechanisms. Differentiation of the vector of the acceleration by time gives 

a vector of a jerk w
r

 in the following form (for details see Reference [1]): 
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where T
r

 and N
r

 are unit vectors in tangent and normal directions of the path line of 

kinematic point motion and K  is firs curvature of the same path line. 

 The first K
r

 and the second T
r

 curvatures of the path line of kinematic point motion 

are defined by derivatives of the unit vectors  T
r

 in tangent direction and N
r

 in normal 

direction along arch of the path line s   of kinematic point motion: 
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where B
r

 is a unit vector in the binormal direction of the path line of kinematic point 

motion. We see that both curvatures of path line of kinematic point motion are in the 

direction of the normal of this path line. 

 The unit vectors of the natural coordinate system of the curvilinear trajectory of the 

kinematic point are all three orthogonal and between unit vector T
r

 in the tangent direction,  

unit vector N
r

 in the normal direction and unit vector B
r

 in the binormal direction  exists  

the following relations: 
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Derivatives of the unit vector T
r

 in the tangent direction,  unit vector N
r

 in the 

normal direction and unit vector B
r

 in the binormal directions along arch of the of the path 

line s   of kinematic point motion are in the following forms: 
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a*    b*      c* 

Figure 1.  Graphical representation of kinematical elements of kinematical point in motion: 

a* vector of the velocity in tangent direction and vector of the sectr velocity in plane; b*  

vector of acceleration with two components in the tangent and the normal directions to the 

path line of kinemaical point motion; and c* vector of the acceleration of the second kind 

with three components in the tangent, normal and binormal directions to the path line of 

kinemaical point motion in Rašković drawing (1947) [1] 

 

 

By introducing previous relations (4)-(6)  into the previous expression (1) for 

acceleration of the second order of the kinematic point motion in space, we obtain the 

second order acceleration using natural components in the natural coordinate system in the 

following form [1]: 
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w

rr
&&

r
&

r
r

T
3223 3 +++−==         (7) 



We see that vector of the velocity v
r

 is only in the direction of the tangent  T
r

 to the  

path line of the motion of the kinematic point, the vector of the accelaration a
r

 is more 

complex- it has two components, one in the normal direction N
r

, and the other in the 

tangent directionT
r

 to the path line of the kinematic point motion. 

However, the acceleration of the second order (jerk or jerking) w
r

  has all three 

components, Tw
r

, Nw
r

 and Bw
r

  in the tangent T
r

, normal N
r

 and binormal B
r

 diretion of the 

path line of kinematic point motion. 

 
Figure 2. Graphical vector representation  of kinematical and kinetic elements of a kinetic 

point ( )ϕ.rP  with mass m   in plane motion around centerO : vector of the sector velocity 

0S
r

  and  vector of the angular momentum 0L
r

 for a centre O  of the kinetic point motion (in 

author’s drawing)  

 

II. Acceleration of the second order (Jerk) of a kinetic point miving with constant 

sectorial velocity   

 
In the Kinematics [1] general expression for acceleration of the second order is given 

for motion of the kinematic point in plane, and in polar coordinte system. These coordinates 

are radius r  measured from a centre O  to kinematic point ( )ϕ.rP , and angle circular 

coordinate ϕ  between a fixed axis passing trough this centre and up to radius.  

In the vector expression w
r

 of the acceleration of the second order, the radial 

direction is determined by unit vector 0r
r

  and circular direction  is determined by unit vector 

0c
r

, and vector of acceleration of the second order of kunematic point ( )ϕ.rP  in moving 

posses two vector components,  radial 
crw

r
 and circular cw

r
: 
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In scalar form radial 
r

w  and circular 
c

w  components of the acceleration of the second order 

w
r

 of a kinematic point ( )ϕ.rP  motion in plane, are in the following form: 
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When the kinematic point ( )ϕ.rP  moves at a constant sectorial velocity ϕ&2

0
2

1
rS =  in a 

plane, then the circular acceleration component  0=
c

a  is zero, and the cyclic integral is of 

the form: 

CrS == ϕ&2

02                   (11) 
 

 

Figure 3. Graphical vector representation  of kinematical and kinetic elements of a kinetic 

point ( )ϕ.rP  with mass m   in plane motion around the center O  with constant sector 

velocity: vector of the sector velocity consrS =0

r
  and vector of the angular momentum 

const=0L
r

 for the centre O  of the kinetic point motion with the corresponding relations (in 

author’s drawing)  

 

Let’s introduce new coordinate u , with a denotation in the form: 

r
u

1
=                 (12) 

and the previus integral (11) obtains the following form: 
2Cu=ϕ&                   (13) 

Previous expression (13) represents the angular acceleration of the kinematic point 

during the motion, around the center O , with constant sectorial velocity constS =0 in plane.  

For the determination of the components of the vector of the acceleration w
r

 of the 

second order (jerk) of a kinematic point motion in plane, with constant sectorial velocoty 

constS =0 , it is necessary to determine the first, second and third derivatives with respect to 

time as well as with respect to the angle circular coordinate  ϕ , of  the radial coordinate r ,  

in the function of the newly introduced coordinate u   of the reciprocal radial coordinate r : 
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Differentiating the previous integral (11) with respect to time gives the following 

differential relation 02 2 =+ ϕϕ &&&& rrr , and in result, the following expression is determined:  
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r
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Previous expression (17) is angular acceleration ϕ&&  of kinematic point ( )ϕ.rP  during 

the moving, around center O , with constant sectorial velocity (11), CrS 22 2

0 == ϕ& , in 

plane, in the function of the newly introduced coordinate u   of the reciprocal radial 

coordinate r . 

 Next, differentiating the previous expression (17) of  the angular acceleration 

ϕ&&  of kinematic point ( )ϕ.rP  during the moving, around center O , with constant sectorial 

velocity  CrS 22 2

0 == ϕ& , in plane, in the function of the newly introduced coordinate u   of 

the reciprocal radial coordinate r , with respect to time gives the following  expression for 

ϕ&&& : 
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Previous obtained expression (18) for ϕ&&&  present the angular acceleration second order ϕ&&&  of 

a kinematic point ( )ϕ.rP  during the motion, around the center O , with constant sectorial 

velocity  consttrS == ϕ&2

0
2

1
, expressed by the newly introduced coordinate u   of the 

reciprocal radial coordinate r . 

 By introducing all the previously determined expreesions-derivetives  (13), (14)- 

(16), (17) and (18) in expressions for radial (9) and circilar (10) components of the vector of 

acceleration w
r

  of the second order of a kinematic point ( )ϕ.rP  during the motion, around 

the center O , with constant sectorial velocity  consttrS == ϕ&2

0
2

1
,  the following 

expressions are obtained:   
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and expressed by the newly introduced coordinate u   of the reciprocal radial coordinate. 

Now,  the vector of the acceleration w
r

 of the second order of kinematic point 

( )ϕ.rP  during the motion, around the center O , with constant sectorial velocity  



consttrS == ϕ&2

0
2

1
, in plane, expressed by the newly introduced coordinate u   of the 

reciprocal radial coordinate, is in the following form: 
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In the case of the motion of a kinematic point ( )ϕ.rP  in plane, at a constant sectoral 

velocity consttrS == ϕ&2

0
2

1
, the French mathematician Binet (Jacques Philippe Marie Binet 

(1786-1856)) expressed the velocity and acceleration of the material point over the constant 

sector velocity and the reciprocal value of the radius u  and its derivatives, and these 

expressions are known as the Binet Formulas. 

 

 
a*     b* 

Figure 4. a* The French mathematician and scientist Binet (Jacques Philippe Marie Binet 

(1786-1856); b* The Binet Formulas – expression for tangential acceleration  of the motion 

of a kinematic point ( )ϕ.rP  in plane, at a constant sectoral velocity consttrS == ϕ&2

0
2

1
, 

expressed by u  the reciprocal value of the radius (in author’s drawing)  

 
 

Now, taking into account the Binet’s formula, which determines the radial 

component 
r

a  of the accelerator vector of the kinematic point ( )ϕ.rP , which moves at a 

constant sectoral velocity consttrS == ϕ&2

0
2

1
, in a plane, vector expressions of component 

accelerations we can write in the forms: 
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while the circular component 
c

a
r

 of the acceleration a
r

 is equal to zero. The circular 

component 
c

w
r

 of the vector of the acceleration of the second order of a kinematic point  



( )ϕ.rP  moving at a constant sectoral velocity consttrS == ϕ&2

0
2

1
, in plane, can be expressed 

in the form: 

 [ ]
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The previous relation (23) is a relation between the circular component 
c

w
r

 of the vector of 

the acceleration of the second order and the radial component 
r

a  of the vector of the 

acceleration  of the same kinematical point ( )ϕ.rP  moving at a constant sectoral velocity 

consttrS == ϕ&2

0
2

1
, in plane.. 

We can draw a conclusion in the form of a theorem: 

The circular component 
c

w  of the vector of the acceleration of the second order 

(jerk) of a kinematic point ( )ϕ.rP , which is considered moving in plane, with a constant 

sectoral velocity, is equal to the product of the double sectonal velocity CrS 22 2

0 == ϕ&   

(constant), the square 2u  of the reciprocal value of the radius r  and the radial component 

r
a  of the acceleration vector of the kinematic point ( )ϕ.rP  motion in plane. 

 

III. Examples of the acceleration of the second order of a kinematic point moving 

with constant sectorial velocity along different curvilinear path in plane 

III.1. Example of the angular acceleration of the second order of the kinematic point 

moving with constant sectorial velocity along path in the form of sinus spiral  

 

In the case of a kinematic point ( )ϕ.rP  central motion, with centre  O , with constant 

sectoral velocity CrS 22 2

0 == ϕ& , in the plane, and along path in the form of the sinus spiral 

of the equation: 

ϕncr nn sin=                   (24) 

we will determine the radial and circular components of the vector of the jerk  (jerking, of 

the second order acceleration) using peviously derived expressions. 

Therefore, it is necessary to first determine the first, second and third derivative of the 

reciprocal value of the radius  
r

u
1

=  with respect to the angle circular coordinate ϕ  , taking 

into account that for sinus spiral is: 
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and from this it follows that: 
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Based on the previously determined derivatives (26)-(28) , by introducing them into 

expressions, in the forms (19) and (20), for the radial and circular components, radial 
cr

w
r

 



and circular 
c

w
r

,  of the second-order acceleration vector of a kinematic point ( )ϕ.rP  

moving along a sinus spiral ϕncr nn sin= , in plane with constant sectorial velocity,  follow 

the expressions: 
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Angular velocity of the kinetic point ( )ϕ.rP  moving around of the centre O  and along a 

sinus spiral ϕncr nn sin=  with constant sectorial velocity on the basis of the expression 

(13) is in the form: 
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Angular acceleration of the kinetic point ( )ϕ.rP  moving around of the centre O  and 

along a sinus spiral ϕncr nn sin=  with constant sectorial velocity on the basis of the 

expression (17) is of the form: 
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Angular acceleration of the second order of the kinetic point ( )ϕ.rP  moving around 

the  centre O  and along a sinus spiral ϕncr nn sin=  with constant sectorial velocity on the 

basis of the expression (18) is iof the form: 
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III.2. Example of the acceleration of the  second order of the kinematic point moving with 

constant sectorial velocity along of the path in the form of the Archimedes  spiral  

 

In the case of a kinematic point ( )ϕ.rP  motion with constant sectoral velocity, in the 

plane, and along path in the form of the Archimedes spiral of the equation 

ϕ
ω

c
r =          (33) 



we will determine the radial and circular components of the vector of the jerk  (jerking, of 

the second order acceleration) using peviously derived expressions. 

Therefore, it is necessary, first, to determine the first, second and third derivative of 

the reciprocal value of the radius  
r

u
1

=  with respect to the angle circular coordinate ϕ  , 

taking into account that for the Archimedes spiral it is defined by: 
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and then it folliws that: 
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Figure 5. The  Archimedes spiral and picture of Archimedes of Syracuse (Ἀρχιµήδης) 
(c. 287 BC - c. 212 BC (aged around 75); Syracuse, Sicily) 

 

 

 

Based on the previously determined derivatives (35), by introducing them into 

expressions, in the forms (19) and (20), for the radial and circular components, radial 
crw

r
 

and circular cw
r

,  of the second-order acceleration vector of the kinematic point ( )ϕ.rP  

moving along an Archimedes spiral ϕ
ω

c
r = , in plane with constant sectorial velocity 

SCr 22 ==ϕ& ,  follow the expressions: 









−−=

265

5
3 11

3
ϕϕ

ω

c
Cwr  and 

255

5
3 2

1
ϕϕ

ω
+−=

c
Cwc         (36) 

by angle cyclic circular coordinate ϕ  or by radial coordinate  r  in the form: 
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Angular velocity ϕ&  of a kinetic point ( )ϕ.rP  moving around a centre O  and along 

an Archumedes spiral ϕ
ω

c
r =  with constant sectorial velocity, on the basis of the 

expression (13) is in the form: 



22

2
2

2 ϕ

ω
ϕ

c

C
Cu

r

C
===&                         (38) 

Angular acceleration ϕ&&  of the kinetic point ( )ϕ.rP  moving around centre O  and 

along an Archimedes spiral ϕ
ω

c
r =  with constant sectorial velocity on the basis of the 

expression (17) is in the form: 
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Angular acceleration ϕ&&&   of the second order of a kinetic point ( )ϕ.rP  moving 

around centre O  and along Archimedes spiral ϕ
ω

c
r =  with constant sectorial velocity, on 

the basis of expression (18) is in the form: 
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Vectors of velocity and acceleration of a kinetic point moving around centre O  and 

along Archimedes spiral ϕ
ω

c
r =  with constant sectorial velocity SCr 22 ==ϕ& , on the 

basis of the  known expressions [1] in polar coordinates are in the folliwing forms: 
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IV. Example of the acceleration of the second order of a kinematic point moving 

with constant sectorial velocity along path in the form of an ellipse.  Kepler’s Laws   

and the acceleration of the second order (jerk) of the plamets  

 
IV. 1. Example of the acceleration of the second order of a kinematic point moving with 

constant sectorial velocity along path in the form of an ellipse. 

 

Equation of an ellipse, with focuses in 1F  and 2F  in a polar coordinate system with centre 

in a focus 1F  of ellipse,  is in the form:  

ϕε cos1+
=

p
r                   (43) 



in polar coordinates  ( )ϕ,r  , radial coordinate r  starting from focus 1F  and angle circular 

coordinate ϕ  (see Figure  6.A*, and References [2] and [4]). Ellipse is with two half axes 

( )cb, , and with parameter of ellipse  

b
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and with eccentricity e  or linear eccentricity ε  in the relation in  form: 

bcbe ε=−= 22 , be < , 1<ε .                          (45) 
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a*      b* 

Figure 6. a* The kinetic point motion along ellipse path in plane wirh constant sectorial 

velocity-notation of the plar coordinates; b* Visualisation of elliptical orbits of the planets 

in Sun planet system 

 

To move the kinetic point ( )ϕ.rP  along an ellipse, we assume that it is realized at a 

constant sectoral velocity, and that the cyclic integral is valid and that the circular coordinate 

is cyclic:  Cr =ϕ&2 .  This means that planets also move at a constant sectorial velocity along 

elliptical paths. 

In the case of central motion of a material particle ( )ϕ.rP  along ellipse path with focuses in 

1F  and 2F  and with a constant sartorial velocity Cr =ϕ&2 , around centre in one focus 1F ,  

the radial rw  and circular cw   component of the vectors of the acceleration w
r

 of second 

order (jerk) in the general case are defined by previous determined expressions (19) and 

(20). 

Therefore, it is necessary to first determine the first, second and third derivative of 

the reciprocal value of the radius   ( )ϕε cos1
11

+==
pr

u  with respect to the angle circular 

coordinate ϕ  , taking into account that for ellipse equation in polar coordinates is in the 

form  (43). And folliw that necessary detivatives are: 
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p
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ε

sin
p

u =′′′             (46) 

Based on the previously determined derivatives (46), by introducing them into 

expressions, in the forms (19) and (20), for the radial  rw  and circular cw  components in 

scalar forms, or in vector forms, radial 
crw

r
 and circular cw

r
 components,  of the second-

order acceleration vector w
r

  of a kinematic point ( )ϕ.rP  moving along an ellipse (43), or in 

form ( )ϕε cos1
11

+==
pr

u  , in plane with constant sectorial velocity SCr 22 ==ϕ& ,  follow 

the expressions: 
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because it has:    ( )ϕε cos1
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 Radial 
crv  and circular cv  components of the vector v

r
 of the velocity of a kinetic 

point ( )ϕ.rP  moving along an ellipse in plane, with constant sectorial velocity 

SCr 22 ==ϕ& , are: 
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 ( )ϕε cos1
1

+=
p

Cvc    and    
r

C
vc =                        (50) 

because it holds that  uC
dt

d

d

dr

dt

dr
r ′−===

ϕ

ϕ
&  

 Radial ra  and circular ca  components of the vector  a
r

 of the acceleration of a 

kinetic point ( )ϕ.rP  moving along an ellipse, in plane, with constant sectorial 

velocity SCr 22 ==ϕ& , are: 

0=ca
r

,      ( )2

3

2 cos1
1

ϕε+−=
p

Car    and   
2

2 11

rp
Car −=            (51) 

Angular velocity ϕ&  of a kinetic point ( )ϕ.rP  moving around the centre O  ( in the 

focus 1F ) and along an ellipse  ( )ϕε cos1
11

+==
pr

u   with constant sectorial velocity  

SCr 22 ==ϕ& , on the basis of the expression (13) is in the form: 
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Angular acceleration ϕ&&  of the kinetic point ( )ϕ.rP  moving around the centre O  (in 

the focus 1F ) and along an ellipse  ( )ϕε cos1
11

+==
pr

u    with constant sectorial velocity 

SCr 22 ==ϕ&  on the basis of the expression (17) is in the form: 
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Angular acceleration ϕ&&&   of the second order of a kinetic point ( )ϕ.rP  moving 

around centre O  (in the focus 1F ) and along ellipse  ( )ϕε cos1
11

+==
pr

u    with constant 

sectorial velocity SCr 22 ==ϕ& , on the basis of expression (18) is in the form: 
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IV.2.  Kepler's laws on the movement of planets  and the acceleration of the second order 

(jerk) of the planets  

 

 

Kepler's laws on the motion of the planets relate to the description of the properties 

of the movement of the planet under the influence of the central forces, and we will repeat 

them here, although they were exposed when we studied and defined the laws of dynamics. 

Johan Kepler (1571-1630) was the successor to Tiho Brahe in the title of court 

astronomer and mathematician at the court in Prague. On the basis of numerous data from 

observation of the motion of the celestial bodies and, in particular, Mars, left by his 

predecessor, Tiho Brahe, Kepler continued to observe the movements of Mars and the Earth. 

In his work ’’Astronomia nova de motibus stellae Martis’’, published in 1609, he set up his 

first two laws of planet motion, and in the part of ’’Harmonices mundi’’ 1619 his third law. 

Kepler's kinematical laws on the movement of planets read: 

 

1 * Planets describe an elliptical path around the Sun; in the common focus  of 

these ellipses is the Sun (see Figure 6.b* and 7.): 

The path of a planet motion is in the form of an ellipse, with focuses in  1F  and 2F , and 

equation of an elliptic path in a polar coordinate system with centre in a focus 1F  of ellipse,  

is  
ϕε cos1+

=
p

r   in polar coordinates  ( )ϕ,r  , radial coordinate r  starting from focus 

1F  and angle circular coordinate ϕ  (see Figure  6.a*, and References [2] and [4]). Ellipse is 



with two half axes ( )cb, , and with parameter of the ellipse    
b

eb

b

c
p

222 −
== ,  and with 

eccentricity e  or linear eccentricity ε  in the relation of the form: bcbe ε=−= 22 , be < , 

1<ε .  

  

2 * The vector of the planet's position relative to the Sun in equal time intervals 

describes  a surface of the same area.   
This law argues that the sectoral velocity of the planet's motion is constant and in 

this polar coordinate system ( )ϕ,r   this statement is expressed by the following relation 

constC
dt

d
rrS ====

ϕ
ϕ 222 & . 

3 * The squares of the planet's round-the-clock circulation around the 

Sun are proportional to the cubes of the larger half-axis of the elliptical path 

of the planet. 

On the basis of the Kepler's second law, by using sectoral velocity, we 

arrive  at the third law that we express in a relation: 
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b
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where k   is the number valid for all planets, and T  is the time of one full cycle 

of the planet motion around the Sun. 
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Figure 7.  A set of elliptical orbits of the planets in the Solar planetary system with the Sun 

in a the commom point in which lies one of two focuses of elliptic pats of each of the 

planets of the Solar planetary system 

 



 

 
  
Figure 8.  Picture of Johanes Kepler (December 27, 1571 –November 15,1638) 

 

 These three laws do not determine the force of the planet's interplay, so 

they are not directly within the group of laws of dynamics, as we have defined 

them, but are the basis on which Newton determined the force of attraction 

between the planets. 

All presented expressions of kinematical parameters of the motion of a 

kinematical point along an ellipse path in plane with constant sectorial velocity  

are valid for the model of the motion of a planet.   

Then, angular acceleration ϕ&&&  of the second order  (jerk) of a planet 

( )ϕ.rP  moving around the Sun (in the focus 1F ) and along an ellipse  path 

defined by ( )ϕε cos1
11

+==
pr

u  ,  with constant sectorial velocity  

constCrS === ϕ&22 , is in the form: 
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Then, the vector of the acceleration w
r

 of the second order  (jerk) of a 

planet ( )ϕ.rP  moving around the Sun (in the focus 1F ) and along an ellipse 

path  ( )ϕε cos1
11

+==
pr

u    with constant sectorial velocity  constCrS === ϕ&22 , 



posseses two components, the radial rw  and circular cw  components in scalar 

form, and in vector form, radial 
crw

r
 and circular cw

r
,  in the forms: 
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V. Concluding remarks 
 

When we study the central movement in a plane, at a constant sectorial velocity, and from the 

kinematics of motion, we move to the dynamics of motion, we need to introduce the notion of 
central forces into consideration and analysis. Here, the term centripetal force appears, and as 

pointed out by Christian Huygens
∗∗∗∗
(Christian Huygens (1629-1695)), it was published as a formula in 

its work, “Horologium Oscillatorium”, published in Paris in 1683. Nowadays, known as Huygens’ 

theorem, he  states that the material point that moves along the circular arch with constant velocity is 

subjected to (only) normal (centrifugal) acceleration 
R

v
aN

2

= , which is always directed towards the 

center of the circle. 

Based on the above Huygens’ theorem, three English scientists Christopher Wren 

(Christofer Wren, 1692-1723), Robert Hook (Robert Hooke, 1635-1703) and Edmond 

Halley (Edmond Halley, 1656-1742), independently of each other, and almost parallel, 

performed the following conclusion: 

When it is assumed that due to the small deviations of the eccentricity of planetary paths, 

the planets move along circular lines, the normal acceleration of the movement of the planet 

is: 
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where T  is the time of one full cycle of the planet motion around the Sun. By taking 

Kepler's third law now, the normal acceleration can be written in the following way [2]: 
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And, the following can be concluded: The planets are subject to a normal acceleration 

directed towards the Sun, and the circular path by the intensity of the inversely proportional 

square of the radius of circle path. 
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Appendix: The different paths of a satellite launched by different cosmic 

velocities: ellipse, parabola, hyperbola and circle like path. 

Equation of the satellite path in polar coordinate is: 

( )
( )00

~cos1 ϕϕϕε
ϕ

−−+
=

p
r  

depending of the initial position and angle of the starting velocity.  Paremeters of the 

puthlines are: 
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First, let's ask how much the initial velocity should be communicated to an artificial 

satellite so that it would travel along a circular path around the Earth, because this case is 

significant for practice of using artificial satellites. In order to make the circle circular, when 

moving the material point - the satellite, it is necessary that the kinetic parameters are such 

that the eccentricity is equal to zero. For that case Initial velocity of an artificial satellite 

launched at position ( )hR +  from centre of Earth is defined by the following expression: 
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where 0α  is angle of initial velocity. 

 

Figure 9. Graphical representation of different paths of a satellite launched with different 

cosmic velocities: ellipse, parabola, hyperbola and circle like path. 

 

 

A special case is when the launch is carried out from a low-position position relative 

to the radius of the Earth and that the launch is carried out in a horizontal direction 00 =α , 

RhR ≈+  and 0≈h so, when the previous characteristic equation becomes: 

02 222

0

4

0 ≈+− RggRvv   and you need speed gRv
I

=0 . Since, is the radius of the Earth is 

[ ]kmR 6370= , velocity [ ]sec/9,70 kmv
I

≈  is required for this horizontal launch event. It's 

the first cosmic velocity.  Velocity  [ ]sec/2,110 kmv
II

≈  is the second cosmic velocity 

 

Bearing in mind the analysis of the character of the path of the motion of the 

artificial satellite under the influence of the central force of general gravity, we can conclude 

on the boundaries of certain paths that belong to the second-order curves, conic sections, 

when it comes to the path of motion of artificial satellites (see References [2] and [4] and 

Figure 9. ): 



a * If the initial velocity of launching artificial satellite from Earth at an initial 

velocity is parallel to the horizon, and if this velocity is less than the intensity of the first 

cosmic velocity [ ]sec/9,70 kmv < , the artificial satellite returns to the surface of the Earth. 

b * If the initial velocity of launching artificial satellite from the Earth to the initial 

velocity is parallel to the horizon, and if its velocity is equal to the first cosmic velocity 

[ ]sec/9,70 kmv ≈ , the artificial satellite will move along a circular path around the Earth 

without leaving that circular path. 

c * If the initial velocity of launching artificial satellites from the Earth to the initial 

velocity is parallel to the horizon, and if its velocity is in the intensity in the range between 

the first cosmic velocity and the second  cosmic velocity [ ] [ ]sec/2,11sec/9,7 0 kmvkm << , 

that is, the artificial satellite will move along an elliptical path around the Earth without 

leaving elliptical path. 

d * If the initial velocity of launching artificial satellite from the Earth to the initial 

velocity is parallel to the horizon, and if it is greater than the second cosmic velocity 

[ ]sec/2,110 kmv > , the artificial satellite will move along the hyperbolic path around the 

Earth, leaving the Earth's gravitational field leaving by this hyperbolic path. 

 

 

 

 

 

 

 

 

 

 

 



 



 



 



 
 



 



 
 

 



 


