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In March 2009 research team of  Project ON155002 Theoretical and Applied Mechanics 
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Nonlinear Dynamics - Milutin Mialnkovic, organized a one day Scientific seminar 
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Institute of SASA. Academician RAS Valery Kozlov Opening lecture.  Jubilee of the 80th 
birthday of Professor V.A.Vujicic  was included in the Seminar program and a Booklet 
of each two-pages abstracts was published. 

After the seminar participants and other researchers were invited to submit full 
papers for possible publishing in a special publication titled with the same name Address 
to Mechanics: Science, Teaching and Applications.. All submitted manuscripts for 
possible publishing in Special publication were evaluated by two reviewers and 19 
papers were accepted for publishing. 

At meeting on June 20th, 2012,  Executing committee of the Serbian Society of 
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Science, Teaching and Applications in the form of Special Issue of  the Journal 
Theoretical and Applied Mechanics with Guest editor Katica (Stevanovic) Hedrih. 
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applications, control of mechanical systems,  geodesic on the surface, fluid mechanics, 
celestial mechanics, computational mechanics, biologically inspired control in robotic 
systems,  .fractional calculus applications in mechanics, active control in mechanical 
systems, estimation of life of structures, eigen sensitivity of mechanical structural 
systems, vector position tangent space, vector method based on the mass moment vectors 
applications, discrete continuum method, method of variation constants, dynamics of 
systems with frictions and other. 

I hope, that this special issue will provoke interest and be a good addition to the 
quality of the Journal Theoretical and applied mechanics of our Serbian Society of 
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ON THE RESIDUAL MOTION IN DAMPED VIBRATING 
SYSTEMS 

UDC 534.16 

Ranislav M. Bulatović  

Faculty of Mechanical Engineering, University of Montenegro,  
81 000 Podgorica, Crna Gora 

Abstract. In this paper, linear vibrating systems, in which the inertia and stiffness 
matrices are symmetric positive definite and the damping matrix is symmetric positive 
semi-definite, are studied. Such a system may possess undamped modes, in which case 
the system is said to have residual motion. Several formulae for the number of 
independent undamped modes, associated with purely imaginary eigenvalues of the 
system, are derived. The main results formulated for symmetric systems are then 
generalized to asymmetric and symmetrizable systems. Several examples are used to 
illustrate the validity and application of the present results.   

Key words: linear system, dissipation, residual motion 

1. INTRODUCTION 

Some of the simplest and most fundamental vibrating systems can be described by a 
differential equation of the form  

                                           0=++ CqqBqA &&& , nq ℜ∈                                            (1) 
where A, B, and C are nn×  constant real symmetric matrices, q  is the n-dimensional 
vector of generalized coordinates and dots denote derivatives with respect to t (the time). 
The inertia matrix A and stiffness matrix C are positive definite (> 0), and the damping 
matrix B may be positive definite or positive semi-definite (≥  0). In the case 0>B  
dissipation is complete, and the case 0≥B  corresponds to incomplete dissipation. In the 
latter case the system is called partially dissipative (damped). 

It is convenient, although not necessary, to rewrite equation (1) in the form  
                                      0=++ KxxDx &&& ,                                                            (2) 

using the congruent transformation qAx 2/1= , where 2/1A  denotes the unique positive 

definite square root of the matrix A, and 2/12/1 −−= BAAD , and 2/12/1 −−= CAAK . 
All solutions )(tx  of the equation (2) (or )(tq  of (1)) can be characterized 

algebraically using properties of the quadratic matrix polynomial 
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                                                 KDIL ++= λλλ 2)( ,                                            (3)  
where I is the identity matrix. The eigenvalues of the system are zeros of the 
characteristic polynomial 

                                                   ))(det()( λλ L=∆                                                 (4) 
Since (4) is a polynomial of degree 2n with respect to λ , there are 2n eigenvalues, 
counting multiplicities. If λ   is an eigenvalue, the nonzero vectors X in the nullspace of 

)(λL  are the eigenvectors associated with λ , i. e., 
                                                       0)( =XL λ                                                      (5) 

In general, eigenvalues and corresponding eigenvectors may be real or may appear in 
complex conjugate pairs. 

If the dissipation is complete, it is well-known that the system (2) (or (1)) is 
asymptotically stable ( 0)( →tx  as ∞→t  for all solutions ))(tx , see [1]. On the other 
hand, the partially damped system (2) may or may not be asymptotically stable, although 
it is obviously stable in the Lyapunov sense (any solution of equation (2) remains 
bounded). Consequently, all eigenvalues of this system lie in the closed left-half of the 
complex plane ( 0Re ≤λ ). Notice that if the system is asymptotically stable, 
then 0Re <λ . 

Recently some attention has been paid to the question whether or not a damped 
system has pure imaginary eigenvalues, i. e., in the terminology of the mechanical 
vibrations, whether or not undamped modes are possible in such system (see [2] and 
quoted references). From the above discussion it is clear that nonexistence of undamped 
motions (also called “residual motions”) is equivalent to the asymptotic stability of the 
system, and consequently, any test for asymptotic stability gives the answer of the 
question. A survey of the stability criteria for linear second order systems is given in [3]. 
Also, it should be mentioned that the paper [2] rediscovered an old criterion for 
asymptotic stability of the system [4], as was recently stressed in [5].  

In this paper we are interested in the determination of the number of pure imaginary 
eigenvalues of the system without computing the zeros of the characteristic polynomial 
(4). The main result given in section 3 (Theorem 2) recently derived in our paper [6]. 
This result is based on the well-known condition of asymptotic stability [7], which 
coincides with the rank condition of controllability of a linear system (see [8]), and a 
transformation converting the system (2) into two uncoupled subsystems; one of them is 
r-dimensional undamped subsystem, where r is the number of conjugate pairs of purely 
imaginary eigenvalues of the system including multiplicity, the second is (n-r)-
dimensional damped asymptotically stable subsystem. When the matrix K  has all 
distinct eigenvalues, and r its eigenvectors lie in the nullspace of the damping matrix, the 
decomposability of the system in modal coordinates was observed in [4]. In sections 4 
and 5, when one of two matrices D and K is transformed on diagonal form, two useful 
results are stated. Finally, in section 6 the results of section 3 are generalized to 
asymmetric and symmetrizable systems.   
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2. THE DECOMPOSABILITY OF THE SYSTEM 

Theorem 1. Let rii ωω ±± ,...,1  be eigenvalues of )(λL . Then there exists an 
orthogonal matrix Q  such that 

                                                == DDQQT ˆ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−rn

r

D̂0
00

,                                    (6) 

and 

                                               == KKQQT ˆ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛Ω

−rn

r

K̂0
0

,                                    (7) 

where r0  is the zero square matrix of order r, and ),...,( 22
1 rr diag ωω=Ω . 

To prove Theorem 1 we need the following lemmas. 
Lemma 1. Let 1,),,( −=ℜ∈ iXi ωω , be an eigenpair of )(λL . Then ),( 2 Xω  and 

),0( X are eigenpairs of the matrices K and D, respectively. 
Proof. From  
                                    0)()( 2 =++−= XKDiIXiL ωωω ,                                   (8) 
we obtain 
                                     0,)(, 2 >=<+>−< DXXiXIKX ωω ,                            (9) 

where >< .,.  denotes the inner product, and >−< XIKX )(, 2ω , and >< DXX ,  are 
real quantities, since K and D are real symmetric matrices. Then >< DXX , =0, which 
implies 0=DX , since 0≥D . This together with 0)( =XiL ω  gives XKX 2ω= . 

It is clear that the eigenvector X  in Lemma 1 can be taken to be unit ( )1, >=< XX  
and real.  

Lemma 2. a) If ),( )1(
1 Xiω  and ),( )2(

2 Xiω are eigenpairs of )(λL  with 2
2

2
1 ωω ≠ , 

then 0, )2()1( >=< XX . 
b) If the eigenvalue ωi  of )(λL has multiplicity k, it possesses k eigenvectors which 

are mutually orthogonal.  
Proof. a) The result follows from Lemma 1 and the additional fact that eigenvectors 

associated with distinct eigenvalues of a symmetric matrix are orthogonal.  
b) Since the system (2) is stable, the multiple eigenvalue ωi  must be semi-simple, 

which means that the eigenvalue has k linearly independent eigenvectors. Since a linear 
combination of these k vectors is also an eigenvector of )(λL associated with ωi , the 
Gram-Schmidt process (see [9]) can be used to obtain k mutually orthogonal 
eigenvectors.  

It is follows from Lemma 1 and 2 that the number of independent undamped modes is 
equal to the number of conjugate pairs of purely imaginary eigenvalues (natural 
frequencies), including multiplicity.    

Proof of Theorem 1. By lemmas 1 and 2, there exists an orthonormal set of r vectors 
)()1( ,..., rXX , such that  
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                               0)( =jDX , )(2)( j
j

j XKX ω= , j=1,…,r                                    (10) 

Now, consider an orthogonal matrix Q  having the vectors )()1( ,..., rXX  as its first r 
columns, 

                                    ),...,( )()1( nXXQ =                                                           (11) 

The matrices D  and K  are then orthogonally congruent to matrices D̂  and K̂ , 
respectively, described by 

                               ),(ˆ )()( ><== jiT DXXDQQD                                          (12) 
and 

                               ),(ˆ )()( ><== jiT KXXKQQK ,                                            (13) 

where i,j = 1,…,n. Using (10) and ij
ji XX δ>=< )()( , , where ijδ  is the Kronecker delta 

and i,j = 1,…,n, we compute  
                                  0, )()( >=< ji DXX                                                              (14) 

and 
                                ijj

ji KXX δω 2)()( , >=< ,                                                        (15)  

where i = 1,…,n and j = 1,…,r. The relations (14) and (15) show that D̂  and K̂  have the 
partitioned forms (6) and (7).   

3. THE MAIN RESULTS 

Introduce the 2nn×  matrix 
                                 ( )DKKDD n 1... −=Φ                                            (16) 
which plays key role in a test for asymptotic stability of the system [7].                                                     
Theorem 2. The system (2) has Φ−= ranknr  conjugate pairs of purely imaginary 

eigenvalues, including multiplicity. 
Corollary 1. If mrankD = , then mnr −≤≤0 . 
This follows immediately from nrankrankD ≤Φ≤ .      
Proof of Theorem 2. Suppose that 0)( =±∆ jiω , ℜ∈jω , j = 1,…,r and that remaining 

zeros of )(λ∆  take places on the open left-half of the complex plane. Then from 
Theorem 1 it follows that there exists an orthogonal coordinate transformation  

                                            ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

z
y

Qx , ry ℜ∈ , rnz −ℜ∈ ,                                   (17) 

which transforms equation (2) to the form   

                                 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
0
0ˆˆ

z
y

K
z
y

D
z
y

&

&

&&

&&
                                                  (18) 

where D̂  and K̂  have the partitioned forms (6) and (7). Under the above assumptions it 
is clear that the (n-r) dimensional subsystem of (18)  

                               0ˆˆ =++ −− zKzDz rnrn &&& , rnz −ℜ∈                                               (19) 
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is asymptotically stable and, according to well-known result [7], we have  
                   ( ) rnDKDKDrank rn

rn
rnrnrnrn −=−

−−
−−−−

ˆˆ...ˆˆˆ 1                             (20) 
On the other hand, the matrix Φ  coincides with the matrix 

                            ( )PDKDKDQ n ˆˆ...ˆˆˆ 1− ,                                                 (21)  

where ),...,( TT QQdiagP = . Then  

                  =Φrank ( )rn
n

rnrnrnrn DKDKDrank −
−
−−−−

ˆˆ...ˆˆˆ 1 ,                           (22) 

since Q  and P  are nonsingular, and )ˆ,0(ˆ
rnr DdiagD −= , and ,0(ˆˆ

r
j diagDK =  

)ˆˆ
rn

j
rn DK −− . Now, according to the Cayley-Hamilton theorem (see [9]), every matrix 

rn
j

rn DK −−
ˆˆ  with integer j ≥  n-r can be represented by a linear combination of the matrices 

rnD −
ˆ , rnrn DK −−

ˆˆ , …, rn
rn
rn DK −

−−
−

ˆˆ 1 , and, consequently  

            ( )rn
n

rnrn DKDrank −
−
−−

ˆˆ....ˆ 1 = ( )rn
rn
rnrn DKDrank −

−−
−−

ˆˆ...ˆ 1           (23) 
The result then follows from (20), (22) and (23).      

Remark 1. The matrix (16) can be expressed in terms of the original matrices as  
                                 ),...,(~ 2/12/12/1 −−− Φ=Φ AAdiagA ,                                       (24) 

where  
                                   ( )BCABCAB n 111 )(...)(~ −−−=Φ                            (25) 

Consequently, Φ=Φ
~rankrank , since A is nonsingular.  

In the case of “classical damping” in which D  and K  commute the following result 
as a consequence of Theorem 2 can be obtained.  

Theorem 3. If KDDK = , then the system has rankDnr −=  conjugate pairs of 
purely imaginary eigenvalues. 

Proof. Since D  and K   commute there exists an orthogonal matrix such that both 
D  and K  are orthogonally congruent to diagonal matrices [9]. Then, evidently, 

=Φrank rankD , and Theorem 3 follows from Theorem 2.   
In the next, two examples are given to illustrate the application of the above results. 
Example 1. Consider the two-degree-of-freedom system shown in Fig. 1, where 

0>ic  and 0>β  stand for the spring constants and coefficient of viscous damping, 
respectively, and 1q  and 2q  are the displacements from equilibrium positions of masses 

1m  and 2m . 
 
 
 
 

 
Fig. 1 The system of example 

The inertia, damping and stiffness matrices of this system are as follows 

                  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

1

0
0

m
m

A , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

11
11

βB , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

1

0
0
c

c
C                                    (26) 

                          q1                                                           q2 

         c1                                                                β                            c2 

                                          m1                                                 m2                         
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It is clear that 1=rankB , and consequently, the system is partially damped. The matrix 
(25) takes the form 

                                Φ~ =
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−−

−−

2

2

2

2

1

1

1

1

11

11

m
c

m
c

m
c

m
c

β                                             (27) 

Thus, by Theorem 2, we have  

                            
⎩
⎨
⎧

=
≠

=Φ−=
1221

1221

,1
,0~2

mcmc
mcmc

rankr                                                (28) 

In the case 1221 mcmc = ,  the system can oscillate such that relative motion between 
the masses is absent, so that the damper dissipates no energy. If 1221 mcmc ≠ , the system 
does not have pure imaginary eigenvalues, and all motions lead up to dissipation of 
energy.  

Example 2. Consider the three-degree-of-freedom system (2) with 

                         
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−
=

101
000
101

D , and
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−
=

210
121

012
K ,                               (29) 

previously studied in [10]. 
     It can be easily verified that 1=rankD , and that KDDK = . Thus, by Theorem 3, 
system of this example has two conjugate pairs of purely imaginary eigenvalues. 

4. THE CASE WHEN K IS DIAGONAL (PRINCIPAL COORDINATES) 

It is well known that there exists an orthogonal matrix Q  such that 

                               ),...,( 22
1 1 knkn

T IIdiagKQQ ωω=Ω= ,                                       (30) 

where jω  and 
jnI  denote the distinct natural frequencies of the undamped system 

( 0=D  in (2)) with multiplicity 1≥jn  and the identity matrices of order jn , 
nnn k =++ ...1 . Multiple natural frequencies are typical in vibrating systems with 

symmetry or as a result of optimization.     
On transforming to principal (modal) coordinates defined by xQp T=  and using 

(30), (2) reduces to 
                                               0=Ω++ ppRp &&& ,                                                  (31) 

where the matrix DQQR T=  is known as the modal damping matrix. Form a consistent 
partition of R  with Ω : 
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⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

kkkk

k

k

RRR

RRR
RRR

R

.
....

.

.

21

22221

11211

                                              (32) 

We need the following statement. 
 Lemma 3. The system (31) is asymptotically stable if and only if  jjj rankRn = , j = 

1, …,k.  
Proof. See [11].                                   

Theorem 4. The system (31) has ∑
=

−=
k

j
jjrankRnr

1
 conjugate pairs of purely 

imaginary eigenvalues, including multiplicity. If ijω  is an eigenvalue of the system, then 
its multiplicity is equal to jjj rankRn − . 

Proof. It follows from Theorem 1 and Lemma 3.  
Since rankRmrankRjj =≤ , the next result recently formulated in [5] follows directly 

from Theorem 4.  
Corollary 2. If rankRn jj

>)(max , then system (31) has residual motion.        

Next, we apply Theorem 4 to the example 1. For this example, the matrices R  and 
Ω   take the forms  

           ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

=
21

12

21 /1
1/
mm

mm
mm

R β , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Ω

22

11

/0
0/
mc

mc
                         (33) 

Thus, by Theorem 4, r = 0 if 1221 mcmc ≠ , i. e., the system does not have residual motion 
(the system is asymptotically stable), and r = 1 if 1221 mcmc = . 

5. THE CASE WHEN D IS DIAGONAL 

Since 0≥= TDD  and mrankD = , there exists an orthogonal matrix Q  such that  

                                           ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

00
011S

DQQS T                                               (34) 

where )0,...,0,,...,( 111 mssdiagS = , 0>js  for all j = 1,…,m. By the coordinate 
transformation  

                              ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

v
u

Qx , mu ℜ∈ , mnv −ℜ∈                                                    (35) 

the system (2) reduces to the form 

                      ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0
0

00
0

2221

121111

v
u

PP
PP

v
uS

v
u

&

&

&&

&&
                                       (36) 

where  
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                                    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

2221

1211

PP
PP

KQQP T                                                    (37) 

is the transformed stiffness matrix written in the consistent partitioned form with (34). 
Introduce the (n-m)xm(n-m) matrix 
                             ( )21

1
22212221 ... PPPPPF mn −−=                                              (38) 

Lemma 4. rankFmrank +=Φ . 
Proof. Substituting (34) and (37) into (16), after some rank persevering 

manipulations, we obtain    

                   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Φ − 0...0

00...000

21
1

2221
2

22212221

11

PPPPPPP
S

rankrank n                  (39) 

Since every matrix 2122PP j  with mnj −≥ , according to the Cayley-Hamilton theorem, 

can be represented by a linear combination of the matrices 21P , 2122PP , …, 21
1

22 PP mn −−  the 
lemma is proved.  

Theorem 5. The system (36) has rankFmnr −−=  conjugate pairs of purely 
imaginary eigenvalues, including multiplicity.   

Proof. It directly follows from Theorem 2 and Lemma 4.  
Let us give an example illustrating Theorem 5. 
Example 3. (taken from [2]). Consider the tree-degree-of-freedom system (2) with 

                                 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

000
020
000

D , and
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−
=

330
352

023
K                            (40) 

The damping matrix is positive semi-definite with m = 1=rankD , whereas the 
stiffness matrix is positive definite. By the orthogonal matrix 

                                            
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

100
001
010

Q                                                         (41) 

we obtain 

            
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
==

000
000
002

DQQS T  and
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−−
==

303
032
325

KQQP T                       (42) 

The matrix F takes the form 

                                      ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−
−−

=
93
62

F                                                               (43) 

Thus, by Theorem 5, we have 1)13( =−−= rankFr . This fact can be corroborated by 
computing the eigenvalues of the system; the eigenvalues are 

                       i7321.1± , i3473.04203.0 ±− , i5283.25797.0 ±− .  
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6. SOME GENERALIZATIONS TO ASYMMETRIC SYSTEMS 

In this section, it is shown that theorems 2 and 3 can be generalized for a class of 
asymmetric systems (i. e., the symmetry restriction are not met by inertia, damping and 
stiffness matrices) commonly known as symmetrizable systems. Asymmetric coefficient 
matrices appear in problems involving follower forces, gyroscopy, aero-/hydro-elasticity 
and control effects, etc.   

Assuming that the inertia matrix A is nonsingular, the equations of motion can be 
written as  

                                        011 =++ −− CqAqBAq &&&                                                  (44) 
The symmetrizable systems are defined in [12] as systems that have symmetrizable 

matrices BA 1−  and CA 1− , i. e., such that factorizations 21
1 SSBA =−  and 31

1 SSCA =−  are 
permissible, where 1S  is symmetric and positive definite, while 2S  and 3S  need only be 

symmetric. Additionally, it is supposed that BA 1−  has nonnegative real eigenvalues and 
CA 1−  has positive real eigenvalues. Then, 2S  and  3S  are positive semi-definite and 

positive definite, respectively, and the system described by (44) is stable [12]. 
Consequently, all eigenvalues of this system lie in the closed left-half of the complex 
plane. 

Using the transformation xSq 2/1
1= , Eq. (44) is reduced to  

                                           0=++ KxxDx &&& ,                                                       (45) 
where 2/1

12
2/1

1 SSSDD T ==  and 2/1
13

2/1
1 SSSKK T == . Since 0≥= TDD  and 

0>= TKK , the results developed in the section 3 can be applied to Eq. (45). From the 
factorizations of  BA 1−  and CA 1− , we have 

                                              2/112/1
1 BSASD −−=                                                   (46) 

and 
                                              2/112/1

1 CSASK −−=                                                   (47) 
Substituting (46) and (47) into (16) results in  

                                    ),...,( 2/1
1

2/1
1

2/1
1 SSdiagS Φ=Φ − ,                                          (48) 

where  
                     ( )BACABCAABA n 111111 )(... −−−−−−=Φ                              (49) 

It is clear that Φ=Φ rankrank . Thus, the following proposition is proved.  
Theorem 6. The symmetrizable system described by Eq. (44), where BA 1−  and 
CA 1−  have non-negative and positive eigenvalues, respectively, has Φ−= ranknr  

conjugate pairs of purely imaginary eigenvalues. 
Remark 2. It is clear that Φrank  is the same as rank of the matrix (25), because 

Φ=Φ A~ . 
Also, the following result can be easily established. 
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Theorem 7. Suppose that BA 1−  and CA 1−  have non-negative and positive 
eigenvalues, respectively. If  BA 1−  and CA 1−  commute in multiplication, then the 
system ( 44) has )( 1BAranknr −−=  conjugate pairs of purely imaginary eigenvalues. 

Example 4. Consider the asymmetric system described by 

                                           0
41
44

21
42

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ qqq &&&                                         (50) 

Here note that 

                 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−

5556.117778.5
7778.58889.2

3115.02769.0
2769.02461.1

21
421BA ,                (51) 

and 

                 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−

5599.195573.7
5573.78897.4

3115.02769.0
2769.02461.1

41
441CA ,                (52)        

so that the coefficient matrices have a common positive definite factor. On the other 
hand, the eigenvalues of BA 1−  in this example are 0 and 4, and those of  CA 1−  are 2 and 
6. Hence, BA 1−  and CA 1−  have nonnegative and positive real eigenvalues, respectively. 
Thus, the Theorem can be applied. The matrix (49) takes the form  

                                       ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Φ

12621
241242

                                                   (53) 

and, consequently, 12 =Φ−= rankr . This is in agreement with the eigenvalue 
calculation for the system, which yields 22,1 i±=λ  and 224,3 i±−=λ .  

Finally, observe that BA 1−  and CA 1−  commute for this example, 1)( 1 =− BArank , 
and, according to the Theorem 7 , 1=r .     
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ON THE DETERMINATION OF SHIFTING OPERATORS 
ALONG GEODESICS ON A SURFACE 

UDC 514.7, 517.9 

Zoran Drašković 

Bubnjaračka 28, Zagreb-Malešnica, Croatia (zoran.draskovic_643@yahoo.com) 

Abstract: A procedure to obtain a closed form of the shifting operators along a known 
geodesic line on a surface as a solution of a system of linear algebraic equations is 
proposed. Its correctness is numerically demonstrated in the case of a helicoid surface 
and a spherical one. The future use of these operators in finite element approximations 
of tensor fields in non-Euclidean spaces is announced. 

Key words: surface, geodesic line, parallel transport, shifting operators 

1. INTRODUCTION 
It is well known that the system of differential equations for determining the 

components of a vector v parallelly propagated along a curve ( )u u sα α=  on a surface 
reads1 

     0   ,Dv dv duv
Ds ds ds

α α γ
α β
βγ= + Γ =  (1) 

where uα are so-called surface coordinates, α
βγΓ  are the Christoffel symbols of the 

second kind determined for this surface, and s is the arc length of this curve. The 
fundamental system of solutions .K α

β  of this homogeneous system of differential 
equations represents the operators of parallel transport (the shifting operators) with 
respect to the surface along this curve, establishing the relation 

 .( ) ( , )  ( )o ov P K P P v Pα α β
β=  (2) 

between the components of the vector v before and after its parallel transport from the 
point oP  to the point P . However, the existence of this fundamental system, i.e. the 
existence of shifting operators along the given curve, does not necessarily mean it is easy 

                                                           
1 Einstein's summation convention for diagonally repeated indices is used; Greek indices have the range {1,2}, 
while Latin indices will have the range {1,2,3}. 
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to find them. Namely, “the explicit form of the function … [ .K α
β ] is not known” ([5], p. 

260) and even in the case of the geodesic lines on a spherical surface (its great circles) 
the shifting operators are obtained in [6] by using a heuristic procedure (and not by 
solving the corresponding homogeneous system of differential equations). 

2. ALGEBRAIC APPROACH IN THE DETERMINATION OF SHIFTING OPERATORS 

Nevertheless, it turned out quite unexpectedly that one can obtain a closed form of 
these operators along a known geodesic line on a surface as a solution of a system of 
linear algebraic equations using the fact that the tangent vector of a geodesic is a parallel 
vector field along this line, i.e. the fact that 

 . ( , )  
o

o
P

du duK P P
ds ds

α β
α
β=  (3) 

and the insufficiencies of these two conditions for the determination of the four 
coefficients .K α

β  is surpassed by introducing an additional vector also parallelly 
propagated along the geodesic line 
 = ×w n t  (4) 
or in the component form 

   .j k
i ijkw n tε=  (5) 

Namely, this vector – permanently orthogonal to the tangent vector t  of a geodesic line 
on this surface – is always in the tangent plane of the surface; n  is the normal to the 
surface and hence (s. [1], p. 214) 

 1

2
   (  ,  /  ,   )j k

i ijkn z z ae e a a aαβ αβ αβ
α β αβ αβ αβε ε ε ε= = = ≡  (6) 

where iz  are the rectangular Cartesian coordinates, i iz z uα
α ≡ ∂ ∂  and ijk ijkeε = ; for the 

tangent vector t we have 

   ;i it z du dsα
α=  (7) 

the surface components of the vector w  (lying in the surface tangent plane) are 

   ;i
iw z wα α=  (8) 

in the case of the orthogonal coordinates uα  we have w a wα αβ
β=  and finally (9) 

1

2
.i i j k i j k i j m n k

i ijk ijk ijk mn
du duw a z w a z n t a z n z a z z z z
ds ds

γ γ
α αβ αβ αβ αβ µν

β β β γ β µ ν γε ε δ ε δ ε ε= = = =l l
l l  

Due to the parallel transport of the vector w  along the geodesic line we have 

 . ( , )o o Pw K P P wβ α α
β =  (10) 
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and the coefficients .K α
β  can now be determined from (3) and (10) 

 

1 2 1 1

.1 .1
1 2

1 2 1 1

2 2 1 2

.2 .2
1 2

2 2 1 2

    1 1( , )       ( , )
det det

                   

    1 1( , )       ( , )
det det

                   

o o

o o

P P P Po o

P o o P

P P P Po o

P o o P

du du du du
ds ds ds dsK P P K P P

w w w w

du du du du
ds ds ds dsK P P K P P

w w w w

⎫
⎪

= = ⎪
⎪
⎪
⎬

= =

   ,
⎪
⎪
⎪
⎪
⎭

 (11) 

where 

 

1 2

1 2

  
det    .

          
o oP P

o o

du du
ds ds

w w

=  (12) 

These expressions are implemented in the corresponding software tool in order to 
compare some numerical results with the formerly checked ones for the shifting 
operators on the spherical surface and exceptional coincidence is obtained! 

However – bearing in mind that the relations (9) are not the promising ones 
concerning the determination of the explicit expressions for the shifting operators and 
that the surface components of the vector w  are present in (11) – we can proceed 
directly, considering w  as a vector in the tangent plane of the surface orthogonal to the 
tangent vector of a geodesic line on this surface; namely 

 
2 1

22 111 2

11 22

  ,       ;
a adu duw w

ds dsa a
= − =  (13) 

hence for the coefficients .K α
β  we obtain the expressions 

 

1 1 2 2
11 22.1

1

22 11

2 1 1 2
22 22.1

2

11 11

2 1 1 2
11 11.2

1

22 22

( , )   

 ( , )

( , )   

  

o o

o o

o o

o P

o o o P
P P PP

P o

o o P o
P P P P

o P

o o o P
P P P P

a adu du du duK P P a
ds ds ds dsa a

a adu du du duK P P a
ds ds ds dsa a

a adu du du duK P P a
ds ds ds dsa a

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟= − −
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

( )

1 1 2 2
11 22.2

2

22 11

   

( , )   

o

o o

o P

P o

o o P o
P P P P

a a

a adu du du duK P P a
ds ds ds dsa a

αβ

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪ ≡⎬
⎪
⎪
⎪
⎪
⎪⎛ ⎞

⎜ ⎟⎪= +
⎜ ⎟⎪⎝ ⎠⎭

 (14) 

and in every single case one can try to find the explicit expressions for the components of 
the operators of parallel transport along the known geodesic line on the surface under 
consideration. 
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3. EXAMPLES 

3.1. Operators of parallel transport along geodesics on a spherical surface 

In order to obtain the effective expressions for these operators, we shall use the finite 
equation of the geodesic line (the great circle) on a spherical surface (with the radius 

0r ≠ ) in the form (s. for example [4], p. 167) 
 tg cos sin    ,A Bϑ ϕ ϕ= +  (15) 

where { },ϕ ϑ  are the geographical coordinates ( 1 2 ,  u uϕ ϑ≡ ≡ ) and the constants A and 
B can be obtained from the condition of passing through the points ( , )o o oP ϕ ϑ  and 

( , )P PP ϕ ϑ  

 
tg cos sin

  ;
tg cos sin

o o o

P P P

A B
A B

ϑ ϕ ϕ
ϑ ϕ ϕ

= + ⎫
⎬= + ⎭

 (16) 

hence it follows 

 
( )

( )

sin tan tan sin
( , , , )

sin
  .

tan cos cos tan
( , , , )

sin

P o P o
o P o P

P o

P o P o
o P o P

P o

A A

B B

ϕ ϑ ϑ ϕ
ϕ ϕ ϑ ϑ

ϕ ϕ
ϑ ϕ ϕ ϑ

ϕ ϕ ϑ ϑ
ϕ ϕ

− ⎫= = ⎪− ⎪
⎬− ⎪= =
⎪− ⎭

 (17) 

Knowing that the components of the fundamental metric tensor in the system { },ϕ ϑ  are 

 2 2 2
11 12 21 22cos   ,   0  ,   a a r a a a a a a rϕϕ ϕϑ ϑϕ ϑϑϑ= = = = = = = =  (18) 

we have 
 ( )2 2 2 2 2cosds a du du r d dα β

αβ ϑ ϕ ϑ= = +  (19) 

and, bearing in mind the relation (15), we obtain 

 
( )

( )
( )

22

22

1

cos 1 cos sin cos
  .

cos sin cos

1 cos sin cos

d
ds r A B

A Bd
ds r A B

ϕ

ϑ ϑ ϕ ϕ

ϑ ϕ ϕϑ

ϑ ϕ ϕ

⎫= ± ⎪
+ − ⎪⎪

⎬− ⎪= ⎪+ − ⎪⎭

m

 (20) 

Using (17), we have for example 

 

( )
( ) ( )

( )

( ) ( )

22 2

22 2

sin

cos sin cos cos tan tan

cos cos tan tan

sin cos cos tan tan

P o

o
o P o o P o o P

o P o o P

o
P o o P o o P

d
ds r

d
ds r

ϕ ϕϕ

ϑ ϕ ϕ ϑ ϕ ϕ ϑ ϑ

ϑ ϕ ϕ ϑ ϑϑ

ϕ ϕ ϑ ϕ ϕ ϑ ϑ

⎫−
= ⎪

⎪⎡ ⎤− + − −⎣ ⎦ ⎪
⎬

⎡ ⎤− − ⎪⎣ ⎦= − ⎪
⎡ ⎤− + − − ⎪⎣ ⎦ ⎭

 (21) 

and similarly 
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( )
( ) ( )

( )

( ) ( )

22 2

22 2

sin

cos sin cos cos tan tan
   .

cos cos tan tan

sin cos cos tan tan

P o

P
P P o P P o P o

P P o P o

P
P o P P o P o

d
ds r

d
ds r

ϕ ϕϕ

ϑ ϕ ϕ ϑ ϕ ϕ ϑ ϑ

ϑ ϕ ϕ ϑ ϑϑ

ϕ ϕ ϑ ϕ ϕ ϑ ϑ

⎫−
= ⎪

⎪⎡ ⎤− + − −⎣ ⎦ ⎪
⎬

⎡ ⎤− − ⎪⎣ ⎦= ⎪
⎡ ⎤− + − − ⎪⎣ ⎦ ⎭

 (22) 

Finally – substituting (21) and (22) in (14) – we obtain the following explicit 
expressions, in the geographical coordinates { },ϕ ϑ , for the operators of parallel 
transport with respect to a spherical surface along the geodesic line connecting 

( , )o o oP ϕ ϑ  and ( , )P PP ϕ ϑ  

 

( )

( ) ( )

( ) ( ){

.1 2
1

2

.1
2

cos1( , )   sin
cos

                   cos cos tan tan cos tan tan

1( , ) sin cos tan tan

                                         

o
o P o

P

o P o P o P o o P

o P o P o P o

K P P
S

K P P
S

ϑ
ϕ ϕ

ϑ

ϑ ϕ ϕ ϑ ϑ ϕ ϕ ϑ ϑ

ϕ ϕ ϕ ϕ ϑ ϑ

⎧
= − −⎨

⎩
⎫

⎡ ⎤ ⎡ ⎤− − − − − ⎬⎣ ⎦ ⎣ ⎦
⎭

⎡ ⎤= − − − − +⎣ ⎦

( ) }

( ) ( ){.2
1

2

cos
                               + cos tan tan

cos
1( , )   sin cos cos cos tan tan

                                                                      cos c

o
P o o P

P

o P o P o P o P o

o

K P P
S

ϑ
ϕ ϕ ϑ ϑ

ϑ

ϕ ϕ ϑ ϑ ϕ ϕ ϑ ϑ

ϑ

⎡ ⎤− −⎣ ⎦

⎡ ⎤= − − − +⎣ ⎦

+ ( ) }
( ){

( ) ( ) }

.2 2
2

os tan tan

1( , )   sin

             cos cos cos tan tan cos tan tan

P o o P

o P o

P o P o P o P o o P

K P P
S

ϕ ϕ ϑ ϑ

ϕ ϕ

ϑ ϑ ϕ ϕ ϑ ϑ ϕ ϕ ϑ ϑ

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪⎡ ⎤− −⎣ ⎦ ⎪
⎪

= − − ⎪
⎪
⎪⎡ ⎤ ⎡ ⎤− − − − −⎣ ⎦ ⎣ ⎦ ⎭

 (23) 

where 

 
( ) ( )

( ) ( )

22 2

22 2

sin cos cos tan tan  

   sin cos cos tan tan       .

P o o P o o P

P o P P o P o

S ϕ ϕ ϑ ϕ ϕ ϑ ϑ

ϕ ϕ ϑ ϕ ϕ ϑ ϑ

⎡ ⎤≡ − + − − ×⎣ ⎦

⎡ ⎤× − + − −⎣ ⎦

 (24) 

These expressions, in comparison with the ones in Appendix, have considerably simpler 
form. Concerning the correctness of (23), as well of the expressions (11) and (14), the 
accordance of the four groups of results (quoted in Table 1.) for an arbitrarily selected 
pair of points on the spherical surface represents a numerical confirmation of the 
usefulness of the previously obtained expressions for shifting operators. 

3.2. Operators of parallel transport along geodesics on a helicoid surface 

In the case of the helicoid surface 

 

1

2

3

cos

sin    ( )

z

z b const

z b

ρ ϕ

ρ ϕ

ϕ

⎫=
⎪

= =⎬
⎪= ⎭

 (25) 
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the components of the fundamental metric tensor in the system { },ρ ϕ  ( 1 2 ,  u uρ ϕ≡ ≡ ) 
are 
 2 2

11 12 21 22

1  ,  0  ,  a a a a a a a a b
ρρ ρϕ ϕρ ϕϕ

ρ= = = = = = = = +  (26) 
and we have 
 ( )2 2 2 2 2   .ds a du du d b dα β

αβ ρ ρ ϕ= = + +  (27) 

On the other side, the equation of the geodesic line on this surface can be found in the 
form (s. for example [3], p. 45) 

 
( )( )2 2 2 2 2

 D dC
b b D

ρϕ
ρ ρ

= ±
+ + −

∫  (28) 

and, bearing in mind (27), we obtain 

 

2 2 2

2 2

2 2

  .

d b D
ds b
d D
ds b

ρ ρ
ρ

ϕ
ρ

⎫+ −
= ± ⎪

⎪+
⎬
⎪= ± ⎪+ ⎭

 (29) 

Rewriting (28) in the form 

 
( )( )

 

2 2 2 2 2
  ,

o

D drC
r b r b D

ρ

ρ

ϕ = ±
+ + −

∫  (30) 

we find oC ϕ= (from the condition that oϕ ϕ=  when oρ ρ= ), while the constant D 
should be determined from the condition that 

 
( ) ( )

 

2 2 2 2 2
  .

P

o

P o
D dr

r b r b D

ρ

ρ

ϕ ϕ= ±
+ + −

∫  (31) 

Due to the monotony of the subintegral function in (31), it is relatively simple to obtain a 
sufficiently exact value of the constant D as a numerical solution of this equation. With 
such approximative value for D, the evaluation of the components of the operators of 
parallel transport along the geodesic line connecting the points ( , )o o oP ρ ϕ  and 

( , )P PP ρ ϕ  on a helicoid surface can be performed according to (14), using the 
expressions (26) and (29). 

In this case, in order to examine the correctness of the whole proposed procedure, the 
numerical comparison is made between two approaches: the above described one using 
shifting operators and the one without these operators. In the first case the contravariant 
components of a vector v shifted on this surface from oP  to P  is calculated according to 
the formula 

 .( ) ( , ) ( )o ov P K P P v Pα α β
β=  (32) 
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(where 1 2,  v v v vρ ϕ≡ ≡ ) and the Cartesian components of this vector at the point P  are 
determined in the usual way 

 ( ) ( )  ( )
i i

i

P P

z zv P v P v Pρ ϕ

ρ ϕ
∂ ∂

= +
∂ ∂

 (33) 

(but now 
1 2 31 2 3,  ,  x z y z z zv v v v v v v v v≡ ≡ ≡ ≡ ≡ ≡ ). In the second case, the Cartesian 

components of the vector v are obtained directly (without introducing the notion of the 
operator of parallel transport with respect to a surface) from the condition that a vector 
shifted along a geodesic line must close a constant angle with this curve at each of its 
points (s. p. 143 in [2]). The results for an arbitrarily selected pair of points on the 
helicoid surface (with 2b h π=  and 5h = ) are quoted in Table 2. and the accordance is 
evident. 

4. CONCLUDING REMARKS AND FUTURE ACTIVITIES 

The relatively simple and numerically efficient way to obtain the values of 
components of the operators of parallel transport along a known geodesic line passing 
through two arbitrarily selected points on a surface is described. Although this procedure 
– based on a solution of a system of linear algebraic equations – can be used to obtain the 
explicit analytical expressions for the shifting operators in some cases, the main benefit 
is a possibility of its use in the future numerical testing of an approach in finite element 
approximations of tensor fields in non-Euclidean spaces proposed in [7]. Namely, instead 
of the usual approximation of components of tensor fields, the approximation of the 
whole field (as a kernel) is performed and the operators of parallel transport play the 
fundamental role in such approach. 
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Table 1. Geographical components of the shifting operators along the geodesic 
           line connecting the points Po and P on a spherical surface 
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2.296023426624850E 2 0.994777456654367
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Table 2. Cartesian components of a given vector after parallel transport from the 
              point Po to the point P along the geodesic line on a helicoid surface 
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O ODREĐIVANJU OPERATORA PARALELNOG POMERANJA 
DUŽ GEODEZIJSKIH LINIJA NA POVRŠIMA 

Zoran Drašković 

Apstrakt: Predložen je postupak za dobijanje zatvorenog oblika operatora paralelnog pomeranja 
duž poznate geodezijske linije na nekoj površi kao rešenja sistema linearnih algebarskih jednačina. 
Njegova korektnost numerički je pokazana na primeru sferne i helikoidalne površi. Nagoveštena je 
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buduća upotreba tih operatora u aproksimacijama konačnim elementima tenzorskih polja u 
neeuklidskim prostorima. 

Ključne reči: površ, geodezijska linija, paralelno pomeranje, operatori paralelnog pomeranja 
 

Appendix: Operators of parallel transport along geodesics on a spherical surface   
(heuristic approach) 

The explicit expressions – obtained in [6] by using a heuristic procedure – for the 
operators of parallel transport with respect to a spherical surface along the geodesic line 
(the great circle) connecting ( , )o o oP ϕ ϑ  and ( , )P PP ϕ ϑ  read (geographical coordinates 
are in question!) 

 

.1
1

2

.1
2

cos( , ) [sin sin( ) cos cos( )cos ]
cos

[sin sin( ) cos cos( )cos ]
cos( )cos( )sin

1( , )
cos

{

}

{

o
o P P Eu P P Eu Eu

P

o o o oEu Eu Eu

oP Eu Eu Eu

o
P

K P P

K P P

ϑ ϕ ϕ ψ ϕ ϕ ψ ϑ
ϑ

ϕ ϕ ψ ϕ ϕ ψ ϑ
ϕ ψ ϕ ψ ϑ

ϑ

= − + − ×

× − + − +

+ − −

=

                 

                           

[sin sin( ) cos cos( )cos ]

sin [sin cos( ) cos sin( )cos ]
cos sin cos

cos( )sin [sin sin(

{
}

P P Eu P P Eu Eu

o o o o oEu Eu Eu

o oEu

o oP Eu Eu

ϕ ϕ ψ ϕ ϕ ψ ϑ

ϑ ϕ ϕ ψ ϕ ϕ ψ ϑ
ϑ ϑ ϕ

ϕ ψ ϑ ϑ ϕ

− + − ×

× − − − +

+ −

− −

            

                                       

         
.2
1

)sin cos cos ]

( , ) cos sin [sin cos( ) cos sin( )cos ]
cos sin cos

[sin sin( ) cos cos( )c

{
}

}
{

oEu Eu Eu

o o P P P Eu P P Eu Eu

P Eu P

o o o oEu Eu

K P P

ψ ϑ ϑ ϑ

ϑ ϑ ϕ ϕ ψ ϕ ϕ ψ ϑ
ϑ ϑ ϕ

ϕ ϕ ψ ϕ ϕ ψ

− +

= − − − +

+ ×
× − + −

                                     

                  

.2
2

os ]

cos( )sin [sin sin( )sin cos cos ]
( , ) sin [sin cos( ) cos sin( )cos ]

cos sin cos
s

{
}

{

}
Eu

o Eu Eu P P Eu Eu P Eu

o P P P Eu P P Eu Eu

P Eu P

K P P

ϑ

ϕ ψ ϑ ϑ ϕ ψ ϑ ϑ ϑ
ϑ ϕ ϕ ψ ϕ ϕ ψ ϑ

ϑ ϑ ϕ

−

− − − +

= − − − +

+ ×

×

         

                                     

           in [sin cos( ) cos sin( )cos ]
cos sin cos

[sin sin( )sin cos cos ]
[sin sin(

}
o o o o oEu Eu Eu

o oEu

P P Eu Eu P Eu

o o

ϑ ϕ ϕ ψ ϕ ϕ ψ ϑ
ϑ ϑ ϕ

ϑ ϕ ψ ϑ ϑ ϑ
ϑ ϕ

− − − +

+ +
+ − + ×

× −

                                     

                      

                        )sin cos cos ]oEu Eu Euψ ϑ ϑ ϑ+
  

where 

 

cos cos cos( )   ,   cos cos cos( )
sin cos sin sin sin cos

tg
cos cos sin sin cos cos

cos cos sin cos sin cos cos cos
cos

         (sin cos sin sin si

o o o Eu P P P Eu

o o P o P P
Eu

o o P o P P

o o P P o o P P
Eu

o o P o

ϕ ϑ ϕ ψ ϕ ϑ ϕ ψ
ϕ ϑ ϑ ϑ ϕ ϑ

ψ
ϕ ϑ ϑ ϑ ϕ ϑ

ϕ ϑ ϕ ϑ ϕ ϑ ϕ ϑ
ϑ

ϕ ϑ ϑ ϑ

= − = −

−
=

−

−
=

− 2

2

2

n cos )

     (sin cos cos cos cos sin )

(cos cos sin cos sin cos cos cos )

P P

o P P o o P

o o P P o o P P

ϕ ϑ

ϑ ϕ ϑ ϕ ϑ ϑ

ϕ ϑ ϕ ϑ ϕ ϑ ϕ ϑ

+

+ − +

+ −

  



26 Z. DRAŠKOVIĆ 

 

and Euψ  and Euϑ  are the Euler angles: the precession Euψ  is the angle of inclination of 
the line which represents the intersection of the plane oOP P  and the coordinate plane 

1 2Oz z , while the nutation Euϑ  is the angle between the normals to the planes 1 2Oz z  and 

oOP P  (the angle of proper rotation is 0Euϕ = ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
_______________________________________________________________________ 
DOI : 10.2298/TAM12S117D      Math.Subj.Class.: 53A35; 53C22; 53C99;   

26 Z. DRAŠKOVIĆ 

 

and Euψ  and Euϑ  are the Euler angles: the precession Euψ  is the angle of inclination of 
the line which represents the intersection of the plane oOP P  and the coordinate plane 

1 2Oz z , while the nutation Euϑ  is the angle between the normals to the planes 1 2Oz z  and 

oOP P  (the angle of proper rotation is 0Euϕ = ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
_______________________________________________________________________ 
DOI : 10.2298/TAM12S117D      Math.Subj.Class.: 53A35; 53C22; 53C99;   

Series: Special Issue - Address to Mechanics, Vol. 40 (S1), 2012. 

ADDRESS TO MECHANICS: 
SCIENCE, TEACHING AND APPLICATIONS 

GUEST EDITOR: KATICA R. (STEVANOVI) HEDRIH 

 

 

Submitted on  May 2009, accepted on June 2012. 

 

 

Submitted on May 2009, accepted on June 2012. 

 

 

Submitted on December 2009, revised on October 2011, accepted on June 2012. 

 

 

Submitted on April   2009, accepted on June 2012. 

 

 

 

Submitted on April   2009, accepted on June 2012. 

 

Submitted on   July 20012, revised on September 2021, accepted on October 2012. 

 

 

Submitted on   April   2009, accepted on June 2012 

 

 

Submitted on   October 06, 2011, accepted on June 2012 

 

 

Submitted on   April   2009, accepted on June 2012 

 

 

Submitted on   June 07, 2009, revised on  Srptember 2012, accepted on October 2012. 

 

 

Submitted on   April   2009, accepted on June 2012 

 

 

Submitted on   April   2009, accepted on June 2012 

 

 

Submitted on   July 20012, revised on September 2021, accepted on October 2012 

 

 

Submitted on   April   2009, accepted on June 2012 

 

 

Submitted on   April   2009, accepted on June 2012 

 

Submitted on   April   2009, accepted on June 2012 

 

Submitted on   April   2009, accepted on June 2012 

 

 

Submitted on   July 20012, revised on September 2012, accepted on October 2012 

 

 

 

Submitted on   December 2009, revised on October 2011, accepted on June 2012 

 

 

  



THEORETICAL AND APPLIED MECHANICS 
Series: Special Issue - Address to Mechanics, Vol. 40(S1), pp. 27-48, Belgrade 2012.  

 

DIFFERENT STRUCTURES ON SUBSPACES OF MOsck  

UDC 534.16 

Irena Čomić* and Radu Miron** 

*Faculty of  Technical Sciences, University of Novi Sad,Srbia,  
e-mail: comirena@uns.ac.rs, irena.comic@gmail.com 

website: http://imft.ftn.uns.ac.rs/~irena/ 
** Faculty of Mathematics ”Al. I. Cuza”, RO - 6600 Iasi, Romania 

e-mail: radu.miron@uaic.ro 
 

 
Abstract The geometry of MOsck  spaces was introduced by R. Miron and Gh. Atanasiu in 
[6] and [7]. The theory of these spaces was developed by R. Miron and his cooperators from 
Romania, Japan and other countries in several books and many papers. Only some of them 
are mentioned in references. Here we recall the construction 
of adapted bases in M)T(Osck  and M)(OscT k* , which are comprehensive with the J  
structure. The theory of two complementary family of subspaces is presented as it was done 
in [2] and [4]. 

The operators J , J , θ , θ , p , *p are introduced in the ambient space and subspaces. 
Some new relations between them are established. The action of these operators on Liouville 
vector fields are examined. 

Math. Subject Classification 2000: 53B40, 53C60 

Key words and phrases: projector operators, J  structure, θ  structure, subspaces in 

MOsck . 

1. TANGENT AND COTANGENT BUNDLES ON MOsck   

Let MOscE k=  be a )n, (kC 1+∞ dimensional space. Some point Eu∈  in some 
local chart has coordinates: 

 
( ) ( )Aakaaa yyyyu == ,.....,, 10 , kA ,0= ,  na ,0= . 

 
The set of allowable coordinate transformations are given by 
 

                         ( )aaa yyy 000 ′′ =   or   ( )aaa xxx ′′ =               (1.1) 
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Theorem 1.1. The transformations of type (1.1) form a pseudo-group. 
 
The natural basis *B  of )(* ET  is 

 },...,,{ 10* kaaa dydydyB = . 

As elements of this basis are not transforming as tensors, we introduce the special 
adapted basis 

 },...,,{ 10* kaaa yyyB δδδ=  

where 
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 (1.2) 

or shorter 

 [ ] ( )
( )[ ][ ]cb
c

b dyMy =δ . (1.3) 

Theorem 1.2. The necessary and sufficient conditions that Aayδ  are transformed as 
d -tensors, i.e. 

 Aa
a

a
Aa y

x
xy δ
∂
∂

=δ
'

' , ,k A 0=  (1.4) 

are the following equations: 
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The natural basis B  of )(ET  is 

 },...,,{ 10 kaaaB ∂∂∂= . 

The elements of this basis are not tensors, so we introduce the special adapted basis 

 },...,,{ 10 kaaaB δδδ= , 

where 
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or shorter 
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Theorem 1.3. The necessary and sufficient conditions that Aayδ , ,k A 0=  are 
transformed as d -tensors, i.e. 
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are the following equations: 
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 kB ≤≤1 . 

Theorems 1.2 and 1.3 first time was proved in [6] and [7] for the special adapted 
bases B  and *B which are comprehensive with the structure J . In [6] and [7] one 
solution of (1.5) and (1.10) using only the metric tensor in )( axM was given. They are 

formally different from these theorems because in [5]-[12] instead of  Aay from (1.1) it 

appears
!A

y Aa

, ,k A 1= . 

Theorem 1.4. If the bases *B  and B  are dual to each other, then *B and B  will be 
dual if INM =  i.e. the matrices N and M are inverse to each other. 

 
Proof. By assumption is [ ][ ] Idy c

bb
c δ=∂ . From (1.3) and (1.8) we have 
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In this form, Theorem 1.4 was proved in [2], [3], but in the explicit form it was given 
already in [6], [7]. 

2. THE PROJECTION OPERATORS 

The projection operators are well known in linear algebra. Here they are presented in 
the tensor form in the special adapted bases of MOsck . 

Let us denote by **
2

*
1

* ,...,,, kVVVH  the subspaces of (E)T *  generated 

by { }{ } { }kaaa yyy δδδ ,...,, 10  respectively. The following decomposition is true: 

 **
2

*
1

* ... k
* VVVH(E)T ⊕⊕⊕⊕= . 

Let us denote by kVVVH ,...,,, 21 the subspaces of T(E)  generated by 
{ } { } { } { }kaaaa δδδδ ...,,, 210 respectively. Then 

 kVVVHT(E) ⊕⊕⊕⊕= ...21 . 

If )(ETX ∈ , then we can write 

 Aa
Aa

ka
ka

a
a

a
a

a
a XXXXXX δ=δ++δ+δ+δ= ...2

2
1

1
0

0  (2.1) 

Let us define kpppp ,...,,, 21 , the projector operators of T(E)  on kVVVH ,...,,, 21  
respectively, where: 
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 [ ] ,

000

000
001

...
1

0

10
0

00

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

δ

δ
δ

⊗

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

δδδ=δ⊗δ=

kb

b

b

kbbb
b

b

y

y
y

yp
M

L

M

L

L

 (2.2) 

 ,1
11

b
b yp δ⊗δ=  

 M  

 [ ]

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

δ

δ
δ

⊗

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

δδδ=δ⊗δ=

kb

b

b

kbbb
b

b

y

y
y

yp
M

L

M

L

L
1

0

10
0

00

000

000
001

... . 

We have: 

 Ipppp k =++++ ...210 . 

Theorem 2.1. For the vector field X  given by (2.1) and the projector operators 
defined by (2.2) the following decomposition is valid 

 XppppXpXpXpXpX kk )...(... 210210 ++++=++++= , 

where 

 b
bXXp 0

0
0 δ= , kb

kb
kb

b XXpXXp δ=δ= ,...,1
1

1 . 

The one form field )(* ET∈ω  can be written: 

 ka
ka

a
a

a
a yyy δω++δω+δω=ω ...1

1
0

0 . (2.3) 

Let us define **
1

*
0 ,...,, kppp  the projector operators of (E)T *  on **

2
*

1
* ,...,,, kVVVH  

respectively, with 

 b
byp 0

0*
0 δ⊗δ=  (2.4) 

 b
byp 1

1*
1 δ⊗δ= ,…, 

 kb
kb

k yp δ⊗δ=* . 

If we write **
1

*
0 ,...,, kppp  in the matrix form, it is easy to see that 

 kk pppppp === *
1

*
10

*
0 ,...,,  (2.5) 

where " ⎯ " means: transposed of. 
We have  
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 Ippp k =+++ **
1

*
0 ...  (2.6) 

Theorem 2.2. For the one-form field w  given by (2.3) and the projector operators 
**

1
*
0 ,...,, kppp   defined by (2.4) the following relation is valid: 

 kk wpwpwpwpwpwpw +++=+++= ...... 10
**

1
*
0 , (2.7) 

where 

 0
*
0

0
0 wpwpyw b

b ==δ , 

 1
*
1

1
1 wpwpyw b
b ==δ ,…, 

 kk
kb

kb wpwpyw ==δ * . 

3. THE J  AND θ  STRUCTURES 

The structure J  is a tensor field on space (E)TT(E) *⊗  defined by  

 

[ ]

....32

...32

000

0020
0001
0000

...

)1(2
3

1
2

0
1

)1(2
3

1
2

0
1

2

1

0

210

ak
ka

a
a

a
a

a
a

ak
ka

a
a

a
a

a
a

ka

a

a

a

kaaaa

dykdydydy

ykyyy

y

y
y
y

k

J

−

−

⊗∂++⊗∂+⊗∂+⊗∂

=δ⊗δ++δ⊗δ+δ⊗δ+δ⊗δ

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

δ

δ
δ
δ

⊗

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=δδδδ=

M

L

MM

L

L

L

 (3.1)  

From Definition 3.1, we get 
Remark 3.1. We have 

 0...,32, ,)1(,32,2110 =δδ=δδ=δδ=δδ=δ − kbkbbkbbbbbb JkJJJJ  (3.2) 

From the above it follows 

 0...: 121 →→→→→→ − kk VVVVHJ . 

From (3.1) it follows 
 
Remark 3.2. 

 00 =δ Jy b , bb yJy 01 δ=δ , bb yJy 12 2δ=δ ,…, bkkb ykJy )1( −δ=δ  (3.3) 

i.e. 

 JVVVVH kk :...0 **
1

*
2

*
1

* ←←←←←← − . 
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Definition 3.2. The structure θ  is a tensor field on space (E)TT(E) *⊗  defined by 

 

[ ]

.1...
2
1

1...
2
1

00000

10000

0
3
1000

00
2
100

00010

...

)1(
2

1
1

0

)1(
2

1
1

0

)1(

2

1

0

210

ka
ak

a
a

a
a

ka
ak

a
a

a
a

ka

ak

a

a

a

kaaaa

dy
k

dydy

y
k

yy

y
y

y
y
y

k

θ

⊗∂++⊗∂+⊗∂

=δ⊗δ++δ⊗δ+δ⊗δ

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

δ
δ

δ
δ
δ

⊗

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

δδδδ=

−

−

−

M

L

L

MM

L

L

L

 (3.4) 

 
Remark 3.3. The structure θ  satisfies the following relations: 

 bb yy 10 δ=θδ , bb yy 21

2
1
δ=θδ ,…, kbbk y

k
y δ=θδ − 1)1( , 0=θδ kby  (3.5) 

i.e. 

 θ←←←←←← − :...0 *
1

*
2

*
1

* HVVVV kk . 

From (3.4) it follows 
Remark 3.4. The following relations are valid 

 00 =θδ b , bb 01 δ=θδ , bb 12 2
1
δ=θδ ,…, bkkb k )1(

1
−δ=θδ , (3.6) 

i.e. 
 0...: 121 →→→→→→θ − HVVVV kk . 

Definition 3.3. The transpose of the structure J  denoted by J  is a tensor field on 
T(E)(E)T * ⊗  defined by 

 
[ ]

ka
ak

a
a

a
a

a
a

ka

a

a

kaaa

ykyyy

k
yyyJ

δ⊗δ++δ⊗δ+δ⊗δ+δ⊗δ

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

δ

δ
δ

⊗

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

δδδ=

− )1(
3

2
2

1
1

0

1

0

10

...32

0000
000

0200
0010

...
M

L

L

M

L

L

 (3.7) 
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Definition 3.4. The transpose of the structure θ  denoted by θ  is a tensor field on 

T(E)(E)T * ⊗  defined by 

 
[ ]

ak
ka

a
a

a
a

ka

a

a

a

kaaaa

y
k

yy

k

yyyy

)1(1
2

0
1

2

1

0

210

1...
2
1

0100

0
2
10

001

000

...

−δ⊗δ++δ⊗δ+δ⊗δ

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

δ

δ
δ
δ

⊗

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

δδδδ=θ
M

L

M

L

L

L

 (3.8) 

 
Remark 3.5. For the structure J  the following relations are valid: 

 00 =δ byJ , bb yyJ 01 δ=δ , bb yyJ 12 2δ=δ ,…, bkkb ykyJ )1( −δ=δ , (3.9) 

i.e. 

 0...: **
1

*
2

*
1

* →→→→→→ − HVVVVJ kk  

 bb J 10 δ=δ , bb J 21 2δ=δ , bb J 32 3δ=δ ,…, kbbk kJ δ=δ − )1( , 0=δ Jkb  (3.10) 

i.e. 

 . JHVVVV kk :...0 121 ←←←←←← − . 

Remark 3.6. For the structure θ  the following relations are valid: 

 bb yy 10 δ=δθ , bb yy 21

2
1
δ=δθ ,..., kbbk y

k
y δ=δθ − 1)1( , 0=δθ kby , (3.11) 

i.e. 

 0...: **
2

*
1

* →→→→→θ kVVVH  

 00 =θδ b , obb δ=θδ1 ,  ab 12 2
1
δ=θδ ,…, bkkb k )1(

1
−δ=θδ , (3.12) 

i.e. 

 θ←←←←←← − :...0 121 kk VVVVH . 
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. 
Theorem 3.1.The structures J , J , θ , θ , the projectors **

1
*
010 ,...,,,,...,, kk pppppp  

are connected by 

 0pIJ −=θ , *
kpIJ −=θ  (3.13) 

 kpIJ −=θ , *
0pIJ −=θ . (3.14) 

 
Proof. It is easy to see that 

 ka
ka

a
a

a
aJ δ⊗δ++δ⊗δ+δ⊗δ=θ ...2

2
1

1 ,  

 ak
ak

a
a

a
aJ )1(

)1(
1

1
0

0 ... −
− δ⊗δ++δ⊗δ+δ⊗δ=θ , 

 ak
ak

a
a

a
a yyyJ )1(

)1(
1

1
0

0 ... −
− δ⊗δ++δ⊗δ+δ⊗δ=θ , 

 ka
ka

a
a

a
a yyyJ δ⊗δ++δ⊗δ+δ⊗δ=θ ...2

2
1

1 . 

 
Proposition 3.1. From the above it follows that 

 θJ is the identity operator on kVVV ⊕⊕⊕ ...21 , 

 θJ is the identity operator on *
1

*
1

* ... −⊕⊕⊕ kVVH , 

 θJ is the identity operator on 11 ... −⊕⊕⊕ kVVH , 

 θJ is the identity operator on **
2

*
1 ... kVVV ⊕⊕⊕ , 

 
Theorem 3.2. The structures J , J , θ , θ are k -tangent structures, namely: 

 01 =+kJ ,  0
1
=

+k
J , 01 =θ +k ,  0

1
=θ

+k
 

Proof. The proof is obtained by direct calculation. 
 
Remark 3.7. In MOsc1  IppIpppppp kk =+=+== *

1
*
010

*
1

*
1 ,,, , and from (3.13) 

we obtain IJJIJJ =θ+θ=θ+θ , . 

The first relation can be found in [5]. 

One kind of the Liouville vector fields in the natural basis of M)T(Osck  [1], have the 
form 

 ( ) ka
ay

k
∂⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=Γ 1

1 0
, (3.15) 
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 ( ) ak
a

ka
a y

k
y

k
)1(

12
2 0

1
1 −∂⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+∂⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=Γ , 

 ( ) ak
a

ak
a

ka
a y

k
y

k
y

k
)2(

1
)1(

23
3 0

2
1

1
3 −− ∂⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+∂⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+∂⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=Γ ,…, 

 ( ) a
a

a
a

ak
ak

ka
ka

k yyy
k
k

y
k

k
1

1
2

2
)1(

)1(

0
1

1
2

...
2
1

1
∂⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+∂⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++∂⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

+∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=Γ −
− . 

 
It can be proved that ( )( ) ( )iik Γ−− !1  given above are exactly the Liouville vector 

fields ( )iΓ given by R. Miron and Gh. Atanasiu in [6], [7]. 
The action of J  structure on Liouville vector fields was determined in [6], [7] and in 

some modified version in [1]-[3]. 
It is known that the k -structure J  transform the Liouville vector fields in the 

following way [1]: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,,1,...,3,2 11223211 =ΓΓ=ΓΓ−=ΓΓ=ΓΓ=Γ −−− JkJkJJJ kkk  (3.16) 

The connection between Liouville vector fields and the structure θ  are given by 
 
Theorem 3.3. The action of the structure θ  on the vector fields Γ  are given by 

 ( ) ( ) ka
ay

k
k ∂⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+Γθ=Γ 2

12 1
, (3.17) 

 ( ) ( ) ( ) ka
ay

k
k ∂⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+Γθ−=Γ 3

23 2
1 , 

 ( ) ( ) ( ) ka
ay

k
k ∂⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+Γθ−=Γ 4

34 3
2 , 

 ( ) ( ) ka
ka

kk y
k

k
∂⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+Γθ=Γ − 1
2 1 . 

Proof. As ka
ka

a
a

a
a dydydyJ ⊗∂++⊗∂+⊗∂=θ ...2

2
1

1 , the action of structure J  on 

( ) ( ) ( )kΓΓΓ ,...,, 32  gives ( )0=∂ kaJ  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )kkJkjkjkj Γ=ΓΓ−=ΓΓ−=ΓΓ=Γ 2,...,2,1, 342312 . 

The above equations are (3.16). 
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4. THE SUBSPACES OF MOsck
 

The theory of subspaces of MOsck  in the form used here, is given in [4]. For the 
understanding the action of operators J , θ  and p  on subspaces, we recall the notations, 
definitions and theorems, which give relations between different adapted bases. 

Here some special case of the general transformation (1.1) of M will be considered, 
namely, when 

 ),(),...,,,...,( 0000)1(000100
∧

υ=υυ= + aaanmmaa uyuuyy , (4.1) 

 ncba ,...,2,1,...,, = , m,...,2,1,...,,, =δγβα , nm ,...,1,...,,, +=δγβα
∧∧∧∧

 

and the new coordinates of the point u  in the base manifold M with respect to another 
chart ( )',' ϕU  are ( )'0)'1(0'0'01 ,...,,,..., nmmuu υυ + , where 

 ( )maa uuuu 001'0'0 ,...,= ,  ( )nmaa 0)1(0'0'0 ,...,υυυ=υ +
∧∧

, 

 ( ) ( )'0'0'0'0)'1(0'0'01'0'0 ,,...,,,..., aaanmmaa uyuuyy υ=υυ= + .  

We shall use the notations  

 ααα ∂
∂

=∂=∂ 00 u
, ∧∧∧

ααα υ∂

∂
=∂=∂

00
. 

 '0
0

' α
α

α
α ∂= uB , '0

0

'
∧

∧

∧

∧
α

α

α

α
υ∂=B , 

 aa xyB α
α

αα ∂=∂= 0
0 , aaa xyB ∧∧∧

ααα
∂=∂= 0

0
. 

If the transformation (4.1) is regular, then there exists an inverse transformation: 

 ( )ayuu 000 αα = , ( )ay 000
∧∧
αα υ=υ . 

Let us denote 

 aaa x
u

x
uB 0

0

∂
∂

=
∂
∂

=
ββ

β , aaa yx
B 0

0

∂
υ∂

=
∂
υ∂

=

∧

∧ β
∧
β

β  

then the following equations are valid: 

 β
αα

β δ=a
a BB ,  0=α

β
∧

a
a BB , 0=∧

α

β a
a BB , 

∧

∧∧

∧
β

αα

β δ=a
a BB , a

bb
aa

b
a BBBB δ=+

∧

∧
α

α
α  (4.2) 

We shall use the notations: 

 k

ak
ka

a
a

dt
ydy

dt
dyy

00
1 ,..., == , 
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 k

k
k

dt
udu

dt
duu

α
α

α
α ==

00
1 ,..., , 

 k

k
k

dt
d

dt
d

∧

∧

∧

∧ α
α

α
α υ

=υ
υ

=υ
00

1 ,...,  

In the base manifold we can construct two families of subspaces 1M  and 2M  given 
by equations 

 ⎟
⎠
⎞

⎜
⎝
⎛=

∧
α0000

1 ,: CuyyM aaa , ⎟
⎠
⎞

⎜
⎝
⎛ υ=

∧
αα 0000

2 ,: CyyM aa , 

where we suppose, that the functions appeared in (4.1) are ∞C . The subspaces 1M and 

2M  of M induces subspaces 11 MOscE k=  and 22 MOscE k=  in MOsck . Some point 

1Eu∈ has coordinates ),...,,( 10 ααα kuuu and some point 2E∈υ  has coordinates 

),...,,( 10
∧∧∧
ααα υυυ k . We have  

 ( ) ( )mkMOsck 1dim 1 += , ( ) ( )( )mnkMOsck −+= 1dim 2  

We can construct the special adapted bases 1B  and *
1B of )( 1ET  and )( 1

* ET , further  

2B  and *
2B  of )( 2ET  and )( 2

* ET  respectively. 

 { }ααα δδδ= kB ,...,, 101 , { }∧∧∧
ααα

δδδ=
k

B ,...,,
10

2 , 

 { }ααα δδδ= kuuuB ,...,, 10*
1 , 

⎭
⎬
⎫

⎩
⎨
⎧ δυδυδυ=

∧∧∧
ααα kB ,...,, 10*

2 . 

Definition 3.4. The special adapted bases  1B , *
1B , 2B  , *

2B  are defined by  

 ( )[ ] ( )[ ] ( )
( )[ ]β
αβα ∂=δ N , 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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⎥
⎦

⎤

⎢
⎢
⎣
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∂=

⎥
⎥
⎦

⎤
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⎣

⎡
δ
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⎞
⎜⎜
⎝

⎛
β

⎟⎟
⎠

⎞
⎜⎜
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⎛
α⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
β⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
α

∧

∧∧∧ N , 

 ( )[ ] ( )
( )[ ] ( )[ ]βα
β

α =δ duMu , 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
δ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
α

∧∧

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛ ∧
β

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛ ∧
α

dvMv ,  

where [ ]αβN  and 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α
∧

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛ ∧
β

N are matrices obtained from (1.7) by substitution ( ) ( )βα→ ,,ba  

and ( ) ⎟
⎠
⎞

⎜
⎝
⎛ βα→

β∧
,,ba  respectively.   The matrices   [ ]αβM  and 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α
∧

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛ ∧
β

M   are obtained from  
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(1.2) by substitution  ( ) ( )βα→ ,,ba  and ( ) ⎟
⎠
⎞

⎜
⎝
⎛ βα→

β∧

,,ba  respectively. 

Theorem 4.1. The necessary and sufficient condition that )(
∧
αα δδ Aa vu  are 

transformed as d -tensors, i.e. 

 kAvBvuBu AaAA ,0,'''' =⎥⎦
⎤

⎢⎣
⎡ δ=δδ=δ

∧∧

∧
αα

α

ααα
α

α  (4.3) 

are given by (1.5) if y)c,b,(a,  is substituted by u),,,( γβα  y)c,b,[(a,  is substituted by 

]v,,,(
∧∧∧∧

γβα . 
 
Theorem 4.2. The necessary and sufficient condition that ][ ∧

α
α δδ

A
A  are transformed 

as d -tensors, i.e. 

 kABuB
AA

AA ,0
''

''' =⎥⎦
⎤

⎢⎣
⎡ δ=δδ=δ ∧

∧

∧∧
α

α

αα
α

α
αα  (4.4) 

are given by (1.10) if y)c,b,(a,  is substituted by u),,,( γβα  y)c,b,[(a,  is substituted by 

]v),,,(
∧∧∧∧

γβα . 
 
Theorem 4.3. The necessary and sufficient conditions that *

1B  be dual 1B , *
2B  be 

dual to 2B  are the following equations 
 

 ( )
( )[ ] ( )

( )[ ] mmINM ×
β
α

γ
α

β
γ δ=  

 ( ) ( )mnmnINM −×−
β

α

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γ

∧

∧

∧

∧

∧

∧ δ=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
. 

Now we want to obtain the relations between the adapted bases B  and 'B , where 

 { }kaaaB δδδ= ,...,, 10 , 

 { }∧∧∧
α

α
α

α
α

α δδδδδδ=∪=
k

kBBB ,,...,,,,'
1

1
0

021 , 

further between *B  and '*B , where 

 { }kaaa yyyB δδδ= ,...,, 10* , 

 
⎭
⎬
⎫

⎩
⎨
⎧ δδδδδδ=∪=

∧∧∧
αααααα kk vuvuvuBBB ,,...,,,,' 1100*

2
*
1

* . 
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The adapted basis B , 'B , *B , '*B  are functions of 

 ( )
( )[ ] ( )

( )[ ] ( )
( )[ ] ( )

( )[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β

α
β

α
β

∧

∧

∧

∧ NMNMNM a
b

a
b ,,,,, , 

which have to satisfy the conditions given in previous text. It is clear, that the adapted 
bases are not uniquely determined. 

For the easier calculations we want to obtain such adapted bases, for which the 
following relations are valid. 

 α
α

α
α δ+δ=δ

∧

AaAaAa BB , kA ,...,1,0=  (4.5) 

 
∧
α

∧ δυ+δ=δ
α

α
α

AaAaAa BuBy , kA ,...,1,0=  (4.6) 

The adapted bases $B$, $B^{*}$, $B'$ and $B'^{*}$ satisfy (4.5) and (4.6) 

Theorem 4.4. The adapted bases B , *B , 'B , '*B satisfy (4.5) and (4.6) if different 
M and N  are connected by 

 ⎥
⎦

⎤
⎢
⎣

⎡
β
α

⎥
⎦

⎤
⎢
⎣

⎡
α

=⎥
⎦

⎤
⎢
⎣

⎡
β⎥

⎦

⎤
⎢
⎣

⎡
)(
)(

)(
)(

)(
)(

)(
)(

M
a

B
b

B
b
a

M , 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

β

α

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

α
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

β
⎥
⎦

⎤
⎢
⎣

⎡
∧

∧

∧∧

)(

)(
)(

)(

)(

)(
)(
)(

M
a

B
b

B
b
a

M  (4.7) 

and 

 ⎥
⎦

⎤
⎢
⎣

⎡ α
⎥
⎦

⎤
⎢
⎣

⎡
α
β

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ β
)(
)(

)(
)(

)(
)(

)(
)(

a
BN

a
b

N
b

B , 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ α
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

α

β=⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ β
∧

∧

∧∧

)(
)(

)(

)(
)(
)(

)(
)(

a
BN

a
b

N
b

B . (4.8) 

The proof of Theorems 4.1-4.4 are given in [4]. 

5. THE STRUCTURES p , J  AND θ  ON THE SUBSPACES  

Let us denote by kVVVH ',...,',',' 21  the subspaces of )( 1ET  generated by 
{ } { } { }ααα δδδ k,...,, 10  respectively and by kVVVH ",...,","," 21  the subspaces of )( 2ET  
generated by { }{ } { }∧∧∧

ααα
δδδ

k
,...,,

10
 respectively. 

Now we have 

 kVVHET '...'')( 11 ⊕⊕⊕= , 

 kVVHET "..."")( 12 ⊕⊕⊕=  
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Let us denote by kVVH ',...,',' *
1

**  the subspaces of )( 1
* ET  generated by 

{ }{ } { }ααα δδδ kuuu ,...,, 10  respectively and by kVVH ",...,"," *
1

**  the subspaces of  )( 2
* ET  

generated by
⎭
⎬
⎫

⎩
⎨
⎧δ

⎭
⎬
⎫

⎩
⎨
⎧δ

⎭
⎬
⎫

⎩
⎨
⎧δ

∧∧∧
ααα kvvv ,...,, 10 . 

The following relation is valid 

 '...'')( **
11 kVVHET ⊕⊕⊕= ∗∗ , 

 "..."")( **
12 kVVHET ⊕⊕⊕= ∗∗ . 

The basis vectors of B , *B , 1B , 2B , *
1B  and *

2B  are connected by (4.5) and (4.6) 
i.e. 

 ∧

∧

α

α
α

α δ+δ=δ
A

aAaAa BB , 
∧

∧
α

α

α
α δ+δ=δ AaAaAa vBuBy , ,k A 0=  (5.1) 

Let us examine the operators p , J  and θ  on the subspaces. 

Proposition 5.1. The projector operators kppp ,...,, 10  given by (2.2) can be 
decomposed in the following way: 

 000 "' ppp +=  (5.2) 

 111 "' ppp += ,…, 

 kkk ppp "' +=  

where 

 α
α δ⊗δ= A

AA up ' , 
∧

∧
α

α
δ⊗δ= A

A
A vp " , ,k A 0= , 

(no summation over A ). 
Proof.  From (2.2) and (5.1) we get 

 
∧

∧∧

∧∧

∧∧

∧

∧

∧∧

∧

β

αβ

αβ
α

β

αβ

α
β

αβ
αβ

α

β

β

β
β

α

α
α

α

δ⊗δ+δ⊗δ+δ⊗δ+δ⊗δ

=⎟
⎠
⎞

⎜
⎝
⎛ δ+δ⊗⎟

⎠
⎞

⎜
⎝
⎛ δ+δ=δ⊗δ=

A

A

a
a

A
A

a
a

A

A

a
a

A
A

a
a

AaAa

A
aAa

Aa
AaA

vuBBvBBuBBuBB

vBuBBByp
 

From (4.2) it follows 

 
∧

∧∧

∧

∧

∧
α

ββ

α

β

α
β

α
ββ

α δ===δ= a
a

a
a

a
a

aa
a BBBBBBBB ,0,0, . 

Now we get 

 A"' ppvup A
A

A

A
AA +=δ⊗δ+δ⊗δ=

∧

∧
α

α

α
α , ,k A 0= . 
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Arbitrary vector field )(ETX ∈  given by (2.1) can be expressed in basis 

21' BBB ∪=  in the following way 

 
,∧

∧

∧

∧

α

α
α

α

α

α
α

α

Χ+δΧ=

=⎟
⎠
⎞

⎜
⎝
⎛ δ+δΧ=δΧ=Χ

A

A
A

A

A
aAa

Aa
Aa

Aa

B

BB
 (5.3) 

where 

 Aa
a

A B Χ=Χ αα , aa
a

A B Χ=Χ
∧∧
αα  

Proposition 5.2.  The vector field X  can be expressed in the form 

 "' XXX += , 

where 

 ( )XX 'p...'p'p' k10 +++= , 

 ( )XX "p..."p"p" k10 +++=  

Proof.  Using (5.2) and (5.3) we get 

( )
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

δ++δ+δ

+δ++δ+δ
δ⊗δ++δ⊗δ+δ⊗δ=

∧

∧

∧

∧

∧

∧

α

α

α

α

α

α

α
α

α
α

α
α

β
β

β
β

β
β

k

k

k
k

k
k

XXX

XXX
uuuX

...

...
...'

1

1

0

0

1
1

0
0

1
1

0
0  

when *
1B  is dual to 1B , *

2B  is dual to 2B , i.e. the conditions of Theorem 4.3 are satisfied, 
i.e. 

 ( ) α
ββ

α δ=δδ A
Au , , 

∧

∧∧

∧
α

ββ

α δ=⎟
⎠
⎞

⎜
⎝
⎛ δδ

A

Av , , 

 0, =⎟
⎠
⎞

⎜
⎝
⎛ δδ ∧

β

α

A

Au , 0, =⎟
⎠
⎞

⎜
⎝
⎛ δδ β

α
∧

A
Av , ,k A 0=  

we get 

 α
α

α
α

α
α

α
α δ=δ++δ+δ= A

A
k

k XXXXX ...' 1
1

0
0 . 

Similar for 'X' . 
Proposition 5.3. The projection operator 

 mmk Ippp ×=+++ '...'' 10  on )( 1ET  

 )()(20 "..."" mnmnk Ippp −×−=+++  on )( 2ET  
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i.e. 0'p is the projection operator of )(ET  on )1(',' ,k A PH A =  are the projections 
of T(E)  on 'AV . Similarly for the second part of theorem. 

Proposition 5.4. The one-form field ( )ETw ∗∈  given by (2.3) can be written in the 

basis *
2

*
1

* ' BBB ∪=  in the form 

 "' www += , 

where 

 α
α

α
α

α
α δ++δ+δ= k

k uwuwuww ...' 1
1

0
0  

 
∧

∧

∧

∧

∧

∧
α

α

α

α

α

α
δ++δ+δ= k

k
uwuwuww ..." 1

1

0

0
. 

Proposition 5.5. The projection operators **
1

*
0 ,...,, kppp  defined by (2.4) can be 

decomposed in the form 

 "*
0

*
0

*
0 ppp += , (5.4) 

 "',...,"' *
1

*
11

∗∗∗∗ +=+= kkk pppppp  

where 

 α
α∗ δ⊗δ= A

A
A up '  

 ∧

∧

α

α∗ δ⊗δ=
A

A
A vp " , A fixed, ,k A 0= . 

Proposition 5.6. For the 1 -form field w given by (2.3) and the projector operators 
'∗

Ap  and "∗Ap the following relation is valid 

 ')'...''(' *
10 wpppw k

∗∗ +++=  

 ")"...""(" *
10 wpppw k

∗∗ +++=  

where 

 
( )

.,

''*

fixedAuwuw

wuwp
A

A
B
A

A
B

B
BA

A
A

α
α

β
α

α
β

β
βα

α

δ=δδδ

=δδ⊗δ=
 

From the above it is obvious that 

 mmk Ippp ×=+++ ''' **
1

*
0 L  on )( 1

* ET  

 )()(
**

1
*
0 '''''' mnmnk Ippp −×−=+++ L  on )( 2

* ET  
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and '*
0p is the projection of )( 1

* ET on '*H ,  '*
Ap is the projection of )( 1

* ET on '*
AV ; 

''*
0p is the projection of )( 2

* ET on ''*H ; ''*
Ap is the projection of )( 2

* ET on ''*
AV , 

kA ,1= . 

Proposition 5.7. The structure J which in B  and *B  can be expressed by (3.1) in 
the bases 21' BBB ∪=  and *

2
*
1

*' BBB ∪=  can be written in the form 

 JJJ ′′+′= , (5.5) 

where  

 
α−

α
α

α
α

α δ⊗δ++δ⊗δ+δ⊗δ= )1(1
2

0
1 2' k

k ukuuJ L , (5.6) 

 
α−

α
α

α
α

α δ⊗δ++δ⊗δ+δ⊗δ= ˆ)1(
ˆ

ˆ1
ˆ2

ˆ0
1 2'' k

k vkvvJ L .  

Proof. The proof is similar to the proof of Proposition 5.1, where the relations (4.2) 
are used.  

Remark 5.1. The structure J  defined by (3.7) in the basis 'B  and *'B  can be 
expressed by 

 ''' JJJ += , (5.7) 

where 
 ( )

α
α

α
α

α
α δδδδδδ k

kukuuJ ⊗++⊗+⊗=′ −1
2

1
1

0 .........2                              (5.8) 

                   ( )
α

α
α

α
α

α δδδδδδ )
)

)
)

)
)

k
kukuuJ ⊗++⊗+⊗=′′ −1

2
1

1
0 .........2 . 

Proposition 5.8. The structure θ  defined by (3.4) in the bases 'B  and *'B  can be 
expressed by 

 θθθ ′′+′= , (5.9) 

where 

 α
α−

α
α

α
α δ⊗δ++δ⊗δ+δ⊗δ=θ k

k u
k

uu )1(
2

1
1

0
1

2
1' L , (5.10) 

 α
α−

α
α

α
α δ⊗δ++δ⊗δ+δ⊗δ=θ ˆ

ˆ)1(
ˆ2

ˆ1
ˆ1

ˆ0
1

2
1'' k

k v
k

vv L .  

Remark 5.2. The structure θ  defined by (3.8) in the bases 'B  and 'B  can be 
expressed by 

 θθθ ′′+′= , (5.11) 

where 

 ( )α
α

α
α

α
α δδδδδδθ 11

2
0

1 1.........
2
1

−⊗++⊗+⊗=′ k
ku

k
uu              (5.12) 
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              ( )α
α

α
α

α
α δδδδδδθ )

)
)

)
)

)

11
2

0
1 1.........

2
1

−⊗++⊗+⊗=′′ k
ku

k
uu   

 
Theorem 5.1. The structure J , J , θ , θ , p , *p  on the subspaces are connected by: 

 0pIJ mm ′−=′′ ×θ   kmm pIJ *′−=′′ ×θ  

 ( ) ( ) 0pIJ mnmn ′′−=′′′′ −×−θ   ( ) ( ) kmnmn pIJ *′′−=′′′′ −×−θ  (5.13) 

     Proof. From (5.4)-(5.12) it follows 

 α
α

α
α

α
α

α
α δ⊗δ=δ⊗δ++δ⊗δ+δ⊗δ=θ 0

00
2

2
1

1 ','' upuuuJ k
kL  (5.14) 

 α
α

α−
α−

α
α

α
α δ⊗δ=δ⊗δ++δ⊗δ+δ⊗δ=θ k

k
kk

k upuuuJ ','' *
)1(

)1(
1

1
0

0 L   

 α
α

α
α

α
α

α
α δ⊗δ=δ⊗δ++δ⊗δ+δ⊗δ=θ ˆ0

ˆ00
ˆ

ˆ
ˆ2

ˆ2
ˆ1

ˆ1 '','''' upvvvJ k
kL   

 α
α

α−
α−

α
α

α
α δ⊗δ=δ⊗δ++δ⊗δ+δ⊗δ=θ ˆ

ˆ
ˆ)1(

ˆ)1(
ˆ1

ˆ1
ˆ0

ˆ0 '','''' k
k

kk
k upvvvJ L .  

 
Proposition 5.9. The following relations are valid: 

 θ'J  is the identity operator on ''' 21 kVVV ⊕⊕⊕ L   

 ''θJ  is the identity operator on ''' *
1

*
1

*
0 −⊕⊕⊕ kVVV L ,  

 '''' θJ  is the identity operator on '''''' 21 kVVV ⊕⊕⊕ L   

 '''' θJ  is the identity operator on '''''' **
2

*
1 kVVV ⊕⊕⊕ L .  

Theorem 5.2. The following relations are valid: 

 ''' kmm pIJ −=θ ×                      ''' *
0pIJ mm −=θ ×  (5.15)  

 '''''' )()( kmnmn pIJ −=θ −×−                      '''''' *
0)()( pIJ mnmn −=θ −×− .   

 
Proof. It is easy to see that 

 α
α

α−
α−

α
α

α
α δ⊗δ=δ⊗δ++δ⊗δ+δ⊗δ=θ k

kk
k

k upuuuJ ','' )1(
)1(

1
1

0
0 L  (5.16) 

 α
α

α
α

α
α

α
α δ⊗δ=δ⊗δ++δ⊗δ+δ⊗δ=θ 0

0*
02

2
1

1 ','' upuuuJ k
kL   

 α
α

α−
α−

α
α

α
α δ⊗δ=δ⊗δ++δ⊗δ+δ⊗δ=θ ˆ

ˆ
ˆ)1(

ˆ)1(
ˆ1

ˆ1
ˆ0

ˆ0 '','''' k
kk

k
k vpvvvJ L   

 α
α

α
α

α
α

α
α δ⊗δ=δ⊗δ++δ⊗δ+δ⊗δ=θ ˆ0

ˆ0
0ˆ

ˆ
ˆ2

ˆ2
ˆ1

ˆ1 '','''' vpvvvJ k
kL .  

Proposition 5.10. The following relations are valid: 



46 I. ČOMIĆ,  R. MIRON 

 

 '' Jθ  is the identity operator on ''' 11
*

−⊕⊕⊕ kVVH L   

 '' Jθ  is the identity operator on ''' **
2

*
1 kVVV ⊕⊕⊕ L ,  

 '''' Jθ  is the identity operator on '''''' 11 −⊕⊕⊕ kVVH L   

 '''' Jθ  is the identity operator on '''''' **
2

*
1 kVVV ⊕⊕⊕ L .  

From the above we have 
Theorem 5.3. For the subspaces in MOsck  the following relations are valid: 

 kmm ppIJJ ''2'''' 0−−=θ+θ ×  (5.17) 

 kmnmn ppIJJ ''''2'''''''' 0)()( −−=θ+θ −×−   

 kmm ppIJJ ''2'''' *
0

* −−=θ+θ ×   

 kmnmn ppIJJ ''''2'''''''' *
0

*
)()( −−=θ+θ −×− .  

Proposition 5.11. For the subspaces in MOsc1  we have ,1,1 '''''' pppp kk ==  

1
**

,1
** '''''' pppp kk ==  and  

 ,'' 10 mmIpp ×=+ )()(10 '''' mnmnIpp −×−=+   

 ,'' 1
*

0
*

mmIpp ×=+ )()(1
*

0
* '''' mnmnIpp −×−=+ .  

From (5.16) and Proposition 5.11 we have 
Theorem 5.4. For the subspaces in MOsc1  the following relations are valid: 

 mmIJJ ×=θ+θ ''''  (5.18) 

 )()('''''''' mnmnIJJ −×−=θ+θ   

 mmIJJ ×=θ+θ ''''   

 )()('''''''' mnmnIJJ −×−=θ+θ .  

As mkE )1(dim 1 += , ))(1(dim 2 mnkE −+=  the notion mmI ×  is not precise, it 
means )1( +k  blocks on diagonal, each of which is of form mm× . 

The exact form of (5.16) and (5.17) can be obtained from (5.13) and (5.15). 
Theorem 5.5. The structures 'J , ''J , 'J , ''J , 'θ , ''θ , 'θ , ''θ , are k-tangent structures, 

namely 

                ( ) 0=′ kJ ,  ( ) 0=′′ kJ ,  ( ) 0=′
k

J ,  ( ) 0=′′
k

J  

  ( ) 0=′ kθ ,  ( ) 0=′′ kθ ,  ( ) 0=′
k

θ ,  ( ) 0=′′
k

θ  
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RAZNE STRUKTURE U PROSTORIMA MOsck   

Irena Čomić and Radu Miron  

Geometrija prostora MOsck  je uveo R. Miron i Gh. Atanasiu u [6] i [7]. Teorija ovih 
prostora je razvijena od strane R. Mirona i njegovih saradnika iz Rumunije, Japana i drugih 
zemalja i prikazana je u mnogim člancima i knjigama. Samo neki od njih su spomenuti u literaturi. 
Ovde predstavljamo konstrukciju takvih adaptiranih baza u prostorima )( MOscT k  i 

)(* MOscT k ,  koje su saglasne sa J  strukturom. Teorija dva komplementarna podprostora je 

ovde data kao u [2] i [4]. Operatori J , J , θ , θ , p , *p su uvedeni u okolnom prostoru, kao i u 
potprostorima. Među njima su uspostavljene neke nove relacije. Ispitana je akcija ovih operatora 
na Liouville-ova vektorska polja. 

 
Ključne reči i fraze: operacija projekcije, J  struktura, θ struktura, potprostori u 
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NINETY YEARS OF DUFFING’S EQUATION 
UDC:531.36 

Livija Cvetićanin  
 

Faculty of Technical Sciences, Trg. D. Obradovica 6, 21000 Novi Sad, Serbia 

4bstract. In the paper the origin of the so named ‘Duffing’s equation’ is shown. The 
author’s generalization of the equation, her published papers dealing with Duffing’s 
equation and some of the solution methods are presented. Three characteristic 
approximate solution procedures based on the exact solution of the strong cubic 
Duffing’s equation are shown. Using the Jacobi elliptic functions the elliptic-Krylov-
Bogolubov (EKB), the homotopy perturbation and the elliptic-Galerkin (EG) methods 
are described. The methods are compared. The advantages and the disadvantages of 
the methods are discussed. 

Key words: Duffing’s equation, elliptic-Krylov-Bogolubov method, homotopy 
perturbation method, elliptic-Galerkin method 

1. INTRODUCTION 

 
In 1918, in the Edition Vieweg, No.41/42 the publication entitled “Erzwungene 

Schwingungen bei veranderlicher Eigenfrequenz und ihre technische Bedeuting” by 
Georg Duffing (Fig.1), Ingenieur, appears. The first sentence in the Preface of the book 
[1] is: “Die Anregung zu der vorliegenden Studie wurde mir zunachst durch 
Beobachtungen an Maschinen gegeben”. This statement proves the appropriation of 
Georg Duffing to experimental-applied dynamics. He was a serious experimentalist who 
studied mechanical devices to discover geometric properties of dynamical systems [2]. 
The theory of oscillations was his explicit goal. In Jahrbuch der Mathematik (1916-
1918), (see [1]), a reviewer G.H. wrote that the aim of the paper [2] was to clarify the 
resonant oscillations which are evident in the pendulum (Fig.2) whose motion is given 
with a differential equation 

 tkyyyy
dt

yd ωβγ sin)()sin(sin 0
2

0
2

2

2
=−+−+  (3) 
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where y is the pendulum displacement, t is time, β2 and γ2 are positive constants, y0 is the 
initial deflection, k and ω are the amplitude and the frequency of the excitation force. 
Duffing simplified the equation into 

 tkyyya
dt

yd ωγβ sin322
2

2
=−−+  (2) 

and calculated the first term Hsinωt of the periodic solution in the first approximation [3]. 
He obtained a cubic algebraic equation for H which has three solutions: two stable and an 
unstable one. 

                    
Fig.1. Georg Duffing, 1861-1944.  Fig.2. Duffing’s oscillator 

 
Duffing gives the problem to mathematicians to give the initial conditions for the 
unstable motion. Besides, Duffing considered the simplified versions of the Eq. (2) for 
describing the motion of the symmetrical pendulum 

 03
2

2
=−+ yy

dt
yd γα  (3) 

and the unsymmetrical pendulum 

 .02
2

2
=−+ yy

dt
yd βα  (4) 

For the case of small non-linearities (γ<<α and β<<α), Duffing gave the approximate 
solutions in the form of Weierstrass ℘(t) elliptic function [4]. The main disadvantage of 
the solutions was their complexity and unsuitability for practical use. 

During the last years the Eq. (2) is modified and some generalizations are introduced. 
Usually, the differential equations with polynomial type of non-linearity are called 
‘Duffing’s equation’. The most often investigated type of the Duffing’s equation is with 
the cubic non-linearity 

 tkyy
dt
dy

dt
yd ωγαδ sin2 3
2

2
=±±+  (5) 

where δ is the damping coefficient.  
About 2000 papers are published dealing with qualitative and quantitative analysis of 

Eq. (5). Two approaches are assumed: one, based on assumption that the non-linearity is 
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small (α>0, γ<<α) and the other, the non-linearity is strong (γ≈α). Various analytical 
approximate solving procedures are developed. For the small non-linearity the most 
widely applied methods are: the method of multiple scales [5], the Bogolubov-
Mitropolski [6], the Krylov-Bogolubov method [7], the straightforward expansion [8], 
Linstedt-Poincare method [9], etc. The author of this review modified the suggested 
methods for solving a second order differential equation with slow time variable 
parameters [10], a system of two coupled differential equations with constant coefficients 
[11]-[15] and slow time variable functions [16]-[21]. For all of these methods it is 
common that they represent the perturbation to the linear one and the difference between 
the approximate solution of the non-linear system and the linear one is of small order.  

For the case of strong cubic non-linearity, the analytical approximate solution of (5) 
is based on the exact solution of the differential equation 

 03
2

2
=±± yy

dt
yd γα  (6) 

The author of this paper developed the approximate analytical solving methods [22] for 

 ),(3
2

2

dt
dyyfyy

dt
yd

=±± γα  (7) 

where f is an additional linear or non-linear function which need not be small, and also 
for the system of coupled Duffing’s equations [23]-[31]. The strong non-linear 
differential equations with slow time variable parameters are also considered [32]. The 
chaotic motion in the strong coupled system with constant and changeable parameters is 
investigated in [33]-[36]. The special cases of differential equations are those with pure 
non-linear term (see [37]-[40]). In the paper [40] the general form of the pure non-linear 
differential equation of Duffing’s type is introduced. 
 In spite of the fact that a numerous methods are developed for analytic solving of the 
strong non-linear differential equations, the asymptotic approaches still need to be 
considered. Namely, all of the suggested asymptotic solving procedures have beside their 
advantages also some disadvantages. All the methods can be grouped as: residual 
methods, perturbation techniques and homotopic methods. In this paper the elliptic-
Galerkin method which is the conceptually simplest analytic approximate procedure, the 
perturbation elliptic-Krylov-Bogolubov method, and the homotopy perturbation method 
which is adopted for solving of the Duffing’s equation, will be shown. 

2. DIFFERENTIAL EQUATION WITH STRONG CUBIC NON-LINEARITY 

 The Eq. (6) with initial conditions 

 00 )0(,)0( yyyy && ==  (8) 

has an exact analytic solution in the form 

 ),,( 2ktYepy θω +=  (9) 
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where ep denotes a convenient Jacobi elliptic function [41], ω(Y) is the frequency, k2(Y) 
is the modulus of the elliptic function and Y and θ, i.e., the amplitude and phase angle are 
arbitrary constants dependent on the initial conditions (8). 

Dependently on the sign of the coefficients α and γ the following type of equations 
are evident: 1) the hard one: α>0 and γ>0, 2) the hard-soft one: α >0 and γ<0, 3) soft-
hard one: α<0 and γ>0. 
 For the case of strong cubic non-linearity of hardening type, the differential equation 

 03=++ yyy γα&&  (10) 

has an exact analytical solution in the form of the Jacobi elliptic function 

 ),( 2ktYcny θω +=  (11) 

where cn is the Jacobi elliptic function [48], ω and k are the frequency and modulus of 
the function 

 
)(2

, 2

2
222

Y
YkY
γα

γγαω
+

=+=  (12) 

and Y and θ are arbitrary constants dependent on the initial conditions (8). Substituting 
(11) and its time derivative into (8), we obtain the amplitude Y and the phase angle θ 
according to the relations 

 0
22

2
0

4
0

2
0

24 =⎥⎦
⎤

⎢⎣
⎡ ++−+ yyyYY &

γααγ  (13) 

and 

 
ω

θθ
0

022 ),(),(
y
ykdnksc
&

−=  (14) 

For the special initial conditions 
 0)0(,)0( 0 == yyy &  (15) 
the amplitude and phase angle are 
 0,0 == θyY  (16) 
and for 
 0)0(,0)0( yyy && ==  (17) 
it yields 

 )(,21 2

2/1

2

2
0 kKyY =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++−= θ

α
γ

γ
α

γ
α &

 (18) 

where K(k2) is the complete elliptic integral of the first kind [41]. Assuming the series 
expansion of the square root the approximate amplitude is Y≈ 0y& . 
Using the aforementioned procedure Yuste and Bejarano [42] give the solutions for the 
hard-soft and soft-hard systems. 
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Table 1 Solutions for the hard-soft and soft-hard systems. 

Type Solution Frequency Modulus 

α>0,γ<0 ),( 20 ktYsny θω +=  
0

2

2
2 >−=

Yγαω  2

2
2

2ω
γYk =  

α<0,γ>0 ),( 20 ktYcny θω +=  022 >−= αγω Y  
2

2
2

2ω
γYk =  

Remarks: 
1. It is obvious that the solution for the hard oscillator exists for all values of parameters 
α and γ, but for other oscillators (hard-soft and soft-hard) the motion is oscillatory only 
for some special relations between the parameters α and γ and initial amplitude Y. 
2. The arbitrary amplitude Y and phase θ are calculated according to the initial conditions 
(8), (15) or (17). 
3. For the pure cubic equation, when α=0, the modulus of the Jacobi elliptic function is 
constant (k2=1/2) and the frequency is γω Y= . The closed form solution is 

 )2/1,( θγ += YtYcny  (19) 

For the initial conditions (8), the amplitude of vibration is 

⎥
⎦

⎤
⎢
⎣

⎡
+= 2

0
4
0

2 yyY &
γ

 

3. THE ELLIPTIC HOMOTOPY PERTURBATION METHOD 

Let us rewrite the differential equation (7) in the form 

 ),(3 yygyyy &&& −=++ γα  (20) 

and apply the initial conditions (15). For g=0 the differential equation has the exact 
solution (11) with (16). According to this result, we assume the initial approximate 
solution of (20) in the form 

 10
2
11000 ),()( cnyktcnyYtY ==≡ ω  (21) 

where ω1 and 2
1k  transform into ω and k2 when g=0. Due to definition of homotopy 

X:Ωx[0,1]→R, that the two continuous functions from one topological space can be 
"continuously deformed" into the other, and introducing the embedding artificial 
parameter p with the values in the interval [0,1], as it was suggested by He [43], a 
homotopy transformation of the differential equation (20) yields 



54 LIVIJA  CVETIĆANIN 

 

 0)],([)]())[(1( 33
000

3 =++++++−++− XXgXXXpYYYXXXp &&&&&&& γαγαγα   (22) 

with initial conditions 

 0),0(,),0( 0 == pXypX &  (23) 

Namely, for p=0 the Eq. (22) simplifies into 

 03 =++ XXX γα&&  (24) 

with the exact solution 

 ),()()0,( 20 ktYcntytX θω +==  (25) 

When p=1 the equation has the same form as the original equation 

 ),(3 XXgXXX &&& −=++ γα  (26) 

and the solution is 

 ).()1,( tytX =  (27) 

 It can be concluded that for the change of p from zero to unity the solution is 
continually changing from (25) to (27). 
 For X(t,p), which is the solution of (22) in the whole domain p∈[0,1] and is smooth 
enough to have kth order partial derivatives respect to p at p=0, the Maclaurin series is as 
follows 

 ∑
∞

=

⎟
⎠
⎞

⎜
⎝
⎛+=

1
0 !

)()(),(
k

kk p
k

tytYptX  (28) 

Substituting (28) into (22) and separating the terms with the same order of the parameter 
p a system of linear differential equations is obtained. For p1 the first-order deformation 
equation is 

 )],([3 00
3

0001
2

011 YYgYYYyYyy &&&&& +++−=++ γαγα  (29) 

with initial conditions 

 0)0(,0)0( 11 == yy &  (30) 

Introducing (21) into (29), yields 

 
)],,(

)221([3

111010

3
1

3
010

2
1

2
1

2
11

2
101

2
1

2
11 0

dnsnycnyg

cnycnycnkkcnyycnyyy

ω

γαωγα

−+

+++−−−=++&&
 (31) 

where ),( 111 ktsnsn ω≡  and ),( 111 ktdndn ω≡  are Jacobi elliptic functions [48].  
 For 

 βγβα >−== ,),(,0 2yyyg &  (32) 
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the Eq. (31) is specified as 

 )])221([3 2
1

2
0

3
1

3
0

2
1

2
1

2
11

2
101

2
1

2
1 0 cnycnycnkkcnyycnyy βγωγ +++−−−=+&&  (33) 

Solution of (33) is assumed as a sum of a constant and a linear term of elliptic function 
cn1 

 1211 cnKKy +=  (34) 

Substituting (34) into (33) and separating the terms with the same order of elliptic 
function cn1 the following system of algebraic equations is obtained 

 

.0)(23

,03

,0)21()(

2
1

2
101

3
01

2
0

2
00

2
0

2
1

2
101

=+−+

=+

=−+

ωγβ

βγ

ω

kyKyKy

KKy

kyK

 (35) 

Due to initial conditions (30) the relation K0 and K1 is 

 010 =+ KK  (36) 

Solving equations (35) and (36) it follows: 

 
γ
β

βγ
βγγω

3
,

2
1,

3
3 10

2
1

0

02
0

2
1 −=−==

+
+

= KKk
y
yy  (37) 

Using the relations (21) and (34) with (37) and according to (27) and (28) the solution in 
the first approximation is 

 )
2
1,

3
3()

3
(

3
)(

0

0
00 βγ

βγγ
γ
β

γ
β

+
+

++−=
y
ytycnyty  (38) 

Analyzing (37) it is obvious that the coefficient β has no influence on modulus of Jacobi 
function. Frequency and argument of Jacobi function and also the accuracy of the 
approximate solution (38) depend on coefficient ratio β/γ. For smaller ratio (β/γ)<<1 the 
difference between exact solution and approximate solution is negligible. For higher 
values of the ratio β/γ the difference is significant and the solution in the first 
approximation is not acceptable. 

4. ELLIPTIC-KRYLOV-BOGOLUBOV (EKB) METHOD 

 Let us modify the differential equation (7) by introducing the small parameter ε<<1 

 ),(3
2

2

dt
dyyfyy

dt
yd εγα =++  (39) 
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Due to idea of Krylov and Bogolubov [44], Eq. (39) can be transformed into a system of 
two coupled first order differential equations. Namely, the solution of (39) is assumed in 
the form of the solution (19) for ε=0, i.e., 

 YcnktcntYty ≡= )),(()()( 2ψ  (40) 

where the amplitude and the phase are time dependent 

 ∫ +=
t

tdsst
0

)()()( θωψ  (41) 

and, also, the frequency and the modulus of Jacobi elliptic function (12) 

 
))]([(2

)]([)(,)]([)( 2

2
22

tY
tYtktYt

γα
γγαω
+

=+=  (42) 

The first time derivative of (40) is 

 
ψ

ω
∂
∂

=
)(cnY

dt
dy  (43) 

with the constraint 

 0)(
)(
)()( 2

2 =
∂

∂
∂
∂

+
∂
∂

+
dt
dY

Y
k

k
cnYcn

dt
dYcn

dt
dY

ψ
θ  (44) 

Substituting (40), (43) and the time derivative of (43) into (39), we obtain 

 ))(,()(])(
)(

)()()[( 2

22

2

2

ψ
ωε

ψ
θω

ψ
ω

ψ
ωω

∂
∂

=
∂
∂

+
∂

∂
∂∂

∂
+

∂
∂

∂
∂

+
cnYYcnfcn

dt
dY

Y
k

k
cnYcn

Y
Y

dt
dY  (45) 

After some transformation of (44) and (45), the two coupled first order differential 
equations follow 

 

),)()](,([

))(()())([(

,)],([

)])(()())([(

2

22
2

22
2

Y
kYcncncnYYcnf

Y
kYcncncn

Y
kcncnYcn

Y
Y

dt
dY

cncnYYcnf
Y
kYcncncn

Y
kcncnYcn

Y
Y

dt
dY

k

kk

kk

∂
∂

+−=

∂
∂

+−
∂

∂
+

∂
∂

+

=
∂

∂
+−

∂
∂

+
∂
∂

+

ψ

ψψψψψ

ψψ

ψψψψψ

ωε

ωωωωθ

ωε

ωωωω

 (46) 

where 
)(

)(,)(,)(
2

2

2

2

k
cncncncncncn k

∂∂
∂

≡
∂
∂

≡
∂
∂

≡
ψψψ ψψψψ . 

The aim is to solve the system of differential equations. 
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 For the pure cubic Duffing’s equation, where α=0 and the modulus of the Jacobi 
elliptic function is constant (see (19)), the system (46) simplifies to 

 
,)],([]))([(

,)],([]))([(

2

2

cncnYYcnfcncncn
Y

Y
dt
dY

cncnYYcnfcncncn
Y

Y
dt
dY

ψψψψ

ψψψψψ

ωεωωωθ

ωεωωω

−=−
∂
∂

+

=−
∂
∂

+
 (47) 

where )221(, 222 cnkkcncnsndncn +−−=−= ψψψ . Using the value for the 

modulus (k2=1/2) and the frequency ( γω Y= ) of the Jacobi elliptic function, and also 
the relations between the elliptic functions, we have 

 
.],([

,],([

2

22

sndnsndnYYcnf
dt
dYY

cnsndnYYcnf
dt
dY

γεγ

γεθγ

−−=

−−=
 (48) 

At this point the averaging procedure is introduced. The averaging is over the period of 
the elliptic function 4K(k2), where K(k2) is the complete elliptic integral of the first kind. 
The averaged first order differential equations (48) are 

 ∫ −−=
K

ddnsndnsnYYcnf
Kdt

dY
4

0

),(
4
1 ψω

ω
ε  (49) 

 ∫ −−=
K

dcndnsnYYcnf
KYdt

d
4

0

),(
4
1 ψω

ω
εθ  (50) 

where for the modulus k2=1/2 the elliptic integral is 85407.1)2/1( == KK  and 
cn=cn(ψ,1/2), sn=sn(ψ,1/2), dn=dn(ψ,1/2).  
a) For the special case when the small non-linear function depends only on the 
deflection, i.e., )(yff ≡ , the first order differential equations (49) and (50) simplify to 

 ∫==
K

dcnYcnf
KYdt

d
dt
dY

4

0

)(
4
1,0 ψ

ω
εθ  (51) 

i.e., Y=const. and θ=εθ(Y), 
where 

 ∫=
K

dcnYcnf
KY

4

0

)(
4

1 ψ
ω

θ  (52) 

Then, the EKB approximate solution is 

 ]2/1,)[( 0θεθω ++= tYcny  (53) 
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where from the initial conditions of the oscillations Y and θ0 are obtained. 
b) For )/( dtdyff ≡ , the Eqs. (49) and (50) have the form 

 ∫ −−=
K

ddnsndnsnYf
Kdt

dY
4

0

)(
4
1 ψω

ω
ε  (54) 

 0=
dt
dθ

 (55) 

The EKB solution yields 

 ]2/1,))([()( 0
0

θγ += ∫
t

dttYcntYy  (56) 

where Y(t) is the solution of (54). 
Examples 
1) For the differential equation with strong non-linear cubic term and the weak linear part 

 03 =++ yyy εγ&&  (57) 

the phase angle is due to (52) 

 
ωω

ψ
ω

θ 4569.0)12(1
4

1
4

0

2 =−== ∫ K
Edcn

K

K

 (58) 

and the approximate solution of (57) is according to (53) and (58) 

 ]2/1,)4569.0[( 0θω
εω ++= tYcny  (59) 

where E=E(1/2)=1.35064 is the complete elliptic integral of the second kind for modulus 
k2=1/2 and γω Y= . 
The exact solution of (57) is according to (11), (12) and (15) 

 )](2/,[ 22
0

2 YYYtYcny γεγθγε +++=  (60) 

For ε<<1 using the series expansion of the functions in (60) the approximate solution is 
obtained 

 ]2/1,)
2

([ 0θω
εω ++= tYcny  (61) 

Comparing (59) and (61) it is evident that the difference is negligible. 
2) For the differential equation with small linear damping term 

 023 =++ yyy &&& ζγ  (62) 



 Ninety years of  Duffing's Equation                      59 

 

the amplitude of vibration is according to (54) 

 Q
K

Yddnsn
K

Y
dt
dY

K

4
)2(

4
)2(

4

0

22 ζεψζε
−=−= ∫  (63) 

i.e., 

 tQ
K

YY )
4

)2(exp(0
ζε

−=  (64) 

where ∫=
K

ddnsnQ
4

0

22 ψ . Using (56) and (64) the solution of (62) follows 

 ]2/1,))
4

)2(exp(1(
)2(

4[)
4

)2(exp( 000 θζε
ζε

γζε
+−−−=

K
Qt

Q
KYcnQ

K
tYy   

After some simplification the approximate solution is 

 ]2/1,[)
4

)2(exp( 000 θγζε
+−= tYcnQ

K
tYy  (65) 

The amplitude of vibration decreases exponentially. The period of vibration increases, 
but very slow. It allows the assumption of the constant frequency of vibration. 
Remark: 
The EKB method is usual known as that with time variable amplitude and phase, as it is 
assumed that the perturbed amplitude and phase of the solution differs for a small value 
to trial solution. 

5. ELLIPTIC-GALERKIN (EG) METHOD 

 Let us consider the differential equation 

 032 =+++ Yyyy γβα&&  (66) 

The approximate solution will be obtained by applying the Galerkin method which 
represents one of the weighted residual methods. In the previous papers, usually, the trial 
solution of (66) is assumed as a linear combination of the circular functions and the 
arbitrary weight function also belongs to that group. Our intention is to extend the 
method by applying of the Jacobi elliptic function. 
We introduce a trail solution to (66) as a linear combination of independent cn Jacobi 
elliptic functions 

 2
21

22
2

2
1 ),(),( cnKcnKktcnKktcnKy +=+= ωω  (67) 

where K1 and K2 are constants, ω and k are the frequency and modulus of the cn elliptic 
function which have to be calculated. 
Substituting (67) into (66), the residual function is obtained 
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cnKcnKK
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++

+++++

++++≡

γβ

αωωωψ

 (68) 

where (.)’=d(.)/dψ, (.)”=d2(.)/dψ2 and ψ=ωt. If (67) is the closed form solution of Eq. 
(66), the residual function r(ψ) is zero. The goal is to construct y(ψ) so that the integral 
of the residual will be zero for some choices of weight functions w(ψ). As the weight 
function is arbitrary one, let us choose it as the derivatives of the constant K1 and K2, 
respectively, of the assumed solution (67), i.e., (∂y/∂K1) and (∂y/∂K2). Multiplying (68) 
with the weight function and integrating over the interval [0,4K(k)], where K is the total 
elliptic integral of the first kind and 4K is the period of cn function, one obtains 

 ∫∫ ==
)(4

0

2
)(4

0

0)(,0)(
kKkK

dcnrcndr ψψψψ  (69) 

i.e. 
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ψγβ
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 (70) 

Eqs. (66) and (69), i.e. (70), are equivalent, because w(ψ) is any arbitrary function. To 
apply the method, all we need to do is to solve the two algebraic equations for the 
coefficients ),( 21 KKωω = and ),( 21

22 KKkk =  

 6
2
24

2
1224

2
2

22 3)2(])1[( CKCKKCCkCk γγβαω +++=+−  (71) 
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])1(24)32(2[

8
3
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2
1242

2
1

2
2

6
2

4
22

2

CKCKKKCKK

CkCkCkK

γγβαβ

ω

++++=

−−+−
 (72) 

where (see [48]): k’2=1-k2, C0=4K(k), )'(4 2
22 KkE

k
C −=  and 

2
22

2
2

2

22 )12(
')12()12(2

km
CkmCkmC mm

m
+

−+−
= −

+   for   m=1,2,3. 

Eliminating ω from (71) and (72) we obtain the algebraic equation 
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which is not easy to be solved. Analyzing the relation (71) and (73) it is seen that the 
both strong non-linear terms have a significant influence on the modulus and the 
frequency of the Jacobi elliptic function. Only, for the case when α=β=0 the modulus of 
the Jacobi elliptic function is independent on the initial amplitude, but the frequency 
depends, as it is previously stated in Eq. (19). 
Remark: The accuracy of the solution depends on our ability to find the most convenient 
combination of functions. 

6. CONCLUSION 

In the paper three procedures for solving of the so called Duffing’s equation are shown: 
the elliptic-Galerkin (EG) method, the elliptic-Krylov-Bogolubov (EKB) method and the 
homotopy perturbation method. For all of the methods is common that the solutions are 
based on the exact solution of the strong cubic differential equation given with Jacobi 
elliptic function. The mentioned methods have some advantages, but also disadvantages. 
The EG method is one of conceptually simplest analytical approximate procedure which 
leads to algebraic equations; however the results may be with small accuracy as it 
depends on the investigator to chose the most adequate weight function. The elliptic-
Krylov-Bogolubov (EKB) method is of perturbation type. The perturbation method is 
based on the assumption that a small parameter (ε<<1) must exist in the equation. This 
so-called small parameter assumption greatly restricts applications of perturbation 
technique. Many non-linear problems described with Duffing’s equation have no small 
parameter at all. Then, an appropriate choice of a small parameter leads to accurate 
results, but an unsuitable choice to a bad result. The homotopy method does not require a 
small parameter in the equation and eliminates the previous limitations. The main 
disadvantage is the question of convergence of the solution. Farther investigations are 
necessary. 
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Abstract: The Shockley-Read-Hall model was introduced in 1952 to 
describe the statistics of recombination of holes and electrons in semiconductors 
occurring through the mechanism of trapping and we consider initial-boundary 
value problems with initial conditions. 
 Key words: partial differential equations, initial-boundary value problems 

AMS subject classification: Primary 35A05. Secondary 35B30 

INTRODUCTION 

 
      The governing equations are given by 

( )( ) ( )trtrdtrcTnt nNncncVnnUn −−+∇−∇∇=∂ µ                                  (1)       
( )( ) ( ) pncnNncVppUp trbtrtraTpt −−+∇−∇∇=∂ µ   (2)    

( ) ( )trtrdtrctrbtrtratrt nNncncpncnNcn −+−+−=∂              (3)            
( )CpnnqV trs −−+=∆ε                                                                          (4) 

       Here n denotes the density of electrons in the conduction band, whereas p is 
the density of holes in the valence band, with p, n being opposite charges. The 
position density of occupied traps is given by trn ; and by dcba cccc ,,,  we 

denote the rate constants. The quantity TU  is the so-called thermal voltage. In the 
following, we consider a semiconductor crystal with a constant (in space) number 
density of traps trN . 

In the Poisson equation (4), V (x; t) is the electrostatic potential, sε  the 
permittivity   of the semiconductor, q the elementary charge, and C = C(x) the 
doping profile. By adding equations (1),(2),(3), we obtain the continuity equation 

( ) ( ) 0=+∇+−−∂ pntrt JJnnp      (5) 

      with current densities 
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 ( )VnnUJ Tnn ∇−∇= µ                (6) 
 

       and 
( )VppUJ Tpp ∇−∇= µ   (7) 

Note that for the current density we use the simplest possible model, the drift 
diffusion ansatz, with constant mobilities pn µµ , . Moreover, as there is no flux, 

there is no current density trJ .The gap between the valence and the conduction 
band (which is called the bandgap) is very large for semiconductors, which 
means that lots of energy is needed to transfer electrons from the valence to the 
conduction band. This process is referred to as the generation of electron-hole 
pairs (or pair-generation process), i.e., an electron is created in the conduction 
band and a hole in the valence band. The inverse process is termed recombination 
of electron-hole pairs.  

We now introduce a rescaling of n,p, and trn  in order to render the 

equations (1)-(3) dimensionless: nCn → , pCp → , trtr Nn → , 

CCC → , Lxx → , nCn → , pnpn ,, µµµ → , nCn → , pn
T

pn J
L

CUJ ,,
µ

→ , and 

C  is a typical value for C. Moreover, we rescale time 
CN

tt
tr

→  to make sure 

that all constants are of order 1, and set 0nCcc dc = ,
n

dd
Ccc
τ

= , 0pCcc ba = , 

and 
p

b
Cc
τ

= .Given the scaling assumption 
C

Ntr=ε «1, we finally obtain 

       nnt RJn +∇=∂                                                                                  (8) 
     ppt RJp +−∇=∂                                                                                (9) 

      nptrt RRn −=∂ε                                                                               (10) 

     CpnnV tr −−+=∇ ε                                                                         (11) 
 where 

( )VnnJ nn ∇−∇= µ                                                                                (12) 
and 

( )VppJ pp ∇−∇−= µ  .                                                                          (13) 

       By nR   and pR    we denote the recombination-generation rates for n and p, 

respectively: 

    ( )( )trtr
n

n nnnnR −−= 11
0τ

                                                                         (14) 
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   ( )( )trtr
p

p pnnpR −−= 11
0τ

                                                                       (15) 

            Note that 10 ≤≤ trn   should hold from physical point of view. Moreover, 
both n and p are nonnegative.    

MAIN RESULT 

              We consider initial-boundary value problems with initial conditions 
( ) ( ) ( ) ( )xnxnxpxpxnxn ItrtrII ,0,),(0,),(0, ===                                        (16) 

and with mixed Dirichlet-Neumann boundary conditions on Ω∂  , i.e., let 
 ( ) ( ) ( ) Ω∂⊂Ω∂∈=== DDDD xxVtxVxptxpxntxn ),(,),(,),(,                                (17) 
and 

DN
Vpn

Ω∂Ω∂=Ω∂=
∂
∂

=
∂
∂

=
∂
∂ \:,0

ννν
                                                             (18) 

where ν  is the outward unit normal vector along NΩ∂ .It is allowed to impose only 
homogenous Neumann boundary conditions on all of Ω∂ , i.e. we set =Ω∂ N Ø, and 
the following Theorem will  hold. 
 

Theorem Let ( )Ω∈ ∞Lpn II ,  (and non-negative), 10 , ≤≤ Itrn  and let 

( )Ω∈ ∞LC . Then, the solution of (8)-(11) satisfies ( ) ( ) ( )( )Ω∩Ω∞∈ ∞∞ 1,,0, HLLpn loc   

and 10 ≤≤ trn . 
 

Proof: We will use the result from [5], which was obtained for homogenous 
Neumann boundary conditions. We can show by a straightforward computation 

( ) ( )
∫ =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
+

− dx
q

pp
q

nn
dt
d

p

q
D

n

q
D

µµ
 

( ) ( ) ( ) ( )∫ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∂−+∇−

−
+∂−+∇

−
=

−−

dxpRJppnRJnn
Dtpp

p

q
D

Dtnn
n

q
D

µµ

11
 

( ) ( ) ( ) ( ) ( )∫ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−∇−−−∇−−−≤ −− dx

J
ppppJnnnnq

p

p
D

q
D

n

n
D

q
D µµ

221  

( )∫ +++ 11 CdxpnC qq   

( ) ( ) ( )∫ ∇−∇−−−= − ndxnnnnq D
q

D
21 +                        

     ( ) ( ) ( )∫ ∇−∇−− − pdxppppq D
q

D
21   

( ) ( ) ( ) ( ) ( ) Vdxpppppnnnnnq D
q

DD
q

D ∇−∇−−−∇−−+ −−∫ ][1 22   
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( )∫ +++ 11 CdxpnC qq   

4321: IIII +++=                                                                          (19) 
     where the term 3I from (19) can be rewritten as follows: 

              ( ) ( ) ( ) ( ) +∇−∇−−−∇−= −−∫ VdxppppnnnnI D
q

DD
q

D ][ 11
3  

 ( ) ( ) ( ) ( ) ( ) dxVpppppVnnnnn DD
q

DDD
q

D )]]([][[ 22 ∇−∇−−∇−∇−+ −−∫  

 = ( ) ( ) ( )dxCnpnppnn
q tr

q
D

q
D −+−−−−− ∫ ε][1  

     ( ) ( ) dxCnpnnVnnn
q trDD

q
D )(

1
1 1 −+−+∇∇−
−

− ∫ − ε  

                ( ) ( ) dxCnpnpVppp
q trDD

q
D )(

1
1 1 −+−+∇∇−
−

+ ∫ − ε .  

  We have used partial integration, and (11) to obtain the last expression. By applying 

Holder inequality with coefficients q’, r; s and using the fact that 11
'

1
=+

qq
, we 

obtain the following estimate 

             ( ) ( )[ ] ( )( )dxppnnppnn
q

I DD
q

D
q

D −−−−−−≤ ∫
1

3  

 + ( ) qrq LLD
q
L

qq pnnpnCdxpnCC +∇++++ ∫ −1
222 . 

 
qsqs WLLL VVCVV ,1, ∇≤∇≤∇=∆ ρρ ,where Cpnn tr −−+= ερ . 

For 2≥q and even , one obtains for 1I  

( ) ( )∫ ∫ ∇∇−+∇−−= −− ndxnnndxnnnI D
q

D
q

D
222

1      (20) 

By rewriting the integrand in the second integral from (20) as 

( ) ( ) ( ) D

q

D

q

DD
q

D nnnnnnnnnn ∇−∇∇−=∇∇−
−−

−
2

2
2

2
2    (21) 

and applying the Cauchy-Schwarz inequality, we have the following estimate for (20): 

           ( ) ( ) ( )∫ ∫ ∫ ∇−∇−+∇−−≤ −−− dxnnndxnnndxnnnI D
q

D
q

D
q

D
222222

1 ||   

( ) 2222 −− −∇+∇−≤ ∫ q
LDLD

q
D qq nnndxnnn                                          (22) 

For 2I , the same reasoning (with Dnn.  replaced by Dpp.  , respectively) yields an 
analogous estimate. 
Collecting all the estimates, we finally obtain: 

( ) ( )
∫ =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
+

− dx
q

pp
q

nn
dt
d

p

q
D

n

q
D

µµ
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( ) 2222

2
1 −− −+∇−−≤ ∫ q

LDLD
q

D qq nnndxnnn  

( ) 2222

2
1 −− −+∇−− ∫ q

LDLD
q

D qq pppdxppp   

( ) ( ) ( )( )∫ −−−∇−−−− dxppnnnppnn
q DD

q
D

q
D

2][1   

( )∫ +∇+++++ −
qrq LLD

q
L

qq pnnpnCdxpnCC 1
333                         (23) 

        [ ] ∫ ∫ −+−≤−+− dxpppdxnnndxppnn
dt
d

q
q

DLDDLD
q
LD

q
LD qqqq

2221  

                                              q
LD

q
L

q
L qqq pCnCpnC 444 ++++  

                [ ]q
LD

q
LD

q
LD

q
LD

q
qqqq pppnnnC +−++−≤ 24                (24) 

                                                                                                                                                               
Corollary  Given the assumptions of  Theorem, consider equations    (8)-

(11) with homogenous Neumann boundary conditions. Then    
( ) ( ) ( )( )Ω∩Ω∞∈ ∞∞ 1,,0, HLLpn loc .
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VORTICITY EVOLUTION IN PERTURBED POISEUILLE FLOW  
 

UDC 531; 534; 517.944; 

Miloš M. Jovanović  

University of Niš, Faculty of Mechanical Engineering, Aleksandra Medvedeva 14,   
18000 Niš, Serbia,  e-mail: jmilos@masfak.ni.ac.rs  

Abstract. We consider numerical simulation of temporal hydrodynamic instability with 
finite amplitude perturbations in plane incompressible Poiseuille flow. Two 
dimensional Navier Stokes equations have been used and reduced to vorticity-stream 
function form. Trigonometric polynomials have been used in homogeneous direction 
and Chebyshev polynomials in inhomogeneous direction. The problem of boundary 
conditions for vorticity has been solved by using the method of influence matrices. The 
Orr-Sommerfeld equation has been solved by Chebyshev polynomials, and linear 
combination of the obtained eigenfunctions has been optimized with regard to the 
corresponding eigenvalue. We present here the results of simulation for the 
perturbations optimized in regard to the least stable eigenvalue for the Reynolds 
number Re =1000. 
 

Key words: direct numerical simulation, perturbed Poiseuille flow, subcritical instability, 
optimized perturbation, pseudospectral method  

. 

1. INTRODUCTION 

It is well known that classical Hydrodynamic stability theory is not capable of 
describing the initial transient growth mechanism that has been observed by 
experimentators for viscous channel flows. The reason for such behavior has been 
ascribed to the asymptotic behavior of the unstable eigenvalue, since the perturbation is 
formed only by the unstable eigenvalue and the corresponding eigenfunction. So, for 
Poiseuille flow the critical Reynolds number is 5772, and for this value of Reynolds 
number the eigenvalue has the positive imaginary part, and so the flow is asymptotically 
unstable, i.e. for large values of time, when t→∞ 

We have simulated the streamfunction-vorticity form of the 2D Navier-Stokes 
equations, and carried out the perturbation of laminar Poiseuille flow, by forming the 
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optimized linear combination of the all eigenfunctions normalized on the corresponding 
eigenvalue, in this case the least stable eigenvalue. The simulation has been carried out 
for the subcritical Reynolds number Re=1000, defined on channel half height H, middle 
channel maximal fluid velocity Umax and fluid kinematic viscosity-ν 

2. PROBLEM STATEMENT AND GOVERNING EQUATIONS 

We consider the problem for plane Poiseuille flow, where H is channel half height, L- 
is its lenght. Incompressible fluid flows through the channel from left to right, whereby 
the pressure at the inlet is pi and at the outlet cross section is po. Momentum equation by 
means of which we describe this isothermal incompressible flow can be written in 
nondimensional form [1] 

 ( ) 1 1 ,VSt V V F Eu p V
t Fr Re

∂
+ ∇ = − ∇ + ∆

∂

r
r r r r
�  (1) 

where is ∇-Hamilton’s differential operator. In the above expression ∆-designates 
nondimensional Laplace’s differential operator. The continuity equation reads 

 0.V divV∇ = =
r r

�  (2) 

In the above expressions V
r

is nondimensional velocity vector of 2D flow in Cartesian 
coordinates, F

r
–nondimensional force field, p–nondimensional pressure, t–

nondimensional time, St–Strouhal number, Fr–Froude number, Eu–Euler number, Re–
Reynolds number.  Nondimensional form of the momentum equation has been obtained 
by using the following caracteristic scales for various independent and dependent 
variables:  L0=H – for all lengths, V0 =Umax –maximal velocity at the middle of the 
channel, for all velocities, po–pressure at the outlet of the channel, for pressure, and g–
gravity acceleration for body force. Four dimensionless parameters are thus occuring, 
namely, 

 0 0 0 0 0
2 2

0 0 0 0

, , , ,
L gL p L V

St Fr Eu Re
t V V V

ρ
= = = =

µρ
 (3) 

where are µ - dynamic viscosity, ρ - fluid density. We take that St =1, Eu =1 and Fr =1, 
and we introduce the ν-dimensionless kinematic viscosity, which is the inverse of 
Reynolds number. So we have now 

 ( ) ,V V V F p V
t

∂
+ ∇ = −∇ + ν∆

∂

r
r r r r
�  (4) 

If we take the curl of this equation, and having in mind the definition of vorticity 

 ,V curlVω = ∇× =
r rr

 (5) 

then we obtain the following transport expression for vorticity 
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 ( ) .V F
t

∂ω
+ ∇ ω = ∇× + ν∆ω

∂

r r rr r
�  (6) 

We have taken into account that the curl of arbitrary scalar function gradient, in this 
case pressure function, is by definition equal to zero. The velocity vector can be 
expressed as curl of stream function 

 ,V curl= ∇×ψ = ψ
r r r

 (7) 

and after substitution of this expression (7) into (6), and after projection to z-axe, we 
obtain the following equation for transport of vorticity 

 
2 2

2 2 .y xf f
t y x x y x y x y

∂ ⎛ ⎞∂∂ω ∂ψ ∂ω ∂ψ ∂ω ∂ ω ∂ ω
+ − = − + ν +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (8) 

If we substitute the expression (7) in (2) the continuity equation is identically 
satisfied, and can not be used for closure the system of equations. For closure the system 
of equations we use the definition of vorticity given by the expression (5) and velocity 
vector given through the streamfunction vector by (7). So the second equation for closure 
the system of equations reads 

 
2 2

2 2 0.
x y

∂ ψ ∂ ψ
ω+ + =

∂ ∂
 (9) 

The system of the equations (8) and (9) with appropriate initial and boundary conditions 
should be solved in space and time. Boundary conditions can be formulated in the 
following manner 

 ( ) ( ) ( ) ( ),1, , , ,1, , T,ux t g x t x t h x t on
y+ +

∂ψ
ψ = = Γ ×

∂
 (10) 

 ( ) ( ) ( ) ( ), 1, , , , 1, , T,lx t g x t x t h x t on
y− −

∂ψ
ψ − = − = Γ ×

∂
 (11) 

 ( ) ( )0, ,0 , ,x y x y onψ = ψ Ω  (12) 

here domain Ω is defined as Ω = { (x,y)∈¡2 |  0≤ x≤2π ∧ −1< y<1 }. We have designated 
the upper domain boundary Γu = {(x,y)∈¡2 | 0≤x≤2π ∧ y=1 } and the lower domain 
boundary Γl = { (x,y)∈¡2 | 0 ≤ x ≤ 2π ∧ y = −1}. The time domain is defined as T={ t∈¡ | 
0≤ t≤Te }, where Te is the end of the simulation. We have anticipated the periodic 
boundary conditions in streamwise direction (x-axe), which are in accordance with the 
periodic perturbations obtained by the solution of Orr-Sommerfeld equation of 
hydrodynamic stability. 
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3. NUMERICAL PROCEDURE FOR THE SOLUTION OF PROBLEM 

For the problem stated in the previous section, for the basis function in x-direction we 
have taken trigonometric polynomials, and for y-direction we have taken Chebyshev 
polynomials. The domain in x-direction is equally discretised ∆x = 2π/N, and domain in 
y-direction is discretised by Gauss-Lobatto-Chebyshev points defined as yj = cos(πj/N) 
for 0≤j≤N, where is N-number of discretization points in x- and y-direction. For 
streamwise direction we have used Fourier-Galerkin method, and for stream normal 
direction Chebyshev-collocation method. The truncated Fourier series for streamfunction 
and vorticity read 

 ( ) ( )
2

2

ˆ, , , ,
k N

I k x
N k

k N
x y t y t e

=

=−

ω = ω∑  (13) 

 ( ) ( )
2

2

ˆ, , , ,
k N

I k x
N k

k N
x y t y t e

=

=−

ψ = ψ∑  (14) 

In the above expressions 1I = − is imaginary unit, k-wave number, ( )ˆ ,k jy tω and 

( )ˆ ,k jy tψ are Fourier coefficients for vorticity and streamfunction respectively. In order 

to have 2π-periodicity in the flow domain, we have chosen that wave number must be 
from the set of integers, k∈¢. In order to implement Fourier-Galerkin method to the 
system of equation (8) and (9), we firstly approximate nonlinear convective terms on left 
hand side, in the following manner 
 

 ( ) ( )
/ 2

1
/ 2

, , ,
N

I k x

k NN k

N x y t y t e
y x y x=−

⎡ ⎤∂ψ ∂ω ∂ψ⎛ ⎞ ∂ω= = ⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎢ ⎥⎣ ⎦
∑  (15) 

 ( ) ( )
/ 2

2
/ 2

, , ,
N

I k x

k NN k

N x y t y t e
x y x y=−

⎡ ⎤∂ω∂ψ ∂ψ⎛ ⎞ ∂ω= = ⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎢ ⎥⎣ ⎦
∑  (16) 

Substituting the (13), (14), (15) and (16) in the (8) and (9), we obtain the following 
residual equations 

 
( ) ( ) ( )

( ) ( )

/ 2 / 2 / 2

/ 2 / 2 / 2

2 2/ 2 / 2

2 2
/ 2 / 2

ˆ , , ,

ˆ ˆ, , 0,

N N N
I k x I k x I k x

k
k N k N k Nk k

N N
I k x I k x

k k
k N k N

y t e y t e y t e
t y x x y

y t e y t e
x y

=− =− =−

=− =−

⎡ ⎤ ⎡ ⎤∂ ∂ψ ∂ψ∂ω ∂ωω + − −⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎛ ⎞∂ ∂− −ν + ω ≠⎜ ⎟
∂ ∂⎝ ⎠

∑ ∑ ∑

∑ ∑F

 (17) 

 ( ) ( )
2 2/ 2 / 2

2 2
/ 2 / 2

ˆ ˆ, , 0.
N N

I k x I k x
k k

k N k N
y t e y t e

x y=− =−

⎛ ⎞∂ ∂
ω + + ψ ≠⎜ ⎟

∂ ∂⎝ ⎠
∑ ∑  (18) 
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We have introduced the following expression for the curl of body force, 

 ( )
/ 2

/ 2

ˆ , ,
N

y I k xx
k

k N

f f
x y t e

x y =−

∂ ∂
= − =

∂ ∂ ∑F F  (19) 

If we apply Galerkin method to the equations (17) and (18), i.e. we take for the 
weight functions the same as basis functions , we obtain 

 

( )
�

( )

�
( ) ( )

( )

/ 2 / 2

/ 2 / 2

/ 2 / 2

/ 2 / 2

2 2 / 2

2 2
/ 2

ˆ , , , ,

ˆ, , , ,

ˆ , , 0, 0,1, , / 2.

N N
I k x I l x I k x I l x

k
k N k N k

N N
I k x I l x I k x I l x

k
k N k Nk

N
I k x I l x

k
k N

y t e e y t e e
t y x

y t e e y t e e
x y

y t e e l N
x y

=− =−

=− =−

=−

⎡ ⎤∂ ∂ψ ∂ωω + −⎢ ⎥∂ ∂ ∂⎢ ⎥⎣ ⎦

⎡ ⎤∂ψ ∂ω− − −⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

⎛ ⎞∂ ∂−ν + ω = =⎜ ⎟
∂ ∂⎝ ⎠

∑ ∑

∑ ∑

∑ K

F  (20) 

 ( ) ( )
2/ 2 / 2

2
2

/ 2 / 2

ˆ ˆ, , , , , , 0 ,

0,1, , / 2.

N N
I k x I l x I k x I l x

k k
k N k N

x y t e e k x y t e e
y

l N
=− =−

⎛ ⎞∂
ω + − + ψ =⎜ ⎟

∂⎝ ⎠
=

∑ ∑

K

 (21) 

where we have denoted with ,  the inner product. Recalling that ˆ ˆk k
∗

−ω = ω , i.e. Fourier 
coefficient of inverse wave number is complex conjugate of the corresponding wave 
number, it is not necessary to take l= −N/2,...,N/2, but l=0,1,...,N/2. Having in mind the 
orthogonality relation 

 
2

0

2 , ,
,

0, ,
I k x I l x I k x I l x l k

e e e e dx
l k

π
− π =⎧

= = ⎨ ≠⎩
∫  (22) 

the system of equations (20) and (21) takes the following form 

 
( ) �

( )
�

( ) ( ) ( )
2

2
2

ˆ , ˆ ˆ, , , ,

0,1, , / 2.

k
k k

k k

y t
y t y t y t k y t

t y x x y y

l k N

⎡ ⎤ ⎡ ⎤∂ω ⎛ ⎞∂ψ ∂ψ∂ω ∂ω ∂+ − = + ν − ω⎢ ⎥ ⎢ ⎥ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥ ⎝ ⎠⎣ ⎦ ⎣ ⎦
= = K

F
 (23) 

 ( ) ( )
2

2
2

ˆ ˆ, , 0, 0,1, , / 2.k ky t k y t l k N
y

⎛ ⎞∂
ω + − + ψ = = =⎜ ⎟

∂⎝ ⎠
K  (24) 

Applying now the Chebyshev-collocation method in inhomogenuous direction (y-
axe) to the above system of equations, we obtain the following system 
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( ) �
( )

�
( ) ( )

( ) ( )22
,

0

ˆ , ˆ ,

ˆ , , 0,1, , / 2, 1, , 1,

kN j
j j kN j

kN kN

N

j l kN j
l

y t
y y y t

t y x x y

k d y t k N j N
=

∂ω ⎡ ⎤ ⎡ ⎤∂ψ ∂ψ∂ω ∂ω+ − = +⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎛ ⎞
+ν − + ω = = −⎜ ⎟

⎝ ⎠
∑ K K

F
 (25) 

 ( ) ( ) ( )22
,

0

ˆ ˆ, , 0,

0,1, , / 2, 1, , 1.

N

kN j j l kN j
l

y t k d y t

k N j N
=

⎛ ⎞
ω + − + ψ =⎜ ⎟

⎝ ⎠
= = −

∑
K K

 (26) 

Here the subscript index N denotes the number of discretization points in y-direction, 
and it is worth reminding that we have taken Ny=Nx=N. Differentiation with regard to y-
variable has been substituted with Chebyshev differentiation expressions [2] given by 

 ( ) ( ) ( ) ( ) ( )
2

2 2
,2

0

ˆ
ˆ ˆ , 0, , ,

N
kN

j kN j j l kN l
l

y y d y j N
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∂ ω
= ω = ω =

∂ ∑ K  (27) 
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N
kN

j kN j j l kN l
l
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y =

∂ ψ
= ψ = ψ =

∂ ∑ K  (28) 

The next step to be carried out is the temporal discretization of the governig 
equations. For this purpose we have used the following two-step generalized method 
defined in the following way 
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for the spatially discretised momentum equation (25) and  
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for the spatially discretised the definition of vorticity equation (26). Here is denoted 
t=n∆t, where ∆t-time step, n-the number of time step.   

The same procedure must be carried out to boundary and initial conditions. 
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Having in mind the expression (14) for streamfunction, boundary conditions (10) and 
(11), as well as their trigonometric polynomial approximation given by (31)-(35), after 
implementing Galerkin method and applying the orthogonality relation (22), we obtain 
the following boundary conditions in space of Fourier coefficients 

 ( ) ( ),ˆ ˆ1, , 0, , / 2.k kt g t k N+ψ = = K  (36) 

 ( ) ( ),ˆ ˆ1, , 0, , / 2,k kt g t k N−ψ − = = K  (37) 

 ( ) ( ),

ˆ ˆ1, , 0, , / 2,k
kt h t k N

y +

∂ψ
= =
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y −
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− = =

∂
K  (39) 

After time discretization and application of Chebyshev collocation method for boundary 
conditions, the above boundary conditions read as follow 

 1 1
,0 ,ˆ ˆ , 1, 0, , / 2,n n

k kg y k N+ +
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This system of equations (29) and (30) together with boundary conditions (40) to (43) 
should be solved numerically. The system is represented by 2(N+1)×2(N+1) three time 
levels matrix equation. The nonlinear advective terms have been computed by 
pseudospectral technique [3], so that full Navier-Stokes equation in vorticity-stream-
function formulation can be simulated for the case of 2D viscous channel flow. The 
problem of two boundary conditions for stream function and none for vorticity has been 
successfully resolved by applying the influence matrix method [4]. 

4. TEMPORAL HYDRODYNAMIC STABILTY 

In order to simulate the process of instability of viscous fluid flow between two 
parallel horizontal plates, we solved Orr-Sommerfeld equation of hydrodynamic linear 
stability for the given velocity profile, in this case for plane Poiseuille flow, and formed 
the streamfunction perturbation as the linear combination of the eigenfunctions obtained 
as the solution of this equation. It is well known fact that there is no analytical solution of 
this equation. The first numerical solution of this equation is given in the paper [5], and 
the critical Reynolds number of this type of flow has been found to be 5772. In order to 
show how we perturbed the Poiseuille flow, we start from the equation (8) in which we 
substitute 

 , , F f′ ′ ′= Ω + = Ψ + = +ω ω ψ ψ F  (44) 

where we  have taken in account the expression (19), so that we have 
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F f
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∂ ∂⎝ ⎠

ω ψ ω ψ ω

ν ω ω
 (45) 

The capital letters designates the basic flow values, and the prime denotes 
perturbations of the corresponding physical values. If we subtract (8) from (45) the above 
equation is reduced to following form 
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ψ ψ ψω ω ω ω

ψ ω ω ων
 (46) 

Neglecting the nonlinear terms of perturbed values as small values of higher order than 
we have 

 
2 2

2 2f
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In plane channel flow, better to say, in Poiseuille flow we have U=∂Ψ/∂y =1−y2 , 
V=−∂Ψ/∂x=0, dU dyΩ = − , and also 0x∂Ω ∂ = , so finally we have 

 
2 2

2 2f
t y x x y x y

ψω ω ω ων
⎛ ⎞′ ∂Ω∂′ ′ ′ ′∂ ∂Ψ ∂ ∂ ∂′+ − = + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (48) 

We anticipate that 0f ′ = , and ′ ′= −∆ω ψ , so that we have now 

 
2

2
2

d UU
t x x d y

ψψ ψ ν ψ
′∂∂ ∂′ ′ ′∆ + ∆ − = ∆

∂ ∂ ∂
 (49) 

with boundary conditions 

 ( )1 0y′ψ = ± =          ( )1 0y
y
′∂ψ = ± =

∂
 (50) 

We have used modal approach for solving this problem, anticipating the that the 
perturbations are 2π periodic in x-direction, and are represented in the following way 

 ( ) ( ) ( ) ( ) ( ) ( )
1 1

1 1
2 2

i x c ti x c tˆ ˆx, y,t y e y e
∗ ∗− α −∗α −∗ ⎛ ⎞′ψ = ψ +ψ = ψ +ψ⎜ ⎟

⎝ ⎠
 (51) 

Here ψ1 is the normal mode form of stream function perturbation, and the values 
denoted by ∗ designate their  complex-conjugate value. Thus the sum of normal mode 
and its complex-conjugate gives the real valued function ψ′. Since the complex-
conjugate value 1

∗ψ can be easily obtained from the complex-valued function 1ψ itself, it 
is only necessarily to substitute 1ψ in the (49), so that it reads 

 ( ) ( ) ( ) ( ) ( ) ( )
2

2
2

i x ct i x ct i x ctd Uˆ ˆ ˆU y e y e y e ,
t x xd y

− − −⎛ ⎞∂ ∂ ∂+ ∆ − = ∆⎜ ⎟∂ ∂ ∂⎝ ⎠
α α αψ ψ ν ψ  (52) 

which after some differentiation and rearrangements gives 

 ( )
2 2 42

2 4 2
2 2 2 42
ˆ ˆ ˆd d dd Uˆ ˆ ˆU c .

idy dy dy dy
⎛ ⎞ ⎛ ⎞

− − − = − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

ψ ψ ψνα ψ ψ α ψ α
α

 (53) 

This equation known as Orr-Sommerfeld equation, together with appropriate boundary 
conditions 
 

 ( ) ( ) ( ) ( )ˆ ˆˆ ˆ1 0, 1 0, 1 0, 1 0,d d
dy dy
ψ ψψ ψ= − = = − =  (54) 

should be solved numerically. Numerical procedures are given for examples in [5], [6], 
[7] and [8]. This equation can be reduced to operator form 
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− − − = − +D D Dνψ α ψ ψ α ψ α ψ ψ
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where is ∆ = d/dy differential operator, which can be solved as generalized eigenvalue 
problem, where c’s are eigenvalues and ψ̂ ’s are eigenfunctions. 

We can fix now two parameters α and ν, and compute the eigenvalue c, what 
correspods to the case of temporal hydrodynamic stability. If we choose to fix c and ν, 
and to compute α, that would be the case of spatial hydrodynamic stability. In the first 
case we have α∈¡ and c∈£, and in the second case c∈¡ and α ∈£. Here c is the velocity 
of traveling wave, and α is its wave number. In general case c=cRe+ i cIm and α=αRe+ i 
αIm , but since we have only one equation and two unknowns, we have to make some 
assumptions concerning these unknowns. In our calculations we have anticipated α=1.  

The  results obtained for Re=1000 (ν=1/1000) are presented in fig.1 and are obtained 
for the N=128 Gauss-Lobatto-Chebyshev point in y-directions. For creating the 
perturbation that can exhibit the transieth growth mechanism, we have used the 
optimized linear combination of all eigenvectors which is  normalized with regard to the 
least stable eigenvalue. This optimized perturbation was superposed to the initial 
unperturbed velocity profile, and the flow was driven by the force term determined from 
the perturbed Navier Stokes equation.  This transient growth  is possible due to non-
normality of Orr-Sommerfeld operator, but the all eigenvalues and eigenvectors have to 
be used for creating linear combination, not only the least stable eigenvalue and 
correspoding eigenvector, see [9],[10],[11]. The results of simulation Fig.1and Fig.2 are 
given in the next section for the dimensionless time t=nπ, n=1,...,10. 

5. THE RESULTS OF TRANSIENT FLOW SIMULATION  

The initial condition for our simulation is the solution of the problem for laminar 
Poiseuille 2D-flow is 

 ( ) ( )2, ,0 1 , , ,0 0, .U x y y V x y on= − = Ω  (56) 

Our goal is to simulate the transition process from laminar to perturbed state for the 
value of Reynolds number Re=1000 which is beneath the critical value Rec=5772, to 
simulate the transient growth of kinetic energy and enstrophy. We have carried out this 
simulation  by imposing the  perturbations obtained by solution of Orr-Sommerfeld 
equation on laminar velocity profile. The simulations are driven by forcing term which is 
determined by the perturbed Navier-Stokes equation, 

 
( ) ( ) ( )

( ) ( ) ( ) ( )
2 2

2 2

pertF
t y x

.
x y x y

∂ ∂ ∂′ ′ ′= Ω + + Ψ + Ω+ −
∂ ∂ ∂

⎡ ⎤∂ ∂ ∂ ∂′ ′ ′ ′− Ψ + Ω+ − Ω+ + Ω+⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

ω ψ ω

ψ ω ν ω ω
 (57) 

Here Ω and Ψ are the values determined from (56) at initial time, and later they are 
results obtained from our numerical procedure and our MATLAB code, and the ψ′ and 
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ω′ are obtained as solution of Orr-Sommerfeld equation, and as optimized linear 
combination of all eigenvectors,  

 ( ) ( ) ( ) ( ) ( )( )
1 1

n n
N N

i x c ic ti x c t
n n n nn

n n

ˆ ˆx, y,t y e y e
′ ′

α − +α −

= =

′ψ = β ψ = β ψ∑ ∑ Re Im  (58) 

and, 

 ( )x, y,t .′ ′= −∆ω ψ  (59) 

Here ˆkψ ’s are eigenvectors and cn’s are eigenvalues of generalized eigenvalue 
problem of Orr-Sommerfeld equation for the case of plane Poiseuille flow, and βn are 
coefficient which should be determined by appropriate optimization procedure. The 
procedure we used in this paper is according to [7, p.121,fig.4.7] and is based on method 
first developed in [11]. 

Here β is perturbation spectar obtained by using the matrix Ψ, whose columns are 
eigenvectors ( )ˆn yψ , in the following way 

 ( )1 0y, .− ′= Ψβ ψ  (60) 

Functional to be minimized is  

 ( ) ( )f A .∗∗ ∗ ∗ ∗′ ′= Ψ Ψ = Ψ Ψψ ψ = β β β β = β β  (61) 

In other words, the functional is the dot product of perturbation vector of stream 
function and its complex conjugate. If we put the condition that the i-th mode is of unit 
magnitude, then the variational problem can be reduced to the following function 

 ( )1if A .∗= + −λβ β β e  (62) 

Here we have designated with ei – the unit vector, i.e. the column vector whose the 
only the i-th element is different from null. Let find the derivative with respect to β, e.i. 
let find the first variation of the above function f and equal it with zero, so that we have 

 ( )1i i
d f d A A .d d

∗⎡ ⎤= + − = + =⎣ ⎦ 0λ λβ β β β
β β

e e  (63) 

And after rearrangements 

 iA ,= −λβ e  (64) 

so that after multiplication both side with inverse matrice A−1from the left we have 

 1
iA .−= −λβ e  (65) 

The optimized spectar can be normalized by appropriate calculation of coefficient λ, so 
that the value βi=1 can be obtained. Having this in mind we have 
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 (66) 

and the value of λ is determined by this expression 

 1 1
1i

ii ii

.
a a− −

− −= =
βλ  (67) 

Fig.1 shows the vorticity fields for six different times, for dimensionless time t=nπ, 
n=1,...,6. Since the least stable eigenvalue for Re=1000 equals c=0.3462–i0.0421, we can 
see that the velocity of traveling wave perturbation optimized with regard to this mode 
has 34.62% of the fluid velocity in the middle of the channel. In the time t=π we can see 
the vorticity distribution similar to that given in reference [6, p.121, fig.4.7], and as we 
can see the middle of the channel is almost unperturbed. In the next time for t=2π we can 
see that vorticity has advected and diffused in the direction of the middle of channel, and 
that the maximal amplitudes has been decreased, what is in our opinion the consequence 
of the relaxation from the initial perturbation to the exact solution to Navier-Stokes given 
by (56). This can be seen on colorbars in the first two figures, where on the first one we 
have maximal magnitude 6.2 and on the second one 5.5 in dimensionless vorticity units. 
In the next instant of time for t=3π, it can be observed the merging of perviously 
separated vortexes with the same sign, which are deformed due to wall normal velocity 
perturbation, which is not shown here due to space limitation. 

In t=4π, two circled vortexes have been formed with the centers located at y=0.2 
positive one and y=−0.2 the negative one. The positive one with counter-clockwise 
rotation (red color) and negative vortex with clockwise rotation (blue color), in the 
middle of the channel, where this vortex pair is being deformed by the velocity gradient 
of the flud flow. The vortex pairs on upper and lower wall are in the form of romboid 
since the velocity of perturbation is greater than the velocity of surronding fluid near the 
walls, because the velocity of perturbation is cRe=0.3462 and velocity of the fluid is given 
by (56). This velocity difference decreases with going away from the walls according 
with this expression till the normal coordinate reaches the value where these two 
velocities are equal, better to say, till to the value of critical fluid layer y≈0.8, since U=1-
0.64=0.36. So we can notice that the velocity of perturbation traveling wave (phase 
velocity) is much higher in the wall region than the streamwise fluid velocity, but 
opposite is valid for the middle of the channel, where fluid velocity U (−0.8<y<0.8) is 
greater than phase velocity. 
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Fig.1. vorticity distribution ω(x,y,t) in 2D channel viscous fluid flow for t=π,…,6π for 

streamfunction perturbation optimized to least stable eigenmode. 

 
In the next instant of time for t=5π it can be noticed that these vortex have been 

deformed in streamwise direction, by the mean velocity gradient., and this process is 
continued in the next instant of time t=6π. 
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Fig.2: vorticity distribution ω(x,y,t) in 2D channel viscous fluid flow for t=7π,…,10π for 

streamfunction perturbation optimized to least stable eigenmode. 

In the next vorticity fields for t=7,...,10π, the process of vortex distorsion is 
continued, and advected in downstream direction. The maximal and minimal values of 
vorticity are on the upper and lower wall respectively , and their values decrease with 
increase of time. Vortex pair on lower plate consist of two vortexes, the negative one 
which atains the value ωmin=−4.8 and positive one with the value ωmax=1 at instant of 
time t=10π. The opposite is true on the upper wall;  the negative vortex attains the value 
ωmin=−1 and vortex with counter-clockwise rotation (red color) reaches the value 
ωmax=4.8. These vortex pairs moves in downstream direction with phase velocity 
cRe=0.3462, which can be seen on the figures above, since the displacement of the center 
of the vortex between two instant of time can be determined in the following way: s=cRe 
∆t=0.3462⋅3.1416=1.0876, and this is what we can see on this fig.2 between four 
different instant of time. 
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6. CONCLUSION  

 
The most important results can be seen on the colorbars for ten different instant of 

times. It can be noticed that the maximal vorticity displayed on colorbars attains its 
maximal value at time t=4π (ωmax=6.85) and t=5π (ωmax=6.75), and afterwards the 
intensity of vorticity monotonically decreases, so that for t=10π we have the value ωmax 
=4.94. In this way we have two time periods, the first one when the maximal values of 
vorticity increases with time until it reaches t=4π, and second one when the extreme 
values of vortex intensity decline and the kinetic energy and enstrophy are monotonicaly 
decreasing functions of time. 
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EVOLUCIJA VRTLOŽNOSTI U POREMEĆENOM 
POASEJEVOM STRUJANJU 

 Miloš M. Jovanović 

Apstrakt: U radu se razmatra direktna numerička simulacija vrtložnosti viskoznog nestišljivog 
fluida za slučaj Poasejevog strujanja (strujanja između horizontalnih paralelnih ploča pod 
dejstvom gradienta pritiska u horizontalnom pravcu), kod koga je polju strujne funkcije fluida 
pridodato poremećajno polje konačne amplitude. Ovo poremećajno polje je dobijeno 
optimizacijom linearne kombinacije svih sopstvenih vektora dobijenih kao rešenje Orr-
Sommerfeld-ove jednačine za granične uslove koji odgovaraju opisanom primeru. 
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A - A VIEW IN THE INVISIBLE 
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Slavica Ristić 

Institut  Goša, Milana Rakića 35, Belgeade   

Abstract (bold). Flow visualization is an important topic in, experimental 
and computational fluid dynamics and has been the subject of research for 
many years. This paper presents an overview of flow visualization 
techniques. The physical basis and applications of different visualization  
methods for subsonic, transonic and supersonic flow in wind and water 
tunnels are described: direct injection methods, (smoke, dye, fog and 
different small particles), gas and hydrogen bubbles, , flow visualization by 
tufts, oil, liquid crystals, pressure  and temperature sensitive paints,  shadow, 
schlieren, interferometry, Laser Doppler Anemometry, Particle  Image  
Velocimetry and other special techniques. Almost all presented photos have 
been recorded during tests in laboratories of MTI Belgrade. 
 
Key words: flow visualization, wind tunnel, water tunnel, optical methods, 
 LDA, PIV 

 

 1. INTRODUCTION 

Most fluids are transparent media and their motion remains invisible to the human eye 
during direct observations. However, the motion of such fluids can be recognized using 
techniques by which the flow is made visible. Such techniques are called flow 
visualization techniques. These techniques are valuable tools in various scientific and 
engineering disciplines. They allow to see the invisible: the optical inhomogeneities and 
motion in transparent media like air and water. 

 Flow visualization probably exists as long as fluid flow researches itself and dates 
back to the mid - 1400's, where Leonardo De Vinci sketched images of fine particles of 
sand and wood shavings which had been dropped into flowing liquids. Ludwig Prandtl, 
one of the pioneers of aerodynamics in Göttingen, performed first qualitative 
visualization of unsteady flows behind profiles and other models in his simple water 
channel by observing the movement of tracer particles on the surface of the water. 
Today, one hundred years later, most physical quantities of interest to mechanics, 
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aerodynamics and hydrodynamics can be determined quantitatively by image based 
experimental techniques. Modern image based measurement techniques such as Particle 
Image Velocimetry, following the same simple physical principles. 

The progress made with optoelectronics and computer, lasers, video techniques has 
stimulated the development of a great number of image based measurement techniques. 
These techniques are now utilized for fundamental research, in industrial applications 
and for comparison with the results of numerical calculations. They allow a much better 
understanding of complex unsteady flow phenomena and providing quantitative 
information about the complete flow field [1-6].  

Experimental flow visualization techniques are applied to get an picture of fluid flow 
around a real object or a scaled model of object, without any calculations and to develop 
or to verify new models and new theories of fluid flow. 

 If the flow could be made visible by some kind of flow visualization technique, then 
it would be possible to observe flow phenomena e.g., vortex flows, flows distant from 
surfaces, as well as those phenomena which are dominated by the effects of viscosity, 
e.g., boundary layer flows, separation) [1-41].  

Flow visualization may be divided into surface flow visualization (tufts, fluorescent 
dye, oil or special clay mixtures) and off-the-surface visualization (tracers as smoke 
particles, oil droplets or helium-filled soap bubbles). Surface flow visualization gives 
important information on such things as the state of the boundary layer (laminar or 
turbulent), transition, flow separation and so on. The second type of visualization gives 
the information about whole flow field. Each of these methods requires appropriate 
lighting and some device for recording the image such as a still or video camera. Flow 
visualization offers integration of photographic art and engineering techniques. 

Recently a new type of visualization has emerged: computer-aided visualization. In 
the area of fluid dynamics, computers are extensively used to calculate velocity fields and 
other flow quantities, using numerical techniques to solve the Navier-Stokes equations. 
Usually, when data sets are computed that provide a huge amount of sampled vector 
information spread over a two or three-dimensional domain. Without visualization it is 
impossible to investigate such data sets. To analyze the results computer visualization 
techniques are necessary and very often used. Humans are capable of comprehending 
much more information when it is presented visually, rather than numerically. 

Three basic types of experimental techniques can be distinguished: methods with 
adding foreign material, optical methods and methods with adding heat/energy. 
According with these principles, one possible classification of the flow visualization 
techniques may be: 

 
I Non optical methods: 

1.Visualization with tracers (photochemical production of tracers, elektrochemical 
production of tracers, injection of tracers, smoke, dye, air and hidrogen bubbles, 
powder, fog and so on) 
2.Surface visualization (tufts visualization (ordinary tufts, fluorescent tufts),  oil 
emulsion, liquid cristals, termo sensitive paint, pressure sensitive  paint,clay 
mixture) 

II Optical methods: 
1.Shadow method 
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2.Schlieren metod (paralel or focused, gray or color) 
3.Interferometry (classical, holographic) 
4.Electronic speckle interferometry and shearography 
5.Laser Doppler anemometry  
6.Particle Image Velocimetry 

III Special methods: 
7.Energy adding 
8.Refractometry 
9.Laser light sheet 

This paper reviews flow visualization techniques applied in wind and water tunnel 
tests. Wind tunnels are devices for experimental study of the wind effects on different 
structures or objects: aircraft and missiles models, vehicles, cars, bridges, buildings, 
machines, pipe and so on. But main task of the wind tunnels are experimental support of 
research and development during design phase of aircraft projects. The hydrodynamic 
behavior of submerged bodies in flowing water is studied in water tunnels, experimental 
facilities, where water is used as the working fluid [6,7].  

 Wind and water tunnels are equipped with modern instrumentation, making possible 
various measurements: force measurements on 3D models, half models or wing section 
(2D) models, simultaneously using external and internal wind tunnel balances, pressure 
distribution measurements, using Scanivalves, mechanical or electronically scanned 
pressure sensors, stability derivatives measurements, flow visualization, store loads 
measurements, hot film and hot wire anemometry, Laser Doppler anemometry, 
holographic interferometer, Schlieren systems, aerodynamic noise measurements and so 
on. 

The flow visualization techniques used in aerodynamic laboratories of MTI  [5,7], 
are: wall tracing method with pigment oil film (TiO2, color pigments, graphite powder, 
lampblack, fluorescent dye ) and liquid crystals, surface tuft methods with thin nylon or 
silk monofilaments and fluorescent mini tufts, smoke visualization techniques: smoke 
produced in smoke generator; smoke introduced at front of the test section and by 
vaporization of TiCl4 for local application, water tunnel flow visualization by the use of 
gas bubbles, milk as tracer, aniline and methylene dye, aluminum powder and 
polystyrene particles, shadowgrafy, schlieren method, holographic interferometry, hot 
wire and hot film anemometry, Laser Doppler Anemometry. 

2. TRACER METHODS 

The visualization technique of streamlines, filament lines or particle paths, which 
injects some foreign material into a flow as a tracer is the most popular one and has been 
long and widely used up to the now. These three curves coincide if the flow field is 
stationary. But in the flow that depends on space and time as well, the tree types of 
curves are different from one another. Which curves will be visualized depends on the 
choice of: where particles are introduced, the length of the exposure time, and the 
reference system from which the flow is observed or photographed. There is no 
difference between liquid and gaseous flows [1,2,5]. 
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2.1. Smoke Visualization of the Flow 

Resent developments indicate that smoke visualization in wind tunnels, one of the 
oldest flow visualization technique, will continue as an important experimental tool in the 
study of complex flow dynamic phenomena. Improvements in generation and injection of 
smoke as well as in lighting (laser as a light source), in technique of acquisition and 
computation have continued to increase the scientific value of this method [1-5,9]. The 
similarly results give the flow visualizations with fog and vapor. 

There exists no upper limit of speed for smoke line visualization.  

  

a    b    c 

d    e 
Fig. 1: Flow visualization in the MTI wind tunnels by different type of smoke. 
 

Smoke line can be generated in a wind tunnel by introducing smoke (produced by smoke 
generated devices [1]) through small pipes placed in front of a test model, or through 
holes on the model surface.  The smoke must be dense and white for visibility, no toxic, 
and no corrosive. The quality of the observed or photographed smoke line depends also 
on the choice of the illumination system. The smoke can be obtained by the vaporization 
of a mineral oil (paraffin, kerosene) mist resulting from the vaporization of certain 
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substances containing bromide or chloride, and smoke from burning or smoldering wood, 
paper, or tobacco. The burning or vaporization is done in a smoke generator. The flow 
visualization without smoke generator is possible if one deposits a drop of TiCl4 
(titanium tetrachloride) or C10H7Br (bromnaph-thalin) onto the surface of test model in a 
wind tunnel, a white stream of smoke will originate from this drop. When the liquid 
TiCl4 contact with the moist air develops powder TiO2 and HCl. TiCl4 liquid and vapor 
are corrosive and toxic because of HCl [5,9]. 

 Fig 1. shows some examples of smoke visualization (flow is left to right): the smoke 
line in the MTI small smoke tunnel (fig.1a ), visualization obtained with smoke 
introduced in the flow trough the ship chimney  (Fig 1b), and flow visualization with 
TiCl4 around airplane model and sphere (figs.1c and 1d), smoke and laser sheet 
visualization of turbulent convection patterns (fig.1e). 

   One of the more significant improvements in the filed of smoke visualization in the 
past several years has been the introduction of laser light illumination. By using a light 
sheet, cross section of the wake can be illuminated and the position of the vortices can be 
located (fig.1e). Unsteady flow can be tested with pulsed laser. Recording of the flow 
visualized effects can be affected by still or movie camera. Some times that method is 
classified as special flow visualization method [4,5,12]. 

2.2. Visualization using dye 

  The visualization of the liquid flow patterns by ejection of a dye is an analog of 
the smoke visualization technique[1-6,12,13]. The dye can be injected in a tested flow 
either from a small ejector tube placed at a desired position or from small orifices, that 
are provided in the wall of a model (fig.6a), without the component perpendicular to the 
model surface. It can be generated in the flow too, without disturbing the flow. The dye 
has to be stability with respect to diffusion, to have the same specific weight as the 
working fluid and high contrast. 

  For the purpose of flow visualization can be used the food coloring dyes, aniline, 
methylene, potassium permanganate, ink or fluorescent dyes (fluorescent rhodamine), 
mixing in milk or alcohol. The fattiness of the milk retards diffusion of the dyed solution 
into water and give high contrast of the dye line. In a rotating flow, it is important to have 
dye solution with the same specific weight as working fluid (mixing dye with alcohol). 

The aniline violet, red and blue dye, injected from small orifices placed in the top of 
the model, in the cabin region, visualizes the flow around tested models (flow is left to 
right): 1/48 scale model of F-18 aircraft in flow visualization facility (ONERA, fig. 2a 
[9]) and in MTI water tunnel, fig 2b.  Fig. 2c shows flow visualization around hydro 
profile in MTI water tunnel with aniline dye and fig 2d. is vortex visualization Karman 
vortex street behind a cylinder at increasing Re number, using fluorescent dye and laser 
sheet. 
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a    b 

   
c   d 

Fig. 2. Flow visualization by different dyes  
 

The dye methods used in a closed circuit water tunnel increasingly contaminate the 
water. The tunnel has to be emptied and refilled after each experiment. Visualization with 
dye is not suited for turbulent flow, since the filaments would decay and the dyes would 
mix with surrounding fluid immediately after being ejected [1,3,5,9-12]. 

Electrolytic and photochemical reactions can produce different dye in aqueous 
solutions, which allows flow visualization and velocity profile measurements. Focusing 
light from a flash tube or pulsed ruby laser onto a point in the photoactive solution fluid 
(pyridine dissolve in ethyl alcohol or nitrospyran in kerosene) initiates a photochemical 
reaction, which yields a spot of blue dye within a few microseconds [1].  

2.3. Visualization by different small particles 

Adding small particles in the flowing flow (water or air) supposed that the velocity 
of the particles and fluid are identical. The tracer particles can be either solid, liquid, or 
gaseous and the fluid liquid or gaseous, for example: dust, magnesium, (Mg), Al2O3, 
TiO2, aluminum (fig. 3) and polystyrene or cosmetic powder, licopodium, hostaflon, 
cigarette smoke, metaldehyde, atomized DOP, glass sphere, marble dust, oil drops, water 
drops, hydrogen, gas, helium bubbles, ...The diameter of the particle is between 0.1 to 20 
microns [1,4,5]. 
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Fig. 3.Visualization the flow around two cylinders (a) and moled of Concorde with 

Al powder (ONERA)[1,9] 
 
For determining the trajectory and local velocity of a spherical particle, the equation 

of the motion of a single particle must be solved. It is necessary to complete the equation 
of the motion with gravity and "lift force" acting on the particle in the flow with velocity 
gradient. The particle velocity approaches exponentially the constant fluid speed. The 
approach is the faster, the density and the size of the particle are smaller. In the 
compressible flow, with shock waves, particles of finite mass and size cannot follow such 
an abrupt change of the state of motion. The used particles should be as small as possible, 
neither corrosive nor toxic and to have high degree of light reflectivity. The injection into 
the fluid should be located far enough upstream the test regime.  In principle two 
methods exist; to take a single or multiple photographic exposure of the flow field with 
controlled exposure time or to take exposure of the flow field so that each moving 
particle is reproduced on the photograph by a single streak of finite length. Stereoscopic 
photos or holograms may overcome the problem of localization of the particle. Today 
there are a lot of different methods for illuminating and recording. [1,2,5]. 

Particle Image Velocimetry (PIV) is an experimental method for indirectly flow 
visualization but method providing directly, instantaneous velocity vector measurement 
in a cross section of a flow. The method is classified as special method or as the flow 
visualization method by small particles. The basic principle involves photographically 
recording the motion of microscopic particles that follow the fluid flow [5,13]. The 
technique is ideal for unsteady aerodynamic flows. The software for PIV is a visual 
programming language combining complete control of the acquisition, redaction and 
analysis. The application of PIV method is illustrated with example presented in figure 4. 
The measured velocity distributions performed by PIV image of the flow with the Mach-
4.5, on the upper part of the 20°- half angle wedge with flow is left to right  (fig.4a) is 
shown in Figs. 4b and 4c for the horizontal and vertical velocity component, respectively. 

Laser Doppler Anemometry (LDA) is optical technique for investigation of velocity 
and turbulence in gas, liquid, and mixing fluids, flame, rotating machinery, in 
combustion, channels, chemically reacting flows, wave tanks wind or water tunnels, in 
biomedical applications, atmospheres, oceanography and in various spectrum of 
scientific and industrial research. LDA is power fool method for indirect flow 
visualization, too[11,14,15]. The basic idea underlying LDA is to measure the velocity of 
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tiny particles transported by the flow. If these particles are small enough, their velocity is 
assumed to be that of the stream and LDA provides a measure of the local instantaneous 
velocity, the mean velocity as well as the turbulent quantities. 
 

 
a 

 
  b     c 

Fig. 4. (a) PIV image of wedge, (b) horizontal flow velocity, (c) vertical flow 
velocity [13]  

 
Laser anemometers offer some advantages in comparison with other fluid flow 
instrumentation: non-contact optical measurement. LDA probe the flow with focused 
laser beams and can sense the velocity without disturbing the flow in the measuring 
volume, non calibration – no drift. The laser anemometer has a unique intrinsic response 
to fluid velocity–absolute linearity, well-defined directional response. The quantity 
measured by the LDA is the projection of the velocity vector on the measuring direction 
defined by the optical system, high spatial and temporal resolution, multi - component 
and multi - directional measurements and so on. 
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a     b 

Fig. 5: Some details of experimental setup, a) water tunnel and 1D LDA, b) hydrofoil in 
WCT test section and laser beams[11] 

 

  
a      b 

Fi. 6: LDA, experimental (a) and numerical (b) results of visualization by vector velocity 
distribution for flow around hydrofoil positioned at α = 25°, V∞=5.32 m/s, (flow is left to 
right)[14] 

2.4. The gas bubble visualization 

Gas bubbles visualization is a tracer method where tracer particles have low (in the 
water), or similar density (in the air) as the flow. The observation of such gaseous tracers 
in a gaseous flow requires the use of optical visualization methods. The gas bubbles 
change its shape during the motion, and as a consequence, the drag coefficient of these 
gaseous tracer particles is not only a function of the velocity difference between fluid and 
particle, but also a function of the deforming forces acting on the particle. The gas 
bubbles can be injected in the flow or generated by electrolysis [1, 5].  

In a conventional arrangement hydrogen bubbles are produced on the cathode. They 
mark a line of fluid elements whose position coincided at a given instant with the 
position of wire. Any later position of these rows of tracer particles is called a "time 
line", that is a measure of the local velocity profile (fig.7a), while fig 7b shows co-
rotating vortices and saddle points upstream of a bluff protuberance mounted on a flat 
plate (flow from top) visualized by hydrogen bubbles and laser sheet flow visualization 
in a water tunnel. 
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a    b 
Fig. 7. Rows of the hydrogen bubbles indicete the velocity profil over the plate [1] 

and co-rotating vortices 

 

  
a      b 

Fig. 8: Flow visualization in MTI water tunnel with air bubbles around hydrofoil 
with different quantity of injected air [11] 

   
  The bubble motion can be recorded with a still or move camera. Time of 

observation bubbles in the flow is limited by the dissolution of the gas bubbles in the 
fluid (in water the time is approximately 3 s). The application of this method is limited in 
the laminar, low speed flow [2,3]. Fig.8 shows the flow around hydrofoil in the water 
tunnel (MTI) visualized by air bubbles [11]. 

 

3.  FLOW VISUALIZATION BY TUFTS 

 
Very frequently, flow visualization in the vicinity of model, in subsonic flow, is 

performed using tufts. [1-5,16-18]. However, tufts size, their distribution on the model 
surface and sticking are important for turbulent flow testing and for higher quality 
boundary layer visualization on complex models. A grid with attached or glued tufts as a 
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screen can be used to visualize the vortex shedding behind model or in the interaction 
regime of different field. [2].  

Fluorescent tufts have numerous advantages in comparison with the ordinary silk 
tufts [1, 5, 16-18]. By using fluorescent dyes, the tuft diameter virtually increases as well 
as the illumination, thus allowing higher quality of recording and using thinner tufts 
(0.01-0.1 mm). They can be stuck onto the model surface using very small glue 
quantities, (0.04 mm), thus avoiding boundary layer disturbances. Strong centrifugal 
forces interfering with flow field act on tufts stuck onto the model surface and their 
resultant determines tuft orientation. 

The problem with small size diameter is overcame by using light source with rich 
ultraviolet part of the spectrum, or special filters transmissible to that part of the 
spectrum. This increases tuft luminance making it look much thicker and brighter. Hg or 
Xe lamp with UV filters for λ= 350 nm are used for steady flow testing. Stroboscopic 
light sources are most frequently used for unsteady flow. Fluorescent tufts are also used 
for flow visualization in water tunnels, as well as in-flight flow testing. 

 Figure 7 demonstrates the results of experiment in subsonic wind tunnel; flow 
visualization with fluorescent silk tufts. The light combat aircraft model has surface 
painted in opaque black with 840 tufts stick on it. Tufts are made of silk 0.05 mm and 20 
mm long (figure 9a). Fluorescent spray was used for tufts dying. The flow speeds have 
been between 20 and 40 m/s, and angle of attack has been altered from -8 to +24o. UV 
lamp with 100 W has been used as light source.  

 

a      b 
Fig. 9: Flow visualization with fluorescent tufts in subsonic wind tunnel (flow is left 

to right)[18] 
 
 

4. SURFACE FLOW VISUALIZATION METHODS 

 
For observation of flow characteristics close to the wall of a model, the body wall 

can be coated with a certain material which indicates the local wall temperature, surface 
pressure, or the streamline pattern of flow adjacent to the wall [1-5,19-22].  
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4.1. Surface Oil Film 

Oil film or dots on the model surface enable one to quickly and easily obtain a 
picture of flow pattern at the surface of the model placed in wind tunnel [1-5,]. The 
special mixture can be prepared of appropriate oil and a fine pigment (Al2O3; TiO2, 
powder, fluorescent dye, coloring pigments, and graffito). The technique allows 
observation the lines of separation and reattachment of the flow at the body. 

  Fig. 10a and 10b shows the visualization with TiO2 + oil on the surface around 
two and three vertical cylinders fixed on the plate in subsonic wind tunnel for V=50 m/s 
and around sphere used for turbulence test for M=0,2 (fig. 10c)[5,22]. Figure 10d is oil 
flow visualization of the airflow on end wall of a turbine blade cascade. Boundary layer 
flow visualization on the laser guided bomb model with oil film, performed in the large 
trisonic wind tunnel, top of the model with fins (a) flow on the fin upper surface (b), on 
the wing upper surface (c) for M∞= 0.9 is presented on fig. 11. 

 

a     b 

c     d 
Fig. 10: Flow visualization around two (a) and three (b) cylinders fixed on plate in 

large wind tunnel T-35 for M= 0,5 with oil film, around sphere for M=0,2 (c)  [9] and 
airflow on end wall of a turbine blade cascade [25].  

 
Test of the flow field around the axysimmetrical body – model of the torpedo 

without fins and control surfaces, was performed in the trisonic wind tunnel T-38 of 
MTI, for the speed of undisturbed flow which corresponds to Mach number M∞=0.3. 
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Aerodynamic forces and moments were measured by six-component internal strain gage 
balance. Oil emulsion film with addition of oleic acid and TiO2 powder was used for 
flow visualization in the boundary layer (fig. 23)[20-23]. 

  
a     b 

 
c 

Fig. 11. Boundary layer flow visualization on the laser guided bomb model with oil 
film, top of the model with fins (a), flow on the fin upper surface for M∞= 0.9(b)  and 

flow on the wing upper surface (c)[19]. 
 

a

b
Figure 12: Flow pattern on the model obtained by the experiment (a) and by the 

simulation of the flow for M∞ = 0.3 and α = 8° (side view) (b) [21]. 
 
The goal of the experiment was to make possible comparison of the aerodynamic 

coefficients and flow pattern obtained by the experiment and by the simulations of the 
flow. Fluent 6 was used for simulation of the flow. Analysis of shown photographs 
(figure 12a and 12b) demonstrates an excellent agreement of flow patterns obtained by 
the experiment and the numerical simulations.  
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 4.2. Liquid crystals and temperature sensitive paints 

A surface-temperature distribution can be gained by coating a test model with 
cholestric liquid crystals. [1,2,5]. If they are illuminated with white light under a certain 
angle of incidence, then liquid crystals reflect only one light wavelength at each viewing 
angle, depending of small temperature changes in the crystals sheet. The colors of liquid 
crystals are reversal if the temperature changes in the opposite direction. Because of that, 
liquid crystals are very attractive for boundary-layer studies. Model to be tested should 
be made of a material with low heat conductivity and coated with black paint as base.  
Fig 13 demonstrates the application of liquid crystals for hot streams visualization in a 
subsonic wind tunnel. 

  The surface temperature, the local heat transfer rate and coefficient on a body 
tested in high speed flow facility can be measured by means of temperature sensitive 
paints. The important difference between liquid crystals and temperature sensitive paints 
is, that the temperature span over that liquid crystals change colors is much smaller (a 
few degrees only) than that of paints (several hundred degrees). 

 
Figure 13: Flow visualization in small wind tunnel with liquid crystals [5] 

 

4.3. Pressure sensitive paint (PSP) 

The spatially continuous pressure and temperature distributions on aerodynamic test 
surfaces is important for understanding complex flow mechanisms and for comparison 
with predictions of computational-fluid-dynamics models [5,26]. Conventional pressure 
measurements are based on pressure taps and electronically scanned transducers. 
Pressure taps provide pressure information only at discrete points.  

PSP technology is an alternative for determining static and transient surface-
pressure fields for aerodynamic applications and for flow visualization. The pressure 
sensitivity is based on the oxygen (O2) quenching of luminescent molecules dispersed in 
a film that is coated onto a test surface. In practice, the PSP/TSP (temperature sensitive 
paint) coating is illuminated with light of the appropriate energy (color) to excite the 
coating-entrapped probe molecules. The resulting luminescence output is inversely 
proportional to the surface pressure or temperature of the test model. 

The output of the CCD array can be visually represented as a two-dimensional 
image, with the luminescence corresponding to a gray or false-color scale. Figure 14 
represents the illustration for PSP applications. 
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5. FLOW VISUALIZATION WITH SPECIAL TECHNIQUES 

 
Third group of visualization methods is based on two principles: introducing a 

foreign invisible substance into the incompressible flow, and visualizing the density 
variations in flow by optical methods. The foreign substance in this case is energy 
transferred to certain portions of the flow that increase energy level (spark, electron beam 
and glow discharge methods) and make artificially density variations. Such portions of 
the flow have an altered density and can be visualized by the optical methods.  

 

Fig. 14. A comparison of pressure results between PSP (right side of model) and 
Computational Fluid Dynamics (left side)[26] 

 
They are applied to visualize the rarefied gases that are for several reasons 

distinguished from the ordinary compressible flows [1]. A technique which can be used 
even for very low density fluid flows is electron-beam flow visualization. A beam of 
electrons traverses the gaseous fluid. When electrons collide with gas molecules, these 
gas molecules will be excited and emit radiation. The intensity of the radiation is 
approximately proportional with the density of the fluid. By moving the electron beam, 
the entire flow area can be scanned (fig.15). 

An intensive hot spot can be obtain by means of a spark discharge across two 
electrodes into a gas stream or using a giant pulse laser for producing the luminous 
plasma (Q-switched giant pulse ruby laser of 100 MW).  Another way of artificially 
introducing density changes in a flow is to seed the flow with a foreign gas of different 
refractivity (benzene vapor, CO2). 
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Fig. 15: Flow visualization by electronic beam in hypersonic wind tunnel for M= 10 

[5] 
 

Very often as special flow visualization techniques are mentioned methods where 
the double refracting liquids, solutions or suspension of certain macromolecules in a 
neutral solvent, are used. A transparent medium can be birefringent if it consists of 
optically anisotropic molecules.  

For the purpose of flow visualization high speed photographic techniques are 
usually applied in connection with one of the visualizing method. High speed cameras 
with exposure time of 10-6 to 10-9 s in connection with associated illumination systems 
can record the shock wave motion.  
 

6. COMPRESSIBLE AIR FIELD AS AN OPTICAL OBJECT 

 
Airflow around aerodynamically models, in optical sense, is a transparent 

environment with complex light refraction index. Light refraction index n in each point is 
the function of air density, which, on the other side, is the function of speed, pressure and 
air temperature [1,5,27-37]. The relation between air density ρ (x,y,z) and refraction 
index n(x,y,z) is the Gladstone-Dale:  n = 1 + Kρ. The constant K has dimension of ρ-1 
and it is different for each gas.  

According to Snell's low [1,3,5,27], a light ray, passing through inhomogeneous 
refracted field, is deflected from its original direction and a light path is different from 
that of undisturbed ray. If recording plane is placed in front of light ray, after disturbing 
media, three quantities can be measure: the vertical displacement of disturbed ray, the 
angular deflection of disturbed ray with respect to the undisturbed, the retardation of 
deflected ray, i.e. the phase shift between both rays [1]. 

Optical visualization methods are based on the recording one of these three 
quantities, or a combination of them. Shadowgraph used the first phenomenon, the 
Schlieren the second, and interferometry the last. The shadowgraph is sensitive to 
changes of the second derivative of density or refractive index  ∂2n / ∂y2, Schlieren to 
changes of density first derivative ∂n / ∂y, and the interferometry is capable to measure 
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absolute density n changes.   If, using the optical method, light refraction index n(x,y,z) in 
flow is determined, another physical parameters of tested environment, significant to 
aerodynamic testing, can be indirectly determined as well. 

 

6.1. Shadowgraph method 

The oldest and the simplest of all optical methods for flow visualization is 
shadowgraph [1-5].  

  Figure 16a shows the bow shock wave ahead of sphere in supersonic wind tunnel 
T-36 at M∞ = 1.86 [5,7]. The trace of the shock wave on the photo is a band of absolute 
darkness bounded on the downstream side by an edge of intense brightness. The exact 
geometrical position of the shock front is the other edge of the dark zone. The shock 
wave represents a jump of the refractive index. The air density increases after the shock 
and the incident ray deviates to inside edge.  

  Since the density in the disturbance is lower than in the surrounding field, 
(Prandtl-Meyer expansion fan at the sharp end of the nozzle) the bright band appears at 
the beginning of the shadow [1-5,27]. The same result is obtained when the compressible 
boundary layers is visualized. Figure 16b is typical shadowgraph showing flow around 
spherical tipped cylinder mounted on flat plate [5]. 

Shadowgraph methods with short duration light pulses can be used for fine 
visualization of turbulent compressible flow. 

            
a       b 

Fig. 16: Shadowgraph visualization around sphere (a), and typical shadowgraph 
images showing spherical tipped cylinder mounted on flat plate (b) [5] 

 

6.2. Shlieren method 

As is mention before, Schlieren method is sensitive to change of the first derivative 
of density ∂n / ∂y, (or refractive index) and it can record the angular deflection of the 
disturbed ray with respect to the undisturbed in a transparent medium with local in 
inhomogeneities [1-5,27,32,33,36,37]. 

The Schlieren method is the most frequently used in aerodynamic laboratories, 
since it is relative simple and very useful method. If a parallel beam of light passes 
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trough air with density gradient normal to the direction of the beam, the beam is refracted 
towards the region of greater density.  

  The most simply is the Schlieren system with parallel light through the test section 
of the wind tunnel. Töepler system in hypersonic wind tunnel, as the base of all other 
systems, is illustrated in Fig 17. Detail description of the system is presented in 
references [5].   

The modern schlieren system uses color filter or phase optical elements instead of 
the knife-edge, and have several parallel, transparent, colored strips (most often three 
colored sheets, red-blue-yellow or blue-green- red). The color filter can be consisted of 
four differently colored strips arranged in a square filter for visualize the grad n in two 
direction. If the flow is axis symmetric, complementary colors appear for the same event 
(compression or expansion) above and below the flow axis. 

 The recorded pure colors and color combinations are a measure for the local 
direction of density gradient in the test section.  Figure 17 shows parts of schlieren 
systems in T-34 hypersonic wind tunnels in MTI [5,7]. 

 
 
Figure 17: The photos of schlieren system components, model in the test section of 

hypersonic wind tunnel T-34 and TV camera with monitor 
 
Attempts to increase the amount of information extractable from schlieren effects, 

the various opaque filters with different geometries, as well as transparent phase and 
color filters are used [1-5]. 
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a     b   c 

Fig. 18: Black and white schlieren in wind tunnel T-36 for M∞ = 0.86 (a) and M∞ = 
1,1 (b), and instantaneous image of Bullet and Muzzle Blast from 22-Caliber Rifle (c)  

 
Figure 19 shows color schileren effects around blunt body and thin protruding 

probe mounted in front of a blunt body, used to reduce the drag and the rate of heat 
transfer, for M∞=1.86 [5,33]. Flow visualization in two dimensional model of the 
supersonic rocket nozzle without and with vertical, different height barierres is tested by 
schlieren method and the effects are presented in the fig 20. The nozzle is designed for 
Mach number in the output plane M∞= 2.6 [31,36,37].  

The classical schlieren photos obtained with color schlieren system are presented in 
fig, 21. The flow around cone with top angle of 15° and  sphere with Φ=40mm is tested 
in supersonic wind tunnel T-36 for different Mach number and position of color filters 
[5] 

     
a     b   c 

Fig. 19: Color schileren effects around blunt body and thin protruding probe (flow 
is left to right) 
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a 

       
b    c 

       
   d    e 

Figure 20 Schlieren visualization of the supersonic nozzle flow(flow is left to right) 
 
The combined holographic interferometer and schlieren devices [5,35-37], have 

been designed, made and tested for small supersonic and large trisonic wind tunnel. The 
device can be included in tests either as schlieren system or interferometer.  

Improvements to the basic schlieren system include the Rainbow Schlieren 
[1,3.5] where a colored bull’s eye filter is used rather than a knife edge to quantify the 
strength of the refraction. The other variety of sclieren methods is obtained including 
laser as a light source. Figure 22 illustrates rezultats  schlieren system in T-36 with He-
Ne laser as a light source.  
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a     b 

         
c    d 

Fig. 21: Color schlieren photos obtained in T-36 wind tunnel for M∞ = 1.02 , and 
1.56 around cone with 15 degrees top angle(a,b)  and shpere with Φ=100mm (c,d) [5]. 

 

    
 
Fig. 22. Schieren system with laser as light source in T-36 and schlieren effect 

around cone for M∞ = 1.1 [5] 

6.3. Interferometry 

Interferometry is based on the fact that a change in density not only results in a 
refraction of  the light, but also in a phase shift. In an interferometer parallel light is split 
into two beams. One of the beams enters the flow field, the other beam does not enter the 
flow field. When both beams are merged and projected on the same photographic plate, 
interference occurs when the phase of one of the beams is shifted by a change of density 
in the fluid flow  [1-5,27-37]. 



108 SLAVICA RISTIĆ 

 

The most used classical interferometer in the wind tunnel tests is Mach-Zehnder 
interferometer (MZI) [1,27]. MZI can be applied to any case of gas flow investigations, 
where density difference becomes noticeable as: thermodynamic data, thermal 
conductivity of gases, dissociation, aerodynamic application, turbulence, wave or sonic 
booms. 

6.3.1. . Holographic Interferometry 
Holographic interferometry is an optical method that makes possible complete flow 

field testing. The method is non-contact and it does not disturb flow field. It is used for 
testing of different object and phenomenon [1-5,27]. The greatest advantage of 
holographic interferometry, in relation to schlieren method, is the fact that it provides 
complete information stored in a single plate, allowing a postponement selection of 
specific types of flow visualization. 

The base of this method is holography, developed in last forty five years [27]. If, on 
the some plate, the image of one object is recorded two times in different moments, in the 
process of reconstruction both images appear simultaneously and on the same place in 
the space. Object waves interfere becouse of mutually coherence (they originate from the 
same light beam that illuminate the hologram) and the interference effects can be 
observed in the reconstructed object image. If no change occurs on object between first 
and second exposition, then there is no difference in images and there are no interference 
fringes.  If certain difference appears, then the reconstructed image contains the system 
of interference fringes N that indicate that change. 

Quantitative flow testing, using holographic interferograms is performed by 
determining the number of fringes N(x,y) in the field image with respect to a reference 
point of known density. After that, the index of light refraction n(x,y) and the air density 
ρ(x,y) can be calculated. For the isentropic flow, there existed relations between N, n,,, ρ, 
pressure P, temperature T, velocity V, and Mach number M The physical base and 
mathematical interpretation of the holographic interferometry are explained in references 
. 

The simplest case for analyzis is the 2D flow [9,21,31-35]. For the processing of 
interferograms of axi-symmetrical phase objects, the method of inversion, based on the 
Abel transformation, is used. The experiment geometry is usually selected in order to 
simplify the mathematical representation of flow and changes occurring at the path of the 
laser light beam through the test section [5,29-32]. 

Computer tomography is an important technique for reconstructing 3-D fields from 
holographic interferograms [1,27-29]. Several techniques have been developed for 
computer tomography as: implicit methods (series expansion, discrete element 
representations), explicit methods (convolution method), and Fourier transform method. 
The choice of the best algorithm depends on structure of the density field, the amount 
and format of available data. 

Holographic interferometer with parallel beams is at the same time schlieren and 
shadow device. Fig. 1 shows the schematic diagram of the experimental setup. Detail 
description of interferometer components is given in previous paper. During the 
experiments synchronized measurements were performed.  Double exposition technique 
was used for holographic interferograms recording: wind off (when homogeneous flow 
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field exists) and wind on (when there is complex flow field for testing) [1,3,5].
Stagnation pressure (P0), atmospheric pressure (Pa), and Mach number (M∞ ) were 
measured by the primary measurement system (PMS) in the wind tunnel, at the moment 
of recording hologram, shadow and/or schlieren results. 

  
Fig. 23: The schema of the holographic interferometer/schlieren and shadow device in 

supersonic wind tunnel 

6.3.2. Review of holographic interferograms 

 In order to demonstrate advantages of holographic interferometry in complex flow 
field testing, and compared with other classical methods, the series of experiments were 
performed in MTI supersonic and trisonic wind tunnel at flow velocity from M∞ = 0.7 to 
3.24. The photos of holographic interferograms illustrate this method. Figure 24 show 
some interferrograms of different flow. 

 

      
a     b    c 

Fig. 24: Holographic interferogram of flow around missle for M∞=1,56 (a), cone 
90° and  M∞=0,86 (b) and 2D cylinder M∞=0,76 (flow is left to right)[31] 

 
The usage of classical methods of nozzle flow field testing comprises the 

introduction of probe within the expansion region and holes perforation on nozzle 
surface. These interventions would significantly change the flow field. Optimization of 
this measurement is made by the holographic interferometry. 
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a     b    

Fig. 25. Visualization of supersonic flow ( left to right)around 2D 90 nozzle edge  
(Prandelt-Mayer expansion) M∞=1,56: a) shadow, and  b) interferogram 

In order to demonstrate and to compare complementary possibilities of optical 
methods in quantitative flow visualization, Prandlt-Mayer expansion tested by three 
optical methods is presented. Figure 25a,b and c show the flow visualization around 90° 
corner end edge for supersonic nozzle M∞ =1,56. The interferogram is recorded by 
double passing, collimated, object beam trough the wind tunnel test section. The shadow 
is recoded on a holographic plate, because of collimated beams. The color schlieren is 
recorded in the some time with hologrphic interferogram.  

The holographic interferograms were used for numerical calculation of flow field 
parameters in the vicinity of nozzle edge where the expansion fen is formed (fig. 25c). 
The fringe number N was read from this hologram. Points in front of expansion fen have 
N=0, since the last fringe has N=17. The theoretical and experimental values of Mach 
number in the expansion area are in good agreement Mexp = 2.15, Mthe = 2.13 [5,29]. 

  The photos in figure 26a and 26b present holographic interferograms of flow 
around sphere for M∞=0.8 (without shock wave) and M∞=1,06 (bow shock wave is in 
front of model). Fig. 26b is combination of holographic interferograms (upper part) and 
schlieren photo for the same flow. On the interferometric part of photo easily seen are: 
the stagnation point, the detached bow wave, the vortex sheet generated past sphere and 
so on. 
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a     b    

  Fig. 26: Holographic interferogram of flow around sphere for M∞ = 0.82 (a) and 
mix; hologram and schlieren for M∞ = 1.06 (b) 

 
Very interesting is example of flow visualization around tunnel wall perforations 

[5,30,32]. Many transonic tunnels are operated with performed walls in the test section. 
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A number of investigations have been performed to determine how the flow in the test 
section is affected by the presence of the perforation. The next photos (Fig 27) reports on 
test performed in T-36, with a single slanted slot in the bottom plate of the test section. 
The disturbances originating from the slot are expressed by distortions of the parallel 
fringe system. A concentration of fringes indicated the formation of a pressure wave. The 
slanted slot was used because it had been reported that such geometry would consi-
derably reduce the perturbation of free flow.  

 

    
a     b 

 
c 

Fig. 27: Test section (a) and holographic interferograms of flow (flow is left to 
right)in the empty wind tunnel test section with wall perforation (slanted slot) (b) and 
with cone for M∞ =0,83 (c) [30] 

 
The interferogram however shows that the disturbance from the slot is not at all 

negligible and reaches even beyond the axis of the test section (to about 60 % of the test 
section height). The perturbation has the influence on the model sting in the central line 
of the test section (fig 27c).  

The interferograms of several supersonic racket nozzle configurations (fig. 28a) 
without and with different barriers are recorded in order to provide a good insight in the 
physical processes (figs. 28b,c,d).  [5,7,31,36,37]. 
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The theoretical value of Mach number in the output plane of the nozzle is estimated 
to be M=2.6. Using the data for pressure measurements, it is obtained M=2.46 and by 
means of holographic calculations, Mach number is M=2.56. The placing of barriers in 
the supersonic flow, leads to the appearance of the stagnation zone, shock and expansion 
waves. Visualization of the flow field made in the experiment indicates strong interaction 
of the turbulent boundary layer with the oblique shock wave in the divergent part of the 
nozzle.  

 

     
Fig. 28. Holographic interferograms for 2D supersonic nozzle without and with three 
barriers 

 
Beside two-exposition method, there are used the real time method, the average or 

sendvich methods, the specle interferpmetry, refraction interferometry, differential 
interferometry and so on. Optical holography use laser light in visible spectrum, and 
interferencial effects are recorded on photo or thermosensitive emulsions. Electronic 
holography uses CCD cameras. In some specific cases acoustic and microwave 
holography, with electron beam, X – rays, or computer holography can be used. With 
similar possibilities, today are used speckle interferometry, moiré interferometry and 
shearography [1-5, 27,28].  

6.4. Flow visualization by infrared thermography 

Thermographic systems have been considered to analyse fluid-dynamic 
phenomena thirty years ago. Nowadays high resolution and differential infrared 
thermographic measurement systems open up new possibilities in it application [38,39]. 
Temperature field that can be measured by a thermographic system on the surface of a 
solid body invested by a flow is determined by a lot of combined effects. Very important 
effects are: conversion of kinetic energy of the flow into thermal energy, flow 
temperature variation in time and space, convection heat transfer phenomena between 
flow and body, conduction phenomena inside the body and radiation heath exchange of 
the body surface with surroundings. By correspondence between convective heat transfer 
coefficient and local turbulence it’s possible to carry out information about the boundary 
layer. In addition to the laminar-to-turbulent transition boundary, the infrared camera was 
able to detect shock waves and present a time dependent view of the flow field. Figure  
29  shows thermograms of tests have been performed using an high resolution 
thermographic system for fluid-dynamics analysis of a known test case, a wing profile, in 
a wind tunnel under variable and constant temperature condition at different air flow 
velocity[41,42].  
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A time dependent heat transfer code was developed to predict temperature 
distributions on the test subject and any necessary surface treatment. A commercially 
available infrared camera can be  adapted for airborne use. Readily available infrared 
technology has the capability to provide detailed visualization of various flow 
phenomena in subsonic to hypersonic flight regimes. 

 
Fig. 29 Black  aluminium airfoil with incidence of 7,5° clockwise (a) and airfoil with 

incidence of -7,5° clockwise [42] 

6.5. Computer Graphics Flow Visualization 

Data originates from numerical simulations, such as those of computational fluid 
dynamics need to be analyzed by means of visualization to understand the flow. With the 
rapid increase of computational power for simulations, the demand for more advanced 
visualization methods has grown. Computer graphics flow visualization centers around 
visualization mapping, or the translation of physical flow parameters to visual 
representations. Starting from a set of standard mappings, a number of data preparation 
techniques is developed, to prepare the flow data for visualization [5,36,37,41].  

 The current strong demand for new flow visualization techniques, especially for 
large scale 3D numerical flow simulations, can only be satisfied by combining the efforts 
of fluid dynamics specialists, numerical analysts, and computer graphics experts. 
Additional knowledge is required from perceptual and cognitive psychology, and artists 
and designers can also contribute to this effort. 
Conceptually, this process centers on visualization mapping or the translation of physical 
flow parameters to visual representations. Starting from a set of standard mappings partly 
based on equivalents from experimental visualization, a number of data preparation 
techniques is used, to prepare the flow data for visualization. Next, a number of 
perceptual effects and rendering techniques are described, and some problems in visual 
presentation are discussed. The paper ends with some concluding remarks and 
suggestions for future development. 
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Scientific visualization with computer-generated images can be generally divided on 
several stages:    -data generation: production of numerical data by measurement or 
numerical simulations 
- data enrichment and enhancement: modification or selection of the data, to reduce the 
amount or improve the information content of the data. 
- visualization mapping: translation of the physical data to suitable visual primitives and 
attributes. 
- rendering: transformation of the mapped data into displayable images. 
- display: showing the rendered images on a screen. 

Test of the complex flow field (as the flow in the two dimensional supersonic nozzle 
with the deflector) by holographic interferometry, shows again the significant advantages 
of the holographic interferometry compared to shadow, schlieren and other classical 
ones. This method has special advantages when the complex flows are tested, e.g. flow 
around deflector, in the vicinity of the shock wave, etc.  
Figure 30a shows  numerical flow visualization of path line colored by velocity 
magnitude (m/s), for different times and V∞=5.32 m/s, around 2D hydrofoil in water 
tunnel [15] 

Recently, flow visualization methods give the broad base for comparisons with 
numerical methods. The considered problem is very complex because both the Reynolds 
number and the Mach number influence the flow in the supersonic nozzle with deflector 
at the exit plane. An oblique shock wave and large region of separated flow are caused 
by the deflector (figs 28 and figs.31).  
 

 
t=0.001s      t=0.01s     t=0.1s  t=0.149s 

Figure  30: Numerical flow visualization of path line colored by velocity magnitude 
(m/s), for different times and V∞=5.32 m/s, around 2D hydrofoil in water tunnel [15]. 
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Fig.31 

The complex two-dimensional supersonic flow in the nozzle with three deflectors at the 
exit is numerically simulated by the solution of the Reynolds-Averaged Navier-Stokes 
equations with a two-equation k-ω turbulent model. This model of turbulence is based on 
the Boussinesq approximation[36] 

The used code captured main flow features and differences obtained with S-A and 
k-ω turbulence models are not substantial. It is shown that convergent results were 
obtained with all the meshes except the extra fine mesh. 

7. CONCLUSION 

 
This paper presents an overview of techniques for flow visualization. A brief 

introduction to experimental flow visualization methods is given. Every method is 
illustrated with photos of flow visualizarion effects. The advent of computer technique, 
new tehnology for illumination, modern and very powerfull devices for digital image 
recording and processing make possible automatically analyze flow visualization effects 
and extract qualitative and quantitative information, which may not be readily available 
from conventional flow measurements. Experimental flow visualization is a starting point 
for numerical flow visualization of simulations using computer graphics. Parallel usage 
of experimental and numerical methods  confirms the possibilities of numerical method 
application for complex flow analysis. 
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 VIZUALIZACIJA STRUJANJA – POGLED U NEVIDLJIVO 
 

Slavica Ristić 

Vizualizacija strujanja je veoma značajna oblast u eksperiemntalnoj i komjuterskoj 
dinamici fluida i dugi niz godina je predmet istraživanja. U ovom radu su prikazane 
izabrane tehnika vizualizacije strujanja. Opisani su osnovi fizički principi ovih metoda, kao 
i njihova pimena u vizualizaciji podzvučnih, okozvučnih i nadzvučnih strujanja u 
aerodinamičkim i vodenim tunelima: metode sa direktno ubacivanjem markera (dim, boje, 
magla, različite male čestice), gasni ihidrogenski mehurići, vizualizacija strujanja sa 
končićima, sa uljanim emulzijama, tečmim kristalima, bojama osetljivim na promenu 
temperature ipritiska, optičkim metodama kao što su metod senke, šliren, holografska 
interferometrija, Laser Doppler anemometrija, anemometrija za merenje vektora brzine 
mikroskopskih čestica u fluidu, pomoću njihovih slika i drugih specijalnih tehnika. Skoro 
sve prikazane slike su snimljene u labotarorijama Vojotehničkog institute u Beogradu. 
 
 
Ključne reći: vizualizacija strujanja, aerodinamički tunnel, vodeni tunnel, optičke metode, LDA PIV  
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Abstract. The standard radius of the Earth's gravity sphere is 917.000 km. Here we 
present that the radius is 1.400.000 km. 
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Apstrakt. Standardni radijus Zemljine gravitacione sfere je 917.000 km. Ovde se 
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LOOPS IN THE SUN’S ORBIT 
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Abstract. Besides translation, spin around its axis and rotation around center of the Milky 
Way, the Sun performs relative motion in the solar system Laplacian plane, also. This motion 
was anticipated by Newton himself, in his Principia. 
      The form of the Sun’s orbit is substantially different from the other solar system bodies’ 
orbits. Namely, the Sun moves along the path composed of the chain of large and small loops 
[1, 2, 6, 9]. This chain is situated within the circular outline with the diameter approximately 
twice as large as the Sun’s is. Under supposition that the solar system is stable, the Sun is 
going to move along it, in the same region, for eternity, never reitereiting the same path. 
      It was also shown in this work that velocity and acceleration of the Sun’s center of 
mass are completely defined by the relative velocities and accelerations of the planets 
with respect to the Sun. 
 
Key words: loops in the Sun’s orbit, velocity, acceleration  

. 

1. INTRODUCTION  

      As said, Isaac Newton was the first who pointed to the fact that the Sun moves 
around the center of mass of the solar system (Philosophiae Naturalis Principia 
Mathematica): „ ...since that centre of gravity (the solar system mass centre) is constantly 
at rest, the sun, according to the various positions of the planets, must continually move 
every way, but will never recede far from that centre“.   
      If the solar system is treated as a stable, isolated system of the point mass particles 
moving under mutual gravitational interactions, two dynamic conservation principles 
may be used for the study of its motion: conservation of the momentum and of the 
angular momentum of the system.  
      The consequence of the first rule is uniform motion of the system’s mass center C, 
while the consequence of the second is motion of the system in one, Laplacian, or 
invariant plane [3]. 
      This plane is within 0, 50 of the Jupiter’s orbital plane and may be regarded as the 
weighted average of all planetary orbital planes. The point mass particles solar system 
model, involves necessity of neglecting differences between the orbital planes mainly 
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originated in the transfer of the (small, but changeable) Sun’s and planet’s spin angular 
momenta to its total angular momentum.  
      Neglecting rotation of the solar system, as a whole, around the center of our galaxy, 
this plane moves translatory, together with the mass center C through the space. 
 

2. COORDINATE SYSTEMS 
 

      Existence of the invariant plane permits introduction of an "inertial" reference frame 
xCy lying in it. Another Cartesian coordinate system x’0y’ (0x’ and 0y’ parallel with Cx 
and Cy) was adopted as the relative, that is, the heliocentric frame of reference (Fig. 1).  
       
 
 
 
 
 
 
 
 
 
 
 
  

Fig. 1. Inertial and Relative Frame of Reference. 
 

 
3. POSITION, VELOCITY AND ACCELERATION VECTORS OF THE SUN 

 
      It seems that, using astronometrical data positioning the outer planets from 1653. to 
2060., P. D. Jose was the first one to determine the Sun’s orbit, in his work [1], 1965. 
This paper was abundantly cited later in the works treating the sunspot activities. 
      In his work [2] R. Bitsch has determined the Sun’s orbit integrating differential 
equations of motions of this celestial body exposed to the resultant of the planets’ 
attracting gravitational forces. It was supposed that these heavenly bodies are in circular, 
uniform motions around the Sun. The initial planet’s configuration was adopted arbitrary, 
because the author assumed that, in the long term, it does not affect the shape of the orbit.  
      One would be tempted to use term Kepler’s for the model employed in the work [1] 
and Copernicus’ for the model in [2], but it would not be correct, since the Sun moves in 
both models, of course. 
      In fact, the choice of either model in determining the trajectory, velocity or 
acceleration of the Sun is completely irrelevant, since the orbit, velocity and acceleration 
of the Sun’s center of mass are very small compared with the correspondent kinematic 
parameters characterizing motions of the planets. Correctly defining the initial conditions 
is all that matters.  
      For that reason "Copernican" model is the adopted here: the planets move at an 
average distance, with average angular velocity around the Sun.       
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      Taking the planets’ configuration on 21 March 1978 [5] as initial conditions and the 
model in which all planets, excepting Mercury (its orbit is not stabilized in the solar 
system’s invariant plane yet) move uniformly around the Sun, M.Marjanov [9] obtained, 
practically, the same form of the Sun’s path as Jose had. This trajectory covers the time 
interval of fifty years: 21. 03. 1978. + 50. 
     Since, in the inertial plane of reference must be 
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       Thus, position, velocity and acceleration of the Sun’s center of mass are completely 
defined by the relative positions, velocities and accelerations of the planets with respect 
to the Sun. 
       Fig.2 shows the orbit of the Sun from 21. 03.2000. to 21. 03.2040. It, as mentioned, 
corresponds to the orbit that got Jose /1/, but is substantially different from the one given 
by Bish /2/, as the latter had wrongly assumed that initial conditions do not affect the 
form of a path. 
      The contour of the Sun is given as referential and the dot marks denote years.  
     Concerning the influence of the inner planets on the form of the path, Jose was right: 
it is quite negligible. Their influence would become visible only if a part of seemingly 
smooth path was magnified thousand to ten thousand times. The influence of the inner 
planets actions is far more evident when speed and acceleration of the Sun are 
considered. 
      The maximal distance from Sun to the center of mass of C  km is 
obtainable when all planets are lined up on the same side of the star and the minimal 

, when Jupiter is on one side and all the other planets on the other side of 
the Sun, in the same direction. 
      Of course, chances for exactly such alignments of the celestial bodies are reduced to 
zero /11/. 
      The anticipated path of the Sun over the next 2000 years is represented in the Figure 
3. It is situated within the circular outline with the diameter at least twice size of the 
Sun’s. Again, the Sun’s disk is given for comparison. 
      Provided that the solar system is stable, Sun is going to move in this region for eternity, 
never reitereiting the same path. 
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Fig.2. Sun’s Path from 21.03.2000. – 21. 03.2040. 
4. ORBIT 

 
     

6. VELOCITY 
 

      Sun's velocity from 21 03.2000. to 21 03.2040. is represented in the Figure 4. Here 
we can see again that the outer, giant planets, especially Jupiter and Saturn have 
dominant influence on this kinematical quantity. When these two planets are in 
conjunction (~ every 20 years), the speed of the Sun is maximal  

, and when in opposition, the velocity is minimal, about 
.  

6. ACCELERATION 
 
      The acceleration diagram from 21. 03.2000. to 21. 03.2040. is given in the Figure 5. 
It shows much more irregularities and roughness than the previous diagram and 
represents, of course, a measure of the resulting planets’ gravitational attractions. No 
need to say that the peaks in this diagram correspond to the different conjunctional 
combinations of two or more planets. 
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  If all the planets fell in the same direction, on the same side of the Sun, therefore, when 
they were all in conjunction, the Sun would have a maximal acceleration . 
      When Jupiter is on one side and all the other planets on the other side of the Sun, in 
the same direction, acceleration of the Sun is minimal . 
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Fig. 5. Sun’s Acceleration from 21 03.2000. to 21 03.2040. 

 
      

Table: Average Sun - Planets & Maximal Planet- Planets Interactions 

     Sun 
    
Me       V     E     Ma     J     S     U     N 

    Sun  3,13 13,20 8,52 0,39 100,00 8,90 0,34 0,16 

    Me 3,13  0,00 0,00 0,00 0,00 0,00 0,00 0,00 

    V 13,20 0,00  0,00 0,00 0,00 0,00 0,00 0,00 

    E 8,52 0,00 0,00  0,00 0,00 0,00 0,00 0,00 

    Ma 0,39 0,00 0,00 0,00  0,00 0,00 0,00 0,00 

    J 100,00 0,00 0,00 0,00 0,00  0,04 0,00 0,00 

    S 8,90 0,00 0,00 0,00 0,00 0,04  0,00 0,00 

    U 0,34 0,00 0,00 0,00 0,00 0,00 0,00  0,00 

    N 0,16 0,00 0,00 0,00 0,00 0,00 0,00 0,00   
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7. SOLAR SYSTEM BODIES’ GRAVITATIONAL INTERACTIONS 

 
      Previous diagram will be more understandable if one looks at the following Table of 
the of the mean Sun - planets and the maximal planet- planets interactions. 
       The exposed table contains two kinds of data. The first row and the first column 
represent  , that is, the average Sun – planets interactions. 
These forces are average because of the adopted "Copernicus’" and not of the "Kepler’s" 
model.  
      Of course, the Sun-Jupiter interaction is the greatest one and it was taken to be the 
referential: its value is 100. An interesting fact is that the second one is the Sun - Venus 
interaction and that the Sun-Earth is of the same order of magnitude as the Sun-Saturn 
interaction, although the Saturn’s mass is 95 times greater than the Earth’s. 
      All the other values in the Table 1 represent  : maximal, that 
is, conjunctional interactions of the planets. In the range of the here adopted five digit 
precision, the only existing is the one between Jupiter and Saturn. 
      It is evident that motions of the inner planets, especially that of Venus and Earth are 
the main cause of the fluctuations around a smooth acceleration curve representing the 
influence of the outer planets, and above all, the influence of Jupiter Saturn. 
 

8. CONCLUSION 
 
      The Sun and the planets in the paper were simulated by the model of stable, isolated 
system of the point mass particles, moving under mutual gravitational interactions in the 
averaged Laplacian plane. 
      Shape of the solar path is entirely different from the orbits of the other bodies moving 
around it. Namely, the Sun moves along the path in the form of chain consisting of large 
and small loops. This chain is situated within the circular outline with the diameter 
approximately twice as large as the Sun’s is. Under supposition that the solar system is 
stable, the Sun is going to move along it, in the same region, for eternity, never 
reitereiting the same path. 
      Then the velocity and acceleration diagrams of center of mass of the Sun were given. 
      At last, for better understanding of the obtained results, Table of the of the mean Sun 
- planets and the maximal planet- planets interactions was contributed. 
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PETLJE U SUNČEVOJ PUTANJI 
Milutin Marjanov 

 
      Pored translatornog kretanja, rotacije oko centra Mlečnog Puta i oko svoje ose, 
Sunce obavlja i relativno kretanje u Laplasovoj ravni Sunčevog sistema. Na to kretanje je 
ukazao još Njutn, u svome delu Principia. 
      Oblik Sunčeve putanje bitno se razlikuje od orbita ostalih tela koje oko njega kruže. 
Sunce se, naime, kreće duž putanje u formi lanca sačinjenog od velikih i malih petlji. Taj 
lanac je smešten u okvir kružne konture čiji je prečnik približno dva puta veći od 
prečnika Sunca. Uz pretpostavku da je Sunčev sistem stabilan, Sunce će se večno kretati 
duž njega, u istoj oblasti, nikada ne ponavljajući isti put. 
      Zatim su dati dijagrami brzina i ubrzanja centra mase Sunca. 
      Na kraju je priložena tablica prosečnih interakcija Sunce – planete, kao i 
maksimalnih interakcija među planetama, s tačnošću od pet brojčanih jedinica. Ona je 
dobar pokazatelj zbog čega na oblik orbite, kao i na dijagram brzina najviše utiču 
spoljne, džinovske planete, dok na izrazito neujednačenost forme dijagrama ubrzanja 
utiču, pre svega, unutrašnje planete. 
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maksimalnih interakcija među planetama, s tačnošću od pet brojčanih jedinica. Ona je 
dobar pokazatelj zbog čega na oblik orbite, kao i na dijagram brzina najviše utiču 
spoljne, džinovske planete, dok na izrazito neujednačenost forme dijagrama ubrzanja 
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Abstract:   Newton's formula for gravity force gives greather force intensity for atraction of 
the Moon by the Sun than atraction by the Earth. However, central body in lunar (primary) 
orbit is the Earth. So appeared paradox which were ignored from competent specialist, 
beacause the most important problem, determination of lunar orbit, was inmediately solved 
sufficiently by mathematical ingeniosity – introducing the Sun as dominant body in the 
three body system   by Delaunay, 1860. On this way the lunar orbit paradox were not 
canceled. Vujičić made a owerview of principles of mechanics in year 1998, in critical 
consideration. As an example for application of corrected procedure he was obtained 
gravity law in some different form, which gave possibility to cancel paradox of lunar orbit. 
The formula of Vujičić, with our small adaptation, content two type of acceleration – 
related to inertial mass and related to gravity mass. So appears carried information on the 
origin of the Moon, and paradox cancels. 
   
Key words: Lunar orbit paradox, gravity law, gravity and inertial mass, concepts 
in physics  

 
 

1. INTRODUCTION 
 
    The Earth's satelite Moon is the nearest celestial body, with very complex description 
from standpoint of celestial mechanics. The Earth / Moon mass ratio is equal 81.3, mean 
density ratio 1.647, enough that baricenter of this two body system lies inside of Earth 
and out of Earth's planetary nucleus. It produce many effects which can be important for 
geophysics, as termal and tidal influence, and effect which are not neglegible for celestial 
mechanics – Earth's baricentric motion along orbit around the Sun. Determination of 
lunar orbit around the Earth was additionaly complex because the solar gravity force to 
the Moon calculated from Newton's gravity law formula gives 2.2 times greather value 
than Earth's gravity force to the Moon. So appeared a paradox that the Moon's orbital 
motion is around the Earth, and as secondary with the Earth around the Sun [1].  
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2. LUNAR ORBIT SOLUTION 

 
     The lunar orbit paradox was noted in Newton's time. In the 18. century astronomers 
made attempts to solve this problem, but it was not satisfactory succesful.  Clairaut 
(1742) introduced the furth order corective term:     

     ⎟
⎠
⎞

⎜
⎝
⎛ −⋅−= 4

2
2
2

1 r
m

r
mmF ακ .                                             (1) 

D’Alembert (1749) made the same using the third order term, [2]: 
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Both solution can be mathematically satisfactory. But what is their physical sense? This 
type of solution today presents only a numerical fitting if additional term is not assumed 
as gravitational influence of the third mass. How the most might in gravity interaction 
with the Moon is the Sun, and solar gravity force is bigger than the one produced by 
Earth's over two times, both formulas can not be adequate physically. Other words, these 
solutions are out of conceptual foundation of physics. 
    In the next century problem was pushed at margins of interest by succesful solving 
most important problem for astronomers – analitical determination of lunar orbit around 
the Earth, for needs of ephemeridal astronomy. Delaunay (1860) are simple considered 
the Earth – Moon system as double planet system in motion around the Sun [3], and 
solved orbital motion. (Fig.1) 

 
 

Fig.1. Earth (E) – Moon (M)  system with baricenter (B) in motion along eliptic orbit 
around the Sun (S) governed by gravity forces seF , smF , emF . 

 
Lunar motion in geocentric orthogonal coordinate system OXYZ was determined by 
equations [4]:  

 2
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2 3( )E M
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Here are: R – perturbation function,   −κ gravity constante. Solar motion is along elipse 
in XOY plane around baricenter (B) of  the Earth – Moon system.  
     This solution were often quoted as argument that paradox of lunar orbit exist not. 
Solar force to the Moon converts into components with origin in lunar center, the first is 
paralel to direction of baricenter – Sun, and the second in direction to the Earth. But, this 
explanation is not correct as argument that lunar orbit paradox exists not. The Moon – 
Earth distance visible from the Sun is under angle of only ≤ 0.147 degree, and additional 
force which the Sun gives to the Moon in direction towards Earth is insufficient to 
explain rotation around the Earth. Because the force component to the Sun stay twice 
bigger than the sum of solar force component of Moon to the Earth and Earth's atraction 
of the Moon, problem stay open. 
 
 

3. GRAVITY LAW DERIVED BY NEWTON 
 
    Deduction of gravity law Isaac Newton started from Kepler laws, Galilean 
determination of gravity acceleration at Earths surface, Piccard's determination of Earths 
radius, and Huygens centripetal acceleration. All other were assumptions and principles 
introduced by him self. The first hypothesis was that at Earth surface centripetal 
acceleration g, determined by Galilei, must be equivalent to centrifugal acceleration 
caused by lunar rotation around the Earth – biger (''central'') body in the Earth – Moon 
system. These hypothesis must be valid in the system Sun – Earth, general in solar 
system, too. Newton so obtained gravity law in well known form: 

1 2
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m mF
r

κ ⋅
= − ,                                                       (4) 

with   −κ gravity  constante. This form of law is usuable for two masive body in relative 
quite too, because gravity constante value is known. Obvious in text books is not given 
what is contented in Newton's gravity constante. Here we quote result derived by 
Newton: 
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,                                                        (5) 

with a – big semiaxis of planetary orbit, T – period of planetary revolution. It presents the 
third Keplers law – in astronomy known as Kepler’s constante, divided by mass of 
central body. It can be usefful explanation with purpose to make Newton's procedure 
simplest to understand, now from standpoint of mathematical logic [5]. 
        Kepler (1609) introduced hypothesis on the mass of central body as the cause of 
planetary orbital motion in Astronomia nova sive Physica coelestis. It is conceptualy 
logical, because only this quantity is the same (or equal) in the interaction with each 
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planet. In the third Kepler's law, the constante is expresed as product of the central body 
mass and new constant - gravity constant: 
 

2
1v r const mγ= = ⋅ .                                              (6) 

 
Here we used mean planetary distance from the Sun, physical notion of mathematical 
term big semiaxis, and mean planet velocity along orbit. Now we easy insert centripetal 
acceleration which is equal to the ratio of squared velocity and distance. From previous 
formula dividing by 2r  obtain acceleration to the central body: 
 

2 2
1/ / cv r m r aγ= ⋅ = ,                                            (7)  

 
enough for description of planetary motion. Just connection of centripetal acceleration 
and planetary mass into gravity force made Newton, using his the second principle. So 
follows directly the gravity law: 

2
2 1 2 /cF m a m m rγ= ⋅ = ⋅ ⋅ .                                       (8) 

 
The previous consideration gave a possibility for definition of the gravity constante in 
solar system as Kepler's constante on mass unit of central body, i.e. via kinetic 
parameters of planetary body : 

2
1/v r mγ = .                                                   (9) 

 
Also, we see that gravity constant connect Kepler's kinetic concept with Newton's 
dynamical concept in description of motion. Mass stay as a cause of motion, but kinetic 
parameters describe motion. (The other known explanation is Einstein's space curvature, 
introduced 3 century later, into different mathematical concept.) In the pairs of body as 
Earth – Moon and other planet – satelite, the same numerical value were obtained for 
gravity constante, so that can be word on the universality of this constante. Validity of 
this constante for gravity atraction between two body in relative quite confirmed  
Cavendish (1798). 
     From inverse procedure, i.e. by application of Newton formula to binary star system 
(where mass ratio is not much bigger than 1, how it is in solar system) obtains more 
general formula for gravity constant: 
 

2 2 2
1 2 1 2 1 2( / / )r v m r v m rγ = + ,                                         (10) 

 
where are 1 2,v v – baricentric velocities, 1 2,r r – baricentric distances both bodies, and 

1 2r r r= + . It is important underline, because a general trend is colloquial present in 
many text books on the gravity constant as only proportionality parameter for 
dimensional equalization.  
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4. NEWS INSERTED BY VUJIČIĆ 
 
    Vujičić made in Preprinciples of Mechanics [6] an critical consideration and overview 
of foundation of mechanics, where gave few important critical opinion and suggestion 
very important from conceptual standpoint. As a result, by application of corrected 
procedure to two body motion appeared gravity law formula in some different form (see 
also [7],[8]): 
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where −ρ denote previously used r and ,ρ ρ& && – radial velocity and acceleration. 
Authors opinion is that this form of gravity law is more general than Newton's.  Our 
opinion is the same, but after small intervention. Applied in given form equivalent of 
gravity constant (11) appears not constant, as it is (9). Physicaly, we underline two 
remarks: 
        

 
 

Fig.2. The Moon's face visible from the Earth is the same, modified in periode 19 years 
11.3 day by Moon phases and lunar libration in latitude and longitude. This uniqual 

composite picture obtained Hubble space telescope.(Photo:NASA) 
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          a/  it is confirmed as reality that values of gravity force depend from distance not 
linear  than squared (for two body as considered examples it is not controversial), 
          b/  constante in Newton formula realy present a constant. (Into interval of time 
used for measurement, it is not discutable, too.)   
This two fact previous formula give not. How harmonize new result with physical facta? 
The simplicity in natural science is often present, and here it appears as simultaneous 
multiplying and dividing with distance: 

                         1 2
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This form of Vujičić equation is fully adequate and realy present generalization of 
Newton’s formula, and  γ  is equal to known gravity constant. 

 
5. INERTIAL AND GRAVITY  MASS 

 
   Before of application this corriged formula to the lunar orbit paradox we wish 
underline the importance of dual nature of the mass, which follow from kinetic 
description of motion. Galilean physics describe radial motion in gravity field, Kepler – 
Huygens – Newton's  physics describes circular / tangential motion around field source.  
    Einstein (1905) derived complete (kinetic) physical theory of gravity from Galilean 
starting position. Oetwes (1911) confirmed in ingenios experiment impossibility of 
differentiate in realy messure eventualy different numerical mass values for inertial and 
gravity mass. Eight decade later Hayashy derived complete physical theory of gravity 
starting from circular motion.  
     Einstein's work on theory relativity presents just an example of building physical 
theory based on philosophycal concept. In principles of general theory of relativity 
Einstein  introduced the assumption on equivalence between each mass, gravity, inertial, 
electromagnetic, etc. But the equivalence is not the same as to bee identical. Into same 
principle implicite is built a reserve, that in any way can exist situation in which these 
peculiar properties can be dominant, and can not be ignored. 
 

6. THE  PARADOX  EXPLANATION 
 

    Vujičić's formula for gravity force applied with purpose to calculate acceleration 
obtain form: 
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Strictly, this formula content two type of acceleration – ag  - which is related to gravity 
mass,  ai – related to inertial mass: 
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This formula we applied to explain and cancel paradox of lunar orbit. Orbital data - mean 
distance ( ρ) , period (T), eccentricity (e) and mean tangential velocity (v) for the Earth 
and the Moon used in calculation are: 
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Both derivation of distance as mean value can be calculated via orbital eccentricity: 
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Calculated values for the Sun – Moon / Earth system (index SM) and the Earth – Moon 
system (index EM) are: 

2 2( / ) 0.068 ( ); 4.084 ( ); ( / ) 601.052 ( )SM SM or SMg g v gρ ρ µ ρ µ ρ µ= ⋅ = =& &&

 
2 2( / ) 0.290 ( ); 5.288 ( ); ( / ) 275.898 ( )EM EM or EMg g v gρ ρ µ ρ µ ρ µ= ⋅ = =& &&

. 
Here acceleration is expressed in gravity acceleration 29.81( / )g m s= at Earth’s 
surface as unit, giving for acceleration:  

               4.152( ) 601.052( )SMa g gµ µ= −  

                   5.578( ) 275.595( )EMa g gµ µ= −  .    
 

      Evidently, summary value is practically the same which gave Newton’s formula, but 
here we have possibility to separate acceleration connected with gravity mass (the first 
term) and with inertial mass. 
      Solar acceleration to the inertial mass of the Moon (the second term) is greather than 
Earth's, 2.18 times but Earth's acceleration to the gravity mass of the Moon (the first 
term) is 1.34 times greather than solar acceleration. The relation between inertial mass 
acceleration and gravity mass acceleration is equal 1.622 what is very close (99.97%) to 
Fibonacci golden ratio number, with meaning of stable harmonized ratio. 
     This can be explained as generic origin of the Earth and the Moon, strictly – the 
same primary mass from which were built both body, with the same kinetic properties 
according to the Sun as central body. This can be read just as the same what implicite 
assumed Delaunay solving problem of lunar orbit !  
     If it is correct idea, paradox of lunar orbit is canceled. We have additional argument to 
support this opinion – the same side of the lunar surface (Fig. 2)  is permanent visible 
from the Earth. What is realy meaning of this fact? Answer gave P. Savić and R. Kašanin 
in monograph “The Behaviour of the Materials under high Pressures”, I – IV, 1962 – 
1965. Here we quote last paragraph No 22 in the fourth part of monograph [9]:  
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     “The Moon:  By studying the ionization of various elements (as we have done in part 
III), we reached the conclusion that the ionization due to pressure can be brought about at 
the earliest moment during transition from phase 2 to phase 3 (for instance, in case of 
aluminum). If thus, a certain celestial body has not the phase 3 in its interior, because of 
its small mass, then it certainly does not have a magnetic moment, no matter of which 
material it is made. 
    This is the case, for instance, with our Moon, since its mass is small for such a 
process; this was shown in parts II and III. This is why the Moon has neither a magnetic 
moment nor a rotation of its own.» 
    Finally, we can add the sense of this comment, in context of our consideration: The 
Moon is generic originated with the Earth. Also, the same conclusion derived N. Tesla 
(1919) from analisys of lunar mechanical motion [10]. 
  

7. NIELSEN’S INTERPRETATION OF GRAVITY 
 

         Previous exposed present only one from few different form of gravity conceptual 
interpretation. For correct presentation mathematical forms must be in the same 
conceptual frame, what many people did not. Analogy between electricity and gravity 
was subject of many authors, but mostly not in the correct way. Maxwell’s equations are 
the crown of classical physics. It is not well known that exist analog equations form for 
gravity, too [11], [12], by Nielsen. For fully understand result exposed here, Nielsen’s 
paper is crucial appendix which must be present in the consciousness. 
         Nielsen introduced in fully correct way rotational gravity field as analog form with 
electricity and magnetic field, starting from special theory of relativity and invariance of 
electric charge. Static and dynamic components of electric interaction (here important – 
with very different amplitude, much stronger static) as conceptual correct notation, 
following formal mathematical analogy Newton’s and Coulomb’s formula obtained from 
measurement, must posses full analog for gravity, too. Electromagnetic induction as 
consequence of relativistic Thomas rotation, generate the same effect for gravity, what 
Nielsen shown. It is bright final completing of classical physics, but in the time (year 
1972) in which it is not in main stream of physics, and so in fact – ignored!    
         Nielsen used Lorentz equations for position, time, velocity and force, and 
presumption that gravity mass is Lorentz invariant, too. Newton’s formula obtain form  
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in which gravity constant is changed into form equivalent to electric constant  
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in Coulomb’s formula 
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Electric charges of the same sign show repulsiveness, charges of the different sign 
attractiveness. Gravity interaction is only attractiveness. Nielsen searched full analogy, so 
that mathematic isomorphism must be physical content, too. Formal analogy with 
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electricity is possible in physical sense if introduce two different mass, too. So appeared 
except of positive mass in static, negative mass in motion, what follows from Newton’s 
formula. Conceptual, this is condition sine qua non for analogy. And, this condition 
really equalized both law in the frame of classical physics. 
 
Maxwell’s, for electricity: 
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 Nielsen’s, for gravity:  
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Here are 00 , µε – dielectric constant and magnetic permeability of vacuum, 00 , Kλ  - 

gravity constant and eddy permeability for mass in vacuum, eg ρρ , – density of mass 

and charge, ge jj , – density of charge and mass current. It is obvious that nature of  

acceleration given by formula presented here  
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is in congruence with Nielsen’s conclusions, because tangential component of velocity 
(3rd term in formula) produce acceleration in direction normal to motion (for negative 
mass). If radial acceleration component (2nd term in formula) determines (static) radial 
acceleration for positive mass, radial velocity (1st term in formula) determines 
acceleration normal to radial acceleration, what can be responsible for baricentric motion, 
and evolution of circular orbit to eliptic.   
 

8. REMARKS ON THE BARICENTRIC MOTION 
 
     Solar system are described in different paradigm, depending of accuracy in 
measurement. In all presentations planets motion is described as “around the Sun”, Moon 
motion “around the Earth”. Baricenter of solar system describes curve like pulsating 
(Arhimedes) spiral [13], and baricenter can be distant from center of the Sun up to 2.3 
solar radius. (Fig.3.)  
      Objection of some criticist was that the Moon and the Earth motions must be 
described as motion around of his baricenter, and around the Sun. It is Delaunay 
interpretacion, mostly correct mathematicaly. Baricenter of lunar motion is always into 
Earth. Conceptual correct is just motion around the Earth. 
       Each opinion with pretension to explanation must be presented in conceptual frame 
so that it can exist in time longer than time in which is reported. Mathematic is 
fundament of physics, but it is not physics. Needs measurement, concept, experiment, 
modeling, etc, what leads to development by permanent expansion of physics into other 
scientific area, also in philosophy.   
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Fig. 3. Orbit of the baricenter around the solar center, in solar radius as unit, 

in period 1939 -1990. year. 
 
 

9. CONCLUSIONS 
 
    The law of gravity interaction between two body was derived by Newton, 1687, 
primary from Kepler laws for planetary motion and few axioms which established 
dynamics. It has been applied on the lunar motion around the Earth and Earth's motion 
around the Sun. Newton's formula gives greather force for atraction of the Moon by the 
Sun than by the Earth. However, central body in lunar (primary) orbit is the Earth, not 
the Sun. Theoretical foundation of physics stay at formal logic and philosophical 
concepts. («Physics  is an attempt of conceptual  construction of the real world and its 
legal structure.» [14]) 
     So appeared paradox which were ignored from competent specialist, beacause the 
most important problem, determination of lunar orbit, was inmediately solved sufficiently 
by mathematical ingeniosity – introducing the Sun as dominant body in the three body 
system (Delaunay, 1860). On this way the lunar orbit paradox were situated in the corner, 
not canceled. Vujičić (1998) in critical consideration made an owerview of principles of 
mechanics. As an example of application corrected procedure was obtained gravity law 
in some different form, which gave possibility to cancel paradox of lunar orbit. With our 
small intervention presented as follows in text, the result of Vujičić present a 
generalization of classic gravity law. This formula content two type acceleration, one 
related to inertial mass, the second related to gravity mass. This appendix related to 
gravity mass carry information on generic origin of the Earth and the Moon, i.e. 
information that these two body present finally formation from the same initial mass 
condensed in process of planet birth in solar system genesis.     
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      With small intervention by author, which we made here, litle different formula 
related to Newton's formula for gravity law, which derived Vujičić in strictly defined 
circumstances, really present more general form of gravity law in classic physics. This 
formula content two type acceleration, one related to inertial mass, the second related to 
gravity mass. This appendix related to gravity mass carry information on generic origin 
of the Earth and the Moon, i.e. information that these two body present finally formation 
from the same initial mass condensation in process of planet birth in solar system 
genesis.  Nielsen’s analogue to gravity of Maxwell equations for electricity is conceptual 
fully congruent with our conclusions.   
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PARADOKS MESEČEVE PUTANJE 
 

Aleksandar S.Tomić 
 

Apstrakt:   Njutnova formula za gravitacionu silu daje veće privlačenje Mesca Suncem nego 
Zemljom. Ipak, centralno telo u mesečevoj (primarnoj) putanji je Zemlja. Tako se pojavio paradoks 
koji kompetentni specialisti ignorišu, jer je mnogo važniji problem, određivanje Mesečeve putanje, 
u međuvremenu zadovoljavajuće rešen matematičkom domišljenošću – uvođenjem Sunca kao 
dominantnog tela u sistemu tri tela (Delaunay, 1860). Ali, tako paradoks mesečeve putanje nije 
razrešen.  Vujičić (1998) je kritičkim razmatranjem uradio pregled principa mehanike. Kao primer 
primene korektne procedure dobio je formulu zakona gravitacije u malo drugačijoj formi, koja 
pruža mogućnost da se razreši paradoks Mesečeve putanje. Vujičićeva formula, sa našim malim 
prilagođenjem, sadrži dva tipa ubrzanja – koja se odnose na inercionu masu i na gravitacionu 
masu. Tako se pojavljuje sačuvana informacija o poreklu Meseca i otklanja paradoks. 
 
Ključne reči: paradoks mesečeve putanje, zakon gravitacije, gravitaciona masa,  
inerciona masa, koncepti u fizici  
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Abstract. We express our opinion about the role of Computational Mechanics (CM) in 
science, applications and education. The presented thoughts rely on our experience 
gained by working over decades (first author in particular) in the field of CM. 
First, as a challenge of an opinion that computational mechanics is rather a tool, not 
the science, we give our view that computational mechanics is a complex 
interdisciplinary scientific field where new methods and solutions are sought, new 
hypotheses are tested, and events in material world are elucidated or predicted. It is 
quite an art to achieve the goal that general analytical formulations or experimental 
findings become useful and practical numbers, graphs, and even simulations of living 
systems response.  
Second, we would like to emphasize the enormous impact of CM in applications; 
ranging from the support of experimental investigations, to everyday engineering in 
design and industry, to bioengineering and medicine. Giant steps have been undertaken 
by invention of the finite element method in the 6th decade of last century. From that 
time on, a huge number of researchers have opened new frontiers, introducing new 
computational methods, improving the algorithms and incorporating achievements in 
computer technology. 
 Third, we want to address the issue of the CM participation within university 
programs. We believe that the CM methods, software development and application 
should be a significant part of the overall education in engineering departments, but 
also (to appropriate extent) in other departments of natural and biomedical sciences, 
technology and medicine. All courses should be accompanied by the corresponding 
software. We here cite our experience where around 40 PhD and MS theses have been 
completed at University of Kragujevac, with the CM topics, development of engineering 
software (our system of programs PAK) and applications in engineering and 
bioengineering. This approach in education will result in preparing students to use 
modern CM tools and software in their work after university studies. 
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Key words: methods of computational mechanics, finite element method, discrete 
particle methods, computer application, education 

1. INTRODUCTION 

Mechanics is the branch of applied science concerned with the study of mechanical 
phenomena: the behavior of solids, fluids, and complex materials under the action of 
forces. CM is that sub-discipline of mechanics dealing with the use of computational 
methods and devices to study events governed by the principles of mechanics. It is 
fundamentally important part of computational science and engineering based on the use 
of computational approaches to characterize, predict, and simulate physical events and 
engineering systems governed by the laws of mechanics (Oden, 1987). 

It can be considered that CM has three aspects (Felippa, 1994). The first one is 
engineering application; this is mainly in the fields of classical and recently developing 
new engineering disciplines. The second one, the backbone of the field, is the theoretical 
mechanics which uses continuum approach. The third one is the numerical solution of the 
analytical equations. 

 
Fig. 1 Fluid and solid finite elements used in modeling blood flow with blood vessel 

deformation (according to Kojic et al. 2008) 

 

 The main goals of CM are directed to the development and application of 
computational methods based on the principles of mechanics. With the use of these 



 Computational Mechanics in Science, Applications and Teaching 149 

 

computational methods CM has had a profound impact on science and technology. It has 
effectively transformed much of classical Newtonian theory into practical and powerful 
tools for prediction and understanding of complex systems and for creating optimal 
designs. Active research topics include improvements of classical (Figs. 1 and 2) and 
development of new finite element methods (e.g. discontinuous Galerkin method), 
computational acoustics and fluid-¬structure interaction, algorithms for dynamical and 
transient transport phenomena, adaptive solution schemes using configurational forces, 
modeling the behavior of complex materials and biological tissue, and coupled problems 
(multiphysics) where multiple interacting physical fields are modeled. Methods and 
algorithms for high ¬performance computing including massively parallel computing 
(Morton, 1976) are important for complex applications are currently in development 
stage. A recent research in CM is focused on multiscale methods to solve problems 
involving mutually dependent events occurring on different time and length scales. 

 
Fig. 2 Shell finite element which relies on the classical theory of shells, used in structural 

mechanics (according to Kojic et al. 2008) 

In the next sections we present several examples to illustrate the role of CM in 
various fields, ranging from treating the fundamental problems in mechanics to 
applications to practical problems which could not be addressed without the CM 
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methods. Then, a brief discussion regarding the role of CM in education is given, 
followed by concluding remarks. 

2. SELECTED EXAMPLES OF USE OF CM METHODS 

Applications of CM methods in science, engineering and medicine are so broad that it 
is very hard to select the most representative examples. Based on our experience, we here 
give a few examples in which we and our collaborators have been involved, which may 
illustrate complexity and variety of CM methods. 

2.1. Flamant problem in solid mechanics 

The famous Flamant problem in solid mechanics (Flamant 1892) represent the 
problem of finding the solution of the stress distribution when an elastic  semi-space is 
loaded by concentrated force normal to the free surface. It is known from experiments 
that tensional stresses develop in the vicinity of the force action point, but which cannot 
be obtained by classical continuum mechanics theory. Use of a microstructural doublet 
mechanics (DM) theory (Ferrari et al 1997) is illustrated graphically in Fig. 3. A 
challenge was to develop a computational procedure to include the DM so that it can be 
used for general analyses of problems involving microstructural material description. 

 
Fig. 3 Microstructural kinematics of deformation described according to doublet 

mechanics theory (Ferarri et al. 1997) 

The basic equation expressing elongation strain of a “doublet” (a pair of neighboring 
particles used for microstructure representation) is given as 
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where α
jkT  are coefficients as products of directional cosines of  the doublet, iu are 

displacements and αη is the microstructural scaling factor. This equation has been built 
into the FE framework and the correctness of the methodology and software (PAK, Kojic 
et al. 1998, 2010) is illustrated in Fig. 4. 

 
Fig. 4 Flamant problem. Microstresses for the three doublets: a)  Hexagonal packing (two 

orientations); b) Diamond packing.  c) Macrostresses for both packings a) and b). d) 
Displacement of the point A where the constant force is acting during time for the 

viscoelastic constitutive relations (according to Kojic et al. 2011).   
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2.2. Modeling of inelastic deformation of material 

Material response to mechanical or other loadings (such as thermomechanical) is 
described by a constitutive law which relates the stress vs. deformation measures. The 
constitutive law can be simple, as linear elastic, but it can be very complex, described by 
complex functions and parameters, and can include the material history of deformation. 
Examples of these constitutive laws are those used for elastic-plastic or creep 
deformation of engineering materials, or for biological materials. Constitutive 
relationships are usually established by simple experiments (e.g. for metal plasticity, 
Kojic and Bathe 2005). However, it has been a challenge to find material response in real 
conditions of loading within structures or in biological systems, and generally represents 
a scientific task and art to develop adequate computational methods. We here show one 
concept, known as the governing parameter method (GPM), introduced in Kojic (1996) 
for modeling inelastic material deformation; and its application to a real engineering 
problem. 

 
Fig. 5 Return mapping according to the GPM. a) A bisection procedure in finding zero-
value of the governing function – solution is between points PE and Pminus.  b) Graphical 
interpretation of search the final point 1n P+  starting from PE (according to Kojic and 

Bathe 2005). 

Using the GPM it is possible to implicitly integrate constitutive law (providing the 
best solution accuracy) within a load step and to satisfy the yield condition at end of the 
step, see Fig. 5.  In case of plasticity, the problem of calculation of stresses and plastic 
strains is reduced to finding the zero of a monotonic function, 
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 ( ) ( )1 1 1 1ˆˆ ,P n n E P E n n P P n
yf f β

+ + + +∆ = − ∆ − ∆e σ e C n β e C n      (2) 

where P∆e  are increments of plastic strains, Eσ  are elastic stresses, EC is elastic 

constitutive matrix, ˆ PC  is the matrix related to internal parametersβ , n̂  and βn  are 

normals to corresponding to yield surface yf  and internal parameters; and the left upper 

index n+1 indicate that evaluation of quantities is performed at end of load step. This 
solution procedure is illustrated in Fig. 5, generally termed as the return mapping. 

Figure 6 shows FE solution and comparison with experiment for large deformation of 
a car joint, based on the GPM within the program PAK. 

  
Fig. 6 Finite element solution (large strain elastic-plastic analysis) and experimentally 
determined deformation of a joint of car structure (Zivkovic and collaborators 2006) 

2.3. Muscle model 

Modeling of biological materials remains a big challenge and requires further 
experimental data and specific computational methods. Some solution concepts are 
presented in Kojic et al. (2008). Here, we show a model of tongue using a relatively 
simple Hill’s model and imaging technique to simulate motion of tongue produced by 
internal excitation which is governed by the nervous system and biochemical processes 
within the tongue tissue.  

 
Fig. 7 Multiscale model of tongue contraction. Muscle fibers are determined using a DTI 
tractography images (the left panel), the domain is discretized into finite elements with  

fibers, and material behavior is described by Hill’s model for fibers deformation 
(according to Mijailovic et al. 2010) 
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Computational procedure form muscle modeling introduced in Kojic et al. (1998) and 
further generalized in Stojanovic et al. (2007), is implemented to tongue model 
(Mijailovic et al. 2010), Fig. 7. 

Field of active stresses for two specific times is shown in Fig. 8. 

  
Fig. 8 Active stress distribution within the tongue for: a) t=370ms and b) t=500ms 

(according to Mijailovic et al. 2010) 

2.4. Mass transport of LDL through blood flow and plaque growth model 

Fluid flow problems and transport phenomena have been the subject of investigations 
over centuries. Many problems have been solved in analytical form for simple boundary 
conditions. However, those analytical methods are practically of no use for complex 
flows and mass transport. Methods of computational mechanics enable us today to treat 
the real engineering, scientific and medical problems.  Here we select few of those of 
interest in medicine. The first one is related to transport of the LDL proteins within the 
blood, which cause plaque initiation and growth.  

The model of plaque formation include the following processes: a) transport of the 
LDL within blood (fluid domain); b) transport of LDL within tissue (solid domain); and 
plaque formation within the tissue. 

The governing equations for blood flow are described by the Navier-Stokes equations 
and continuity equation (here for incompressible fluid), while the mass-balance diffusion 
equation (with diffusive and convective terms) is the governing equation for the 
concentration field of the LDL within the blood. Those equations can be transformed to 
the FE balance equations and further used for general boundary conditions, today in a 
routine manner. 

Specifics for this problem are first related to mass transfer of LDL within the arterial 
wall, which coupled with the transmural flow. This mass transport is modeled by a 
convection-diffusion-reaction equation as follows 

 ( )w w w w w wD c kc u r c∇⋅ − ∇ + =  (3) 

in the wall domain, where cw is the solute concentration in the arterial wall, Dw is the 
solute diffusivity in the arterial wall, K is the solute lag coefficient, and rw is the 
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consumption rate constant. Second, the LDL transport in lumen of the vessel is coupled 
to these equations by Kedem-Katchalsky equations (details are given in (Filipovic et al 
2010). 

           
                              a)                                b) 

 
c) d) 

Fig. 9 a) Oxidized LDL distribution 0.37%; b) Macrophages distribution 4.2% from 
media; c) Cytokines distribution 0.39%; d) three-dimensional representation of the model 

Finally, the model of plaque formation includes the inflammatory process.  This 
process is described b three additional reaction-diffusion partial differential equations 
(Calvez et al 2008), (Boynard et al 2009): 

1 1

2 1

3 1

( ) / (1 )
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t w
thr

t

Ox d Ox k Ox M
M div v M d M k Ox M S S

S d S S k Ox M Ox Oxλ γ

∂ = ∆ − ⋅

∂ + = ∆ − ⋅ + −

∂ = ∆ − + ⋅ + −
                  

(4) 

where Ox is the oxidized LDL in the wall, M  and S are concentrations in the intima of 
macrophages and cytokines, respectively; d1,d2,d3 are the corresponding diffusion 
coefficients; λ and γ are degradation and LDL oxidized detection coefficients; and vw is 
the inflammatory velocity of plaque growth, which satisfies Darcy’s law and continuity 
equation (Filipovic et al 2010). Since geometry of the blood vessel changes during 
inflammation, a 3D mesh moving algorithm and ALE (Arbitrary Lagrangian Eulerian) 
formulation for fluid dynamics was applied (Filipovic et al 2006).  
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The above models are incorporated into a FE scheme and solved using massive 
computational procedures, as well as experimental data for material constants and 
imaging technique for geometry of blood vessels. The computed results are verified by 
experimental observations using histology analysis and image processing.  Figure 9 
shows the computed distributions of the three model constituents within a blood vessel 
wall, while in Fig. 10 are given graphs of distributions within the media of the wall. 

   
a)      b) 

  
c)      d) 

Fig. 10 a) Dimensionless wall LDL concentration profile in the media; b) Oxidized LDL 
concentration profile in the media c) Macrophages profile in the media d) Cytokines 

profile in the media 

2.5. Self-healing material model using Dissipative Particle Dynamics (DPD) 

A self-healing material is used to cover surfaces of vital parts of structures in order to 
prevent corrosion. When a nanoscopic scratch occurs, a healing material follows from 
nanocontainers into scratches.  This process can be modeled using molecular dynamics 
(Tyagi et al 2004). Another approach to this problem is a mesoscoping modeling using 
the DPD method (Groot and Warren 1997, Filipovic et al. 2008a,b). Here we show how 
the DPD can be applied in modeling the self healing process. 

Motion of each DPD particle (further called “particle”) is described by the following 
Newton law equation: 
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 ( )i

extC D R
ij ij iji i

j
m + + += ∑ F F Fv F&  (5) 

where im  is the mass of particle “i”; iv&  is the particle acceleration as the time derivative 

of velocity; C
ijF , D

ijF , and R
ijF  are the conservative (repulsive), dissipative and random 

(Brownian) interaction forces, that particle “j” exerts on particle “i”, respectively, 
provided that particle “j” is within the radius of influence cr  of particle “i”; and ext

iF  is 
the external force exerted on particle “i”, which usually represents gradient of pressure or 
gravity force as a driving force for the fluid domain. The total interaction force 

C D R
ij ij ij ij= + +F F F F  (Fig. 11). Description of these forces is given in literature (e.g. Groot 

and Warren 1997). 

 
Fig. 11 Interaction forces in the DPD method. 

The additional interaction forces between particles of inhibition agents, which are 
placed in the primer layer and metal substrate particles, are added similarly as it was done 
in a model of thrombosis in Filipovic et al. (2008a) (also in Jovanovic and Filipovic 
2006, Filipovic et al. 2008c). These attractive forces are expressed as 

 max1 sf
a sf

sf

L

L
F k

⎛ ⎞
⎜ ⎟−⎜ ⎟
⎝ ⎠

=  (6) 

where Lsf is the distance of the inhibition particle from the substrate, ksf is the effective 
spring constant, and max

sfL  is the maximum length of inhibition particle attractive domain. 

Solution example is shown in Fig. 12. This DPD model, with inhibitors in the primer 
layer with thickness of 4 µm, consists of a 2D rectangle crack domain with depth of 0.1 
mm. Total number of DPD particles was 24 000 (240x100). Diameter of nanocontainer 
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was 100 nm and concentration of nanocontainers inside the primer layer was 10%. The 
total number of time steps for simulation was 100 000. 

 
Fig. 12 The DPD model after 100 000 time steps (200s). Red particles represent the 
inhibition particles, green particles make primer layer, grey particles (substrate) are 

considered to be fixed in space domain. The surrounding particles are shown with light 
blue color and represent the fluid. 

3. COMPUTATIONAL MECHANICS IN EDUCATION 

Courses in Mechanics has a tradition in Serbia as solid, well designed and lectured, 
supported by exercises and literature. Those courses refer to mechanics of rigid and 
deformable bodies and fluid mechanics. On the other hand, due to development of 
computer technology new courses in informatics emerged at almost all departments in 
natural and technical sciences and medicine. 

However, courses in computational mechanics are quite rear in any of the current 
level of education. Based on the current stage of CM, its use in various fields of science, 
technology and medicine, illustrated above through several examples, and from our 
experience, we offer the following ideas. 

• There should be special at departments in technical sciences and mathematics 
devoted to computational mechanics. The courses should be accompanied by 
use of various software packages within exercises. Example of use of such 
software is shown in Fig. 13. 
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a) 

 
b) 

Fig. 13 Use of software in Kojic et al. (2008) to parametrically model beam bending. a) 
Displacement field; b) Comparison of analytical (solid line) and FE (dots) solutions. 

• Advances courses in mechanics should include parts related to CM as an 
extension of the classical analytical methods. 

• Within courses in medicine there should be sections devoted to computer 
modeling. There, without going to deep into theoretical considerations, it is 
possible to connect the basic procedures in medicine with the possibilities of 
modeling using computational methods and software. Figure 14 illustrates blood 
flow through an aneurism can be modeled by using a software package.  
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Fig. 14 Computed velocity field of blood within an aneurism (software  accompanying 

book Kojic et al. 2008) 

The above ideas are particularly of interest in the Ph.D. programs, within courses and 
research. 

4. CONCLUDING REMARKS  

 
The main goals of this discussion are to outline the role of CM in research and 

education. This discussion is based on experience of the authors and their collaborators. 
In modern research it is simply a necessity to use methods of CM and software to be 

able to elucidate problems in various fields of science, technology and medicine.  
Teaching courses in Computational Mechanics should be designed for students to 

become familiar with modern methods of computational mechanics and various 
applications. The courses may contain theoretical background, with details usual for any 
other branch of scientific disciplines, for students of mathematically or technically 
oriented studies. For students in the fields where CM and software are used as a tool for 
modeling purpose, the courses should be oriented to applications, with an outline of the 
theoretical background.  
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Abstract. In this paper, the applications of biologically inspired modeling and control 
of (bio)mechanical (non)redundant mechanisms are presented, as well as newly obtained 
results of author in mechanics  which are based on using fractional calculus. First, it is 
proposed to use biological analog–synergy due to existence of invariant features in the 
execution of functional motion. Second, the model of (bio)mechanical system may be 
obtained using  another biological concept called  distributed positioning (DP), which is 
based on the inertial properties and actuation of joints of  considered  mechanical 
system. In addition, it is proposed to use other biological principles such as: principle of 
minimum interaction, which takes a main role in hierarchical structure of control and 
self-adjusting principle (introduce local positive/negative feedback on control with great 
amplifying), which allows efficiently realization of control based on iterative natural 
learning. Also, new, recently obtained results of the author in the fields of stability, 
electroviscoelasticity, and control theory are presented which are based on using 
fractional calculus (FC).  

 
Key words: biologically inspired systems, control algorithms, modeling, fractional 
calculus, stability 

1. INTRODUCTION 

The field of biomimetics and biologically inspired principles from the application of 
methods and systems found in nature to engineering and technology, has spawned a 
number of innovations far superior to what the human mind alone could have devised, 
[1-3]. Also, the fast growing interest in flexible, versatile and mobile robotic 
manipulators demands for robots with inherent high passive safety suited for direct 
human-robot interaction. Traditional robotic systems and industrial manipulators 
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demonstrate outstanding specifications regarding, for example, precision and speed 
movement. Some complex industrial – and especially non-industrial tasks – recently 
induced a new approach to robot design and control in order to achieve very stable, fast, 
and accurate systems. Biologically inspired approaches have recently succeeded in 
design and control in robotics [2-4]. Biological systems have been evolved to optimize 
themselves under selective pressures for a long time. Biological organisms have evolved 
to perform and survive in a world characterized by rapid changes, high uncertainty, 
indefinite richness, and limited availability of information. General biomechanical 
systems including the human body as well as the bodies of mammals and insects are also 
redundantly actuated. For example, mobility of the human upper-extremity (arm) can be 
considered as 7 DOF`s, while it has 29 human actuators (i.e, muscles) and accordingly, it 
has 22 redundant actuators, [3]. A robotic manipulator is called kinetically redundant if it 
has more degrees of freedom (DOF) then required for a realization of a prescribed task in 
a task space. The kinematic redundancy in a manipulator structure yields increased 
dexterity and versality and also allows avoiding collisions with obstacles by the choice of 
appropriate configurations, [5]. Also, redundant actuation can be also found in many 
robotic applications, [6].   
First, it is proposed using biological analog–synergy due to existence of invariant 
features in the execution of functional motion, Bernstein (1967) (i.e. rule(s) that can be 
developed by central nervous system (CNS) based on some principles), [1]. New, 
synergy approach allows resolving redundancy control problem i.e. actuator redundancy, 
in the framework of optimal control problem which it is solved by Pontryagin`s 
maximum principle. It is suggested joint actuator synergy approach which is established 
by optimization law at coordination level, where it is introduced a central control, [7]. In 
that way, one may obtain a specific constraint(s) on the control variables. Also, modeling 
and resolving kinematic redundancy of (bio)mechanical/robotical system in synergy like 
fashion, can be achieved using optimization law with suitable kinematic and dynamic 
criteria which are the function of generalized coordinates, velocities, accelerations and 
control vectors, respectively, [8, 9]. Second, model of (bio)mechanical system may be 
obtained using  another biological concept called  distributed positioning (DP) which is 
based on the inertial properties and actuation of joints of  considered  mechanical 
system,[3], [8-10]. At last, using other biological principles is proposed, such as: 
principle of minimum interaction which takes a main role in hierarchical structure of 
control, [11] and self-adjusting principle (introduce local positive/negative feedback on 
control with great amplifying), [8], which allows efficiently realization of control based 
on iterative natural learning. In that way, control problem of coordinating segments of 
(non)redundant (bio)mechanical system can be stated as an optimization problem which 
is most likely to biological  principle of minimum interaction. Also, the common 
observation that human beings can learn perfect skills trough repeated trials motivations 
the idea of iterative learning control for systems performing repetitive tasks where for 
improving the properties of tracking is proposed applying principle of self-adaptability.  
       In the second part of this paper, new, recently obtained results of author in fields 
of stability, electroviscoelasticity, and control theory which are based on using fractional 
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calculus (FC) are presented, [12-20]. FC has attracted attention of researchers from 
different fields in the recent years and the fractional integro-differential operators are a 
generalization of integration and derivation to an arbitrary order operators and they 
provide an excellent instrument for the description of memory and hereditary properties 
of various materials and processes and, also obtaining more degrees of freedom in the in 
the model,[3]. First of them, is an example within a new theory of electroviscoelasticity, 
which describes the behavior of electrified liquid-liquid interfaces in fine dispersed 
systems, and is based on a new constitutive model of liquids: fractional order model 
(generalized the Van der Pol equation) with corresponding non-integer time derivative 
and integral order, especially linear and nonlinear case,[4]. Also, new algorithms for 
fractional iterative learning control (ILC), a , ,D PD PI Dα α α β  types are proposed for 
fractional time delay system and fractional process control PI Dα β  type which include 
ILC feedback control is also presented. At last,stability test procedure (finite time and 
practical stability) is shown for (non)linear (non)homogeneous time-invariant fractional 
order time delay systems where sufficient conditions of this kind of stability are derived. 
Specially, previous results can be applied for robotic system where it appears a time 
delay in αPD  fractional control system,[5]. 

2.FUNDAMENTALS OF BIOLOGICALLY INSPIRED MODELING AND CONTROL 

As we know, control exists everywhere in complex biological systems. Recent rapid 
development of biological science and technologies will further improve the active 
applications of control engineering. Meanwhile, system control theory itself will also be 
promoted by advanced biomimetic researches, [2], [4], [12]. Several theoretical concepts 
have been evolved in control theory, typified by feedback control, optimal control, 
sequence control, and so on,[11]. The main roles of feedback control are regulation and 
adjustment, whereas optimal control involves planning and supervision with a higher 
level of control state than feedback control. Meanwhile, it becomes more and more 
important for the artificial systems to have high flexibility, diversity, reliability, and 
affinity. System control theory, which forms the core foundation for understanding, 
designing, and operating of systems, is still limited and insufficient to handle complex 
large-scale systems and to process spatial temporal information in real time as biological 
systems. Under this background, biomimetic and biologically inspired control research is 
becoming a very important subject, [2]. In the first approach, technology approximates 
the end result or function of an organ or organism. In the second approach, the principles 
extracted from bio-systems may be applied in ways very much unlike those exhibited in 
the originating organism. The analysis and clarification of functions of complex 
biological systems mathematically at the system level, and imitation of them in 
engineering, will lead to a deeper understanding of ourselves and will be significant for 
constructing the next generation of advanced artificial systems such as human friendly 
robots. 
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2.1. Biologically inspired  principle-synergy   

The organization and development of brain nervous system’s motor control functions 
largely depend on the physical interaction with the external environment. Self-
organization of the environmental adaptive motor function is one of the most interesting 
characteristics that we should learn in biomimetic control research. From a mechanical 
point of view, any human or animal represents a redundant mechanism, [2], [3]. The 
nervous system takes advantage of kinematic and  multi-muscle  redundancies to control 
actions in a flexible way so that, for example, the same motor goal can be reached 
differently depending on our intentions, external environmental (e.g. obstacles) or 
intrinsic (neural) constraints. Despite this flexibility, the central control of actions is 
unambiguous: each time the body moves, a unique action is produced despite the 
possibility of using other actions leading to the same goal. It is amazing how these 
seemingly opposite aspects – flexibility and uniqueness- are combined in the control of 
actions. Following Bernstein [1], we refer to these aspects of action production as the 
“redundancy problem”. In other words, it was observed in the execution of functional         
motions that certain trajectories are preferred from the infinite  number of  options [1], 
[11].  Such behavior of organisms can be only explained by the existence of inherent 
optimization laws in self-organized systems governing the acquisition of motor skills. 
Existence of invariant features in the execution of functional motions points out that 
central nervous system (CNS) uses synergy (i.e rule(s) that can be developed by the CNS 
based on some principles). In fact, such behavior implies that it obeys the optimization at 
the coordination level where the goal is to minimize efforts in terms of synergy patterns. 
Speaking mathematically, the synergy imposes specific constraints on the control 
variables of joints which are related to the task dependent functions pertaining to classes 
of motor acts. For example, the control of arm movement in humans also relies very 
much on distributed usage of different joints, and inherent optimization of muscles which 
are active. Arm muscles are found grouped in pairs about simple hinge joints where even 
in the simplest case of two antagonist muscles about a joint there are two distinct control 
variables. Moreover, muscles should be regarded as functional units with more than one 
control and activation parameter. Also, the biological muscle is the starting point for 
many new approaches by the development of new actuators for robotics. Beside the 
direct simulation of biological systems [2], there are different approaches to mimic 
biological operational principles in technical systems, [11].  
Here, the redundancy control problem has been discussed in the framework of optimal 
control problem which is solved by Pontryagin's maximum principle. Joint actuator 
synergy approach is suggested which is established by optimization law at coordination 
level, where is introduced a central control as suggested Bernstein in [1]. In that way, one 
may obtain a specific constraint(s) on the control variables. The dynamic model of robot 
can be described  with  application   set  of   the  2n   Hamiltonian equations with respect 
to Hamiltonian phase variables ,i iq p  [13] where conjugate (canonical) momenta ip   

 ( ) , 1, 2,...,i i i
i i

H Hq p Q u i n
p q

∂ ∂
∂ ∂

= = − + =& &  (1) 
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where is ( ),H q p Hamiltonian and , 1,2,..,iQ i n=  be non-conservative control forces. 
For a global optimization, the problem is set up as following  

 
0

( , , )
kt

o
t

J f q p u dt min= →∫  (2) 

The goal is to find  ( ), o ku t t t t≤ ≤  which  drives system from given initial state 
( , )o oq p  to a final state ( , )k kq p  under the condition that the whole trajectory minimizes 
the performance criterion. Performance criterion is introduced at coordination level as the 
energy criterion  which is, in our case,  functional sum of weighted controls of  the robot 

 1( )
2

T
of u u Ru=  (3) 

Alternatively, the control can  be  smoothed  by minimizing an energy function, quadratic 
in control, in addition to time. Here, ,o kt t  are the initial and final time of  an  end-effector 
movement, which are known and  fixed. The control weighting matrix 

{ }1 2, ,..., mR diag r r r=  is symmetric positive definite matrix; ( )u t  must be entry of a 
given subset U of admissible controls of m-dimensional Euclidean space: 
u( t U Rm)∈ ⊂ . It is also assumed that optimal control problem has a solution. Applying 
biologically inspired concept of control, and introducing central control  cu  as suggested 

Bernstein [1], one may introduce control vector 1 2 3, , , T
cu u u u u= ⎡ ⎤⎣ ⎦ . Also, generalized 

forces can be presented as functions of components of control u  as 

 1 2 3, 1,2,3 [ , , , ]T
i i c cQ u u i u u u u u= + = =  (4) 

It means that we  have four motors, a “central”  motor  which produces cu , and rest of 

motors (corresponding controls  1, 2 3,u u u ) are placed at each joint separately. In that way, 

one of possible control strategies is established. Taking in a account condition of optimal 
control based on the Pontryagin’s maximum principle and applying the matrix theory it 
implies that following condition must be fulfilled:  

 
1 1

2 2

3 3

0

1 0 0
0 1 0

det 0
0 0 1
1 1 1 c

u r
u r
u r
u r

∗

∗

∗

∗

⎡ ⎤
⎢ ⎥
⎢ ⎥ =⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (5) 

After some algebraic operations  it yields   

 0 1 1 2 2 3 3cu r u r u r u r∗ ∗ ∗ ∗= + +  (6) 

Equation (6) presents an invariant on control variables “control synergy”- which is 
established by optimization law at coordination level. In order to obtain finite solutions 
of the problem mentioned, it is necessary to solve two-point boundary value problem for 
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a system of ordinary differential equations or, even in particular cases, to solved 
complicate algebraic problems. The proposed biologically inspired optimal control is 
illustrated by simulation results of a robot with 3 DOF`s  (Fig.1) and 4 control variables 
(Fig.2-5),see [7]. 
 

Fig 1. Autolemec ACR with three DOFs 

         
Fig.2. Optimal control  u1                        Fig.3. Optimal control  u2 

 

                          
Fig.4. Optimal control  u3                         Fig.5. Optimal control  uc 

 
 

2.2 Biologically inspired  principle - distributed positioning (DP) 
 

The relatively new approach in modeling redundant mechanism is based on biological 
analog  i.e, the modeling is based on the separation of the prescribed movement into two 
motions: smooth global, and fast local motion, called distributed positioning (DP). 
Distributed positioning is an inherent property of biological systems. It is based on the 
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inertial properties and actuation capabilities of joints. Humans, when writing, as shown 
in literature  control their proximal joints, while the movement of distal joints follow 
them. Writing is a good representative of  task that is characteristic for humans, but at the 
same time interesting for robots. It is fast and accordingly very demanding from the 
viewpoint of dynamics (high accelerations produce high inertial loads). In humans highly 
inertial arm joints (shoulder and elbow) provide smooth global motion, and low inertial 
hand joints (fingers) perform fast  and precise  local motions, [3],[10]. Acceleration of 
massive segments  leaded to drive overload and required  redundancy. Let, the position 
of the arm be defined by the vector of joint (internal) coordinates of dimension  

[ ]1 2 88: ... Tn q q q q= = . The position of the terminal device (pencil) is defined by the 

vector of external coordinates of dimension [ ]n X x y ze
T

= =5 : θ ϕ , where x,y,z 
define the tip position and angles ,θ ϕ  define the pencil axis. The kinematic model of the 
arm-hand complex i.e. the transformation of coordinates  (internal to external and vice 
versa) is highly nonlinear      

 ( )X f q=  (7) 

where f is the function: R R8 5→ . The inverse kinematics  (calculation of q for given X) 
has an infinite number of solutions since (7) represents a set of  5 equations with 8 
unknowns. this is due to presence of redundancy. The dimension of redundancy is  
n n nr e= − = − =8 5 3. The kinematic model can be written in the Jacobian form of the 
first or of the second order 

 & ( ) &X J q q= ,    ( ) ( , )X J q q A q q= +&& && &  (8) 

where J is  n ne ×  (i.e. 5x8) Jacobian matrix and A is ne ×1 (i. e. 5x1) adjoint vector 
containing the derivative of the Jacobian. Let X1 be the subvector containing the 
accelerated motions (dimension na ), and X2 be the subvector containing the smooth 
motions ( e an n−  ). Now   

 1

2

X
X

X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (9) 

The redundant robot (n = 8DOFs) is now separated into two subsystems,Fig.6. The  
subsystem with ne = 5 DOFs  with greatest inertia is called the basic configuration. The 
other subsystem is the redundancy having nr = 3 DOFs. It holds that  n n ne r= +  . 
Analysing the plane writing task one finds that there are na =2 accelerated external 
motions : x(t) and y(t). The others (z , ,θ ϕ ) are constant or smooth. According to DP 

concept we introduce [ ]X x y
T

1 =  and [ ]X z
T

2 = θ ϕ . It can be defined the basic 

configuration as a mechanism [ ]q q q qb
T

= 1 2 5.... .The resting joints, one wrist joint  

6q  and "fingers " ( 7, 8q q ), form the redundancy and 6 7 8
T

rq q q q⎡ ⎤= ⎣ ⎦  defines the 

position of the redundancy. The DP concept solves the inverse kinematics of a redundant 
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robot in two steps. At the first step the motion of basic configuration is calculated (qb) 
using  kinematic model and properties DP concept, and at the second step the motion of 
redundancy (qr ) is determined, [3]. 

 
Fig. 6. Eight-DOF arm-hand complex 

 

2.2.  Principle of minimum interaction in hierarchical  control  

Also,motor control is organized as a multilevel structure, is generally accepted. In 
assistive system  involves man as the decision maker, a hierarchical control structure can 
be proposed with  three levels from the left to right: voluntary level, coordination level, 
actuator level. This imposes the robotic system is decomposed into several subsystems 
with strong coupling between subsystems. For an instance,  the system dynamics of 
redundant robot are described by:   

 { }1 2( , , ) : 0, 0oF U Y Z F F= = = ,     (10) 

where mU R∈  is the control input vector, nY R∈  the output vector, and Z R n∈  the 
vector representing interactions between the  two subsystems(segments),Fig.7. The cost 
function of a multiple-system is the sum of the cost functions of  all subsystems:  

 
1

( , , )
N

i
i

J U Z Y J
=

= ∑ ,     (11) 
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Fig.7. Coordination  of  two subsystems 

 
 
The problem of coordinating multiple systems can be stated as an optimization problem: 
minimize the cost function J subject to the constraint Fo . In monograph [8],  it is stated  
and  solved the Bernstein problem  which  is related to kinematic redundancy of ARA. It 
is treated   control  of a  anthropomorphic robot arm (ARA) with three  degrees of 
freedom. The optimal control problem of continuous nonlinear dynamic systems -
(redundant robotic manipulators), with quadratic performance index can be stated as 
follows. Determine U L t to k∈ 2 ( , ) such that under system constraints is minimized. 

 J x t x t u( t z t dtd Q R S
t

t

o

f

= − + +
⎡
⎣⎢

⎤
⎦⎥ →∫1

2
2 2 2( ) ( ) ) ( ) min ,     (12) 

 &( )
( )

( ( ), )) ( ( )) ( )) ), ( )x t
dx t

dt
F x t u( t g x t h( x t u( t x t xo o= = = + = ,     (13) 

 z t x t( ) ( )=   dim , dim , dimx n u m z n= = = ,     (14) 

where ,x u  state and control vectors and z  is interaction vector; weighting matrices 
Q R S, ,  are all block diagonal. So, problem of coordinating multiple systems can be state 
as an optimization problem which is most likely  to biological “principle of minimum  
interaction” which is formulated by Gelfand and Tsetlin, [11]: “For complex controlling 
systems, the typical structure permits the separation of individual, relatively automatic 
subsystems. For each subsystem of that type all the remaining subsystems belong to the 
outside environment and the expediency of the subsystems appears in the minimization of 
interaction among them so that in stable conditions these subsystems function as if 
independently, autonomously.” A major consequence of this principle is that the 
complexity of each subsystem does not depend on the complexity of the whole system. 
The application of the minimum interaction principle also leads to a structural  form for 
the “self-organizing” controller. The solution of stated  problem of control is generated in 
a sequence of steps involving a heuristic techniques of  genetic algorithm that provides 
reliable initial guesses. Genetic algorithms are stochastic adaptive algorithms whose 
search method is based on simulation of natural genetic inheritance and striving for 
survival. To solve local  problems, the minimum principle is used where the multi-level 
univariate  hierarchical strategies is  proposed. The problem is divided into two-level 
optimization problem which is solved iteratively until the desired performance is 
achieved, [8]. 
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2.3. Iterative learning control, self – adaptability 

Recently, there have been extensive research activities in the topic of learning control 
for controlling dynamics non-linear systems in a iterative manner. The learning control 
concept differs from conventional control methodologies in that the control input can be 
appropriately  adjusted to improve its future performance by learning from the past 
experimental information as the operation  is repeated. The common observation that 
human beings can learn perfect skills trough repeated trials motivations the idea of 
iterative learning control for systems performing repetitive tasks. Therefore, iterative 
learning control requires less a priori  knowledge about the controlled system in the 
controller design phase and also less computational effort  than many other kinds of 
control. Learning control for controlling  dynamics systems, a class of tracking systems is 
applied where it is required to repeat a given task to desired precision.  

 

 
Fig.8.  Block diagram of  iterative learning control  

In these equations t denotes time, [ ]t T∈ 0, , t ∈ℜ , xi   the state vector, xi
n∈ℜ , ui  the 

control vector, vi  the vector uncertainties, ui
m∈ℜ ,  yi  the output vector  of  the system, 

y Ri
r∈  and i denotes the i-the repetitive operation of the system. The learning controller 

for generating the present control input is based on the previous control history and a 
learning mechanism. Motivated by human learning, the basic idea of iterative learning 
control is to use information from previous executions of the task in order to improve 
performance from trial to trial in the sense that the tracking error e ti ( )  is sequentially 
reduced. It is proposed applying  biological analog - principle of self-adaptability which 
introduce, here, local negative feedback on control  with great amplifying. In the simplest 
case learning control law can be shown such as (see Fig.8):  

 

 1 1( ) ( ) ( ) ( ) ( )i i i iu t u t u t K t e t−
+ += −∆ + + & ,     (15) 
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where 1 1( ) ( ),i iu t u t τ−
+ += − τ −  the small time delay, denotes a vector of the delayed  

control  signal. If the feedback delay   can be neglected, (for example using very fast 
processors) then:  1 1( ) ( )i iu t u t−

+ += .               

3. SOME APPLICATIONS OF FRACTIONAL CALCULUS IN MECHANICS 

In the second part of this presentation are presented, new, recently obtained results of 
author in fields of stability, electroviscoelasticity, and control theory which are based on 
using fractional calculus (FC). FC has attracted attention of researchers from different 
fields in the recent years and the fractional integro-differential operators is a 
generalization of integration and derivation to an arbitrary order operators and they 
provide an excellent instrument for the description of memory and hereditary properties 
of various materials and processes and, also obtaining more degrees of freedom in the in 
the model,[14-18]. 

3.1.  Brief historical introduction  

When in  the  17th  century  the  integer  calculus  had  been  developed,  Leibniz  and  
L’Hospital probed into the problems on the fractional calculus (FC) and the simplest  
fractional differential equations (FOEs) through letters. Leibniz asked in a letter 
addressed to L’Hospital:  
Can the meaning of derivatives of integral order ( ) /n nd f x dx  be extended to have 

meaning when n is not an integer but any number (irrational, fractional or even 
complex-valued)? L’Hospital  responded: What if  n  be  1/2? ( )1/2 1/2/ ?d f x dx =   for 

( )f x x= . Leibniz, in  a  letter  dated from Sept. 30, 1695, replied: It will lead to a 

paradox, from which one day useful consequences will be drawn.In these words 
fractional calculus was born. 
Following L’Hopital’s  and  Liebniz’s  first inquisition, fractional  calculus  was  
primarily a  study  reserved  for  the  best  minds  in  mathematics. Futher, the theory of 
fractional-order derivative was developed mainly in the 19th century. In his 700 pages 
long book on Calculus, 1819 Lacroix [19] developed the formula for the n-th derivative 
of my x= , m – is a positive integer,  

 
( )

!
!

n m m nmD x x
m n

−=
−

,     (16) 

where ( )n m≤  is an integer. Replacing the factorial symbol by the Gamma function, he 
further obtained the formula for the fractional derivative 
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( )

( )
1

1
D x xα β β αβ

β α
−Γ +

=
Γ − +

,     (17) 

where α  and β  are fractional numbers and Gamma function  ( )zΓ  is defined for 

0z >  as:   

 ( ) 1

0

, ( 1) ( )x zz e x dx z z z
∞

− −Γ = Γ + = Γ∫ ,     (18) 

In particular, he calculated  

 
( )

1/2 1/2(2) 2 /
3 / 2

D x x x π
⎡ ⎤Γ

= =⎢ ⎥
Γ⎢ ⎥⎣ ⎦

,     (19) 

On the other hand, Liouville (1809-1882) formally extended the formula for the 
derivative of integral order n  

 ,n ax n ax ax axD e a e D e a e arbitrary orderα α α= ⇒ = − ,     (20) 

Using the series expansion of a function, he derived the formula known as Liouville`s 
first formula for fractional derivative, where α  may be rational, irrational or complex. 

 
0

( ) na x
n n

n
D f x c a eα α

∞

=

=∑ ,     (21) 

where 

 ( )
0

exp( ), Re 0n n n
n

f x c a x a
∞

=

= >∑ ,     (22) 

However, it can be only used for functions of the previous form. Also, Liouville 
formulated another definition of a fractional derivative based on the Gamma function 
(see below) such as:  

 ( ) ( )
( )

1 , 0D x xαα β β αα β
β

β
− − −Γ +

= − >
Γ

,     (23) 

which is known as Liouville`s second definition of  fractional derivative.Also his second 
definition is useful only for rational functions.Neither of his definitions was found to be 
suitable for a wide class of definitions.The derivative of constant function 0β =  is zero 
because (0)Γ = ∞ . On the other hand, the Lacroix definition gives:  

 
( )

11 0,
1

D xα α

α
−= ≠

Γ −
,     (24) 
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But,Lacroix's method could not be applied to many functions, so was not useful in a 
broad context. The modern epoch started in 1974 when a consistent formalism of the 
fractional calculus had grown to such extent, that in 1974 the first conference was held in 
New Haven. In the same year the first book on fractional calculus by Oldham and 
Spanier [15] was published after a joint collaboration starting in 1968. Applications of 
FC are very wide nowadays, in rheology, viscoelasticity, acoustics, optics, chemical 
physics, robotics, control theory of dynamical systems, electrical engineering, 
bioengineering and so on, [14-18].The main reason for the success of applications FC is 
that these new fractional-order models are more accurate than integer-order models, i.e. 
there are more degrees of freedom in the fractional order model. Furthermore, fractional 
derivatives provide an excellent instrument for the description of memory and hereditary 
properties of various materials and processes due to the existence of a ”memory” term in 
a model. This memory term insure the history and its impact to the present and future. 

3.2.  Fundamentals of fractional calculus  

Fracional calculus  is a name for the  theory of integrals and derivatives of arbitrary 
order, which unify and generalize the notions of integer-order differentiation and n-fold 
integration. At present, based on the different background and purpose there are some 
other definitions of FC. There exist today many different forms of fractional integral 
operators, ranging from divided-difference types to infinite-sum types, Riemann-
Liouville fractional derivative,  Grunwald–Letnikov fractional derivative, Caputo’s, 
Weyl’s and Erdely-Kober left and right fractional derivatives and so on, Kilbas et 
al.[16]. At first, one can generalize the differential and integral operators into one 
fundamental p

tD  operator t which is known as fractional calculus: 

 

( )

( )

( ) ( )

0,

1 0 ,

0.

p

p

p
a t

t
p

a

d p
dt

D p

d pτ −

⎧
⎪ ℜ >
⎪
⎪= ℜ =⎨
⎪
⎪ ℜ <⎪⎩
∫

     (25) 

The two definitions generally used for the fractional differintegral are the Grunwald-
Letnikov (GL) definition and the Riemann-Liouville (RL) definition [14-16]. The 
original Grunwald-Letnikov definition of fractional derivative is given by a limit, i.e                 

           `` ( ) ( )
0 0

( )/1( ) lim 1 jp
a t ph j

t a h p
D f t f t jh

jh

⎡ ⎤⎣ ⎦

→ =

− ⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑ ,     (26) 

where  a, t are the limits of operator and  [x] means the integer part of x . Integral version 
of GL is defined by         
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The Riemann-Liouville definition of fractional derivative  is given by  
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for ( npn <<−1 ) and for the case of ( 10 << p ), the fractional integral is defined as  
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where (.)Γ  is the well known Euler's gamma function.  Also, the chain rule has the form 
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Where k ∈  and 
k
β

Γ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 are the coefficients of the generalized binomial 
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     (31) 

For convenience, Laplace domain is usually used to describe the fractional integro-
differential operation for solving engineering problems. The formula for the Laplace 
transform of the RL fractional derivative has the form: 

 ∫ ∑
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In practical applications, the initial conditions 1
0 0( )p k

t tD f t− −
=  are frequently not 

available.  Also, Caputo,[20] has proposed that one should incorporate the integer order 
(classical) derivative of function x , as they are commonly used in initial value problems 
with integer-order equations. In that way, one can use the derivatives of the Caputo type 
such as: 

 [ ] ( ) ( )

(1)
(1)

0
0

1 ( )( ) ,0 1 , ( ) /
1

tp
C p

t p p

d f fD f t d p f df d
pdt t

τ τ τ τ
τ

= = < < =
Γ − −

∫     (33) 

From definition of Riemann-Liouville and Caputo derivatives one may observe that the 
relation between the two fractional derivatives is as follows: 

         [ ] [ ]0 0 1( ) ( )( )C p p
t t nD f t D f T f t−⎡ ⎤= −⎣ ⎦ ,     (34) 

where  [ ]1nT f−  is the Taylor polynomial of order ( 1)n −  for f , centered at 0 . So, one 
can specify the initial conditions in the classical form 
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         (0) , 0,1,..., 1f f k n= = −(k) (k)
0 ,     (35) 

The two Riemann-Liouville and Caputo formulation coincide when  the initial conditions 
are zero. For numerical calculation of FC one can use relation which has the following 
form: 
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where L is the "memory length", h is the step size of the calculation, 

( ) min ,t LN t
h h

⎧ ⎫⎡ ⎤ ⎡ ⎤= ⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭
 [ ]x  is the integer part of x  and ( )p

jb ±  is the binomial coefficient. 

3.3  Electroviscoelasticity of Liquid/Liquid Interfaces: Fractional-Order Model   

Also, number of theories that describe the behavior of liquid-liquid interfaces have 
been developed and applied to various dispersed systems e.g., Stokes, Reiner-Rivelin, 
Ericksen, Einstein, Smoluchowski, Kinch, etc. According to this model liquid-liquid 
droplet or droplet-film structure (collective of particles)  is considered as a macroscopic 
system with internal structure determined by the way the molecules (ions) are tuned 
(structured) into the primary componentns of a cluster configuration. How the 
tuning/structuring occurs depends on the physical fields involved, both potential (elastic 
forces) and nonpotential (resistance forces). All these microelements of the primary 
structure can be considered as electromechanical oscillators assembled into groups, so 
that excitation by an external physical field may cause oscillations at the 
resonant/characteristic frequency of the system itself (coupling at the characteristic 
frequency),[21-24]. Up to now, there are three possible mathematical formalisms 
discussed related to the theory of electroviscoelasticity,where the first is tension tensor 
model, the second is Van der Pol derivative model,and the third model presents an effort 
to generalize the previous Van der Pol equation, i.e. the ordinary time derivative and 
integral are now replaced with corresponding fractional-order time derivative and 
integral of order p < 1. Hence, the study of the electro-mechanical oscillators is based on 
electromechanical and electrodynamic principles. At first, during the droplet formation it 
is possible that the serial analog circuits are more probable, but later, as a consequence of 
tuning and coupling processes the parallel circuitry become dominant. Also, since the 
transfer of entities by tunneling (although with low energy dissipation) is much less 
probable it is sensible to consider the transfer of entities by induction (medium or high 
energy dissipation). A nonlinear differential equation of the Van der Pol type represents 
the initial electromagnetic oscillation 

         3 1 0dU UC U U Udt
dt R L

α γ⎛ ⎞+ − + + =⎜ ⎟
⎝ ⎠ ∫ ,     (37) 

where U is the overall potential difference at the junction point of the spherical capacitor 
C and the plate, L is the inductance caused by potential difference, and R is the ohmic 
resistance.  The α and γ are constants determining the linear and nonlinear parts of the 
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characteristic current and potential curves. The noise in this system, due to linear 
amplification of the source noise, causes the oscillations of the “continuum” particle 
(molecule surrounding the droplet or droplet-film structure), which can be represented by 
the particular integral  

         31 1 2 cosn
dUC U U Udt A t
dt R L

α γ ω⎛ ⎞+ − + + + = −⎜ ⎟
⎝ ⎠ ∫ ,     (38) 

where ω is the frequency of the incident oscillations, [21]. The noise output appears as an 
induced anisotropic effect. In an effort to generalize the previous equation the ordinary 
time derivative and integral are now replaced with corresponding fractional-order time 
derivative and integral of order p ,[22]. Here, the capacitive and inductive elements, 

using Riemann-Liouville definition of differintegral forms, fractional–order [ )0,1p∈  
enable formation of the fractional differintegral equation, i.e. more flexible or general 
model of liquid-liquid interfaces behaviour, as follows (linear case): 

         [ ] [ ]0 0
1 1( ) ( ) ( )p p

t tC D U t U D U t i t
R L

α −⎛ ⎞+ − + =⎜ ⎟
⎝ ⎠

,     (39) 

Using Laplace transform of  (39) leads to 

      ( ) 3 32 2

1
1 1

1 1

p
p

p p p p

U( s ) sG( s ) s G ( s ), G ( s ) ,
i( s ) Cs / R s / L as bs c

a C, b ( / R ), c / L
α

α

= = = =
+ − + + +

= = − =

  (40) 

The term-by-term inversion, based on the general expansion theorem for the Laplace 
transform, [2] produces 

 2 ( 1) 1 ( )
3 ,2

0

1 ( 1)( ) ( )
!

kk
p k k p

p p pk
k

c bG t t E t
a k a a

∞
+ −

+
=

− ⎛ ⎞= −⎜ ⎟
⎝ ⎠

∑ ,          (41) 

where ( ),E zλ µ   is the Mittag-Leffler function in two parameters.Laplace transform of 
the Mittag-Leffler function in two parameters  is:                

         1
,

0

1( ) , ( 1)
1

te t E zt dt z
z

β α
α β

∞
− − = <

−∫ ,     (42) 

Using  inverse Laplace transform of  ( )G s   one can obtain an explicit representation of 
the solution (39) such as: 

         
0

( ) ( ) ( )
t

U t G t i dτ τ τ= −∫ ,     (43) 

So,the initial electromagnetic oscillation is represented by the equation (43) i.e, a 
(non)homogeneous solution (Fig.9) may be obtained in following manner using 
numerical procedure (Grunwald definition). Also, one can obtain equivalent nonlinear 
problem applying differentiation of (37) such as: 
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2

2
2

1 13 0d U dUC U U
R dt Ldt

α γ⎛ ⎞+ − + + =⎜ ⎟
⎝ ⎠

,     (44) 

               

        
 

homogenous case                  Fig.9                    nonhomogenous case 
                          0.9995 15 ,

0.95, 0.001
Uo mV

p T s
α= =
= =

                                                 0.95 15 , 0.95, 0.95
0.01 0.05

Uo mV p r
T s An nm
α= = = =
= =

      

 
Taking into account of  Caputo definition  [4] and introducing  vector   

         1 2 0( ) ( ), ( ) ( ),C
tx t U t x t D U t p= = ∈¤ ( )1 2( ) , Tt x x=x ,     (45) 

one can get: 

         ( )
1 1

0 2
2 1 2

0 1 ( ) 0 0 ( )
( )

1/ 1/ / ( ) 0 3 ( ) / ( )
p

t

x t x t
D t

LC R C x t x t C x tα γ
⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫

= +⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥− − − −⎩ ⎭ ⎣ ⎦ ⎩ ⎭⎣ ⎦
x ,     (46) 

It is easily observed that previous case is a one of the general case for this nonlinear 
problem which can be obtained in the form: 

         ( )0 ( ) , ( )C p
tD t f t t=x x [ ](0) , 0,1,...,k p= =(k) (k)

0x x ,     (47) 

 
Fig. 10. Homogeneous solution  of (Eq. 37) 
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The initial electromagnetic oscillation is represented by  the non linear fractional 
differential equation  (39), homogeneous solution may be obtained using numerical 
calculation of Caputo derivative and predictor-corrector algorithm as it is shown in 
Fig.10. The calculation has been done for the following parameters: 

78 10α −= ⋅ , 8Uo mV= , 1.2p = , 0.004T s= ,
33 10γ −= ⋅  

 

3.4 Iterative learning feedback control algorithms of PI Dα β
 type in process  

       control systems    
In classical control theory, state feedback and output feedback are two important 

techniques in system control. Also, in recent years, there has been a great deal of study to 
overcome limitations of conventional controllers against uncertainty due to inaccurate 
modelling and/or parameter variations. As one of alternatives, the iterative learning 
control (ILC) method has been developed [25], where the concept of ILC was originally 
proposed by Arimoto [26] for accurate tracking of robot trajectories. Motivated by 
human learning, the basic idea of iterative learning control is to use information from 
previous executions of the task in order to improve performance from trial to trial in the 
sense that the tracking error is sequentially reduced. Therefore, iterative learning control 
requires less a priori knowledge about the controlled system in the controller design 
phase and also less computational effort than many other kinds of control. The basic 
strategy is to use an iteration of the form:                                            

           1( ) ( ( ), ( )), ( ) ( ) ( )i i i i d iu t f u t e t t y t y t+ = = − ,     (48) 

where (.,.)f  defines the learning algorithm and remains to be specified, ( )iy t  is the 
output at the ith operation resulting from the input ( )iu t  and ( )dy t   represents the 
desired output. The new control input 1( )iu t+  should make the system closer to the 
desired result in the next execution cycle. Here, it is suggested the learning control 
scheme comprises two types of control laws: a PI Dα β  feedback law and a feed-forward 
control law,[27]. In the feedback loop, the PI Dα β   controller provides stability of the 
system and keeps its state errors within uniform bounds. In the feed-forward path, a 
learning control rule/strategy is exploited to track  the entire span of a reference input 
over a sequence of iterations i.e: 

           ( )
1( ) ( ( ), ( ), ( ))i i it f t t tα
+ = iu u e e , 0 1α< ≤      (49) 

where  ( )tui  is the control vector at the i -the iteration, while ),t(y)t(y)t(e idi −=  is 
the tracking error signal between the desired signal )t(yd  and the actual output 
trajectory one )t(yi  at the  i-the iteration. Here, [ ]T,t 0∈ , where T presents terminal 
time which is known and finite.  Here, it is considered the non-integer (fractional) linear 
system described in the form of state space and output equations.  
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( ) ( ) ( ) ( ), (0) (0) 0, 0 1
( ) ( ),

i i i i d

i i

t A t B t x x
t C t

α α= + = = < <

=

x x u
y x

     (50) 

where is (.,.)f  fractional order derivative, A,B, and C are matrices with appropriate 
dimensions. Here, it is suggested the learning control scheme which comprises two types 

of control laws: a 
αPD  feedback law and a feed-forward control law (Fig.11). In the 

feedback loop, the 
βα DPI  controller provides stability of the system and keeps its state 

errors within uniform bounds. 
 

 
 

Figure11. Block diagram of  PI Dα β  iterative learning  feedback control for a LTI 
system 

 
Here, it is introduced feedback control as follows:  

           1 1 1( ) ( ( ) ( ))fbi t i iu t Q D e t e tα γ+ + += + ,     (51) 

and in feed-forward  it is  proposed a new  β αPI D -type ILC updating law for given 
system  such as:  

           1 0 0( ) ( ) ( ) ( ) ( )fi i i t i tu t u t e t D e t D e tα β−
+ = + Γ +Π +Η i ,     (52) 

 and          1 1 1( ) ( ) ( )i fi fbiu t u t u t+ + += + ,     (53) 

where , , ,Q HΓ Π  are gain matrices appropriate dimensions, where 0γ >  is real 
constant; )(tu fb  the feedback control input, ( )fu t  the feed-forward input; u t( )  the 
value of the function at time t . A sufficient condition for convergence of a proposed 
feedback ILC is given by the main theorem and proved as follows.  
Main theorem: Suppose that the update law Eqs.(51-53), is applied to the system (50) 
and  the initial state at each  iteration satisfies (50). If  matrices ,QΠ , exist such that 

           [ ][ ] 1,I CB I D ρ−Π − ≤ <    (54) 
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then, when ∞→i  the bounds of the tracking errors 
( ) ( ) , ( ) ( ) ,d i d ix t x t y t y t− − ( ) ( ) ,d iu t u t−  converge asymptotically to zero. 

3.5. Finite time stability analysis of linear autonomous  fractional  order systems 
with delayed state –example PDα  fractional control of robotic time delay systems 

The problem of time delay system has been discussed over many years and  time 
delay is very often encountered in different technical systems. The existence of pure time 
delay, regardless of its presence in a control and/or state, may cause undesirable system 
transient response, or generally, even an instability. Here, another approach is presented, 
i.e system stability from the non-Lyapunov point of view is considered. In practice one is 
not only interested in system stability (e.g. in the sense of Lypunov), but also in bounds 
of system trajectories. A system could be stable but still completely useless because it 
possesses undesirable transient performances. Thus, it may be useful to consider the 
stability of such systems with respect to certain subsets of state-space which are defined a 
priori in a given problem. Besides that, it is of particular significance to concern the 
behavior of dynamical systems only over a finite time interval. Recently, there have been 
some advances in control theory of fractional differential systems for stability questions. 
However, for fractional order dynamic systems, it is difficult to evaluate the stability by 
simply examining its characteristic equation either by finding its dominant roots or by 
using other algebraic methods. The problem of sufficient conditions is examined that 
enable system trajectories to stay within the a priori given sets for the particular class of 
linear fractional order time-delay systems in state space form. A linear, ordinary, 
multivariable time-delay system can be represented by differential equation: 

 

           
),()()(

10 τ−+= tAtA
dt

td xxx
   (55) 

and  with associated function of initial state: 

           ,0),()( ≤≤−= ttt x τψx    (56) 

or                                           
0

max ( )
C

τ θ
ψ ψ θ

− ≤ ≤

=                                         (57)  

where 0τ >  is a pure time delay. Dynamical behavior of an autonomous system (55) is 
defined over time interval { }, ,o oJ t t T= + . Time invariant sets, used as bounds of system 
trajectories, are assumed to be open, connected and bounded. Let index " "ε stands for the 
set of  all allowable states of system and  index " "δ  for the set of  all initial states of the 

system, such that  the set S Sδ ε⊆ ,and ( ){ }ρρ <= 2: QtxxS , where Q is assumed to be 
symmetric, positive definite, real matrix. It is assumed that the usual smoothness 
conditions are present so that there are no difficulties with questions of existence, 
uniqueness, and continuity of solutions with respect to initial data. Here, it presented  a 
result  of sufficient conditions that enable system trajectories to stay within the a priori 
given sets for the particular class of linear autonomous fractional order time-delay 
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systems.System given by (55) satisfying initial condition (56) is finite stable w.r.t 
{ }, , , , ,ot J δ ε τ δ ε<   if  and only if: 

           x C
ψ δ<    (58) 

implies:                                            
           ( ) ,t t Jε< ∀ ∈x                                            (59) 

where δ  is  a real positive number ,Rε δ ε∈ < .  
Here, it is considered a class of fractional linear autonomous system with time delay 
described by the state space equation: 

           0 1
( ) ( ) ( )d t A t A t

dt

α

α τ= + −
x x x

   (60) 

with  associated function of initial state (57), where it is  discussed the case 0 1α< < . 
   
Main theorem [28]: 
A) Autonomous system given by (60) satisfying initial condition (57) is finite time stable 
w.r.t.{ }, , , , , ,ot Jδ ε τ δ ε< , if the following condition is satisfied:  
 
 

           
( )
( )

( )
max 0( )

1max 01 / , .
1

A t tA t t
e t J

ασα
ασ

ε δ
α

−
Γ +

⎡ ⎤−
⎢ ⎥+ ⋅ ≤ ∀ ∈

Γ +⎢ ⎥⎣ ⎦
   (61) 

where max (.)σ  being the largest singular value of matrix (.), namely: 

              ( ) ( )max max 0 max 1 ,A A Aσ σ σ= +                               (62) 

 Here, particular attention is paid to the finite time stability of robotic system Newcastle 

robot where a time delay appears in PDα
fractional control system,[29].The equation of 

motion of Newcastle robot with one degree of freedom in case of αPD  controller is: 
 

           
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )d p d d d

mq t cq t kq t

Q t K q t q t K q t q tα ατ τ τ τ

+ + =

⎡ ⎤⎡ ⎤= + − − − + − − −⎣ ⎦ ⎣ ⎦

&& &
   (63) 

For the small dy q q= −  perturbation and after linearization leads to the linear time 
delay-differential equation as follows: 

           ( ) ( ) ( ) ( ) ( ) ( )22 p dy t y t y t k y t k y tαβ ω τ τ+ + = − + −&& &    (64) 
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So,one may convert some linear equations with commensurate multiple fractional 
derivatives into linear system of fractional differential equations of low order, one can 
obtain: 

           

1 1

2 21/2

3 3
2

4 4

( ) 0 0 0 0 ( )0 1 0 0
( ) 0 0 0 0 ( )0 0 1 0

( )
( ) 0 0 0 0 ( )0 0 0 1
( ) 0 0 ( )0 2 0

t

P D

x t x t
x t x t

D t
x t x t
x t k k x t

τ
τ
τ
τω β

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ −
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ −− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x    (65) 

In that way using  results of previous theorem, one can easily check stability condition 
for this system. Besides, it is also established new stability result for the particular class 
of nonlinear perturbed autonomous fractional order time-delay systems described by the 
state space equation,[30],[31]:    

           ( ) ( ) ( )0 0 1 1 0
( ) ( ) ( ) ( ) ,d t t t t

dt

α

α τ= + ∆ + +∆ − +
x A A x A A x f x    (66) 

           )0 0( , 0,(t)) c (t) t ⎡≤ ∈ ∞⎣f x x    (67) 

with the initial functions (57)of the system and vector functions 0f  satisfied (67).  
Main theorem: Nonlinear autonomous system given by (66) satisfying initial condition 
(57) and (67) is finite time stable w.r.t. { }, , , , ,ot Jδ ε δ ε< , if  the following condition 
is satisfied: 

   
( )

( )
( )

0

0 1( )
1 / ,

1

p t t
p t t

e t J

αµα
αµ

ε δ
α

−

Γ +⎛ ⎞−
+ ≤ ∀ ∈⎜ ⎟⎜ ⎟Γ +⎝ ⎠

(68)

  where                    
0

1

0

1 1 1

,

,
Aoco Ao A

A A A p Aoco A

cµ σ γ

σ σ γ µ µ σ
∆
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= + +

= + = +
   (69) 

 
4. CONCLUSION 

 
Proposed synergy approach allows resolving redundancy control problem i.e. actuator 
redundancy, in the framework of optimal control problem which it is solved by 
Pontryagin`s maximum principle. Also, modeling and resolving kinematic redundancy of 
(bio)mechanical/robotically system in synergy like fashion, can be achieved using 
optimization law with suitable kinematic and dynamic criteria which are the function of 
generalized coordinates, velocities, accelerations and control vectors, respectively. 
Besides that, model of (bio)mechanical system may be obtained using  another biological 
concept called  distributed positioning (DP) which is based on the inertial properties and 
actuation of joints of  considered  mechanical system. Also, they are presented other 
biological principles such as: principle of minimum interaction which takes a main role in 
hierarchical structure of control and self-adjusting principle (introduce local 
positive/negative feedback on control with great amplifying), which allows efficiently 
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realization of control based on iterative natural learning. In the second part of this paper, 
newly, recently obtained results of author in fields of stability, electroviscoelasticity, and 
control theory which are based on using fractional calculus are presented. First of them, it 
is an example within a new theory of electroviscoelasticity, which describes the behavior 
of electrified liquid-liquid interfaces in fine dispersed systems, and is based on a new 
constitutive model of liquids: fractional order model -generalized the Van der Pol 
equation. Also, a new algorithms for fractional iterative learning control (ILC), 
a PI Dα β  types are proposed for fractional time (delay) systems are also presented. At 
last, new stability test procedure (finite time and practical stability) is shown for 
(non)linear (non)homogeneous time-invariant fractional order time delay systems where 
sufficient conditions of this kind of stability are derived. 
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БИОЛОШКИ ИНСПИРИСАНО  УПРАВЉАЊЕ И 
МОДЕЛИРАЊЕ (БИ)РОБОТСКИХ СИСТЕМА  И НЕКЕ 
ПРИМЕНЕ ФРАКЦИОНОГ РАЧУНА У МЕХАНИЦИ  

 

Михаило П. Лазаревић  

Апстракт: У овом раду, презентоване су примене биолошки инспирисаног 
моделирања и управљања (био)механичким (не)редундантним механизмима, као и 
новодобијени резултати аутора у области примењене механике који су засновани 
на примени рачуна нецелобројног реда. Прво, предложено је коришћење биолошког 
аналогона-синергије захваљујући постојању непроменљивих одлика у извршавању 
функционалних покрета. Друго, модел (био)механичког система може се добити 
применом другог биолошког концепта познатим под називом дистрибуирано  
позиционирање (ДП), који је заснован на инерцијалним својства и  покретању 
зглобова разматраног механичког система. Такође,предлаже се коришћење других 
биолошких принципа као што су: принцип минималне интеракције, који има  
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Abstract To determine the vibration characteristics (natural frequencies and 
mode shapes) of a mouse embryo during microinjection the modal analysis is 
used. The spherical mouse embryo 60 µm in diameter is modeled as elastic 
finite elements biostructure consisting of 6µm thick micromembrane and 38 
µm in diameter nucleus. Embryo modeling and modal analysis were based on 
the use of the finite elements method in the modal analysis system of ANSYS 
software. The modal analysis was carried out for first six modes of embryo 
natural frequencies. The numerical analysis of dependence of embryo own 
frequencies on the boundary conditions and external loads are presented. The 
relevant illustrations of the typical variations of the shape, deformation and 
particle velocities of vibrating embryo are given. 
 
Key words: modal analysis, vibration properties, mouse embryo, finite 
elements method. 

1. INTRODUCTION 

 
Although papers on mechanical properties of the oocyte exist (Liu et al, 2010, [1] and on 
structural parts of mouse embryo (Murayama et al, 2008 [2], 2006) [3], there are very 
few papers that regard this structure as an oscillatory system Hedrih A. (2011) [4]). 
Microinjection of the mouse embryo is usually used as an experimental setup for  the  
elastic properties of the biomembrane of the embryo (Murayama et al, 2008 [2], 2006) 
[3], Sun et al, 2003, [5]). Embryo is placed in a liquid medium –eg HTF (human tubal 
fluid), in dish. Dish is placed on a heating plate of a special microscope that maintains 
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the body temperature of the mouse. These are typical  conditions (adequate liquid 
medium and temperature) to keep the embryo alive. Embryo is fixed with vacuum 
micropipette on one side. On the opposite side is a fine glass micro-needle. See fig.1. 
This experimental setup could be used for developing software for training embryologists 
for the special procedure that is used in artificial insemination. This procedure is called 
intracitoplasmatic sperm injection-ICSI (one sperm cell is injected into oocyte by using a 
fine glass micro-needle.  
Embryo vibrational characterization represents very important researching subject of 
modern biomechanical engineering. (See ref Ladjaly et al, 2011 [6]). A modal analysis is 
one of possible techniques used to determine the vibration properties (natural frequencies 
and mode shapes) of a bio structure such as the embryo. Results of modal analysis can 
also serve as a starting point for another, more detailed, dynamic analysis, such as a 
transient dynamic analysis in different scenarios, e.g. artificial insemination of human 
embryo. The natural frequencies and mode shapes are important parameters in the design 
of a micro-robotic cell manipulation system for dynamic loading conditions [6].  
Due to the nature of modal analyses any nonlinearity in material behavior are ignored. 
Optionally, orthotropic and temperature-dependent material properties may be used. The 
critical requirement is to define stiffness as well as mass in some form. Stiffness may be 
specified using isotropic and orthotropic elastic material models (for example, Young's 
modulus and Poisson's ratio), using hyper-elastic material models (they are linearized to 
an equivalent combination of initial bulk and shear moduli), or using spring constants, 
for example. Mass may derive from material density or from remote masses. 
 
The goal activities of researching presented in this paper includes: 
 

– Create robust finite elements model of mouse embryo and basic parts of micro-
robotic cell manipulation system (holding pipette, micropipette and liquid 
environmental medium –human tubal fluid-HTF), 

– Set the contacts and boundary conditions that affect the mouse embryo vibrations, 
– Run step modal analysis to simulate vibrations of embryo alone and embryo as a 

part assembly with other components together. 
– Determine the vibrational characteristics of mouse embryo free oscillations and 

embryo oscillations affected by boundary conditions. 
 
Embryo modeling and modal analysis were based on the use of the finite elements 
method in the modal analysis system of ANSYS WORKBENCH® products.[7]. 
Parameters for modal analysis were taken from the experimental data from ref [5]. 

 2. THEORY OF MODAL ANALYSIS APPLIED IN FEM  
 
The equations of elastic structural systems without external excitation can be written in 
the following form:  

 [ ]{ } [ ]{ } [ ]{ } { }M u C u K u 0+ + =&& &  (1) 

where is: [M] - structural mass matrix, [C] - structural damping matrix, [K] - structural  
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stiffness matrix, { u&& } - nodal acceleration vector, { u& } - nodal velocity vector, and { u } - 
nodal displacement vector. 
 
It has been recognized that performing computations in the modal subspace is more 
efficient than in the full eigen space. The stiffness matrix [K] can be symmetrized by 
rearranging the asymmetric contributions; that is, the original stiffness matrix [K] can be 
divided into symmetric and asymmetric parts. By dropping the damping matrix [C] and 
the asymmetric contributions of [K], the symmetric Block Lanczos eigen value problem 
is first solved to find real eigen values and the corresponding eigen vectors. In the 
present implementation, the asymmetric element stiffness matrix is zeroed out for Block 
Lanczos eigen value extraction. Following is the coordinate transformation used to 
transform the full eigen problem into modal subspace:  

 { } [ ]{ }u y= Φ  (2) 

where is: [Φ] – eigen vector matrix normalized with respect to the mass matrix [M] and 
{y} - vector of modal coordinates 
By using equation (2) in equation (1), we can write the differential equations of motion in 
the modal subspace as follows:  

      [ ]{ } [ ] [ ][ ]{ } [ ] [ ]( ){ } { }T T2
asymI y C y K y 0⎡ ⎤ ⎡ ⎤+ Φ Φ + Λ + Φ Φ =⎣ ⎦⎣ ⎦&& &        (3) 

where is: [Λ2] - a diagonal matrix containing the first n eigen frequencies ωi. 
 

Classically damped systems understand the oscillatory motion of an un-forced N 
degree of freedom elastic structure with viscous damping and given initial conditions. 
The modal vectors of classically damped systems depend only on [M] and [K], and are 
independent of [C], regardless of how heavily the system is damped. For classically 
damped systems, the modal damping matrix [Φ]T[C][Φ] is a diagonal matrix with the 
diagonal terms being 2ξiωi, where ξi is the damping ratio of the i-th mode. In general, the 
damping is not classical, [Φ]T[C][Φ] is not a diagonal matrix, and the natural frequencies, 
damping ratios, and modal vectors depend on the mass, stiffness, and damping matrices 
of the structural system. For non-classically damped systems, the modal damping matrix 
is either symmetric or asymmetric. Asymmetric stiffness contributions of the original 
stiffness are projected onto the modal subspace to compute the reduced asymmetric 
modal stiffness matrix [Φ]T [Kasym] [Φ].  

Introducing the 2n-dimensional state variable vector approach, equation (3) can 
be written in reduced form as follows:  

 
 [ ]{ } [ ]{ }I z D z=&                                                                                 (4) 

where is: 

 { }
{ }
{ }

y
z

y

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

&
&

                                                                                     (5) 

and 
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 [ ] [ ] [ ] [ ] [ ][ ]T T2
asym

0 I
D

K C

⎡ ⎤
⎢ ⎥=

⎡ ⎤ ⎡ ⎤− Λ − Φ Φ − Φ Φ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦
                         (6) 

The 2n eigen values of Equation (4) are calculated using the QR algorithm (Press et 
al.,1993 [8]). The inverse iteration method (Wilkinson and Reinsch, 1971 [9]) is used to 
calculate the complex modal subspace eigen vectors. The full complex eigen vectors, 
{ψ}, of original system is recovered using the following equation:  

 { } [ ]{ }zψ = Φ                                                                                    (7) 

 

3. FEM MODELING 
 
In modal analysis the embryo model was considered as three-dimensional axis-symmetric 
problem. The mouse embryo with basic parts of micro-robotic cell manipulation system 
described in [9] and shown in Fig. 1 (left) is simplified according the model setup shown 
in the same figure (right). 
 

 

 

 

 

 

 

 
Figure 1. Photograph of cell (left) and simplified model setup of mouse embryo (right). 

 

 
Figure 2. Axial cross-section of 3D model setup for embryo modal analysis. 

 

1- Ambient (Liquid 

HTF)

2- Micropipette 
3- Micromembrane 

4- Cytoplasm 

5 - Nucleus 

6- Holding pipette 

2  3 4 5 61
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3.1. Embryo model  
 
The full model setup (Fig. 2) used in the work is consisted of embryo (micromembrane 
with nucleus and cytoplasm) plunged into the control volume filled with liquid medium 
HTF. One side of embryo is connected to the holding pipette and the second is in contact 
with micropipette. For all time the vacuum inside the holding pipette takes the embryo 
fixed independently on the way of gravity and facilitates embryo manipulation.  
 
The review of model setup parts with used materials and basic physical characteristics is 
presented in Table 1. The table contains statistic data related to the number of nodes and 
elements for each component after medium quality meshing procedure (Fig. 3). 
 

 
Figure 3. Details of finite elements mesh in the axial cross-section of model. 

 
Table 1. Basic mechanical characteristics of model components with FE statistic data. 

The initial contact regions and types of supports determine the boundary conditions of 
the model. All contacts regions of liquid medium HTF with micromembrane, vacuum 
pipette and micropipette are considered as frictional. For this kind of so-called wet 
friction the value 0.1 of frictional coefficient is accepted. The identical contact conditions 
are assumed on the contact surfaces of cytoplasm with nucleus and micromembrane. 
 
From point of view of support boundary conditions, illustrated in Fig. 4, two types: fixed 
and frictionless supports, are used. 
 

 Name Assignment Volume Mass Nodes Elements 
- - - m3 kg - - 
1 Micromembrene Biomembrene 5.3732E-14 5.4000E-11 7409 4288 
2 Nucleus Nucleus 2.8731E-14 2.9880E-11 685 350 
3 Cytoplasm Cytoplasm 3.0635E-14 3.1033E-11 1287 669 
4 Holding pipette Glass  1.0978E-13 2.7773E-10 3117 1776 
5 Micropipette Glass 1.4847E-15 3.7563E-12 3879 726 
6 Vacuum Air 2.8280E-14 3.4643E-14 1426 276 
7 Liquid ambient HTF 6.9430E-13 7.0333E-10 6953 3825 
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Figure 4. Details of support boundary conditions of model. 

 
The dimensions of boundary box, represented as rectangle surface colored in dark blue in 
Fig. 4, filled by liquid medium HTF are 1.6E-4×7.7E-5×7.7E-5 m, and affects  
significantly the natural frequencies of embryo. All outer free faces of box are bonded by 
frictionless supports (E). Free surface of vacuum inside the holding pipette is bounded by 
frictionless support (D). Both the holding pipette and micropipette are constrained (fixed 
supports A and B) from movement in axial directions (z-axis). 
 
External loads of the embryo include conservative gravity force and surface force 
produced by 733.1 Pa vacuum on the air-micromembrane contact region. But in the 
modal analysis external loads make to be equal zero, so that the embryo is connected to 
holding pipette along initial contact edge (C). 

3.2. Material data  

According to the requirements of modal analysis, all materials, including bio materials 
(biomembrane, nucleus and cytoplasm), then medium materials (air and liquid medium 
HTF) and, finally, mechanical equipments materials (special glass for medical 
instruments) are considered as isotropic elasticity features materials.  

Table 2. Mechanical characteristics of materials 

Material Density Reference 
temperature

Young's 
modulus 

Poisson's 
ratio 

Bulk  
modulus 

Shear  
modulus 

- kg /m3 K Pa - Pa Pa 
Biomembrane 1005 310 42400 0.499 7.067E+6 14143 
Nucleus 1040 310 7200 0.250 4800 2880 
Cytoplasm 1013 310 17200 0.490 2.867E+5 5771,8 
Liquid HTF 1013 310 1.32E+8 0.490 2.20e+9 4.430E+7 
Air (vacuum) 1.225 310 3.102E+62 0.490* 5.17E+7* 1.041E+6* 
Glass 2530 310 5.448E+7 0.300 4.54E+7 2.095E+7 

                                                           
2 Given mechanical parameters of air represents the fictive values, adapted to solver requirements. 
It means, instead adiabatic law the linear pressure-volume dependence was assumed for small 
variations of air pressure up to 2E+5 Pa. 
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The accepted temperature of each part of the model is same and equal to the mice body 
temperature of 37 ºC. As was previously mention this temperature is necessary to keep 
the embryo alive. Although the temperature is included in the modal analysis, it doesn’t 
take any repercussions on the final results because of the absence of thermal loads or 
variations of mechanical parameters that would affect the model vibrational behavior.  

Mechanical characteristics of the above mentioned materials are given in Table 2. 

4. RESULTS AND DISCUSSION 
 
4.1. Natural frequences of embrio 
 
The numerical integration of Eq. 4 facilitates the solutions for elements of diagonal 
matrix [Λ] containing the first n eigen frequencies ωi. Computed natural (own) 
frequences of embryo are given in Table 7.  
 
Table 3. Natural frequencies of free and bonded embryo for first six modes. 

 
The modal distribution of natural frequencies of embryo vs. boundary conditions (Figs. 5 
and 6) was designed based on tabular data. 
 

Natural frequences of embrio ωi, Hz 

M
od

e 
n Free 

oscillations  
in vacuum 

Free oscillations 
in liquid HTF 

Connection with 
holding pipette in 

vacuum 

Connection with 
holding pipette in 

liquid HTF 

Full connection 
in liquid HTF 

1 0 52733 2924.2 52778 52782 
2 0.0282 52839 2945.7 52882 52886 
3 0.0462 53321 5868.6 53486 53491 
4 600.32 54242 11888 54315 54317 
5 931.50 55083 19333 55113 55116 
6 940.79 55112 19353 55177 55180 
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Figure 5. Modal distribution of natural frequencies of embryo vs. boundary conditions  

(osillations in vacuum). 
 

 
Figure 6. Modal distribution of natural frequencies of embryo vs. boundary conditions  

(osillations in liquid medium HTF). 
 

Analysis of calculated results in Table 7 and represented in Figs. 5 and 6 confirms nature 
of boundary conditions influence on the natural frequency of embryo. In other words, the 
natural frequency of embryo increases continually by involving each further boundary 
condition. So, in the case of contact of the embryo and liquid medium HTF the highest 
jump of frequency (over 52 KHz) appears and the relevant curves of frequency 
distribution are very close to each other (Fig. 6). Maximum frequency of 55180 Hz was 
reached for the embryo plunged into liquid medium and connected to micropipette and 
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vacuum, holding pipette. Besides the above mentioned, the computed results show that 
oscillations of free embryo in first mode are not practically possible (ωi ≈ 0).  

4.2. Typical variations of the vibrating embryo structural parameters  
 
The appearance of scaled shape and fictive velocities distribution for first six modes of 
natural embryo oscillations are shown in Figs. 7-12. 
 

  
Figure 7. Shape and particle velocities distribution in extreme points of embryo vibrations in mode 1. 

 

  
Figure 8. Shape and particle velocities distribution in extreme points of embryo vibrations in mode 2. 

 

  
Figure 9. Shape and particle velocities distribution in extreme points of embryo vibrations in mode 3. 

 
Based on Figs. 7 - 12 and performed 3D animations the embryo movement relative to the 
corresponding mode can be describes as follows: 

- Mode 1: perpendicular oscillations along y-axis. Due to initial connections it looks   
lake rolling in yz-plane; 
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- Mode 2 - perpendicular oscillations along x-axis. Due to initial connections it looks   
lake rolling in xz-plane;  

- Mode 3 - rotation, i.e. torsion (due to initial connections) about z-axis;  
- Mode 4 - longitudinal oscillations along z-axis;  
- Mode 5 - rotation in yz-plane; and  
- Mode 6 - rotation in xz-plane. 

 

  
 Figure 10. Shape and particle velocities distribution in extreme points of embryo vibrations in mode 4. 

 

  
 Figure 11. Shape and particle velocities distribution in extreme points of embryo vibrations in mode 5. 

 
 

  
Figure 12. Shape and particle velocities distribution in extreme points of embryo vibrations in mode 6. 

 
 

Finally, the appearance of scaled shape and fictive deformations for first six modes of 
natural embryo oscillations are illustrated in Figs. 13-18. 
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Figure 13. Total deformations in extreme points of embryo oscillations for mode 1 (× 1.65E-11 m). 

 
Figure 14. Total deformations in extreme points of embryo oscillations for mode 2 (× 1.60E-11 m). 

 

 
Figure 15. Total deformations in extreme points of embryo oscillations for mode 3 (× 1.40E-11 m). 

 

 
Figure 16. Total deformations in extreme points of embryo oscillations for mode 4 (× 2.15E-11 m). 
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Figure 17. Total deformations in extreme points of embryo oscillations for mode 5 (× 1.55E-11 m). 

 
Figure 18. Total deformations in extreme points of embryo oscillations for mode 6 (× 1.60E-11 m). 

Real rate of total deformations are varying from zero up to maximum 3.348 m (Max 
1.5107E+5 × 2.15E-11 m = 3.348E-6 m) in mode 4. 

Ladjaly et al, 2011[6], used the method of finite elements in modelling the Microrobotic 
Simulator for Assisted Biological Cell Injection, but they regarded the cell as a unified 
structure. Our model approximates the real phenomenon better as the cell is modelled as 
a three layer structure (biomembrane, cytoplasm, nucleus). Parameters that were used 
for the mouse embryo nucleus are approximative since a search of the literature yielded 
no adeqaute data on the subject. Data that were available to us refer to nuclei of mouse 
embryo fibroblasts (Rowat et al, 2008 [10]) or to the nucleus of amphibian egg cell 
(Schaöpe et al, 2009 [11]). 

5. CONCLUSION 
 
Based on the results of numerical analysis given in the paper it is shown that the robust 
finite elements model of mouse embryo with basic parts of ICSI system (holding pipette 
and micropipette) were correctly created. All necessary contacts and boundary conditions 
were regularly involved facilitating the modal analysis and numerical simulation of all 
situations of the embryo vibrations. The determinations of the vibrational characteristics 
of mouse embryo free oscillations and embryo oscillations affected by boundary 
conditions for first six modes were successfully carried out. 
  
To summarize, the work presented in the paper confirms possibility to use the finite 
elements method coupled with numerical modal analysis as powerful tool in the 



Vibrational properties characterization of mouse embryo during microinjection                 201 

 

vibrational characterization of bio structures such as the mouse embryo. This method can 
be used to analyze vibrational properties of embryos of both mice and humans, and not 
only in physiological conditions, but also under pathological conditions, for example 
when artifical insemination is unsucessful, or when the implantation of the embryo does 
not occur. This opens new possibilities for developing an oscillation theory of 
reproducation. 
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Abstract. Several crucial phases of the overall approach to development and design of 
smart structures are outlined in this paper. They are focused on control of lightweight 
mechanical structures with respect to active vibration and noise attenuation using 
piezoelectric actuators and sensors. The research experience and growing interest in 
development of smart structures have motivated introduction of courses on smart 
structures at universities, which are being studied extensively and with great interest by 
young researchers and students. Some of the author’s experiences regarding education 
in this field will be addressed as well. 

Key words: active structural control, piezoelectric actuators and sensors, system 
identification. 

1. INTRODUCTION 

 
Active structural control has been intensively investigated in the recent years. It is not 

only a subject of the scientific and research activities, but due to its extensive application 
possibilities active control of mechanical structures gains more and more attention in the 
education and teaching processes. In that way the benefits of the further development and 
application can be recognized in the early stages, awaking the interest among young 
future experts to investigate and contribute more in this field. 

In this paper a broad field of active structural control is considered within the focused 
frame regarding control of lightweight mechanical structures with respect to active 
vibration and noise attenuation using piezoelectric actuators and sensors. An overall 
approach to active control of piezoelectric structures involves subsequent steps of 
modeling, control, simulation, experimental verification and implementation. Each of 
these steps is regarded in more details. Numerical modeling is regarded from the finite 
element method (FEM) point of view [5−6, 11]. Parameter identification [13, 15, 19] is 
considered as a complementary approach to obtain representative models for the use in 
subsequent development steps, e.g. controller design. Active controller design involves 
optimal [16] and adaptive methods [14], whereas the simulation and verification methods 
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involve consideration of the real-time applications. Some application examples3 showing 
the feasibility of the active structural control are presented (vibration suppression of the 
car roof, active noise control of the acoustic box). 

Studying of active structural control is involved in education and teaching processes 
at the high-school level as well. This topic addresses especially teaching experiences in 
the field of adaptronics, mechatronics, mechanics of adaptive systems and control theory. 

As an introduction an example of actively controlled vibrations of a clamped beam is 
explained as a benchmark example presented at the courses on active structural control 
and mechatronics for the students involved in higher education phases. Subsequently the 
overall development of smart structures is summarized and illustrated by several 
application examples. 

2. ACTIVE VIBRATION CONTROL OF A CANTILEVER BEAM – AN EDUCATIONAL 
AND RESEARCH BENCHMARK EXAMPLE 

 
Many scientific and practical, but also educational experiences can be gained by 

investigation of a clamped beam problem. In this section an overall approach to the 
vibration suppression of a clamped beam excited at the tip will be described. This 
example represents a valuable contribution to the educational process, since the vibration 
control problem formulation and its solution defined in several subsequent logical steps 
follow the overall approach to smart structures analysis and design procedure and 
therefore apply as a standard procedure in investigation and control of much more 
complex smart structures. On the other hand, the problem retains the scientific 
complexity and opens possibilities for further studies and contributions to the 
improvement of the problem solution. 

The investigated clamped beam is considered as an active plate structure controlled 
by four piezoelectric patch actuators attached to the beam, two on the top and two on the 
bottom of the plate. Geometry of a standard beam including piezo patches as actuators 
and/or sensor is represented in Fig.1. The material properties of the beam and piezo 
electric material are listed in Table 1. In the first step the plant was represented in the 
form of a finite element model with a mesh of 235 passive and 80 active Semiloof shell 
elements [2, 5]. On the basis of this mesh the eigenfrequencies and eigenmodes are 
calculated using a numerical procedure supported by some standard finite element 
software. The eigenmodes can be determined experimentally as well, using the modal 
analysis approach. The eigenfrequencies of interest for bending mode case studies are 
considered in the subsequent investigations. Exciting forces F(t)=Asin(ωit) exerted on the 
corner points at the tip of the beam are chosen with regard to the eigenfrequencies of 
interest. 

An experimental rig with the clamped cantilever beam and dSPACE system, which 
can be used for the modal analysis and control purposes, is shown in Fig. 2. 

 
                                                           
3 Experimental studies and application examples addressed in this paper were performed within the author’s 

research activities at the Otto-von-Guericke University of Magdeburg, Germany, supported by Prof. Dr.-Ing. 
habil. Ulrich Gabbert and the research group at the Institute of Mechanics. This support is greatly 
acklnowledged. 
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Fig. 1 Geometry and dimensions of the clamped beam with finite element mesh 

 
Table 1. Material properties 

 E = 2.00⋅105 N/mm2  E11 = E22 = 3.77⋅104N/mm2 
 ν = 0.3  G12 = 1.3⋅104 N/mm2 
 ρ = 7.86⋅10−9 Ns2/mm4  ν = 0.38 
 t = 2.0 mm (thickness)  ρ = 7.85⋅10−9 Ns2/mm4 
  d31 = 2.1⋅10−7 mm/V 
  κ33 = 3.36⋅10−9 F/m 

Beam 

 

Piezo 

 ρ = 7.85⋅10−9 Ns2/mm4 
 

 

       
Fig. 2 Experimental rig with the clamped cantilever beam and dSPACE system 

Control problem can be formulated as schematically represented in the Fig. 3. For the 
solution of the control task an appropriate controller is proposed (optimal LQ controller) 
in the way that the vibration amplitudes due to periodic excitation forces with frequencies 
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Controller algorithm 

4 actuators 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 3 Closed-loop control system for the vibration suppression of the clamped beam 
 
corresponding to the eigenfrequencies of the clamped beam, are significantly suppressed 
in comparison with uncontrolled case. The study of the control problem is enabled 
through the simulations which are performed using the Matlab/Simulink software. As a 
starting point for the controller design an appropriate state space model was developed, 
based on the modal truncation of the finite element model of a much higher order, in such 
a way that the modally reduced state space model contains important information on the 
eigenmodes in the frequency range of interest, in this case: f1=18.8Hz, f2=113.1Hz, 
f3=314.4Hz, f6=619.2Hz (the eigenmodes 4 and 5 are torsion modes, and they are not 
relevant for the bending vibration suppression). The results of the bending modes 
animation preceding the state space modal truncation are represented in Fig. 4. 
 
 
 
 
 
 
 

 

Fig. 4 Bending modes of the clamped beam 
 
Simulation of the controller behavior is performed in Simulink using a block diagram 
with the optimal LQ controller and with an observer for unmeasurable state variables 
(Fig. 5). 

f1 f2 

f3 f6 
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Fig. 5 Simulink block diagram for the simulation of the controlled beam behavior 

 
Controller design results and its effects are shown in the diagrams in Fig. 6 

represented the uncontrolled and controlled (after 0.5 s) output – displacement at the tip 
of the beam, as well as the control signals (actuating voltages on the piezo patches) 
without and with control. 

Presented example illustrates in a comprehensive way the most important phases of 
system modeling, analysis, controller design, simulation and verification. Analytic and 
detailed study of the system behavior is possible based on the developed system model. 
In this way an overall view of the smart structures development can be gained using a 
relatively simple and comprehensive benchmark example, which plays an important role 
in educational process. On the other hand, the knowledge gained through the 
investigation of such examples can be successfully used for studying of more complex 
structures. 

In subsequent sections an overall view of the most important phases in design and 
control of lightweight smart structures with piezoelectric active materials will be 
summarized and illustrated by several application examples. 
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Fig. 6 Signals without control (up to 0.5 s) and with control (after 0.5s). 
a) Controlled output. b) Actuating inputs. 

3. FINITE ELEMENT APPROACH TO MODELING OF SMART STRUCTURES 
 

The finite element (FE) based modeling of piezoelectric adaptive smart systems and 
structures represents a good basis for the overall simulation and design. This approach 
enables both a suitable controller design [14, 16] and the appropriate actuator/sensor 
placement [2, 8]. 

The FE analysis is based on the finite element semi-discrete form of the equations of 
motion of a piezoelectric smart system describing its electro-mechanical behavior. These 
equations can be derived using the established approximation method of displacements 
and electric potential and the standard finite element procedure [7, 9]. Here the coupled 
electro-mechanical behavior of smart structures will be considered. For investigations in 
the field of active acoustic modeling and control, appropriate consideration of the 
acoustic fluid is required. More on acoustic modeling can be found in [11]. 

Constitutive equations in the stress-charge form (1) are used for the development of 
the equations of motion for a smart structure: 

 T,= − = +σ Cε eE D e ε κE  (1) 

with following notations: [ ]T
11 22 33 12 23 31= σ σ σ σ σ σσ  mechanical stress 

vector, C(6×6) symmetric elasticity matrix, [ ]T
11 22 33 12 23 312 2 2= ε ε ε ε ε εε  strain 

vector, [ ]T
1 2 3E E E=E  electric field vector, e(6×3) piezoelectric matrix, 

[ ]T
1 2 3D D D=D  vector of electrical displacement and κ(3×3) symmetric dielectric 

matrix. The system of equations which describe electromechanical behaviour consists of 
the constitutive equations (1) together with the mechanical equilibrium and electric 
equilibrium (charge equation of electrostatics resulting from the 4th Maxwell equation): 

a) b) 
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 T T,u ϕ+ −ρ = =D σ P v 0 D D 0  (2) 

where [ ]T
1 2 3P P P=P  represents the body force vector, [ ]T

1 2 3v v v=v  is the vector 
of mechanical displacements, ρ is the mass density and Du and Dφ are differentiation 
matrices: 

 

1 2 3

T

2 1 3

3 2 1

0 0 0

0 0 0

0 0 0

u

x x x

x x x

x x x

⎡ ⎤∂ ∂ ∂
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂

= ⎢ ⎥
∂ ∂ ∂⎢ ⎥

⎢ ⎥∂ ∂ ∂
⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦

D ,   T

1 2 2x x xϕ

⎡ ⎤∂ ∂ ∂
= ⎢ ⎥∂ ∂ ∂⎣ ⎦

D . (3) 

Variational statement of the governing equations for the coupled electro-mechanical 
problem derived from the Hamilton’s principle represents the basis for development of 
the finite element model [1, 17−18]. It is obtained in the form: 

 
( ) ( )

1 2

T T T T T T T
V

T T
P 0

V V

dV dV

d d Q

− ρδ − δ + δ + δ + δ + δ

+ δ + δ − δϕ − δϕ =

∫ ∫

∫ ∫Ω
Ω Ω

Ω Ω

v v ε Cε ε e E E eε E κE v F

v F v F

&&

q
 (4) 

where FΩ represents the surface applied forces (defined on surface Ω1), FP the point 
loads, φ the electric potential, q the surface charge brought on surface Ω2 and Q the 
applied concentrated electric charges. Applying the approximation of displacements and 
electric potential with the shape functions over an element, representing the structure by 
a finite number of elements and adding up all elements contributions, the finite element 
semi-discrete form of the equations of motion is obtained: 

 ( ) ( )d t t+ + = +Mq D q Kq Ef Bu&& &  (5) 

where vector q represents the vector of generalized displacements including mechanical 
displacements and electric potential and contains all degrees of freedom. Matrices M, Dd 
and K are the mass matrix, the damping matrix and the stiffness matrix, respectively. The 
total load vector is divided into the vector of the external forces ( )E t=F Ef  and the 
vector of the control forces ( ),C t=F Bu  where the forces are generalized quantities 
including also electric charges. Vector f(t) represents the vector of external disturbances, 
and u(t) is the vector of the controller influence on the structure. Matrices E  and B  
describe the positions of the forces and the control parameters in the finite element 
structure, respectively. 

This approach has been used to develop a comprehensive library of multi-field finite 
elements: 1D, 2D, 3D elements, thick and thin layered composite shell elements, etc. 
which was implemented in the finite element package COSAR [3] for the simulation of 
the static and dynamic structural behavior of smart structures. Besides, the tools which 
take into account other physical effects are also available. For example, the temperature 
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influence can also be considered, and using the developed acoustic elements the 
influence of the acoustic fluid and its behavior can also be studied [10, 11]. 

The tools for modal reduction are also included, which enable development of 
appropriate models with reduced orders for the controller design. Based on the modal 
truncation, which was adopted as a suitable technique for the reduction of the number of 
equations in the FE models, a state space model of an actively controlled structure can be 
obtained in the form convenient for the controller design. A limited number of 
eigenmodes of interest is taken into account, while the remaining modes are truncated. 
Introducing the modal coordinates z 

 m( ) ( )t t=q Φ z  (6) 

into equation (5), where mΦ  represents the modal matrix, and applying the ortho-
normalization with T

m m =Φ MΦ I , T
m m =Φ KΦ Ω , T

m d m=∆ Φ D Φ , where Ω represents the 
spectral matrix and ∆ the modal damping matrix, the state space model of the modally 
reduced system can be obtained in the form: 

 T T( ) ( )t t
⎡ ⎤ ⎡ ⎤⎡ ⎤

= + +⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

0 00 I
x x u f

Φ B Φ EΩ ∆
&  (7) 

where [ ]T( )t =x z z&  represents a state-space vector. With the state and the output 
equations, the state space model is represented in the form: 

 ( ) ( ) ( ) ( )t t t t= + +x Ax Bu Ef& ,    ( ) ( ) ( )t t t= + +y Cx Du Ff   (8) 

which is convenient for the controller design. 

4. SUBSPACE-BASED SYSTEM IDENTIFICATION 
 

As an alternative modeling method, the subspace-based system identification can be 
used. It is convenient for the comparison with the results of the state space FEA-based 
modeling, since it results in a state space model representation as well. Based on the 
measured input and output signal data, the model is identified in a discrete-time state-
space form, which represents a discrete-time equivalent of the state space model given by 
(8). In a general case a deterministic-stochastic form of a discrete-time state-space model 
has the following form: 

 [ 1] [ ] [ ] [ ], [ ] [ ] [ ] [ ]k k k k k k k k+ = + + = + +x Φx Γu y Cx Duw v    (9) 

with discrete-time state and control matrices Φ and Γ, and the process and the 
measurement noise w[k] and v[k], respectively. The process noise and the measurement 
noise vector sequences w[k] and v[k] are white noise with zero mean and with covariance 
matrix: 

 T T
T

[ ]
[ ] [ ]

[ ]
i

i j
j

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪⎡ ⎤ =⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

Q S
S R

E
w

w v
v

   (10) 
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General deterministic-stochastic problem of the subspace identification is to 
determine the order n of the unknown system and the system matrices n n×∈Φ R , 

n m×∈Γ R , nl×∈RC , ml×∈RD  as well as the covariance matrices n n×∈Q R , ln×∈RS , 
ll×∈RR  of the noise sequences w[k] and v[k]. Subsequent derivations regard the pure 

deterministic case considered in [4]. 
Measured input and output data are organized into block Hankel matrices defined in 

the following form [13, 15, 19]: 

 

0 1 2 1

1 2 3

1 1 2
0 2 1

1 2 1

1 2 3

2 1 2 2 1 2 2

j

j
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i i i i j

i
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U
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−
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L

L L L L L

L

L

L
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L

 (11) 

The output block Hankel matrix 120 −iY  is defined in a similar way. More details on 

definition of the Hankel matrices and the subspace-based identification method can be 
found in [15]. The measurement data are organized in the form of the input-output 
relation [19]: 

 [ ] [ ] [ ]k k kα α= +Y Γ x Φ U  (12) 

where αΓ  represents the observability matrix for the system (1), αΦ  is the Toeplitz 
matrix [4] of impulse responses from u to y: 

 

2

0

α

α−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

D 0
CΓ D 0

Φ

CΦ Γ CΓ D

L

M O O M

L

 (13) 

and α is a specified number greater than the state dimension but much smaller than the 
data length. For a deterministic case [13] the problem is simplified to determining Γα and 
Φα by computing the singular value decomposition (SVD) of U in the first step: 

 
T

T 1
1 2 T

2

[ ] [ 0] .u
u u u

u

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦

Q
U PΣQ P P Σ

Q
 (14) 

If matrix U has dimension m×n and rank r, then the partition in (14) is performed as 
follows: 

 [ ] [ ]1 1 1 2r r m u u+= =P p p p p P PL L  (15) 
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 [ ] [ ]1 1 1 2r r n u u+= =Q q q q q Q QL L  (16) 

where pi are the left singular vectors of U [4]. It can be shown that they are eigenvectors 
of UUT. Vectors qi are the right singular vectors of U. It can be shown that they are 
eigenvectors of UTU. Multiplying (12) by Qu2, matrix Γα can be determined from a SVD 
of YQu2. Then matrix C is obtained as the first row (in a sense of a block-row) of the 
observability matrix Γα, and matrix Φ is calculated from: αα =Γ Γ Φ  applying pseudo 

inverse, where αΓ  is obtained by dropping the last row of Γα. Matrix αΓ  represents the 
matrix obtained by dropping the first row of Γα. For the calculation of Γ and D matrices, 
(12) is multiplied by the pseudo inverse of U on the right and by T

2uP  from (14) on the 
left. Thus the equation is reduced to: 

 T 1 T
2 2u u

−
α=P YU P Φ . (17) 

After rearranging, (17) can be solved for Γ and D using the least squares, see (13). In this 
way the system parameters in the form of state-space matrices of the model (9) are 
identified using the subspace-based identification method. 

5. OPTIMAL LQ CONTROLLER DESIGN WITH ADDITIONAL DYNAMICS 
 

An optimal LQ controller design with additional dynamics is suggested here as a control 
technique which has resulted in a successful vibration and noise reduction in several 
studies [12, 16]. 
Controller design includes available a priori knowledge about occurring disturbance type 
contained in the additional dynamics. Such an a priori knowledge is available in terms of 
the type of the disturbance function which has to be rejected or whose influence should 
be suppressed by the controller. Periodic disturbances with frequencies corresponding to 
the eigenfrequencies of the smart structure can cause resonance and their suppression is 
therefore important. They are taken into account via the additional dynamics. 
Discrete-time state space equivalent (18) of the state space model (8) developed through 
the FEM procedure and modal reduction is used for the controller design. 

 [ 1] [ ] [ ] [ ], [ ] [ ] [ ] [ ]k k k k k k k k+ = + + = + +x Φx Γu εw y Cx Du Fw  (18) 

Using the a priori knowledge about the disturbance class, which has to be suppressed, the 
model of the disturbance is represented in an appropriate state space form, where the 
disturbance is assumed to be the output of the state space representation. The poles λi of 
the disturbance transfer function are used to define the additional dynamics using the 
coefficients of the polynomial: 
 1

1( ) ( e ) ...i iT m s s
s

i

z z z zλ −δ = − = + δ + + δ∏  (19) 

where mi represents the multiplicity of the pole  λi. Additional dynamics is expressed in a 
state space form: 



 Active Control of Mechanical Structures in Research and Education                      213 

 

 [ 1] [ ] [ ]a a a ak k k+ = +x Φ x Γ e ; (20) 

where xa is the vector of the state variables for the additional dynamics, e is the error 
signal and: 

 

1 1

2 2

1 1

1 0 0
0 1 0

,
0 0 1
0 0 0

a a

s s

s s

− −

−δ −δ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−δ −δ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
−δ −δ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−δ −δ⎣ ⎦ ⎣ ⎦

L

L

M M M O M M

L

L

Φ Γ . (21) 

For multiple-input multiple-output (MIMO) systems additional dynamics is replicated 
q times (once per each output). Replicated additional dynamics is described by: 

 
times times

( ,..., ) ( ,..., )
def def

a a a a

q q

diag diag= =
14243 14243

Φ Φ Φ , Γ Γ Γ  (22) 

The discrete-time design model (Φd, Γd) is formed as a cascade combination of the 
additional dynamics (Φa, Γa) or ),( ΓΦ  and the discrete-time plant model (Φ, Γ): 

 [ 1] [ ] [ ]d d d dk k k+ = +x Φ x Γ u ; (23) 

 
[ ]

, ,
[ ]d d d

a

k
k∗ ∗

⎡ ⎤⎡ ⎤ ⎡ ⎤
= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x
x

xC 0
Φ 0 Γ

Φ Γ
Γ Φ

 (24) 

where *Φ  and *Γ  denote respectively aΦ  and aΓ  in the case of single-input single-
output systems or Φ  and Γ  for MIMO systems. For the design model (23) the feedback 
gain matrix L of the optimal LQ regulator is calculated in such a way that the feedback 
control law u[k]= −Lxd[k] minimizes the performance index (25) subject to the constraint 
(23), where Q and R are symmetric, positive-definite matrices. 

 
0

1 ( [ ] [ ] [ ] [ ])
2

T T
d d

k

J k k k k
∞

=

= +∑ x Qx u Ru  (25) 

The feedback gain matrix L is afterwards partitioned into 

 [ ]1 2=L L L  (26) 

so that L1 corresponds to the state space model of the structure, and L2 to the modelled 
additional dynamics. 

6. DIRECT ADAPTIVE CONTROL 
 

As an alternative approach, the model reference adaptive control (MRAC) is 
suggested. This control technique comprises several advantages for the large flexible 
structures. In the case of piezoelectric smart structures the term large can regard high 
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number of degrees of freedom of the finite element model used for the modeling of the 
structure behavior. With the model truncation, which is a necessary step to adapt the 
structure model to the controller design purpose, resulting state-space model does not 
exactly reflect the real behavior of the structure. Inaccuracies introduced in this way can 
be viewed as a source of the parameter variation with respect to the modeled case. The 
presence of disturbances in real environment also introduces variation of the parameters 
in comparison with the modeled case. This causes the need for the adaptive control 
algorithm, which can successfully face the insufficient prior knowledge or the unknown 
changes of the system parameters. 

The advantage of a robust adaptive controller over a fixed-gain controller can be 
viewed through the fact that in design of large flexible smart structures a large degree of 
the model uncertainty is allowable in the sense of the possible parameter variation as well 
as with respect to the order of the controlled structure. The robustness assumes stability 
in the presence of disturbances and unmodeled dynamics. 

The idea of the model reference adaptive control is based upon the existence of the 
reference model, specified by the designer, which reflects the desired behavior of the 
controlled structure. The output of the controlled structure should track the output of the 
reference model (Fig. 7). 
 
  
 
 
 
 
 
 
 
 
 

Fig. 7 General form of a discrete-time MRAC system 
 

A general form of a discrete-time model reference adaptive system is represented in 
Fig. 7. Plant representation is a discrete-time state space realization, which corresponds 
to the plant model (18), whereas the reference model is represented by equations in Fig. 
7, where fx and fy represent bounded unmeasurable plant and output disturbances in a 
general case and e=ey is the output error, i.e. the difference between the desired output of 
the reference model and the real plant output. 
Discrete-time direct model reference adaptive control law is expressed in the following 
form: 
 e x u[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]r m mk k k k k k k k k= = + +yu K r K e K x K u . (27) 

The adaptive gain [ ]r kK  in is determined as a sum of proportional and integral parts 

pK  and IK  respectively: 
 [ ] [ ] [ ]r p Ik k k= +K K K  (28) 



 Active Control of Mechanical Structures in Research and Education                      215 

 

According to the basic model reference adaptive algorithm the proportional and integral 
gains are adapted in the following way: 

 T T
0[ ] ( ) , [ 1] [ ] , (0)p I I Ik t k k= + = =y yK e r T K e r T K K  (29) 

where T  and T are nr×nr time-invariant weighting matrices and 0IK is the initial integral 
gain, selected by the designer. In the robust model reference adaptive control approach 
the integral gain is determined in the form (30). This modification of the integral gain in 
(29) by adding a σ-term is introduced to provide the convergence of the integral gain 
[14] since in realistic environment due to disturbances the error e does not reach the zero 
value and the integral gain would thus never stop increasing without its limiting by the σ-
term.  

 T[ 1] [ ] [ ] σ [ ]I Ik k k k+ = −yK e r T K  (30) 

The control law for a general plant in Fig. 7 including disturbances or excitations is 
globally stable with respect to boundness if the disturbances are bounded and the plant is 
is almost strictly positive real. The proof of the condition is based on the selection of the 
Lyapunov candidate positive definite function and on analyzing the sign of its derivative. 
In order to guarantee robust stability, perfect tracking is not obtained in general, but the 
adaptive controller maintains a small tracking error over large ranges of nonideal 
conditions and uncertainties. 

7. APPLICATION EXAMPLES 
 

In order to illustrate some results of the application of active control as a part of the 
overall design of active mechanical structures several examples are shown in this section. 

7.1. Active vibration suppression of a car roof 

Vibration suppression of a car roof 
with attached piezoelectric patches 
using the optimal LQ controller with 
additional dynamics is demonstrated 
through a numerical simulation for a 
test structure. Piezoelectric patches 
attached to the surface of the car roof 
are used as actuators and sensors. 
Excitation by shakers at prescribed 
points is intended for the experimental 
investigations (Fig. 8). 

FEM model including the piezo-

electric effects of the actuator/sensor 
groups was obtained using the FEM 
software COSAR [3]. Based on the 
generated FEM mesh, an optimization 

Fig. 8 Passenger compartment and inner 
surface of the car roof with attached  
piezo-patches and exciting shakers 
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of the actuator/sensor placement was per-formed under consideration of the eigen-modes 
of interest and the controllability index. The actuator/sensor placement in Fig. 9 describes 
one of the test cases, which was calculated based on the controllability index. 
Comparison of the calculated an experimentally determined eigenfrequencies shows a 
good agreement in the considered frequency range. 

 
 

 
 

Fig. 9 FEM mesh of the car roof with actuator/sensor placement 
 
For the controller design a modally reduced state space model was used, which takes 

into account five selected eigenfrequencies: f1=48.45Hz, f2=51.12Hz, f3=63.23Hz, 
f4=64.67Hz and f5=68.00Hz. Using the control concept with optimal LQ controller, 
additional dynamics and Kalman estimator the simulation of the vibration suppression 
was performed in order to show the potentials of the control strategy. The results are 
represented in Fig. 10. 

The comparison of the uncontrolled and controlled cases shows significant reduction 
of the vibration magnitudes in the presence of the controller. The controller was also 
compared with the standard optimal LQ controller without additional dynamics which 
compensates for the presence of the periodic sinusoidal excitations with critical 
frequencies. The comparison shows much better vibration suppression in the presence of 
the controller with additional dynamics. 
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Fig. 10 a) Controlled and uncontrolled responses of the sensor patches. 
b) Zoomed portion of the controlled responses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

7.2. Noise Control of a Smart Acoustic Box 

An actively controlled smart acoustic box consisting of the clamped plate with attached 
piezoelectirc patches used as actuators and of the wooden box surrounding the clamped 
plate is designed and investigated in order to reduce the plate vibrations and the air 
pressure at selected points inside the box (Fig. 11).  
The plate is excited by a shaker and the plate and the acoustic fluid vibrations are 
measured by the laser scanning vibrometer (for the velocity and displacement 
measurements at selected points on the plate surface) and the microphone (for the air 
pressure measurement) respectively. The piezopatches and the microphone are located 
inside the acoustic box. 

b) a) 

Aluminium plate 
Open side 

Fig. 11 a) Scheme of the acoustic box  
b) photo of the clamped plate with piezo-actuators 
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The aluminium plate of the acoustic box and the acoustic fluid inside it are modelled 
using the FEM approach, taking into consideration the acoustic behaviour via the 
appropriate acoustic finite elements. Based on the modally reduced state space model 
obtained through the modal truncation, the simulation and subsequently the experimental 
control of the plate vibration and of the fluid pressure were performed using the optimal 
LQ controller with additional dynamics and the model reference adaptive control. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12 Experimental setup for system identification and control implementation 

 
The experimental setup for the control implementation as well as for the model 
identification using the subspace approach described in section 4 is represented in Fig. 
12. 
The optimal LQ controller was tested with different excitation signals. Some of the 
results are represented in with Fig. 13. The results for the excitation obtained as a sum of 
three periodic sinusoidal signals with the frequencies corresponding to the 
eigenfrequencies of the plate (fw1=66.7Hz, fw2=106.2Hz, fw2=163.8Hz) are shown in Fig. 
13 a). Fig. 13 b) shows the results with the random excitation signal. The pressure 
amplitude reduction can be observed in both cases. 
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Fig. 13 Optimal LQ controller with additional dynamics: uncontrolled and controlled 
microphone output signal in the presence of 

a) excitation ∑
=

3

1

)sin(
i

wif ,  b) random excitation. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14 a) Comparison of the MRAC and optimal LQ controller; b) zoomed portion. 
 

The results of the adaptive MRAC controller testing are shown in Fig. 14. The 
adaptive controller is compared with the optimal LQ controller in the presence of the 
periodic excitation with the frequency fw2. Uncontrolled and controlled signals are 
represented in Fig. 14 a), and a zoomed portion of the signals in Fig. 14 b). Both 
controllers perform the air pressure reduction at the microphone point. In this case the 
optimal controller performs a slightly higher reduction degree. 

8. CONCLUSION 
 

Active structural design is addressed in this paper considering several phases in the 
overall design approach, with the focus on structural control of lightweight mechanical 
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structures which use piezoelectric materials as active elements. The main control 
objective is vibration suppression and the noise attenuation. The feasibility of the 
approaches is demonstrated by two application examples: vibration suppression of the car 
roof and the noise reduction in a smart acoustic enclosure. Experience in the education is 
addressed as well. A benchmark example of a clamped beam controlled by piezoelectric 
patches used as actuators and/or sensors is explained to show the application possibilities 
for education purposes. 
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Abstract. This paper deals with the problem of delay dependent stability for 
both ordinary and large-scale time-delay systems. Some necessary and 
sufficient conditions for delay-dependent asymptotic stability of continuous 
and discrete linear time-delay systems are derived. These results have been 
extended to the large-scale time-delay systems covering the cases of two and 
multiple existing subsystems. The delay-dependent criteria are derived by 
Lyapunov's direct method and are exclusively based on the solvents of 
particular matrix equation and Lyapunov equation for non-delay systems. 
Obtained stability conditions do not possess conservatism. Numerical 
examples have been worked out to show the applicability of results derived. 
 

Key words (bold): continuous time-delay systems, discrete time-delay 
systems, large-scale time-delay systems, delay-dependent stability, Lyapunov 
stability, necessary and sufficient conditions 

1. INTRODUCTION 

The problem of investigation of time-delay systems has been exploited over many 
years. Time-delay is very often encountered in various technical systems, such as 
electric, pneumatic and hydraulic networks, chemical processes, long transmission lines, 
etc. The existence of pure time lag, regardless if it is present in the control or/and the 
state, may cause undesirable system transient response, or even instability.  

During the last three decades, the problem of stability analysis of time-delay systems 
has received considerable attention and many papers dealing with this problem have 
appeared. In the literature, various stability analysis techniques have been utilized to 
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derive stability criteria for asymptotic stability of the time-delay systems by many 
researchers.  

The developed stability criteria are classified often into two categories according to 
their dependence on the size of the delay: delay-dependent and delay-independent 
stability criteria. It has been shown that delay-dependent stability conditions that take 
into account the size of delays, are generally less conservative than delay-independent 
ones which do not include any information on the size of delays.  

Further, the delay-dependent stability conditions can be classified into two classes: 
frequency-domain (which are suitable for systems with a small number of heterogeneous 
delays) and time-domain approaches (for systems with a many heterogeneous delays).  

In the first approach, we can include the two or several variable polynomials [1], [2] 
or the small gain theorem based approach.  

In the second approach, we have the comparison principle based techniques for 
functional differential equations [3], [4] and respectively the Lyapunov stability approach 
with the Krasovskii and Razumikhin based methods [5], [6]. The stability problem is thus 
reduced to one of finding solutions to Lyapunov [7] or Riccati equations  [8], solving 
linear matrix inequalities (LMIs) [9], [10], [11] [12] or analyzing eigenvalue distribution 
of appropriate finite-dimensional matrices [13] or matrix pencils [14]. For further 
remarks on the methods see also the guided tours proposed by [15], [16], [17], [18], [19], 
[20].  

It is well-known [21] that the choice of an appropriate Lyapunov–Krasovskii 
functional is crucial for deriving stability conditions. The general form of this functional 
leads to a complicated system of partial differential equations [22]. Special forms of 
Lyapunov–Krasovskii functionals lead to simpler delay-independent (Boyd et al., 1994; 
Verriest & Niculescu, 1998; Kolmanovskii & Richard, 1999) [9], [23], [21] and (less 
conservative) delay-dependent conditions [24], [25], [21], [26], [27], [28]. Note that the 
latter simpler conditions are appropriate in the case of unknown delay, either unbounded 
(delay-independent conditions) or bounded by a known upper bound (delay-dependent 
conditions).  

In the delay-dependent stability case, special attention has been focused on the first 
delay interval guaranteeing the stability property, under some appropriate assumptions on 
the system free of delay. Thus, algorithms for computing optimal (or suboptimal) bounds 
on the delay size are proposed in [14] (frequency-based approach), in [29] (integral 
quadratic constraints interpretations), in [10], [11], [7] (Lyapunov-Razumikhin function 
approach) or in [12] (discretization schemes for some Lyapunov- Krasovskii 
functionals). For computing general delay intervals, see, for instance, the frequency 
based approaches proposed in [30]. 

In the past few years, there have been various approaches to reduce the conservatism 
of delay-dependent conditions by using new bounding for cross terms or choosing new 
Lyapunov–Krasovskii functional and model transformation. The delay-dependent 
stability criterion of [31], [26] is based on a so-called Park’s inequality for bounding 
cross terms. However, major drawback in using the bounding of [31] and [26] is that 
some matrix variables should be limited to a certain structure to obtain controller 
synthesis conditions in terms of LMIs. This limitation introduces some conservatism. In 
[32] a new inequality, which is more general than the Park’s inequality, was introduced 
for bounding cross terms and controller synthesis conditions were presented in terms of 
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nonlinear matrix inequalities in order to reduce the conservatism. It has been shown that 
the bounding technique in [32] is less conservative than earlier ones. An iterative 
algorithm was developed to solve the nonlinear matrix inequalities [32]. 

Further, in order to reduce the conservatism of these stability conditions, various 
model transformations have been proposed. However, the model transformation may 
introduce additional dynamics. In [33] the sources for the conservatism of the delay-
dependent methods under four model transformations, which transform a system with 
discrete delays into one with distributed delays are analyzed. It has been demonstrated 
that descriptor transformation, that has been proposed in [34], leads to a system which is 
equivalent to the original one, does not depend on additional assumptions for stability of 
the transformed system and requires bounding of fewer cross-terms. In order to reduce 
the conservatism [35], [36] proposed some new methods to avoid using model 
transformation and bounding technique for cross terms. 

In [37] both the descriptor system approach and the bounding technique using by [32] 
are utilized and the delay-dependent stability results are performed. The derived stability 
criteria have been demonstrated to be less conservative than existing ones in the 
literature.  

Delay-dependent stability conditions in terms of linear matrix inequalities (LMIs) 
have been obtained for retarded and neutral type systems. These conditions are based on 
four main model transformations of the original system and application mentioned 
inequalities. 
The majority of stability conditions in the literature available, of both continual and 
discrete time-delay systems, are sufficient conditions. Only a small number of works 
provide both necessary and sufficient conditions [38], [39], [47], [49], [50], [53] which 
are in their nature mainly dependent of time-delay. These conditions do not possess 
conservatism but often require more complex numerical computations. In our paper we 
represent some necessary and sufficient stability conditions. 

Less attention has been drawn to the corresponding results for discrete-time delay 
systems [40], [41], [42], [43], [44], [45], [54]. This is mainly due to the fact that such 
systems can be transformed into augmented high dimensional systems (equivalent 
systems) without delay  [22], [46]. This augmentation of the systems is, however, 
inappropriate for systems with unknown delays or systems with time varying delays. 
Moreover, for systems with large known delay amounts, this augmentation leads to large-
dimensional systems. Therefore, in these cases the stability analysis of discrete time-
delay systems can not be to reduce on stability of discrete systems without delay. 

In our paper we present delay-dependent stability criteria for particular classes of 
time-delay systems: continuous and discrete time-delay systems and continuous and 
discrete time-delay large-scale systems. Thereat, these stability criteria are express in 
form necessary and sufficient conditions. 

2. STABILITY OF TIME-DELAY SYSTEMS 

Throughout this paper we use the following notation. R and C denote real (complex) 
vector space or the set of real (complex) numbers, T+ denotes the set of all non-negative 
integers, *λ  means conjugate of Cλ∈  and F ∗ conjugate transpose of matrix n nF C ×∈ .  



226 S. B. STOJANOVIC, D. LJ. DEBELJKOVIC 

 

Re(s) is the real part of s C∈ . The superscript T denotes transposition. For real matrix 
F  the notation 0F >  means that the matrix F  is positive definite. ( )i Fλ  is the 

eigenvalue of matrix  F . Spectrum of matrix F  is denoted with ( )Fσ  and spectral 

radius with ( )Fρ .  

2.1. Continuous time-delay systems 

Considers class of continuous time-delay systems described by 

 ( ) ( ) ( ) ( ) ( )0 1 , , 0t A t A t t t t= + − τ = ϕ − τ ≤ <x x x x&  (1) 

Theorem 1. [38] Let the system be described by (1). If for any given matrix * 0Q Q= >  

there exist matrix * 0P P= > , such that  

 ( )( ) ( )( )0 00 0
T

P A T A T P Q+ + + = −  (2) 

where ( )T t is continuous and differentiable matrix function which satisfies 

 ( ) ( )( ) ( ) ( )0 10 , 0 ,

0 ,

A T T t t T A
T t

t

⎧ + ≤ ≤ τ τ =⎪= ⎨
> τ⎪⎩

&  (3) 

then the system (1) is asymptotically stable.   
 In paper [38] it is emphasized that the key to the success in the construction of a 
Lyapunov function corresponding to the system (1) is the existence of at least one 
solution ( )T t  of (3) with boundary condition ( ) 1T Aτ = . In other words, it is required 
that the nonlinear algebraic matrix equation 

 ( )( ) ( )0 0
10A Te T A+ τ =  (4) 

has at least one solution for ( )0T . It is asserted, there, that asymptotic stability of the 
system (Theorem 1) can be determined based on the knowledge of only one or any 
solution of the particular nonlinear matrix equation. However, [47] gives counterexample 
which denies this maintenance. 

2.1.1 Main results 

If we introduce a new matrix,  

 ( )1 0R A T+�  (5) 

then condition (2) reads  

 *PR R P Q+ = −  (6) 
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which presents a well-known Lyapunov’s equation for the system without time-delay. 
This condition will be fulfilled if and only if R is a stable matrix:  

 ( )Re 0Riλ <  (7) 

Let TΩ  and RΩ  denote sets of all solutions of eq. (4) per T(0) and (6) per R, 
respectively.  

Equation (4)  can be written in a different form as follows, 

 0 1 0RR A e A− τ− − =  (8) 

and there follows 

 ( )0 1det 0RR A e A− τ− − =  (9) 

Substituting a matrix variable R by scalar variable s in (7), the characteristic equation of 
the system (1) is obtained as 

 ( ) ( )0 1det 0sf s sI A e A− τ= − − =  (10) 

Let us denote 

 ( ){ }| 0s f sΣ =  (11) 

a set of all characteristic roots of the system (1). The necessity for the correctness of 
desired results, forced us to propose new formulations of Theorem 1. 
Theorem 2. [47] Suppose that there exist(s) the solution(s) ( )0 TT ∈Ω  of (4). Then, the 

system (1) is asymptotically stable if and only if for any matrix * 0Q Q= >  there exists 

matrix *
0 0 0P P= >  such that (2) holds for all solutions ( )0 TT ∈Ω  of (4). 

Conclusion 1.  Statement Theorem 2 require that condition (2) is fulfilled for all 
solutions  ( )0 TT ∈Ω  of (4).  In other words, it is requested that condition (7) holds for 
all solution R of (8), especially for maxR R= , where the matrix m RR ∈Ω  is maximal 
solvent of (8) that contains eigenvalue with a maximal real part 

: Re max Rem m s
s

∈Σ
λ ∈Σ λ = . Therefore, from (7) follows condition ( )Re 0i mRλ < .  

On the basis of Conclusion 1, it is possible to reformulate Theorem 2 in the following 
way.  
Theorem 3. [47] Suppose that there exists maximal solvent mR  of (8). Then, the system 

(1) is asymptotically stable if and only if for any matrix * 0Q Q= >  there exists matrix 
*

0 0 0P P= >  such that (6) holds for the solution mR R=  of (8). 

2.2 Continuous large scale time-delay systems 

Consider a linear continuous large scale time-delay autonomous systems composed of 
N  interconnected subsystems. Each subsystem is described as: 
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  ( ) ( ) ( )
1

N

i i i ij j ij
j

t A t A t
=

= + − τ∑x x x& , 1 i N≤ ≤  (12) 

with an associated function of initial state ( ) ( )i iθ = ϕ θx , , 0 , 1
im i N⎡ ⎤θ∈ −τ ≤ ≤⎣ ⎦ . 

( ) in
i t R∈x  is state vector, i in n

iA R ×∈  denote the system matrix, i jn n
ijA ×∈R  represents 

the interconnection matrix between the i -th and the j -th subsystems, and ijτ  is constant 
delay. 

For the sake of brevity, we first observe system (12) made up of two subsystems 
( 2N = ). For this system, we derive new necessary and sufficient delay-dependent 
conditions for stability, by Lyapunov's direct method. The derived results are then 
extended to the linear continuous large scale time-delay systems with multiple 
subsystems. 

2.2.1. Main results 

Theorem 4. [49] Given the following system of matrix equations (SME) 

  
 

1 11 1 21
1 1 11 2 21 0R RR A e A e S A− τ − τ− − − =  (13) 

  
 

1 12 1 22
1 2 2 2 12 2 22 0R RR S S A e A e S A− τ − τ− − − =  (14) 

where 1A , 2A , 12A , 21A  and 22A  are matrices of system (12) for 2N = , in  subsystem 
orders and ijτ  time-delays of the system. If there exists solution of SME (13)-(14) upon 

unknown matrices 
 

1 1
1

n nR R ×∈  and 1 2
2

n nS C ×∈ , then the eigenvalues of matrix 
 1R  belong 

to a set of roots of the characteristic equation of system (12)  for 2N = . 
Proof. By introducing the time-delay operator se−τ , the system (12)  can be expressed in 
the form 

  
( ) ( ) ( ) ( )

( ) ( ) ( )

11 12

21 22

1 11 12

21 2 22

1 2

,
s s

s s

TT T

e
A A e A e

t t A s t
A e A A e

t t t

−τ −τ

−τ −τ

⎡ ⎤+
= =⎢ ⎥

+⎣ ⎦

⎡ ⎤= ⎣ ⎦

x x x

x x x

&
 (15) 

Let us form the following matrix 

  ( ) ( )
11 12

1

1 2 21 22

2

1 11 12

21 2 22

( )
s s

n
ij n n s s

n
e

sI A A e A e
F s F s sI A s

A e sI A A s

−τ −τ

+ −τ −τ

⎡ ⎤− − −
⎡ ⎤= = − = ⎢ ⎥⎣ ⎦ − − −⎢ ⎥⎣ ⎦

 (16) 

Its determinant is 
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( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )
( ) ( )

11 2 21 12 2 22

21 22

11 2 12 2

21 22

det det

, ,
det

F s S F s F s S F s
F s

F s F s

G s S G s S
G s G s

⎡ + + ⎤
= ⎢ ⎥

⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (17) 

  ( ) 11 21
11 2 1 1 11 2 21, s s

nG s S sI A A e S A e−τ −τ= − − −   (18) 

  ( ) 12 22
12 2 2 2 2 12 2 22, s sG s S sS S A A e S A e−τ −τ= − − −  (19) 

The characteristic polynomial of system (12) for 2N = , defined by 

  ( ) ( )( ) ( )2det =det ,ˆ N ef s sI A s G s S= −   (20) 

is independent of the choice of matrix 2S , because the determinant of matrix ( )2,G s S  is 
invariant with respect to elementary row operation of type 3. Let us designate a set of 
roots of the characteristic equation of system (12) by ( ){ }| s 0ˆ s f∑ = = . Substituting 

scalar variable s  by matrix X  in ( )2,G s S  we obtain  

  ( ) ( ) ( )
( ) ( )

11 2 12 2
2

21 22

, ,
,

G X S G X S
G X S

G X G X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (21) 

If there exist transformational matrix 2S  and matrix 
 

1 1
1

n nR ×∈C such 
that ( )

 11 1 2, 0G R S = and ( )
 12 1 2, 0G R S =  is satisfied, i.e. if (13)-(14) hold, then 

  ( ) ( ) ( )
   1 11 1 2 22 1=det , det 0f R G R S G R⋅ =   (22) 

So, the characteristic polynomial (20) of system (12)  is annihilating polynomial [48] for 
the square matrix

 1R , defined by (13)-(14). In other words, ( )
 1Rσ ⊂ ∑ .  

Theorem 5. [49] Given the following SME 

  
 

2 12 2 22
2 2 1 12 22 0R RR A e S A e A− τ − τ− − − =  (23) 

  
 

2 11 2 21
2 1 1 1 1 11 21 0R RR S S A e S A e A− τ − τ− − − =   (24) 

where 1A , 2A , 12A , 21A  and 22A  are matrices of system (12) for 2N = , in  subsystem 
orders and ijτ time-delays of the system. If there exists solution of SME (23)-(24) upon 

unknown matrices 
 

2 2
2

n nR ×∈C  and 2 1
1

n nS ×∈C , then the eigenvalues of matrix 
 2R  belong 

to a set of roots of the characteristic equation of system (12)  for 2N = . 
Proof. Proof is similarly with the proof of Theorem 4. 
Definition 1. The matrix 

 1R  (
 2R ) is referred to as solvent of SME  (13)-(14)  ((23)-(24)

). 
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Definition 2. Each root mλ  of the characteristic equation (20) of the system (12) which 
satisfies the following condition: Re max Re ,m s sλ = ∈Σ  will be referred to as maximal 
eigenvalue of system (12). 
Definition 3. Each solvent 1mR  ( 2mR ) of SME (13)-(14) ((23)-(24)), whose spectrum 
contains maximal eigenvalue mλ  of system (12), is referred to as maximal solvent of 
SME (13)-(14)  ((23)-(24)). 
Theorem 6. [49] Suppose that there exists maximal solvent of SME (23)-(24) and let 

1mR  denote one of them. Then, system (12), for 2N = , is asymptotically stable if and 

only if for any matrix * 0Q Q= >  there exists matrix * 0P P= >  such that 

  *
1 1m mP P R QR + = −  (25) 

Proof. Sufficient condition. Define the following vector continuous functions 

 

( )

( ) ( ) ( ) ( )
2 2

1 2
1 1 0

, , 0 ,

,

i

ji

ti i m

t t i i ji i
i j

t

S t T t d
τ

= =

⎡ ⎤= + θ θ∈ −τ⎣ ⎦
⎛ ⎞

= + η − η η⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ∫

x x

z x x x x
 (26) 

where ( ) i in n
jiT t ×∈C , 1, 2j =  are varying continuous matrix functions and 

11 nS I= , 
1 2

2
n nS ×∈C . 

The proof of the theorem follows immediately by defining Lyapunov functional for 
system (12) as 

  ( ) ( ) ( ) *
1 2 1 2 1 2, , , , 0*

t t t t t tV P P P= = >x x z x x z x x  (27) 

Derivative of (27), along the solutions of system (12) is  

  ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2 1 2, , , , ,* *
t t t t t t t t t tV P P= +x x z x x z x x z x x z x x& & &   (28) 

  

( ) ( ) ( )

( )( ) ( ) ( ) ( )

2 2

1 2
1 1

2 2
'

1 1 0

, 0

ji

t t i i ji i
i j

j ji i ji ji i ji i ji i
j j

S A T t

S A S T t S T t d

= =

τ

= =

⎧ ⎛ ⎞⎪= +⎨ ⎜ ⎟
⎪ ⎝ ⎠⎩

⎫⎪+ − τ − τ + η − η η ⎬
⎪⎭

∑ ∑

∑ ∑ ∫

z x x x

x x

&

 (29) 

If we define new matrices 

  ( )
2

1
0 , 1, 2i i ji

j
A T iR

=

= + =∑  (30) 

and if one adopts 

  ( ) , , 1, 2i ji ji j jiS T S A i jτ = =   (31) 
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  ( ) ( )'
1 1, , , 1, 2i ji i ji i i iS T R S T S R R S i jη = η = =   (32) 

then 

  ( ) ( ) ( ) ( ) ( ) ( )* *
1 2 1 1 2 1 2 1 2 1 1 1 2, , , , , ,t t t t t t t t t tR V R P PR= = +z x x z x x x x z x x z x x&&   (33) 

It is obvious that if the following equation is satisfied 

  *
1 1 0R P P R Q+ = − < ,  (34) 

then ( )1 2, 0t tV <x x& , ti∀ ≠x 0 .  
In the Lyapunov matrix equation (25), of all possible solvents 1R  only one of 

maximal solvents 1mR  is of importance, because it is containing maximal eigenvalue 

mλ ∈Σ , which has dominant influence on the stability of the system.  
Necessary condition. Let us assume that system (12) for 2N =  is asymptotically stable, 
i.e. s∀ ∈Σ , Re 0s <  hold. Since ( )1mRσ ⊂ Σ  follows ( )1Re 0mRλ <  and the positive 
definite solution of Lyapunov matrix equation (25) exists.  

From (31)-(32) follows 

  ( ) 1

11 ,0 , 1, 2, 1, 2jiR
j ji i ji nS A e S T S I i jτ= = = =   (35) 

Using (30) and (35), for 1i = , we obtain (13). Multiplying (30) (for 2i = ) from the left 
by matrix 2S  and using (32) and (35) we obtain (14). Taking a solvent with eigenvalue 

mλ ∈Σ  (if it exists) as a solution of the system of equations (13)-(14), we arrive at a 
maximal solvent 1mR . 
Theorem 7. [49] Suppose that there exists maximal solvent of SME (23)-(24) and let 

2mR  denote one of them. Then, system (12), for 2N = , is asymptotically stable if and 

only if for any matrix * 0Q Q= >  there exists matrix * 0P P= >  such that 

  *
2 2m mR P P R Q+ = −  (36) 

Proof. Proof is almost identical to that exposed for Theorem 6. 
Theorem 8. [49] Given the following system of matrix equations  

  
1

0, , , 1k ji k i

k

N
R n n

k i i i j ji i k n
j

R S S A e S A S S I i N− τ ×

=

− − = ∈ = ≤ ≤∑ C   (37) 

for a given k , 1 k N≤ ≤ , where iA  and jiA , 1 i N≤ ≤ , 1 j N≤ ≤  are matrices of system  
(12) and jiτ  is time-delay in the system. If there is a solvent of (37) upon unknown 

matrices k kn n
kR ×∈C  and iS , 1 i N≤ ≤ , i k≠ , then the eigenvalues of matrix kR  belong 

to a set of roots of the characteristic equation of system (12). 

Proof. Proof of this theorem is a generalization of proof of Theorem 4 or Theorem 5.  
Theorem 9 [49] Suppose that there exists maximal solvent of (37) for given k , 



232 S. B. STOJANOVIC, D. LJ. DEBELJKOVIC 

 

1 k N≤ ≤  and let kmR  denote one of them. Then, linear discrete large scale time-delay 

system (12) is asymptotically stable if and only if for any matrix * 0Q Q= >  there exists 

matrix * 0P P= >  such that 

  *
km kmR P P R Q+ = −  (38) 

Proof. Proof is based on generalization of proof for Theorem 6 or Theorem 7. It is 
sufficient to take arbitrary N instead of 2N = . 
Example 1. Consider following continuous large scale time-delay system with delay 
interconnections 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 1 1 12 2 12 2 2 2 21 1 21 23 3 23

3 3 3 31 1 31 32 2 32

,x t A x t A x t x t A x t A x t A x t

x t A x t A x t A x t

= + − τ = + − τ + − τ

= + − τ + − τ

& &

&
 (39) 

1 12 2,

-6 2 0 3 -2 0 -1.87 4.91 10.30
0 -7 0 0 0 3 , -2.23 -16.51 -24.11
0 0 -10.9 -2 1 2 1.87 -3.91 -10.30

A A A= =

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 21 23

-1 0 -2 -1 -1
3 0 5 , 3 2
1 0 2 1 1

A A= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

3 31 32

-18.5 -17.5 4 -2 1 1 2 -1
, ,

-13.5 -18.5 2 0 1 3 2 0
A A A= = =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, 

Applying Theorem 8 to a given system, for 1k = , the following SME is obtained 

  
1 31 1 321 21 1 12

1 23

1 1 2 21 3 31 1 2 2 2 12 3 32

1 3 3 3 2 23

0, 0

0

  R

    R

R RR R

R

A e S A e S A R S S A e A e S A

S S A e S A

− τ − τ− τ − τ

− τ

− − − = − − − =

− − =
  

If for pure time-delays we adopt the following values: 12 5τ = , 21 2τ = , 23 4τ = , 

31 5τ =  and 32 3τ = , by applying the nonlinear least squares algorithms, we obtain a great 
number of solutions upon 1R . Among those solutions is a maximal solution: 

1

-0.0484 -0.0996 0.0934
0.2789 -0.3123 0.2104
1.1798 -1.1970 -0.3798

mR
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=  

The eigenvalues of matrix 1mR  amount to: 1 0.2517λ = − , 

2,3 = 0.2444  0.3726jλ − ± .  

Therefore, for a maximal eigenvalue mλ one of the values from the set { }2 3,λ λ  can be 
adopted. Based on Theorem 9, it follows that the large scale time-delay system is 
asymptotically stable. 
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2.3 Discrete time-delay systems 

A linear, discrete time-delay system can be represented by the difference equation 

  ( ) ( ) ( )0 11k A k A k h+ = + −x x x  (40) 

with an associated function of initial state 

  ( ) ( ) { }, , 1, ... , 0h hθ = θ θ∈ − − +x ψ  (41) 

The equation (40) is referred to as homogenous or the unforced state equation. Vector 
( ) nk R∈x  is a state vector and 0 1, n nA A R ×∈  are constant matrices of appropriate 

dimensions, and pure time-delay is expressed by integers h T +∈h .  
System (40) can be expressed with the following representation without delay [22], 

[46].  

  

( ) ( ) ( ) ( )

( ) ( )
0 0

0 0
01 0

1 , ( 1)ˆ

1 ,

T T T N
a

N N
a a a a

In

In
A A

k k h k h k R N n h

k A k A R ×

⎡ ⎤= − − + ∈ = +⎣ ⎦
⎡ ⎤
⎢ ⎥+ = = ∈⎢ ⎥
⎢ ⎥⎣ ⎦

x x x x

x x

L

M M O M

L

L

L

 (42) 

The system defined by (42) is called the augmented system, while matrix Aa, the 
matrix of augmented system. Characteristic polynomial of system (40) is given with: 

  ( ) ( ) ( )
( 1)

1
0 1

0
det , ,      ˆ

n h
j h h

j j n
j

f M a a R M I A A
+

+

=

λ = λ = λ ∈ λ = λ − λ −∑  (43) 

Denote with 

  ( ){ } ( )| 0ˆ eqf AΩ = λ λ = = λ  (44) 

the set of all characteristic roots of system (40). The number of these roots amounts to 
( )1n h + . A root mλ  of Ω with maximal module: 

  ( ): maxm m aAλ ∈Ω λ = λ  (45) 

let us call maximal eigenvalue.  

2.3.1. Main results 

If scalar variable λ in the characteristic polynomial is replaced by matrix 
n nX C ×∈  the following monic matrix polynomial is obtained 

  ( ) 1
0 1

h hM X X X A A+= − −  (46) 

For the needs stability of system (40) only the maximal solvents of (46) are usable, 
whose spectrums contain maximal eigenvalue mλ . A special case of maximal solvent is 
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the so called dominant solvent [51], [52] which can be computed in a simple way by 
Bernoulii or Traub algorithm. 
Definition 4. Every solvent mR  of (46) whose spectrum ( )mRσ  contains maximal 
eigenvalue mλ  of Ω is a maximal solvent. 
Definition 5. [51], [52] Matrix A dominates matrix B if all the eigenvalues of A are 
greater, in modulus, then those of B. In particular, if the solvent 1R  of (46) dominates the 
solvents 2 , , lR RK  we say it is a dominant solvent.  
Theorem 10. [50]  Suppose that there exists maximal solvent of (46) and let mR  denote 
one of them. Then, linear discrete time-delay system (40) is asymptotically stable if and 
only if for any matrix * 0Q Q= >  there exists matrix * 0P P= >  such that  

  *
m mR PR P Q− = −   (47) 

Proof. Sufficient condition. Define the following vector discrete functions 

  ( ) { } ( ) ( ) ( ) ( )
1

, , 1, ... , 0 ,
h

k k
j

k h h k T j k j
=

= + θ θ∈ − − + = + −∑x x z x x x  (48) 

where, ( ) n nT k C ×∈  is, in general, some time varying discrete matrix function. The 
conclusion of the theorem follows immediately by defining Lyapunov functional for the 
system (40)  as 

  ( ) ( ) ( )* *, 0k k kV P P P= = >x z x z x   (49) 

It is obvious that ( )k =z x 0  if and only if k =x 0 , so it follows that ( ) 0kV >x  for 
0k∀ ≠x . 

 The forward difference of (49), along the solutions of system (40)  is  

  ( ) ( ) ( ) ( ) ( ) ( ) ( )* * *
k k k k k kV P k P P∆ = ∆ + ∆ + ∆ ∆x z x z z x z x z x z x   (50) 

A difference of ( )k∆z x can be determined in the following manner 

  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

0 1
1

1

,

1 2 1 1

1 1

h

k n
j

h

j

k T j k j k A I k A k h

T j k j T k T h k h T T k

T h T h k h

=

=

∆ = ∆ + ∆ − ∆ = − + −

∆ − = − − + − − +

+ − − − +

∑

∑

z x x x x x x

x x x x

x

L  (51) 

Define a new matrix R by  

  ( )0 1R A T+�  (52) 

If 

  ( ) ( )1T h A T h∆ = −   (53) 
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then ( )k∆z x has a form 

  ( ) ( ) ( ) ( ) ( )
1

h

k n
j

R I k T j k j
=

∆ = − + ∆ ⋅ −⎡ ⎤⎣ ⎦∑z x x x  (54) 

If one adopts 

  ( ) ( ) ( ) , 1, 2, ... ,nT j R I T j j h∆ = − =  (55) 

then (50) becomes 

  ( ) ( ) ( ) ( )* *
k k kV R PR P∆ = −x z x z x   (56) 

It is obvious that if the following equation is satisfied  

  * *, 0R PR P Q Q Q− = − = >    (57) 

then ( ) 0,k kV∆ < ≠x x 0 . 
In the Lyapunov matrix equation (57), of all possible solvents R of (46), only one of 

maximal solvents mR  is of importance, because it is containing maximal eigenvalue 

mλ ∈Ω , which has dominant influence on the stability of the system. So, (47) represent 
stability sufficient condition for system given by (40). 
Necessary condition. If the system (40) is asymptotically stable then all roots iλ ∈Ω  are 
located within unit circle. Since ( )mRσ ⊂ Ω , follows ( ) 1mRρ < , so the positive definite 
solution of Lyapunov matrix equation (47) exists.  

Matrix ( )1T  can be determined in the following way. From (55), follows 

  ( ) ( )1 1hT h R T+ =   (58) 

and using (52)-(53) one can get (46).  
Corollary 1. [50] Suppose that there exists maximal solvent of (46) and let mR  denote 
one of them. Then, system (40) is asymptotically stable if and only if ( ) 1mRρ < . 
Proof. Follows directly from Theorem 10. 
Corollary 2. [50] Suppose that there exists dominant solvent 1R  of (46). Then, system 
(40) is asymptotically stable if and only if ( )1 1Rρ < . 
 Proof. Follows directly from Corollary 1, since dominant solution is, at the same time, 
maximal solvent. 
Example 2. Let us consider linear discrete systems with delayed state (40) with 

 0 1

7 /10 1 / 2 1 / 75 1 / 3
,

1 / 2 17 / 10 1 / 3 49 / 75
A A

−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 (59) 

A. For 1h =  there are two solvents of matrix polynomial equation (46) 
( 2

0 1 0R RA A− − = ): 
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1 2

19 / 30 1 / 6 1 /15 1 / 3
,

1 / 6 29 / 30 1 / 3 11 / 15
R R

− −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

, 

Since ( ) { }1 4 5, 4 5Rλ = , ( ) { }2 2 5, 2 5Rλ = , dominant solvent is 1R . For getting the 

dominant solvent Bernoulli or Traub’s algorithm may be used. After ( )4 3+  iterations 
for Traub’s algorithm [52] and 17 iterations for Bernoulli algorithm [52], dominant 
solvent can be found with accuracy of 410− . Since ( )1 4 5 1Rρ = < , based on Corollary 
2, it follows that the system under consideration is asymptotically stable. 
B. For 20h =  applying Bernoulli or Traub’s algorithm for computation the dominant 
solvent 1R  of matrix polynomial equation  (46)  ( 21 20

0 1 0R R A A− − = ), we obtain 

1

0.6034 0.5868
0.5868 1.7769

R
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

Based on Corollary 2, the system is not asymptotically stable because 
( )1 1.1902 1Rρ = > .  

2.4 Discrete large scale time-delay systems 

Consider a large-scale linear discrete time-delay systems composed of N  
interconnected iS . Each subsystem iS , 1 i N≤ ≤  is described as 

  ( ) ( ) ( )
1

:   1
N

i i i i ij j ij
j

S k A k A k h
=

+ = + −∑x x x  (60) 

with an associated function of initial state 

  ( ) ( ) { }, , 1  ,  ,  0
i ii i m mh hθ = θ θ∈ − − +x ψ K  (61) 

where ( ) in
i k R∈x  is state vector, i in n

iA R ×∈  denotes the system matrix, 
i jn n

ijA R ×∈ represents the interconnection matrix between the i -th and the j -th 

subsystems and the constant delay ijh T +∈ .  
Lemma 1.  System (60) will be asymptotically stable if and only if  

  ( )max 1aAλ <   (62) 

holds, where matrix 

  ( )
1

, , 1 , max
i i

a a
N

N N
a aij i i i m m jiji

aA R N N N n h h hA ×

=

⎡ ⎤ ∈ = = + =⎣ ⎦= ∑  (63) 

is defined in the following way  
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 1                         1                                

1                 1      

0 0 0
0 0 0 0

,

0 0 0 0

0 0
0 0 0

0 0 0

ii

i i i

i

ij

h

i ii

n N N
aii

n

h

ij

a ij

A A
I

A R

I

A

A

↓
↓

↓
↓

+

×

+

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

L

L

L L

L L

M M L M L M M

M M

L L

L L

M M M O M

L L

         

i iN NR ×∈

 (64) 

where iA  and ijA , 1 i N≤ ≤ , 1 j N≤ ≤ , are matrices of system (60).  

2.4.1. Main results  

Theorem 11. [53] Given the following system of monic matrix polynomial equations  

  1

1
0, ,m m m jii i i l i

l

N
h h h h n n

i l i i l j ji i l n
j

l S R S A R S A S C S IR + − ×

=

− − = ∈ =∑  (65) 

for a given l , 1 l N≤ ≤ , where iA  and jiA , 1 i N≤ ≤ , 1 j N≤ ≤  are matrices of system 
(60) and jih  is time-delay in the system, max , 1

im jij
h h i N= ≤ ≤ .  

If there is a solution of (65) upon unknown matrices l ln n
lR C ×∈  and iS , 1 i N≤ ≤ , i l≠ , 

then ( ) ( )l aR Aλ ⊂ λ holds, where matrix aA  is defined by (63)-(64). 

Proof. By introducing time-delay operator hz− , system (60) can be expressed in the 
following form 

  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
111

1

1 2

1 11 1

1

1 ,

N

N NN

TT T T
N

hh
N

h h
N N NN

e

e

k A z k k k k k

A A z A z
A z

A z A A z

−−

− −

⎡ ⎤+ = = ⎣ ⎦
⎡ ⎤+
⎢ ⎥

= ⎢ ⎥
⎢ ⎥+⎣ ⎦

x x x x x xL

L

M O M

L

 (66) 

Let us form the following matrix. 

  ( ) ( ) ( )
eN ijeF z zI A z F z⎡ ⎤= − = ⎣ ⎦  (67) 

If we add to the arbitrarily chosen l -th block row of this matrix the rest of its block 
rows previously multiplied from the left by the matrices 0jS ≠ , 1 j N≤ ≤ , j l≠  
respectively and after multiplying i -th of the block column, 1 i N≤ ≤ , of the preceding 
matrix by mi

hz  and after integrating the matrix 
ll nS I= , we obtain 
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( )

( ) ( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) { }

1

11

1

11 1

1
1 1

1

11 1

1

1

1

det det

det , ,

det , , , ,

mm N

N

i mi mm Ni

mm N

hh
N

N Nn h hh
j j j jN

j j

hh
N NN

N

l lN

N NN

N

z F z z F z

z S F z z S F zz

z F z z F z

G z G z

G z S G z S

G z G z

G z S S S S

=

= =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥∑
⎢ ⎥⋅
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= =

∑ ∑

L

M M M

L

M O M

L

L

M M M

L

M M M

L

L

F z =

 (68) 

The l -th block row of the N N×  block matrix ( ),G z S  is defined by 

 ( ) 1

1
, , 1 ,m m m jii i i

l

Nh h h h
li i i i j ji l n

j
G z S z S z S A z S A i N S I+ −

=

= − − ≤ ≤ =∑   (69) 

The characteristic polynomial of system (60) [46] 

  ( ) ( ) ( )
0 1

det , , 1 , , 0ˆ
i

eN N
j

j i m j
j i

e eg z G z S a z N n h a R j N
= =

= = = + ∈ ≤ ≤∑ ∑  (70) 

does not depend on the choice of transformation matrices 1, , NS SL ) [48].  
Let us denote 

  ( ){ }| 0ˆ z g z∑ = =   (71) 

a set of all characteristic roots of system (60). This set of roots equals the set ( )aAλ . 

Substituting a scalar variable z  by matrix l ln nX C ×∈  in ( ),G z S , a new block matrix is 

obtained ( ),G X S . If there exist the transformation matrices Si, 1 i N≤ ≤ , i l≠  and 

solvent l ln n
lR C ×∈  such that for the l -th block row of ( ),G X S  holds 

( ), 0, 1li lG R S i N= ≤ ≤  i.e. holds (65), then 

  ( ) 0lg R =  (72) 

Therefore, the characteristic polynomial of system (60) is annihilating polynomial for 
the square matrix lR  and ( )lRλ ⊂ ∑  holds. The mentioned assertion holds 

, 1l l N∀ ≤ ≤ . 
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Definition 6. Each solvent lmR  of (65), for the given l , 1 l N≤ ≤ , whose spectrum 
contains maximal eigenvalue mλ  of system (60), is referred to as maximal solvent of (65)
. 
Theorem 12 [53] Suppose that there exist at least one l , 1 l N≤ ≤ , that there exists 
maximal solvent of (65) and let lmR  denote one of them. Then, linear discrete large-scale 

time-delay system (60) is asymptotically stable if and only if for any matrix * 0Q Q= >  

there exists matrix * 0P P= >  such that 

  *
lm lmR P R P Q− = − . (73) 

Proof. Sufficient condition. Define the following vector discrete functions 

    
( ) ( ) ( ) ( )

( ) { }

1
1 1 1

, , ,

, , , 0

ji

i

hN N

k kN i i ji i
i j l

ki i m

S k T l k l

k h

= = =

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦

= + θ θ∈ −

∑ ∑ ∑v x x x x

x x

L

K

  (74) 

where ( ) i in n
jiT k C ×∈ , 1 j N≤ ≤ , 1 i N≤ ≤  are, in general, some time-varying discrete 

matrix functions and 
ll nS I= , in n

iS C ×∈ l , 1 i N≤ ≤ , i l≠ . The conclusion of the 
theorem follows immediately by defining Lyapunov functional for system (60) as 

  ( ) ( ) ( ) *
1, , , , , , , 0*

k kNV P P P= ⋅ ⋅ ⋅ ⋅ = >x x v vL L L  (75) 

It is obvious that ( ), , 0V ⋅ ⋅ >L  for ki∀ ≠x 0 , 1 i N≤ ≤ .  
The forward difference of (75), along the solutions of system (60) is  

 
( ) ( ) ( ) ( ) ( )

( ) ( )
, , , , , , , , , ,

, , , ,

* *

*

V P P

P

⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ ⋅

v v v v

v v

L L L L L

L L

D D D

D D
  (76) 

A difference of ( ), ,⋅ ⋅v L  can be determined in the following manner 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

1

1 1 1

, , 1
i

ji

N N N

i i n ji i ji ji i ji
i j j

hN N

ji i ij j ij
j l j

S A I T k T h k h

T l k l A k h

= = =

−

= = =

⎡⎛ ⎞
⋅ ⋅ = − + + −⎢⎜ ⎟

⎢⎝ ⎠⎣
⎤

+ − + − ⎥
⎦

∑ ∑ ∑

∑∑ ∑

v x x

x x

LD

D

  (77) 

If we define new matrices 

  ( )
1

1
N

i i ji
j

R A T
=

= +∑ , 1 i N≤ ≤   (78) 

then ( ), ,⋅ ⋅v LD  has a form 
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( ) ( ) ( ) ( )( ) ( )

( ) ( )

1 1

1

1 1

, ,

∆

i

ji

N N

i i n i j ji i ji ji i ji
i j

hN

i ji i
j l

S R I k S A S T h k h

S T l k l

= =

−

= =

⎡
⋅ ⋅ = − + − −⎢

⎣
⎤

+ − ⎥
⎦

∑ ∑

∑ ∑

v x x

x

LD

 (79) 

If 

  ( ) ( ) , 1 , 1j ji i ji ji i ji jiS A S T h S T h i N j N− = ≤ ≤ ≤ ≤D   (80) 

  ( ) ( ) , 1
i li i n l n iS R I R I S i N− = − ≤ ≤   (81) 

  ( ) ( ) ( ) , 1 , 1
li ji l n i jiS T l R I S T l i N j N= − ≤ ≤ ≤ ≤D   (82) 

then 

 
( ) ( ) ( )

( ) ( ) ( ) ( )*

, , , , ,

, , , , , ,

l n

*
l l

R I

V R P R P

⋅ ⋅ = − ⋅ ⋅

⋅ ⋅ = ⋅ ⋅ − ⋅ ⋅

v v

v v

l
L L

L L L

D

D
 (83) 

It is obvious that if the following equation is satisfied  

  * *, 0l lR P R P Q Q Q− = − = >  (84) 

then ( ), , 0V ⋅ ⋅ <LD , ki∀ ≠x 0 , 1 i N≤ ≤ . 
In the Lyapunov matrix equation (73), of all possible solvents lR  of (65), only one of 

maximal solvents lmR  is of importance, for it is the only one that contains maximal 
eigenvalue mλ ∈Σ , which has dominant influence on the stability of the system. 
Necessary condition. If system (60) is asymptotically stable, then i∀λ ∈Σ , 1iλ < . 

Since ( )lmRλ ⊂ Σ ,it follows that ( ) 1lmRρ < , therefore the positive definite solution of 
Lyapunov matrix equation (60)  exists.  

If it exists, maximal solvent lmR  can be determined in the following way. From (80) 
and (82) we obtain 

  ( ) , 1 , 1 , 1ji

l

h
j ji l i ji l nS A R S T S I i N j N= = ≤ ≤ ≤ ≤  (85) 

Multiplying i -th equation of the system of matrix equations (78) from the left by matrix 
m i

h
l iR S  and using (81) and (85), we obtain equation (65). Taking solvent with eigenvalue 

mλ ∈Σ  (if it exists) as a solution of the system of equations (65), we arrive at maximal 
solvent lmR . 
Corollary 3. Suppose that for the given l , 1 l N≤ ≤ , there exists matrix lR  being 
solution of (65). If system (60) is asymptotically stable, then matrix lR  is discrete stable. 
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Proof. If system (60) is asymptotically stable, then 1z z∀ ∈∑ < . Since ( )lRλ ⊂ ∑ , 

it follows that ( ) , 1lR∀ λ∈λ λ < , i.e. matrix lR  is discrete stable. 
Example 3. Consider a large-scale linear discrete time-delay systems, consisting of three 
subsystems 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1 1 1 12 2 12

2 2 2 2 2 2 21 1 21 23 3 23

3 3 3 3 3 3 31 1 31

:  1 ,

:  1 ,

:  1

S x k A x k B u k A x k h

S x k A x k B u k A x k h A x k h

S x k A x k B u k A x k h

+ = + + −

+ = + + − + −

+ = + + −

 (86) 

 1 2 1 12

0 7 0 0 5
0 8 0 6 0 1 0 1 0 0 1

, 0 1 6 0 1 , ,
0 4 0 9 0 1 0 1 0 0 1

0 6 1 0 8

. .
. . . . .

A A . . B A
. . . . .

. .

−⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥= = − − = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥−⎣ ⎦

 

 2 21 23

0 0 1 0 1 0 2 0 1 0
0 1 0 2 , 0 3 0 1 , 0 2 0 2 ,

0 0 1 0 1 0 2 0 1 0

. . . .
B . . A . . A . .

. . . .

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 3 3 31

1 0 1 0 1 0 0 1 0 2
, ,

0 1 0 8 0 0 1 0 1 0 2
. . . .

A B A
. . . . .

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

The overall system is stabilized by employing a local memory-less state feedback control 
for each subsystem 

( ) ( )i i ik K k=u x , [ ]1 2 3

7 45 10 5 1
6 7 , ,

4 4 4 1 4
K K K

− − − −⎡ ⎤ ⎡ ⎤
= − − = =⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

 

Substituting the inputs into this system, we obtain the equivalent closed loop system 
representations 

( ) ( ) ( )
3

1

ˆ: 1 , 1 3i i i i ij j ij
j

S k A k A k h i
=

+ = + − ≤ ≤∑x x x ,   ˆ
i i i iA A B K= +  

For time-delay in the system, let us adopt: 12 5h = , 21 2h = , 23 4h =  and 31 5h = . 
Applying Theorem 11 to a given closed loop system, for 1l = we obtain  

   

6 5 3
1 1 1 1 2 21 3 31

ˆ 0R R A R S A S A− − − = ,  

  

6 5
1 2 1 2 2 12

ˆ 0R S R S A A− − = ,  

  

5 4
1 3 1 3 3 2 23

ˆ 0R S R S A S A− − =  

Solving this SMPE by minimization methods, we obtain  

 1 2 3

0.6001 0.3381 0.0922 1.3475 0.5264 0.6722 -0.3969
, ,

0.6106 0.3276 0.0032 1.3475 0.4374 1.3716 -1.0963
R S S⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 
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Eigenvalue with maximal module of matrix 
 1R  equals 0.9382. Since eigenvalue mλ  of 

40 40
aA R ×∈  also has the same value, we conclude that solvent 

 1R  is maximal solvent. 
Applying Theorem 12, we arrive at condition ( )

 1 0.9382 1mRρ = <  wherefrom we 
conclude that the observed closed loop large-scale time-delay system is asymptotically 
stable. 

3. CONCLUSION  

In this paper we have presented necessary and sufficient conditions for the asymptotic 
stability of a particular class of linear continuous and discrete time-delay systems. These 
results have been extended to the large scale continuous and discrete time-delay systems 
covering the cases of two and multiple existing subsystems. The delay dependent criteria 
are derived by Lyapunov's direct method and are exclusively based on the solvents of 
particular matrix equation and Lyapunov equation for non delay systems. Obtained 
stability conditions do not possess conservatism. For discrete time-delay systems the 
dominant solvent of given polynomial matrix equation can be calculated using 
generalized Traub’s or Bernoulli’s algorithm which possess significantly smaller number 
of computation than the standard algorithm.  
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Abstract. This work considers the numerical computation methods and procedures 
for the fatigue crack growth predicting of cracked notched structural components. 
Computation method is based on fatigue life prediction using the strain energy 
density approach. Based on the strain energy density (SED) theory, a fatigue crack 
growth model is developed to predict the lifetime of fatigue crack growth for single 
or mixed mode cracks. 
The model is based on an equation expressed in terms of low cycle fatigue 
parameters.  Attention is focused on crack growth analysis of structural components 
under variable amplitude loads. Crack growth is largely influenced by the effect of 
the plastic zone at the front of the crack. To obtain efficient computation model 
plasticity-induced crack closure phenomenon is considered during fatigue crack 
growth. The use of the strain energy density method is efficient for fatigue crack 
growth prediction under cyclic loading in damaged structural components. Strain 
energy density method is easy for engineering applications since it does not require 
any additional determination of fatigue parameters (those would need to be 
separately determined for fatigue crack propagation phase), and low cyclic fatigue 
parameters are used instead. 
Accurate determination of fatigue crack closure has been a complex task for years. 
The influence of this phenomenon can be considered by means of experimental and 
numerical methods. Both of these models are considered. Finite element analysis 
(FEA) has been shown to be a powerful and useful tool1,6 to analyze crack growth 
and crack closure effects. Computation results are compared with available 
experimental results. 
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1.INTRODUCTION 

 
Fatigue crack closure is a phenomenon that consists of the contact between fracture 
surfaces during a portion of the load cycle. This contact affects the local stress and plastic 
deformation fields near the crack tip, and thus the micro mechanisms responsible for 
fatigue propagation (cyclic plastic deformation, oxidation, creep, etc.). Plasticity-induced 
crack closure is an observed phenomenon during fatigue crack growth. 
The constant search to improve aircraft safety has led, over recent years, to the 
increasingly widespread application of „damage tolerance” concepts. Reliable fatigue life 
prediction is very important for safe design and maintenance of structural components 
subjected to cyclic loading1. In general, fatigue process consists of three stages: initiation 
and early crack propagation, subsequent crack growth and final fracture. Due to the fact 
that if occurs, failure leads to catastrophe, crack growth stage must be carefuly studied 
and analyzed. Each crack growth model for life prediction must be based on a suitable 
failure criterion. For crack growth analysis, as failure criteria could be used: plastic/total 
strain ahead of crack3, the magnitude of crack tip opening4,5  and the energy criteria6,7. 
Since crack closure effect is included in fatigue crack growth analysis, the concept of 
crack opening/closure was used in this paper. 
The aim of this paper is to analyze the effect of plasticity-induced crack closure (PICC) 
using finite element method and determination of new corrective factors for the effective 
stress intensity factors. Moreover, with crack growth analysis desire was to assess how 
new corrective factors can to improve crack growth life prediction to failure of structural 
component. 
Due to the fact that the formulated procedure for fatigue crack prediction includes 
analysis level of external loading as well as the effect of plasticity-induced crack closure 
we can say that it is adequate as an engineering application. 
  

2. CRACK GROWTH PREDICTING 
 
In this paper two numerical simulation approaches to crack propagation and, accordingly, 
evaluation of residual life for structural elements with initial damages are presented. First 
approach is based on conventional laws of crack propagation, such as Paris` law of crack 
propagation8. The other approach is based on the strain energy density method. 

3. CONVENTIONAL CRACK PROPAGATION MODEL 
 
When analyzing crack growth prediction, the usual starting point is relation in which the 
fatigue crack growth rate is expressed as a function of the stress intensity factor, i.e., a 
well known and widely used Paris law8 : 

( )mKC
dN
da

∆= ,            (1) 
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where: da/dN is crack growth rate, C and m – coefficient and exponent dependent upon 
the materials, respectively. However, with this law, it is not possible to make allowance 
for the interactions found in real-life spectra. 
Equation defined by Paris, even though commonly used in engineering practice, still has 
some deficiencies. Basic deficiency is the fact that it does not include alternating 
load/stress and mean load/stress. During their service life structural components could be 
subject to both of those loads. The mean load effect on fatigue crack growth rate is 
commonly introduced through the stress ratio R. Since the mean load effect is not 
included in Paris`s equation it was necessary to either modify Paris′ equation or develop 
new concepts. The crack closure concept is one of those concepts where the stress ratio is 
analyzed. In general, all crack closure concepts9,10 are based on the Elber′s 
observation10,11 which reveals the premature contact of the crack faces during the 
unloading portion of the loading cycle while some tensile load is still applied. Elber was 
the first researcher who introduced the effective stress intensity factor range instead of 
stress intensity factor range ∆K, i.e.: 

( )meffKC
dN
da

∆=                          (2) 

where the effective stress intensity factor range is the function of stress ratio as well as 
stress intensity factor: 

( ) KRKeff ∆+=∆ 4.05.0 .                       (3) 
After Elber, Schjive8 analyzed the same relation (2) and he found that effective stress 
intensity factor range could be expresed as: 

( ) KRRKeff ∆++=∆ 212.033.055.0                         (4) 
Previously mentioned Elber′s and Schjive′s approaches could be improved or modified 
by introducing the effect of plasticity-induced crack closure. As a consequence of 
introduction of the effect of plasticity-induced crack closure, it is necessary to correct the 
effective stress intensity factor. 
To include the effects of the stress ratio R the conventional Forman`s crack growth 
model16 is used. In region III rapid and unstable crack growth occurs, so Forman at al. 
Proposed equation for region III as well as for region II17: 

  ( )
( )1

n

C

C Kda
dN R K K

∆
=

− − ∆
                         (5) 

where KC is the fracture toughness. Forman`s equation has been developed to model of 
unstable crack growth domain (III). To include PICC effects ∆Keff  need to use in 
equation (5).  

4. CRACK PROPAGATION MODEL BASED ON THE STRAIN ENERGY DENSITY METHOD 
 
While predicting life of a structural element with initial damage it`s necessary to 
establish the functional dependency between the crack propagation gradient da/dN and 
the stress intensity factor KI. 
The severest damage accumulation occurs in the process zone18,20, therefore it`s 
necessary to define and calculate the energy which causes damage in the process zone. 
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For the zone around the tip of the crack (process zone) it`s possible to define the energy 
generated through plastic strain ωp in a cycle using length unit as a function of stress 
intensity factor range ∆KI: 

ψω
/

2

/

/

1
1

n

I
p IE

K
n
n ∆

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

=            (6) 

where: n′ - cyclic strain hardening exponent, E – Young`s modulus of elasticity, In′, ψ - 
constants which depend on the cyclic strain hardening exponent n′. For most metals the 
value of n′ usually varies between 0,10 and 0.25, with an average value close to 0.15. 
Since the dependency for energy generated due to plastic strain ωp as a function of ∆KI is 
established, it`s necessary to establish the dependency between the crack propagation 
gradient da/dN and ωp. While establishing the dependency a fact that the crack 
propagates if energy which generates due to plastic strain during the cycle reaches the 
energy absorbed during the same cycle Wc must be taken into account: 

c

p

WdN
da ω

= .               (7) 

In equation (7) energy absorbed during the cycle WC can be defined if stress – strain 
relation, or the material behaviour equation, is known. Adequte relation for material 
behaviour which includes both elastic and plastic behaviour is known as Ramberg – 
Osgood equation21: 

/
1

/

n
aa

a k
S

E
S

e ⎟
⎠
⎞

⎜
⎝
⎛+=              (8) 

where: ea – strain amplitude, Sa – stress amplitude and k′- cyclic strength coefficient. If 
the material behavior equation is presented by equation (8), energy absorbed during the 
cycle Wc represents the area below the curve in S-e coordinate system, or: 

//
/1

4
ffc n

W εσ
+

=             (9) 

where: σf′ - fatigue strength exponent, εf′  - fatigue ductility coefficient. Finally, if 
equations (6) and (8) get placed in equation (7), functional dependency between crack 
propagation gradient and stress intensity factor gets established. Subsequently, that 
dependency can be integrated from initial crack length ai to final crack length ac  in order 
to obtain the relation which could be used for the prediction of life of structural elements 
which contain initial damage: 

( ) ( )∫ ∆−∆
−

=
ca

a
thI

ffn

KK
IE

nN
/
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//
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4
1

εσ
ψ                       (10) 

where ∆Kth is range of threshold stress intensity factor. ∆Kth is a material constant but it 
is sensitive to stress ratio R=Smin/Smax. A relation between ∆Kth and R is given below 
based on experimental results [19] 
 

∆Kth = ∆Kth0(1 - R)γ     (11) 
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where ∆Kth0 is the range of threshold stress intensity factor for the stress ratio R=0, and γ 
is a material constant which varies from 0 to 1 [12,13]. For most of materials γ comes out 
to be 0.71 [19]. Equation (10) presents the law of crack propagation based on strain 
energy density method. It`s obvious that in this dependency cyclic characteristics of 
material from low-cycle fatigue domain are being used instead of dynamic parameters 
from more conventional laws for crack propagation by Paris, Forman and others. Main 
advantage of this Strain Energy Density (SED) approach, as shown in eq. (10), is the use 
of same cyclic material characteristics being used for initial and residual fatigue life 
predictions [19-21]. 

5. THE STRESS INTENSITY FACTOR 

 
It is well known that stress intensity factors play a major role in crack growth analysis. 
Actually, with stress intensity factors, geometry of structural component and the type of 
loading are introduced. The stress intensity factor can be determined using analytical 
and/or numerical approaches. 
In analytical approach, the stress intensity factor range could be determined as a function: 

( )....,,, waPfK =∆                        (12) 
 

where: P is load/force, a – crack length and w – width of specimen. For example, when 
dealing with CT specimen, relation for stress intensity factor range can be written as: 
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Figure 1. Geometry of Compact Tension specimen 
 
The symbol B in equation (13) denotes the thickness of compact specimen and w is the 
distance between the applied force P and the left edge of the specimen (Fig.1). The 
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symbol a in equation (13) is the crack length measured from the line of the application of 
external load. 
 
On the other hand, when using numerical approach, for determining the stress intensity 
factor Finite element method (FEM) is used. 
A representation of the finite element analysis for CT specimen made of Al Alloy 2024 
T351 (w = 0.075 m, B = 0.010 m) are shown in Figure 2. Figure 2 presents stress 
distribution at CT specimen for crack length a = 0.02625 m. From the same figure it can 
be seen that for crack length a = 0.02625 m (as a result of finite element analysis), the 
calculated maximum stress (for Pmax = 3300 N and R = 0.1) is 10.39 daN/mm2. 
 
 

 
 

Figure 2. Stress distribution at the CT specimen (Pmax = 3300 N and R = 0.1) using finite 
element analysis. 

 
Additionally, in this paper, the finite element analysis was used to investigate the 
plasticity-induced crack closure effects in the calculation of stress intensity factor range. 
So for stress distribution shown in Figure 2, the calculated stress intensity factor was 
KImax = 21.93 daN mm-3/2. Furthermore, the same calculation of stress intensity factors 
were made for different external forces 
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6. THE EFFECTIVE STRESS INTENSITY FACTOR AND CRACK CLOSURE 
EFFECT 

 
For the phenomenon of crack closure is known that it has a strong influence on fatigue 
crack growth11,12. Elber called this phenomenon plasticity-induced crack closure. 
Namely, if the crack has reached its current length through fatigue (cyclic loading), there 
would be a localized plasticity region formed at the crack tip and the wake of the crack. 
This localized plasticity in itself will generate residual stresses and play a role in crack 
closure. 
Due to the fact that plasticity-induced crack closure phenomenon is included in crack 
growth analysis, it is necessary to correct relation for the effective stress intensity factor 
∆Keff (Eq.(3) and Eq.(4)), i.e. to find adequate corrective factors. Since finite element 
analysis proved to be powerful tool12 for determination of stress intensity factors, 
corrective factors were determined/introduced that include plasticity-induced crack 
closure effect. 
When determining the stress intensity factor range, the ranging of the external force was 
from 3000 N to 14500 N. Namely, five different values from this range were used. For 
such defined range of load, as well as geometry of CT specimen (a = 0.030 m, 
w=0.075m, B=0.010 m) and type of material, after finite element analysis, it is possible 
to determine corrective factors for stress intensity factor range with including the effect 
of plasticity-induced crack closure. New corrective factors calculated on this way, for 
different approaches are listed in Table 2. 
 

Table 1 Corrective factors 
For equation Corrective factor 
( ) KRKeff ∆+=∆ 4.05.0  0.926 

( ) KRRKeff ∆++=∆ 212.033.055.0  0.928 

7. NUMERICAL RESULTS 

 
With introduced plasticity-induced crack closure effect, the validity of presented 
computation model for crack growth prediction could only be assessed through a 
comparison with experimental data which is the focus of this section. The subject of this 
work is improvement or modification of Elber’s and Schjive’s approaches and in 
examples that follow it is presented how important defined and introduced modification 
influences on the predicted fatigue crack life of structural components.  
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7.1. Example 1a: Crack growth rate prediction of CT specimen subjected with 
constant amplitude loading 
 
This example considered crack growth rate and effective stress intensity factor 
calculation. The material used in this example is 2024 T351 Al Alloy, whose mechanical 
properties are: E = 74000 MPa; C = 1.51 10-10, m = 4. The configuration of considered 
CT specimen is shown in Figure 1. Needed geometry parameters are: w = 0.075 m; 
B=0.010 m; and a=0.016 m. The external cyclic loading is with constant amplitude 
(Load/force Pmax=3300 N and stress ratio R = 0.1). Before starting the crack growth rate 
estimation it is necessary to determine the stress intensity factor and effective intensity 
factor for different values of crack length. In this example, for determination of the stress 
intensity factor range and effective stress intensity factor range were used equations (6), 
(3) and (4). The effective stress intensity factor as a function of crack length a (for 
different models: Elber, Schijve) are illustrated in Figure 3. 
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    Figure 4. Fatigue crack growth rate as a function of stress intensity factor 
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Based on known characteristics of material, geometry and loading, calculated values of a 
crack growth rate using different models (Elber, Modified Elber, Schijve and Modified  
Schijve) are shown in Figure 4. At the same figures all predicted curves for crack growth 
rate are compared with experimental data14. 
 
As observed from Figure 4, the estimated fatigue crack growth rates are in a good 
agreement with the experimental observations. Additionally, Figure 4  show that Paris’s 
model is very conservative, while Elber’s and Schjive’s models are less conservative 
when compared to experimental data. Defined improvements of Elber’s and Schjive’s 
models presented in this paper, including crack closure effect, provide better predicted 
values for fatigue crack growth rates. In addition, the best agreement between predicted 
fatigue crack growth rate and experimental data is obtained when using Modified Elber 
model. 
 
7.2. Example 1b: Crack growth life estimation of CT specimen subjected with 
constant amplitude loading 
 
In this example fatigue life prediction up to failure was considered. Structural element, 
material and the type of loading used here are the same as in example 1a. Using the 
fatigue parameters, according to the geometry of structural component and different 
fatigue growth models, enabled determination of the fatigue life to failure.  
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Figure 5. Crack growth analysis of CT specimen using different models. 

 
Actually, by using equations (1) or (2) (with (6), (3) or (4)) which were first integrated, 
the relations between crack length a and number of cycles to failure N were formulated. 
Predicted results using different models (Elber, Schjive, Modified Elber and Modified 
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Schjive) are shown in Figure 5 for external force Pmax= 3300 N. As it can be seen from 
Figure 5 improvements introduced for Elber’s as well as Schjive’s approaches have 
significant impact on predicted number of cycles to failure. 
 
7.3. Example 2: Crack growth estimation of CT specimen subjected load spectra 
 
Since that the structural components are usually subjected to load spectra, in this example 
fatigue crack growth prediction with including crack closure effect for CT specimen 
subjected load spectrum was carried out. From crack growth analysis in example 1 it can 
be concluded that Elber’s and Modified Elber’s approaches are more adequate for 
prediction of fatigue crack growth. (related to experimental data). That is the reason why 
they will be analyzed for crack growth prediction in this example, too.  
Material used in this example is the same as previous. As a result of fatigue crack growth 
estimation, number of blocks to failure were obtained using equations (2), (6) and (3). 
For determination number of blocks to failure, equation (2) was first integrated. After 
integration, function between number of blocks Nbl and crack length a was determined. 
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Figure 6. Load spectrum (R = 0.1)        Fig. 7. Crack growth analysis of CT specimen 
                                                                          subject to load spectra 

 
Figure 7 shows a plote of the estimated number of blocks to failure versus a crack length 
a, for Elber and Modified Elber approaches for load spectrum (Fig.6). Conclusion from 
Figure 7 for fatigue crack growth prediction in the case of load spectrum (Fig.6), is that 
the effect of plasticity-induced crack closure has significant effect on number of blocks 
to failure. For load spectrum presented in Figure 6 calculated number of blocks to failure 
are listed  in Table 2. 
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Table 2  Comparison of number of blocks to failure for CT specimen       (Pmax = 3300 N, 
R = 0.1). 

 Nbl ∆ [%] 
Elber 1704  

Modified Elber 2372 28.16 
 
 
Comparison of number of blocks to failure, presented in Table 2, shows that introduced 
modification that include effect of plasticity-induced crack closure, has been increased 
the value of predicted number of blocks to failure around 30% for considered load 
spectrum (Fig. 6). 
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Fig. 8 Structural component with hole and initial crack under load spectrum 

 
 

7.4. Example 3: Crack growth analysis of plate with a hole under load spectrum  
 
Here is considered specimen (aluminum 2024 T4) with central hole under load spectrum, 
Fig 8a (w=60 mm, r=8.75 mm, t=6mm). Forman crack growth model (5) is used.  Finite 
element model, with initial crack a0 is used to determine stress intensity factors KI. The 
complete fatigue crack growth prediction, using in-house software, are shown in Table 3 
and Fig. 9.  
 
In Table 3: Cf, nf are Forman’s constants, ac is critical crack growth length, N1 to N13 are 
number of cycles at load levels within load spectrum.  
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Table 3: Crack growth prediction of specimen with hole under load spectrum 

 
 

 
 
 

Fig. 9 Crack growth prediction of cracked plate with central hole 
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8. CONCLUSIONS 

 
In this paper improvement of Elber’s and Schjive’s models for prediction of fatigue crack 
growth life are recommended. Improvement i.e. modification of Elber’s as well as 
Schjive’s model was result of plasticity-induced crack closure effect in fatigue crack 
growth analysis. 
Based on the results of the finite element simulations and the direct comparisons with 
experimental results, the following conclusions are presented: 
Calculated fatigue crack growth rates which were obtained using Paris law are very 
conservative related to experimental data. So strict conservative result are obtain due to 
the fact that in Paris equation stress ratio was not included. Much less conservative data 
were shown in predictions obtained using Elber’s and Schjive’s approaches; 
To include the stress ratio effect Forman`s crack growth model is used here,  together 
with Elber`s crack closure model; 
Finite element method is powerful and useful tool for analysis of plasticity-induced crack 
closure effect; 
Comparison of closure levels between the FE model and experimental results revealed 
excellent agreement for all tests 
By introducing the plasticity-induced crack closure effect in crack growth analysis, the 
predicted fatigue life can be significantly modified as well as number of blocks to failure, 
and with it, the high quality of crack growth estimation of cracked structural component 
could be improved. 
Presented computation results are shown that crack growth method based on strain 
energy density approach is in a good agreement with conventional Forman`s approach.  
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POBOLJŠAN PRORAČUNSKI METOD PROCENE PREOSTALOG VEKA 
ELEMENATA KONSTRUKCIJA 

Stevan M. Maksimović*, Katarina S. Maksimović**, 

 
U radu se razmatraju numeričke metode i procedure  za analizu širenja prskotina 
kod  strukturalnih elemenata sa inicijalnim oštećenjima u vidu prskotina. 
Proračunski metod bazira na proceni preostalog veka koristeći metod gustine 
energije deformacije (GED). Bazirano na teoriji gustine energije deformacije 
razvijen je model za za analizu širenja prskotine i procene preostalog veka 
strukturalnih elemenata za prskotine tipa moda I. Model je zasnovan na zakonu 
širenja prskotine koji bazira na korišćenju malociklusnih zamornih karakteristika 
materijala. Pažnja je usmerena na analize širenja prskotina pri opštem spektru 
opterećenja. Značajan uticaj plastifikacije oko vrha prskotine ima na širenje 
prskotine. Da bi se dobio efikasan i pouzdam proračunski model u radu je 
razmatran uticaj plasifikacije oko vrha prskotine  na zatvaranje prskotine. 
Korišćenje gustine energije deformacije predstavlja sa svoje strane efikasan 
metod za analizu širenja prskotine kod strukturalnih elemenata sa inicijalnim 
oštećenjima u vidu prskotine. Metod gustine energije deformacije je pogodan sa 
aspekta inžinjerske primene jer ne zahteva dodatne dinamičke karakteristike 
materijala (za čije bi određivanje bila potrebna dodatna ispitivanja) već koristi 
samo malociklusne zamorne karakteristike materijala kakve se koriste i za 
problem procene veka do pojave inicijalnog oštećenja. Precizno određivanje 
zatvaranja prskotine zbog plastifikacije oko njenog vrha predstavljao je 
kompleksan problem istraživanja tokom poslednjih godina. Ovaj fenomen je 
istraživan preko numeričkih i eksperimentalnih metoda. Metod konačnih 
elemenata (FEM) se pokazao kao pouzdan alat 1,6 za analizu širenja prskotine gde 
su bili uključeni i efekti zatvaranja vrha prskotine. Proračunski rezultati su 
upoređeni sa raspoloživim eksperimentalnim rezultatima.  
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Abstract. Several methods for a calculation of derivatives of eigenvectors with 
respect to design parameters are described here. These are the finite-difference 
method, the modal method, a modified modal method, Nelson's method, an 
improved first-order approximation of eigenvalues and eigenvectors and an 
iterative method. By combining the other structural reanalysis techniques and one 
of these sensitivity methods, it is possible to enhance the efficiency and the accuracy 
of structural optimization techniques for determining the optimum condition of 
mechanical structure specified by an analyst. The sensitivity approach is based on 
the prior selection of updating parameters (design variables) in the initial FE 
model. 

Key words: eigenvalue and eigenvector sensitivity 

1. INTRODUCTION 

A good finite element (FE) or analytical model of a mechanical structure is important for 
structural integrity analysis. In practice, a high degree of confidence can be placed on 
such a FE/analytical model when the dynamic response of that model closely resembles 
experimental data. However, updating the FE model or inetifying the analytical model 
directly is usually not the main objective of structural vibration analysis because there are 
many situations when the dynamic response of the mechanical structure does not satisfy 
the requirement set by the structural analyst (designer). In such situations, the dynamic 
response of the mechanical structure has to be altered either (i) by controlling the forcing 
inputs to the structure, or (ii) by changing the dynamic characteristics of the structure. 
The forcing inputs often results from interaction with the structure's environment and so 
cannot easily be controlled at will. When this is the case, it is important to be able to alter 
the structural response by redesigning the dynamic characteristics of the structure. The 
use of structural reanalysis techniques to obtain the optimum condition of an FE model of 
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a mechanical structure has grown considerably in recent years. The optimal design of 
structures with frequency constraints is extremely useful in manipulating the dynamic 
characteristics in a variety of ways. For example, in most low-frequency vibration 
problems, the response of the structure to dynamic excitation is primarily a function of its 
fundamental frequency and mode shape. In such cases, the ability to manipulate the 
selected frequency can significantly improve the performanse of the structure. Similarly, 
the aeroelastic characteristics of an aircraft wing the governed primarily by its torsional 
and bending properties, which can best be studied by the lower torsional and bending 
modes. A number of techniques exist that can be applied to the dynamic reanalysis of 
mechanical structures. One of the most popular of these is sensitivity analysis which has 
been developed and applied by several workers to the general eigenvalue problem [1-7] 
and, more specifically, to applications of structural dynamic modification analysis in 
references [8-9]. Some of the areas where sensitivity analysis has been applied include (i) 
system identification, (ii) development of insensitive control systems, (iii) use in 
gradient-based mathematical programming methods, (iv) approximation of system 
response to a change in a system parameter, and (v) assessment of design changes on 
system performance [19]. In this area, both first- and higher-order eigenvalue and 
eigenvector sensitivities have been investigated with a view to predicting the response of 
a modified structure from  knowledge of its spatial and modal properties in the original, 
or unmodified, state. The sensitivity analysis of a mechanical structure is based on a 
Taylor expansion of eigenvalues and eigenvectors of the unmodified structure. 
Traditionally, a truncated Taylor or matrix power series evaluated at a nominal design 
point is used to approximate the eigen parameters of modified structures [21,22]. Earlier 
studies [20] indicated that the computation of the higher-order terms of this series is 
difficult and time consuming, the effectiveness of this method is limited to small 
modifications. Even the use of higher-order terms in the local approximation series 
cannot guarantee convergence for moderate to large perturbations in the structural 
parameters. The implication of this observation in the context of structural optimization 
is that severe move limits have to be imposed in line searches to ensure convergence to a 
feasible design. Very few studies in the literature have addressed the structural dynamic 
reanalysis problem for moderate to large modifications in the structural parameters. The 
approach currently in use can be broadly classified into direct and iterative approaches. 
The objective of most direct approaches is to increase the range of validity of local 
approximation techniques. Inamura [25] proposed an approximation procedure in which 
the eigenpair perturbation equations are interpreted as differential equations in terms of 
the perturbation parameters. A procedure using the eigensensitivity equations was 
developed by Pritchard and Adelman [26] based on a similar line of approach. The 
sensitivity method [24] is a prime representative of the updating approach which allows 
selection of updating parameters but does not require full  experimental mode shapes and 
as such this method seems to be suitable for updating of large models. Also, it is worth 
noting that model updating methods based on control methods, such as eigenstructure 
assignment method proposed by Minas and Inman [22,23] are quite promising sinse they 
can be defined in such a way that they do not require full experimental mode shape 
matrix. The general perturbation procedure followed in major papers is diagrammatically 
shown in Fig. 1. 
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Fig. 1 Flowchart of General Perturbation 

2.  MODAL SENSITIVITY ANALYSIS. DESIGN SENSITIVITIES. 
THEORETICAL BACKGROUND. SURVEY 

It is becoming widely accepted that sensitivity analysis can be a valuable tool in 
structural reanalysis  where (enough of) the modal properties are known, either through 
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theoretical or experimental analysis. Modal sensitivities are the derivatives of the modal 
properties of a dynamic system with respect to chosen structural variables. In the modal 
analysis literature there have been two primary applications. In the first case sensitivity 
data are used solely as a qualitative indicator of the location and approximate scale of 
design changes to achieve a desired change in structural properties. The consequences of 
candidate design changes would then be evaluated using exact methods. The second 
strategy uses the design sensitivities directly to predict the effect of proposed structural 
changes. The use of sensitivities in this fashion relies on the Matrix Taylor Series 
expansion, with the usual implications of convergence and truncation errors. Use only of 
first order design sensitivities assumes implicitly that the second (and higher) order 
derivatives are negligible. The use of these second order sensitivities as suitable criteria 
for the acceptability of first order sensitivities for predictive analysis can be interested in 
some detail. Sensitivity analysis may be applied to candidate design modifications 
distributed across a number of degrees of freedom of the structure but is limited in scale. 
Modal design sensitivities are the derivatives of the eigensystem of a dynamic system 
with respect to those variables which are available for modification by the designer. A 
typical modification would be the change in diameter of a circular section. This would 
affect both the mass of the section, proportional to the square of the diameter, and its 
stiffness, which depends on the second moment of area of the section. A change in length 
would have a mass effect directly proportional to length, but a stiffness change 
depending on the cube of length. Changing material would similarly affect mass, 
stiffness and damping. Shape sensitivity analysis of physical systems under dynamic 
loads may be important from different points of view (i) to understand and model the 
system's behavior better with respect to shape, (ii) to optimize the physical shapes of the 
desired systems responses in a prescribed time interval, or (iii) to identify shapes by 
utilizing the system's measured response in time.  

2.1. Problem Statement. Derivation 

The matrix form of the equation of undamped motion of an FE model is: 

[ ] { } [ ] { } { }( ) ( ) 0M x t K x t⋅ + ⋅ =&&     (1) 

The free-vibration natural frequencies and mode shapes of a linear structural system can 
be computed by solving the above eigenvalue problem 

 }]{[}]{[ iii QMQK λ=                                              (2) 

where ][],[ MK  are the structural stiffness and mass matrix, respectively. The system 
matrices are considered to be a general function of the design variables denoted by 

},...,,...,,{}{ 21 pj vvvvV = , and iλ  and }{ iQ  are the eigenvalue and the eigenvector of 
mode i, respectively. Consider the case wherein the design variables are perturbed by 
{ }V∆ . Let ][ K∆  and ][ M∆  be the corresponding perturbation in the stiffness and mass 
matrices. The perturbed eigenvalue problem can be written as 

 ( ) { } { }( ) ( )( ) { } { }( )iiiiii QQMMQQKK ∆+∆+∆+=∆+∆+ ][][][][ λλ          (3) 
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where iλ∆  and { }iQ∆  are the eigenvalue and eigenvector perturbations, respectively. 
Equation (2) can be written in a compact form as 

}]{'[}]{'[ '''
iii QMQK λ=                            (4) 

Often it is found that, even for small to moderate perturbations in the stiffness and mass 
matrices, significant alterations in the modal characteristics of the structure may occur. 
Hence, an exact reanalysis becomes necessary to compute the perturbed eigenparameters 
with sufficient accuracy. The objective of approximate reanalysis procedures is the 
computation of the perturbed eigenparameters using the results of exact analysis for the 
baseline system without recourse to solving Eq. (3) in its exact form. Typically, the 
perturbations in the eigenparameters are calculated using first-order sensitivity 
information as 
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where ji v∂∂ /λ   and { } ji vQ ∂∂ /  are the sensitivities of the eigenvalues and 
eigenvectors with respect to the structural parameters, respectively. The eigenvalue and 
eigenvector derivatives can be calculated by performing partial differentiation of the 
equation (2) to an updating structural parameter vj: 
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This is an equation for the eigenvector sensitivity. It can seen from Eq. (5) that the 
computation of the eigenvalue sensitivities involves a simple and straightforward 
calculation. Left-multiplying with the transpose of the eigenvector gives 
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This is the formula for the eigenvalue sensitivity of the ith mode to the jth design 
parameter. From this formula, it can be seen that the sensitivity of an eigenvalue to an 
design parameter can be calculated from the eigenvalue, the corresponding eigenvector, 
and the sensitivities of the stiffness and mass matrices to the design parameter (variable). 
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Equations (2-7) have been derived under the assumption that the baseline eigenvectors 
have been mass normalized.  

 2.2. Description of the Sensitivity Methods 

There mainly exist three categories in the literature: the modal method, the direct method, 
and the iterative method. Several methods for calculating eigenvector derivatives, 
{ } ji vQ ∂∂ / , are described. Every method, exept the finite-difference method, requires 

the mass matrix and stiffness matrix derivatives, jvM ∂∂ /][  and  jvK ∂∂ /][ , 
respectively.  

2.2.1 Finite-Difference Method 

The most straightforward approach for calculating the derivatives is the finite-difference 
method. In the finite-difference method, Eq. (2) is solved for oldii QQ }{}{ = , the jth 

design variable is perturbed by jv∆ , and a new eigenvector newii QQ }{}{ ' =  is obtained 

by solving Eq. (2) again, where  joldjnewj vvv ∆+= ,, . The derivative is approximated 
by the expression 
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To reduce numerical errors associated with Eq. (8), attention should be paid to the step 
size jv∆ . An algotithm for determining the optimum step size has been developed to 
further reduce numerical errors and is described in Ref. [28]. 

2.2.2 Modal Method 

The modal method expresses the derivative of an eigenvector as a series expansion of the 
system eigenvectors. Because this method is based on the series expansion of the 
eigenvalues and eigenvectors of the modified (perturbed) system, the efficiency of this 
method is limited. The approximate derivative is expressed as [34]: 
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where the coefficients Aijk are calculated using 
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Considering the orthogonality property of the eigenvector, {Qi}, { } [ ]{ } 1=i
T

i QMQ , and 
partial-differentiating this equation with respect to the updating parameter, vj, for ik ≠ , 
it can be obtained that: 
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The expression for { } ji vQ ∂∂ /  from Eq. (9) is substituted into Eq. (11), and using the 

orthogonality condition { } [ ]{ } 1=i
T

i QMQ , the coefficients Aijk are obtained: 
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 2.2.3 Modified Modal Method 

The modified modal method uses a pseudostatic solution of Eq (6) as an initial 
approximation to the mode shape derivative. This is similar in principle to the mode-
acceleration method used in transient structural analysis [29]. Equation (6) is solved by 
neglecting the quantity { }( )jii vQM ∂∂ /][λ  and obtaining the pseudostatic solution for 

{ }( )
sji vQ ∂∂ / , which is 
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This pseudostatic solution is added to Eq. (9) to obtain 
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where ijkA  are coefficients for the modified modal method. To obtain the coefficients 

ijkA , Eq. (14) is substituted into Eq. (6), and the result is premultiplied by { }TkQ . When 
simplified, this result becomes 
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The relative convergence of the modified modal method vs the modal method for a given 
number of eigenvectors can be anticipated by dividing Eq. (15) by Eq. (10): 
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=     (17) 

Assuming that to calculate { } ji vQ ∂∂ /  accurately i modes or more are needed; then for 

k>i, ijkA  is smaller than Aijk, and Eq. (14) will converge faster than Eq. (9). 

 2.2.4 Nelson's Method  

Nelson's method (the direct method) obtains an exact solution to Eq. (6). This method 
expresses the eigenvector derivative in terms of a particular solution { }ijξ  and a 

complementary solution { } iji cQ ⋅  where cij is an undetermined coefficient. In this case, 
any solution for equation (6) can be written in the form of [27]: 
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The particular solution is found by identifying the component of the eigenvector {Qi} 
with the largest absolute value and constraining the derivative of that component to zero. 
Combining equations (18) and (11), it is shown that  
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The coefficient cij can be obtained by the following formula: 
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 2.2.5 Improved First-Order Approximation of Eigenvalues and Eigenvectors  

A method based on reduced basis approximation concepts is presented for improved 
first-order approximation of eigenvalues and eigenvectors of modified structural dynamic 
systems [33]. The approximation procedure involves the use of the baseline eigenvector 
and the first-order approximation term as basic vector for Ritz analysis of the perturbed 
eigenvalue problem. An assumption is made that the eigenvector of the perturbed system 
can be approximated in the subspace spanned by { }iQ  and { }iQ∆ , which is computed 
using Eqs. (5-7), i.e., an approximation for the perturbed eigenvector can be written as 

 { } { } { }iii QQQ ∆+= 11
ˆ ζζ     (21) 
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where ζ1 and ζ2 are undetermined scalar quantities in the approximate representation of 
the perturbed eigenvector. The assumption implicit in this proposition is that, even for 
moderate to large perturbations in the structural parameters, the first-order approximation 
yields a { }iQ∆  vector, which usually gives a reasonable indication of the likely change 
of a baseline eigenvector, although the magnitude or even direction of change may be 
erroneous. Eq. (21) can be expressed in matrix form as 

 { } { }ZTQi ][ˆ =      (22) 

where [T]=[Qi, ∆Qi] 2×ℜ∈ n  and { } { } 21
11, ×ℜ∈= ζζTZ . 

Substituting equation (22) in to equation (4) and premultiplying by [T]T, the resulting set 
of equations can be expressed as 

 }]{[}]{[ ZMZK TT λ=     (23) 

where 

 22]]['[][][ ×ℜ∈= TKTK T
T    (24) 

and 

 22]]['[][][ ×ℜ∈= TMTM T
T .   (25) 

After matematical transformation, the mass normalized perturbed eigenvector can be 
written as [33]: 
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The following inequality relationship can be estabilished as criteria for selection of the 
best approximation 

 max0min ˆˆ
i

rqa
ii λλλ ≤≤     (27) 

where 0rqa
iλ  is the zero order Rayleigh quotient approximation which is defined below 

as 
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Hence, criteria for selection of the best approximation are (i) maximum value of 

21 /ζζ , (ii) minimum distance from the zero-order Rayleigh quotient 0rqa
iλ , (iii) 

minimum distance from iλ , (iv) minimum magnitude, (v) minimum distance from the 
root selected for the previous mode. This approximation procedure could also be 
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interpreted as an improved Rayleigh quotient approximation procedure with one free 
parameter, i.e., 12 /ζζ . 

 2.2.6 Iterative Method for Calculating Eigenvectors Derivatives 

The calculation of the eigenvector derivatives involves extensive computational effort. 
The direct method is one of the most efficient methods that produces exact solutions and 
does not need eigenvectors more than those whose derivatives are to be computed. But 
because its amount of computational effort is proportional to the number of eigenvector 
derivatives required, the application of the method becomes expensive when many 
eigenvector derivatives are demanded. On the other hand, the truncated modal method 
has an insuperable efficiency but suffers a serious accuracy problem. To improve the 
accuracy of the modal method, Wang [35] proposed a modified modal method, which 
was extended by Liu et al. [36] and Zhang and Zerva [37] to an iterative algorithm that 
can be used as an exact method as well as an approximate method and, just like the direct 
method, does not require additional eigenvalues and eigenvectors. The method assumes 
that the inverse stiffness matrix exists. Recently, Lin and Lim [38] and Zeng [39] 
presented an approach to deal with singular stiffness matrices. The convergence rate of 
the iterative method depends mainly on the ratio of the specified eigenvalue to the lowest 
unavailable one, and when the ratio approaches 1, the convergence rate of the 
corresponding eigenvector derivative will reduce quickly and the method becomes more 
expensive than the direct method. The iterative method used here was derived originally 
in Ref. [37]. The basic iterative equation after p(p≥ 1) iterations is 
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where 
{ }kuV  = component of  { } jk vQ ∂∂ /  in the range of  unavailable eigenvectors 

{ } { }nq QQ ,...,1+ , 

{ }pkuV = pth iterative solution for { }kuV , 

{ }0kuV = stands for the initial value. 

The term ( )pik λλ /  represents the error because of the ith unknown eigenvector. When 

p tends to infinity, ( )pik λλ /  vanishes because 1/ <ik λλ , and { }pkuV  converges to the 

exact solution with any initial value.  Equation (29) also suggests that { }0kuV  can be set 
equal to zero. Note that in each iteration, the roundoff error in the subspace spanned by 
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the lower available eigenvectors { } { }qQQ ,...,1  will be automatically wiped out, which 

results in a very stable iterative process.  
 

3. CONCLUDING REMARKS 

This paper reviewed several methods for eigensensitivity analysis with respect to design 
variables. These were the finite-difference method, the modal method, a modified modal 
method, Nelson's method, an improved first-order approximation of eigenvalues and 
eigenvectors and an iterative method. Nelson's method was the least computationally 
intensive, and since it is an exact method, it is the method recommended. When the 
original mode shapes were used as initial approximations to the subspace eigensolution 
of the perturbed problem, the finite-difference method was competitive with Nelson's 
method. The modified modal method always converged faster than the modal method 
when at least as many modes were used in the approximation as the number of the mode 
shape being differentiated. The modified modal method can compete with Nelson's 
method for the first mode shape derivative when the number of modes needed in the 
summation was known before the eigensolution was performed. Detailed comparasion an 
improved first-order approximation [33] with other approximation techniques indicate 
that significant improvements are achieved with a relatively small extra computational 
effort. An iterative method is simple, systematic, efficient and numerically stable. 
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АНАЛИЗА ОСЕТЉИВОСТИ СОПСТВЕНИХ 
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Наташа Тришовић,  
Универзитет  у Београду, Машински факултет 

 
Резиме. Неколико метода за израчунавање извода сопствених вектора  у односу на 
конструкционе параметре описане су у овом раду. То су метода коначних разлика, модални 
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Abstract. The process of the abrasive water jet cutting of materials, supported by the 
theories of fluid mechanics, abrasive wear and damage mechanics, is a high-tech 
technologies that provides unique capabilities compared to conventional machining 
processes. This paper, along the theoretical derivations, provides original 
contributions in the form of mathematical models of the quantity of the cut surface 
damage, expressed by the values of cut surface roughness. The particular part of this 
paper deal with the results of the original experimental research. 
The research aim was connected with the demands of industry, i.e. the end user. 
Having in mind that the conventional machining processes are not only lagging behind 
in terms of quality of cut, or even some requests are not able to meet, but with the 
advent of composite materials were not able to machine them, because they occurred 
unacceptable damage (mechanical damage or delamination, fiber pull-out, burning, 
frayed edges). 

Key words: Abrasive water jet cutting, Damage mechanics, aluminium specimens test, 
mathematical modeling 

1. INTRODUCTION 

Abrasive water jet (AWJ) cutting is a non-conventional machining process that uses 
high velocity water with abrasives for cutting a variety of materials. Using the damages 
mechanics, as the basis of the machining process, the material damage is very small and 
can be controlled. It is a non-contact process which produces narrow kerf on the material, 
without heat affected zone. Abrasive water jet cutting has become a highly developed 
industry technology. It is most suitable process for very thick, highly reflective or highly 
thermal-conductive materials, as well as hard materials. Abrasive water jets can cut a 
wide range of thickness. Typical thickness are 100 mm for stainless steel, 120 mm for 
aluminium, 140 mm for stone, 100 mm for glass, but not limited. AWJ makes it possible 
to cut random contours, very fine tabs and filigree structures. Abrasive water jet cutting 
is capable of produce parts which do not require further processing with tolerances of ± 
0.1 mm. Toxic fumes, recast layers, slag and thermal stress are totally eliminated. 
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Abrasive water jet cutting belongs among complicated dynamical and stochastic 
processes with incomplete information about mechanism and side effects character. In 
AWJ cutting, the final cut surface roughness and the dimensional accuracy depend on the 
process parameters including the water pressure, the abrasive mesh number, the abrasive 
mass flow rate, the feed rate, and the orifice and abrasive nozzle diameters [1], [2]. 

2. ABRASIVE WATER JET CUTTING 

Abrasive water jet is the cutting tool. The cutting process is most similar to the 
grinding. The difference is that the abrasive particles are moved through the material by 
water rather than by a solid wheel. Abrasive water jet cutting process can be divided into 
subsequent steps: 

• Transformation of the potential energy of water under high pressure into kinetic 
energy of a water jet. 

• Transfer of a part of the kinetic energy of the high-speed water jet to abrasive 
particles by accelerating them and focusing the resulting abrasive water jet. 

• Use of the kinetic energy of the abrasive particles to remove small chips of the 
work material. 

In the process of abrasive water jet cutting the high pressure pump produces the 
required pressure up to 400 MPa. A high pressure supply line directs the pressurized 
water from the pump to the cutting head (Figure 1). 

 
Fig. 1 Abrasive water jet cutting head 

When the pressurized water comes out from the orifice, a water jet is created. The 
result is a very thin, extremely high velocity (approx. 900 m/s) water jet. Then, solid 
abrasive particles are added and mixed with the water jet. Resulting abrasive water jet is 
focused to the material through abrasive nozzle. 

Bernoulli's equation is the law of conservation of energy applied to an ideal fluid as 
follows:  
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where: p - water pressure 
 vw - velocity of water 
 ρw - density of water 
 g - acceleration due to gravity and 
 h - height of the observed points above the reference plane 
 
 By observing the leakage of high pressure water jets in the air and using 

equation (1), one can determine the leakage velocity of water jet from a nozzle based on 
water pressure. 
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Fig. 2. Bernoulli's equation applied to the leakage of water jets in the air 

If we ignore the difference in altitude (several millimeters) and assuming that the 
speed of the water on nozzle entrance is negligible compared to the speed of the jet at the 
nozzle exit (several hundred times), and the atmospheric pressure (1 bar) is much smaller 
than the water pressure at the entrance to the nozzle (4000 bar), we get the equation for 
calculating the velocity of the water jet after exiting the water nozzle: 
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v
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A schematic diagram of a high-seed water jet in air is shown in Figure 3. The jet 
consists of three regions, namely, the initial region, the main region, and the final region. 
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Fig. 3 Structure of a water jet in air [3] 

Leakage velocity of water jet from a nozzle is crucial because its role is to accelerate 
the abrasive particles. Due to the extra weight, abrasive particles, however, cannot 
achieve velocity of water jet but only a part of that velocity. 

The volume flow rate of water may be expressed as: 

 wjorificew vAq =  (3) 
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Total power of the water jet can be given as: 
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As the high velocity water jet streams through orifice into the mixing chamber, low 
pressure (vacuum) is created within the mixing chamber. Metered abrasive particles are 
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introduced into the mixing chamber through a port (Figure 4). During mixing process, 
the abrasive particles are gradually accelerated due to transfer of momentum from the 
water phase to abrasive phase and when the jet finally leaves the abrasive nozzle, phases, 
water and abrasive, are assumed to be at same velocity. 

 

where: 

q - abrasive particle flow rate 

va - initial velocity of abrasive paritcles 

Fig. 4 Mixing process 

The law of conservation of momentum says that the total momentum of any closed 
system, i.e., the vector sum of the momentum vectors of all the things in the system, is a 
constant. The momentum of air before and after mixing will be neglected due to very low 
density. Further, it is assumed that after mixing both water and abrasive phases attain the 
same velocity of abrasive water jet. Moreover, when the abrasive particles are fed into 
the water jet through the port of the mixing chamber, their velocity is also very low and 
their momentum can be neglected. 

 ( ) awjwawjw vqqvqvq +=+  (7) 
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As during mixing process momentum loss occurs as the abrasives collide with the 
water jet and at the inner wall of the abrasive nozzle multiple times before being 
entrained, velocity of abrasive water jet is given as, 
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where  η- momentum loss factor, whose values lies arond 0.65-0.85 [4]. 
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The abrasive flow rate determines the number of impacting abrasive particles as well 
as their kinetic energies. The energy of the abrasives can then be expressed as: 
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Combination of equations (2) and (10) gives abrasive particles kinetic energy (power) 
needed to overcome the fracture energy of the material in order to damage (cut) 
workpiece material. 
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3. MATERIAL REMOVAL MECHANISM OF ABRASIVE WATER JET MACHINING 

High-velocity-water jets used in water jet processes can be categorized according to the 
fluid medium as either pure water jets or abrasive water jets. 

The most common water jets used in water jetting processes are continuous pure water 
jets in air issued from a nozzle having a circular cross section. This type of water jet is 
widely used in water jetting industries for cleaning, surface preparation, and cutting of 
soft materials.  

The material removal capability of abrasive water jets, in which abrasive particles are 
added to the water stream, is much larger than the material removal capability of the pure 
water jets. In an abrasive water jet, the stream of the water jet accelerates abrasive 
particles, which erode the worpiece material. 

3.1. Micro-mechanism of material removal in abrasive water jet cutting 

Impact of solid particles is the main mechanism in the process of removing material 
by abrasive water jet [5]. Meng and Ludema [6] have defined a sub-mechanism for 
separating solid particles from the surface of the workpiece material, such as cutting and 
brittle fracture. These mechanisms do not operate separately but simultaneously. 
Presence of individual mechanisms of separation depends on many factors, such as stroke 
angle, the kinetic energy of abrasive grains, abrasive particle shape, material properties of 
the workpiece and ambient conditions. 

Considering the mechanical properties and behavior on impact, the material of the 
workpiece can be classified into two groups. Some belong to the group of ductile 
materials, which are characterized by deformation properties, while others are brittle. 

For ductile (deformable) material, the process of separating the material is divided 
into two mechanisms: micro-cutting and separating by material plastic deformation 
(Figure 5) [7]. 



Process parameters effect on material removal mechanism and cut quality …….     283 

 

   
Fig. 5. The process of separating the ductile material 

When observing the cutting process of brittle materials, a series of researches led to 
the identification of the mechanism of separation of materials, consisting of the 
phenomenon of brittle fracture (Figure 6) and plastic deformation. At low angles of 
attack are visible scratches, but it occurs to some extent and intercrystalline fracture [8], 
[9]. In contrast, intercrystalline fracture is the predominant method of removing material 
at the corner of the administrative impact. Traces of plastic deformation are present, but 
to a much lesser extent than at low angles of attack. 

 
Fig. 6. Impact of abrasive particle in the surface of brittle materials 

3.2. Macro-mechanism of material removal in abrasive water jet cutting 

Hashish [10] proposed a general model, in which a stable cutting process takes place 
to a certain depth of penetration of abrasive water jet, followed by the formation of steps 
on the surface of the cut. Below the critical depth, the processing is unstable resulting in 
the creation of striated or wavy surface of the cut. 

With increasing depth and creating steps, the removal mechanism is changing from 
cutting to the separating material by plastic deformation. The above-described 
mechanism, cyclic repeating, resulting in different types of material damage, which is the 
subject of study of damage mechanic. 

The biggest problem with abrasive water jet machining, was reflected in disparity of 
the machined surface quality. This disparity is manifested by different parameters of cut 
quality as follow: surface roughness, machined surfaces deviation from the vertical 
plane-taper of the cut and the appearance of curved lines on machined surface-striate 
formation [11], as shown in Figure 7. All these phenomena significantly affect the 
restrictions of using abrasive water jet machining. 
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Fig. 7. Cut surface generated in abrasive water jet cutting of aluminium alloy 

The cut surfaces produced by abrasive water jet cutting typically exhibit a smooth 
upper zone followed by a lower striated zone. These phenomena can be related to the jet 
loss of energy during the cutting process, e.g. deformation of the sharp edges of the 
abrasive particles as illustrated in Figure 8 [12]. 

 
Fig. 8. Formation of different regions in abrasive water jet cutting 

4. EXPERIMENTAL WORK 

4.1. Cut quality 

In the abrasive water jet cutting "cut quality" is a term that describes the combination 
of characteristics such as geometry of cut (kerf width - w, kerf taper - α) and cut surface 
quality (cut surface roughness - Ra). Standards for describing the cut quality, resulting in 
abrasive water jet cutting, are not yet established [13]. Parameters that define the cut 
quality (geometric characteristics of cut quality and cut surface quality) in abrasive water 
jet cutting are shown in Figure 9. 
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Fig. 9. Characteristics of cut quality in AWJ 

The surface roughness is used to describe the cutting surface and gives an indication 
of whether the subsequent machining required. It is defined using the value of roughness 
average Ra. Cut surface can never be ideally smooth. It consists of small, finely spaced 
surface irregularities (micro irregularities - roughness) formed in the course of treatment. 
Additionally, there are surface irregularities of grater spacing (macro irregularities - 
waviness), which may be periodically repeatable. 

4.2. Experimental set-up 

A series of water jet cutting experiments were conducted using a Byjet 4022 abrasive 
water jet cutting machine (Bystronic AG, Switzerland). As workpiece material, 
aluminium alloy AA-ASTM 6060 (EN: AW-6060; ISO: Al MgSi) was used. Alloy 6060 
is one of the most popular of the 6XXX series alloys. Typical uses include architectural 
sections, sections fit for forming processes and automotive parts. The aluminium alloy 
was chosen as a worpiece material because the material is very attractive, possess 
resistance to corrosion and can provide significant value for the end user. Also, 
aluminum and its alloys are characterized by high reflectivity and thermal conductivity. 
This makes them relatively difficult to cut with lasers. Abrasive water jet cutting, which 
does not create an observable heat affected zone, is much more useful for cutting 
aluminum for modern applications. 

Although AWJ cutting involves a large number of variables and virtually all these 
variables affect the cutting results (kerf width, taper and surface roughness), only few 
major and easy-to-adjust dynamic variables were considered in the present study. Thouse 
are: feed rate (the speed at which the cutting head moves along workpiece during cutting 
operation), material thickness and abrasive flow rate. The other process parameters were 
kept constant using the standard machine configuration (d0 = 0.3 mm; dA = 1.02 mm; p = 
400 MPa). 

4.3. Results and discussion 

In the present study, surface roughness as assessed by the centre-line average 
roughness Ra (according to standard ISO 4287:1997) was used in evaluating the cut 
quality. Surface roughness was measured at upper and lower region of the cut surface, 
and at the middle of the cut. These measurements were taken for each cut away from the 
ends of the slots to eliminate any effect of the cutting process at the jet entry and exit. 
The surface roughness was measured perpendicularly to the jet penetration axis, and 
parallel to the cutting head feed direction. 



286 P.JANKOVIĆ, T. IGI, D. NIKODIJEVIĆ 
 
 

 

The cut surface has better quality at upper region (entrance area) of the jet. From the 
middle of the thickness downwards, the surface quality deterioration is observed. As the 
penetration depth of abrasive water jet increases, the jet loses its energy due to the jet–
material interaction, mutual particle impacts, etc. This situation results in rougher surface 
characteristics at the lower region of the cut surface. Figure 10 shows dependence of 
roughness average (Ra) at upper, middle and lower region of the cut surface of different 
feed rate values for material thickness of 10 mm. 

 
Fig. 10. Roughness average Ra in dependence of feed rate when material thickness is 10 

mm at upper, middle and lower zone of the cut 

The results of determining surface roughness at lower region of the cut surface with 
respect to the material thickness, feed rate and abrasive flow rate are graphically 
represented on Figure 11. 
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Fig. 11. Roughness average Ra in dependence of material thickness, feed rate and 

abrasive flow rate 

It can be noticed that the surface roughness significantly increases as the feed rate 
increase. This may be anticipated as increasing the feed rate allows less overlap 
machining action and fewer abrasive particles to impinge the surface, deteriorating 
surface quality [14]. 

The influence of abrasive flow rate is found to be less significant on surface 
roughness. The increase in the number of impacting particles contributes to the improved 
surface finish. A high number of abrasive particles involved in mixing increases the 
probability of particle collision that decreases the average diameter of the impacting 
particles, so the roughness decreases with an increase of the abrasive flow rate. These 
results are in accordance with the literature [15]. 

The quantitative description of the process parameters effect on cut surface roughness 
was performed. Full factorial design for input factors (material thickness, feed rate and 
abrasive flow rate) at two levels, and output factor (roughness average Ra) with four 
centre point replications was adopted. Among the many process parameters that 
influence the cutting quality, three are selected and considered as factors in the 
experimental phase (Tab. 1). 

Tab. 1. Process parameters and their levels 

Factor level 
Factors 

-1 0 +1 

Material thickness s (mm) 6 8 10 

Feed rate v (mm/min) 200 400 800 

Abrasive flow rate q (g/min) 300 350 400 
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To identify the process parameters that are statistically significant in the process, the 
analysis of variance is performed. The significance of independent variables is 
interpreted in the Pareto chart. Pareto chart (Fig. 12) shows that feed rate, material 
thickness and abrasive flow rate have fond to bee the most sufficient factors that affects 
the cut surface roughness at abrasive water jet cutting in the experiment. 

 
Figure 12. Pareto chart of level of significance for independent factors and their 

interactions at a 95% confidence interval 

For the purposes of regression analysis were selected dimensions chosen factors 
(variables) as: s (mm), v (mm/min), q (g/min). To get the solution that best fits the 
experimental results, for the mathematical model of roughness average a power function 
is chosen (Eq.12): 

 321 ppp
a qvCsR =  (12) 

where Ra is an output variable, s, v and q are input (independent) variables, and C, 
p1, p2 and p3 are regression coefficients. 

A logarithmic transformation of the (Eq. 12) in form of power function into a linear 
function 

 qpvpspCRa lnlnlnlnln 321 +++=  (13) 

allows us to perform linear regression technique. 
The STATISTICA software package is used to determine regression equation 

coefficients, which give the level of roughness average Ra as a function of independent 
variables. The fit of the model is expressed by the coefficient of determination R2 = 
0.9862. 

Within the regression analysis, the empirical model for roughness average could be 
expressed as: 
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for the chosen dimensions: Ra (µm) - roughness average, v (mm/min) – feed rate, s (mm) 
– material thickness, q (g/min) – abrasive flow rate 

 The regression analysis is applied in order to develop the response surfaces. 
Roughness average as a function of feed rate, and material thickness, for constant value 
of abrasive flow rate of 300 g/min is given in Fig. 13. These three-dimensional surface 
plot show predicted cut surface roughness as a function of independent variable - factors. 

 
Fig, 13. Predicted average roughness as a function of feed rate v (mm/min) and material 

thickness s (mm) under given conditions 

Proposed mathematical model allows us to choose a quantitative level of quality, 
which has not been the case in the theoretical and practical solution to this problem. 

5. CONCLUSION 

The flexibility and cool cutting characteristics of the abrasive water jet technique 
make it an important tool for cutting applications of new materials such as composites 
and sandwiched materials that are difficult to machine with traditional machining 
processes. 

In abrasive water jet cutting the final cut surface roughness and the dimensional 
accuracy depend on the many process parameters. Summarizing the main features of the 
experimental results, the following conclusions may be drawn: 
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- As the feed rate increases, the AWJ cuts narrower kerf. This is because the feed rate 
of abrasive water jet allows fewer abrasives to strike on the jet target and hence generates 
a narrower slot. 

• Higher abrasive flow rate produce greater kerf width, especially lower kerf 
width because the larger number of abrasive particles share in machining 
process which has positive effect on kerf geometry. 

• The surface has better characteristics in the region that starts from the upper 
point where abrasive water jet begins to cut to the middle of the thickness. From 
the middle of the thickness downwards, the surface quality deterioration is 
observed. 

• With an increase in the abrasive flow rate, the roughness is reduced. For high 
abrasive mass flow rates, the roughness is less sensitive to changes in the feed 
rate. 

Experimental study shows that, among others, the most important factors influencing 
the cut surface roughness of aluminium alloy are nozzle feed rate and abrasive mass flow 
rate. 
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Abstract. A review, in subjective choice, of author’s scientific results in area of: 
classical mechanics, analytical mechanics of discrete hereditary systems, analytical 
mechanics of discrete fractional order system vibrations, elastodynamics, nonlinear 
dynamics and hybrid system dynamics is presented. Main original author’s results 
were presented through the mathematical methods of mechanics with examples of 
applications for solving problems of mechanical real system dynamics abstracted to 
the theoretical models of mechanical discrete or continuum systems, as well as hybrid 
systems. Paper, also, presents serries of methods and scientific results authored by   
professors Mitropolyski, Andjelić and Rašković, as well as author’s of this paper 
original scientific research results obtained by methods of her professors. Vector 
method  based on mass inertia moment vectors and corresponding deviational vector 
components for pole and oriented axis, defined in 1991 by K. Hedrih, is presented. 
Results in construction of analytical dynamics of hereditary discrete system obtained 
in collaboration with O. A. Gorosho are presented. Also, some selections of results 
author’s postgraduate students and doctorantes in area of nonlinear dynamics are 
presented. A list of scientific projects headed by author of this paper is presented with 
a list of doctoral dissertation and magister of sciences thesis which contain scientific 
research results obtained under the supervision by author of this paper or their fist 
doctoral candidates. 
 
Keywords: Review, vector method, mass moment vectors, deviational mass moment 
vector, rotator, coupled rotations, no intersecting axes, basic vectors of position 
vector tangent space, angular velocity of the tangent space basic vectors, rheonomic 
constraint, rheonomic coordinate, mobility, angular velocity of basic vector rotation, 
velocity of  basic vector extension, asymptotic approximation of solution, Krilov-
Bogolyubov-Mitropolyski asymptotic averaged method, method of variation of 
constants, hereditary system, rheological and relaxational kernels, standard 
hereditary element, integro-differential equation, fractional order derivative, 
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covariant coordinate, contravariant coordinate, Physical coordinate, discrete 
continuum method, space fractional order structure, chains, eigen main plane nets, 
eigen main chains, fractional order oscillator, fractional order properties 
characteristic number, transfer of signals, multi-frequency, material particles, rigid 
body, gyrorotor, deformable body, multi bdy system, transversal, longitudinal, multi-
plate system, multi-belt system, stochastic stability. 

 

1. INTRODUCTION 

Main author’s research results, presented in this paper, are: 
 

* Advances in classical mechanics. 
Mass moment vectors connected to pole and axis, allowed the author to give a new 

perspective onto rotation of bodies around stationary axis and a stationary point, and on 
dynamics of rotors and coupled rotors in general. By introducing definitions of mass 
moment vectors connected to pole and axis, and by proving their properties, and also by 
introducing purely kinematical rotator vectors, which he used to represent short and 
elegant expressions for kinetic pressures and kinetic impacts on the rotor shaft bearings, 
the author made a contribution to classical mechanics, as well as a contribution to the 
methodology of university teaching of rotor kinematics. In a monographic paper 
published in 1998, and a monograph published in Serbia in 2001, as well as in a series of 
published papers in the period 1992-2010, beginning with a paper at ICTAM in Israel 
(1992), and later in a series of papers published in Japan, Germany, China, Ukraine, 
Russia and Greece, the author shows definitions and properties, as well as applications of 
mass moment vectors connected to pole and axis for analyzing mass moment states and 
properties of kinetic parameters of rotor dynamics, dynamics of rigid body coupled 
rotation around no intersecting axes and dynamics of coupled rotors. (see References I 
[1-20]). 

Angular velocity of the basic vectors rotation of a tangent space of the vector 
positions of material particles of mechanical system dynamics with geometrical, 
stationary and rheonomic constraints are obtained.  Extensions of dimensions of tangent 
space of the vector positions of material particles of mechanical system dynamics from 
three dimensional real spaces to configuration space of independent generalized 
curvilinear coordinate systems is identified. Reductions of numbers of coordinates and 
extensions of tangent space of vector passions are analyzed  (see References II [21-34]). 

 

* Advances in Analytical Mechanics. 
- Analytical Mechanics of Discrete Hereditary Systems. 
Foundation and construction of analytical mechanics of discrete hereditary 

systems was the work of two authors – Oleg Aleksandrovich Goroshko and Katica R. 
(Stevanović) Hedrih. Their original contribution to modern analytical mechanics, the 
authors published in their monograph of the same name, which came into existence in the 
period of their cooperation between 1996-1999, and was published in 2001. The contents 
of this monograph represents the first, in the world published integral theory of analytical 
mechanics of discrete hereditary systems. Through a short review of the contents of the 
monograph published in Serbia, as well as a series of presented results and/or published 
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papers in the period 1995-2009 in Serbia, Ukraine, Russia, China and US, we shall point 
out the main contributions of these two authors in this area. (see References III [35-54]) 

- Analytical mechanics of discrete fractional order systems 
Through a series of papers published or presented in the period 2005-2009 in 

France, Portugal, Turkey, Germany, Ukraine, China and Romania, as well as in 
monograph publications and international journals, the author contributed to the 
development of analytical mechanics of discrete systems, of fractional order with special 
focus of the results on oscillatory systems of fractional order. Prominent among these 
contributions are the results relating to homogenous chain systems of fractional order and 
homogenous couples chain systems of fractional order. The author introduced new terms, 
such as eigen main chains, main coordinates of eigen chain systems of homogenous 
coupled chains into hybrid systems of fractional order, as well as main partial oscillators 
of fractional order with corresponding main coordinates and corresponding oscillatory 
modes of fractional order with creep properties. (see References III [35-54]) 

 

*Advances in Elastodynamics, Nonlinear Dynamics and Hybrid System 
Dynamics 

Among the contents of a series of papers published in international journals 
(2003-2010) or journals of prestigious scientific institutes in the world (1970-2009), as 
well as in monographs published by Kluwer and Springer, contributions of author to 
linear and nonlinear dynamics of deformable bodies (rods, plates, moving strips), 
systems of coupled deformable bodies, especially stand out and can be classifies as a 
single scientific area of Elastodynamics and the newly established area of hybrid system 
dynamics. A number of results are on the energy analysis of complex hybrid system 
dynamics. Five theorems on characteristic equations of complex systems, obtained by 
coupling deformable bodies and discrete systems with finite number of degrees of 
freedom, static or dynamic or combined couples have been defined and proven. 

A number of original results are about nonlinear properties of systems with 
coupled rotation motions. A number of theorems on coupled singularities and homoclinic 
orbits in the form of number eight has also been defined and proven. (see References IV. 
[35-68], V [69-88]) 

 
2. ADVANCES IN CLASSICAL MECHANICS. 

 
2.1* Vector method and applications 
 

Vector method [4], based on mass moment vectors and vector rotators coupled 
for pole and oriented axes, is used for obtaining vector expressions for kinetic pressures 
on the shaft bearings of a rigid body dynamics with coupled rotations around no 
intersecting axes [16-19]. This method is very effective and suitable in applications. 
Mass inertia moment vectors and corresponding deviational vector components for pole 
and oriented axis are defined by K. Hedrih in 1991 [1]. A complete analysis of obtained 
vector expressions for derivatives of linear momentum and angular momentum give us a 
series of the kinematical vectors rotators around both directions determined by axes of 
the rigid body coupled rotations around no intersecting axes[16-19]. These kinematical 
vectors rotators are defined for a system with two degrees of freedom as well as for 
rheonomic system with two degrees of mobility and one degree of freedom and coupled 
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rotations around two coupled no intersecting axes as well as their angular velocities and 
intensity. 

As an example of defined dynamics [16-19], we take into consideration a heavy 
gyrorotor-disk with one degree of freedom and coupled rotations when one component of 
rotation is programmed by constant angular velocity. For this system with nonlinear 
dynamics, series of graphical presentation of three parameter transformations in relations 
with changes of eccentricity and angle of inclination (skew position) of heavy rigid body 
in relation to self rotation axis  are presented,  as well as in relation with changing 
orthogonal distance between no intersecting axes of coupled rotations. Some graphical 
visualization of vector rotators properties are presented, too.  

Using K. Hedrih’s (See Refs. [1-9]) mass moment vectors and vector rotators, 
some characteristics members of the vector expressions of derivatives of linear 
momentum and angular momentum for the gyro rotor coupled rotations around two no 
intersecting axes obtain physical and dynamical visible  properties of the complex system 
dynamics [16-18].  

   Between them there are vector terms that present deviational couple effect 
containing vector rotators which directions are same as kinetic pressure components on 
corresponding gyro rotor shaft bearings [10-15] and [18-20]. 
 
2.1.1. Mass moment vectors for the axis to the pole 
  

The monograph [4], IUTAM extended abstract [1] and monograph paper [5] 
contain definitions of three mass moment vectors coupled to a axis passing through a 
certain point as a reference pole.  Now, we start with necessary definitions of mass 
momentum vectors.  

Definitions of selected mass moment vectors for the axis and the pole, which are 
used in this paper are: 

1* Vector )(O
n
r
r
S of the body mass linear moment for the axis, oriented by the unit 

vector n
r

, through the point – pole O , in the form: 

[ ] [ ]Mndmn C
V

def
O

n ρρ
rrrrr

r ,,)( == ∫∫∫S ,          dVdm σ= ;                          ( 1 )  

where ρ
r

 is the position vector of the elementary body mass particle dm  in point N , 
between pole O and mass particle position N . 

2* Vector )(O
n
r
r
J of the body mass inertia moment for the axis, oriented by the 

unit vector n
r

, through the point – pole O , in the form: 
 

[ ][ ]dmn
V

def
O

n ∫∫∫= ρρ
rrrr

r ,,)(J                                                                 (2) 

For special cases, the details can be seen in [1-9]. In the previously cited 
references, the spherical and deviational parts of the mass inertia moment vector and the 
inertia tensor are analyzed. In monograph [4] knowledge about the change (rate) in time 
and, the derivatives of the mass moment vectors of the body mass linear moment, the 
body mass inertia moment for the pole and a corresponding axis for different properties 
of the body, is shown, on the basis of results from the first author’s References [6-9]. 
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 The relation  
[ ] [ ][ ] [ ][ ]M,,,,M, )()()()( 111

OOO
O

C
O

nO
O

n
O

n nn ρρρρ
rrrrrrrrrr

rrr +++= SJJ                            (3) 
is the vector form of the theorem for the relation of material body mass inertia moment 
vectors, )(O

n
r
r
J  and )( 1O

n
r
r
J , for two parallel axes through two corresponding points, pole 

O  and pole 1O (for details detail Refs. [  ] by K. Hedrih). We can see that all the 
members in the last expression-relation (3)  have the similar structure. These structures 
are: [ ][ ]M,, Co rn

rrr
ρ , [ ][ ]M,, oC nr ρ

rrr  and  [ ][ ]M,, oo n ρρ
rrr .  

 In the case when the pole 1O  is the centre C  of the body mass, the vector Cr
r

 
(the position vector of the mass centre with respect to the pole 1O ) is equal to zero, 
whereas the vector Oρ

r
 turns into Cρ

r
 so that the last expression (3) can be written in the 

following form: 

 [ ][ ]M,,)()(
CC

C
n

O
n n ρρ

rrrrr
rr += JJ                                          (4) 

 This expression (4) represents the vector form of the theorem of the rate change 
of the mass inertia moment vector for the axis and the pole, when the axis is translated 
from the pole at the mass centre C  to the arbitrary point, pole O .  
 The Huygens-Steiner theorems (see Refs. [4] and [5]) for the body mass axial 
inertia moments, as well as for the mass deviational moments, emerged from this theorem 
(4) on the change of the vector )(O

n
r

r
J  of the body mass inertia moment at point O  for the 

axis oriented by the unit vector  n
r

 passing trough the mass center C , and when the axis 
is moved by translate to the other point O .  

Mass inertia moment vector )(O
n
r
r
J for the axis to the pole is possible to 

decompose in two parts: first ( ))(, O
nnn r
rrr
J  collinear with axis and second )(O

n
r

r
D  normal to 

the axis. So we can write:  
( ) )()()()()( , O

n
O

n
O

n
O

n
O

n nJnn rrrrr
rrrrrrr
DDJJ +=+=                                                          (5) 

Collinear component ( ))(, O
nnn r
rrr
J  to the axis corresponds to the axial mass inertia 

moment )(O
nJ r  of the body. Second component, )(O

n
r
r
D , orthogonal to the axis, we denote 

by the )(n
O

rr
D , and it is possible to obtain by both side double vector products by unit 

vector nrwith mass moment vector )(O
n
r
r
J  in the following form:  

[ ][ ] ( ) ( ) nJnnnnnn n
O

O
n

O
n

O
n

O
n

O
n

rrrrrrrrrrr r
rrrrr −=−== )()()()()( ,,,, JJJJD                                (6) 

In case when rigid body is balanced with respect to the axis the mass inertia moment 
vector )(O

n
r
r
J is collinear to the axis and there is no deviational part. In this case axis of 

rotation is main axis of body inertia. When axis of rotation is not main axis then mass 
inertial moment vector for the axis contains deviation part )(O

n
r
r
D . That is case of rotation 

unbalanced rotor according to axis and bodies skew positioned to the axis of rotation.  
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2.1.2. Model of a rigid body coupled multi-rotation around multi-axes 
without intersections 

 

Let us consider rigid body coupled multi-rotations around axes without 
intersections, first oriented by unit vector 1n

r
 with fixed position and second and next 

oriented by unit vectors jn
r

, Kj ,...,3,2= , which are rotating around fixed axis as well as 
around series of previous axes  and   with corresponding angular 
velocities jjj n

rr
ωω = , Kj ,...,3,2,1= . See Figure 1. Axes of rotations are without 

intersections. Rigid body is positioned on the moving rotating axis oriented by unit 
vector Kn

r
. Rigid body rotates around rotating self rotation axis with angular velocity 

KKK n
rr

ωω =  and around series of the previous axes in order and in whole around fixed axis 
oriented by unit vector 1n

r
 with angular velocity 111 n

rr
ωω = . The shortest orthogonal 

distances between axes are defined by length ( ) ( )1
~

+jj OO , Kj ,...,3,2,1= and each of these 
is perpendicular to both close axes that each is to the direction of component angular 
velocities jjj n

rr
ωω =  and 111 +++ = jjj n

rr
ωω . These vectors are ( )( ) ( ) ( )1110 ++ = jjjj OOr

r : 

 ( )( )
( )( )

( )( )
( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ] ( )( ) ( )( )1010
1

1
01

1

10
10 ,

,
,

sin ++
+

+
+

+

+
+ === jjjj

jj

jj
jj

jj

jj
jj ur

nn

nn
rnn

r
r

r
rr

rr
rrr

α
                         (7) 

and it can be seen on Fig.1. 
In the considered rigid body coupled rotations around no intersecting numerous 

axes, an elementary mass around point N is denoted as dm , with position vector ρ
r

, and 
with origin in the point KO  on the movable self rotation axis, and with r

r
 vector 

positions of the same body elementary mass with origin in the point 1O , where point 1O  

is fixed on the axis oriented by unit 1nr . Both points are on the ends of the corresponding 
shortest orthogonal distance between two in the neighborhood axes of body coupled 
multi-rotations. Position vector of elementary mass with origin in pole 1O  and its 
velocity are in the following forms:  

( ) ( ) ( ) ( )( ) ρ
rrrr

++=∑
−

=
+++

1

1
1,101,0

K

k
kkkkk rrr ,    ( ) ( ) ( ) ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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=

−

=
+++

=

ρωω
rrrrrr

,,
1

1

1
1,101,0

1

K

j
j

K

k
kkkk

k

j
jK rrv            (8) 

For the case of three coupled rotations around three axes without intersections 
position vector of elementary mass with origin in pole 1O  and its velocity are in the 
following forms (see Fig.1):  
       ρ

rrrrr
+++= 023022012 rrrr  and [ ] [ ] [ ]ρωωωωωω

rrrrrrrrrrr
,,,, 321023210220121 ++++++= rrrv .    (9) 
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Figure 1. Arbitrary position of rigid body multi-coupled rotations around finite 
numbers of axes without intersections.  

 
 

2.1.3. Linear momentum of a rigid body coupled multi-rotations around 
axes without intersections 

 
By using basic definition of linear momentum and expression for velocity of 

elementary body mass (9), we can write linear momentum in the following vector form: 

  ( ) ( ) ( ) ( )[ ] ( )K
j

O
n

K

j
j

K

k
kkkkj

k

j
j Mrrn r

rrrrr
SK ∑∑∑

=

−

=
+++
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++=
1

1

1
1,101,0

1

, ωω .                                     (10) 

where ( ) [ ]dmn
V

j
O

n
K

j ∫∫∫= ρ
rrr

r ,S , Kj ,...,3,2,1= , are corresponding body mass linear moments of 

the rigid body for the axes oriented by direction of component angular velocities of 
coupled multi-rotations through the movable pole KO  on self rotating axis. First terms in 
the form of the first sum  in expression (10) presents translation part of linear 
momentum. This part is equal to zero in case when axes intersect in one point. Second 
sum in expression (10) for linear momentum present linear momentum of pure rotation, 
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as relative motion around all axes with intersection in the pole KO  on self rotation axis. 
These K terms are different from zero in all cases. 
 

Example 1: Expression of linear momentum of a rigid body coupled rotations 
around two no intersecting axes, we can write in the following form: 
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Example 2: Expression of linear momentum of a rigid body coupled rotations 
around three axes without intersections, we can write in the following form: 
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2.1.3. Angular momentum of a rigid body coupled multi-rotations around 

axes without intersections 
 

By using basic definition of angular momentum and expression for velocity of 
rotation of elementary body mass and its position vector (9), we can write vector 
expression for angular momentum. 

Example 1: Expression of angular momentum of a rigid body coupled rotations 
around two axes without intersection, we can write in the following form: 
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Example 2: Expresion of angular momentum of a rigid body coupled rotations 
around three axes without intersections, we can write in the following form:                
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2.1.4. Derivative of linear momentum and angular momentum of rigid 

body coupled rotations around two axes without intersection 
 

Example 1. By using expressions for linear momentum (13), the derivative of linear 
momentum of rigid body coupled rotations around two axes without intersection, we can 
write the following vector expression: 
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After analysis structure of linear momentum derivative terms, we can see that 
there is possibility to introduce pure kinematic vectors, depending on component angular 
velocities and component angular accelerations of component coupled rotations, that are 
useful to express derivatives of linear moment in following form 
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We can see that in previous vector expression (16), for derivative of linear 
momentum, are introduced the following three vector rotators: 
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Also, we can see that in vector expression for derivative of angular momentum 
appear the following vector rotators: 1
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 Example 2. By using expressions for linear momentum the derivative of linear 
momentum of rigid body coupled rotations around three axes without intersections, not 
difficult to obtain corresponding expression. Also, as in previous example, after analysis 
structure of linear momentum derivative terms, we can see that there is possibility to 
introduce pure kinematic vectors, depending on component angular velocities and 
component angular accelerations of component coupled three rotations. We can see that 
in vector expression for derivative of linear momentum series of the vector rotators 
appear. Some of these vector rotators are listed here: 
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Also, we can see that in vector expression for derivative of angular momentum 
of rigid body coupled rotations around three axes without intersections appear the 
following vector rotators: 1
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2.1.5. Concluding remarks 
 

By using theorems of changes of linear momentum and angular momentum with 
respect to time, one may write two vector equations of dynamic equilibrium of rigid 
body coupled multi-rotations about axes without intersection as the follows:  

∑
=

=

++++=
Pi

i
iAmBNAN FFFFG

dt
d

1

rrrrr
r
K                                                     (21) 

         [ ] [ ] [ ] [ ] [ ]∑
=

=

+++++++++=
Pi

i
iiAmABNBANAC

O FrFrFrFrGr
dt

d

1
,0,0,0,0,0 ,,,,1
rrrrrrrrrrrrrrr

r

ρρρρρ
L (22) 

where iF
r

, pi ,...,3,2,1=  are external active forces, G
v

 is weight of a rotor, 
AF
r  and 

BF
r  are 

forces of bearing reactions at fixed axis.  From previous analysis, we can conclude that 
vector rotators appear into expressions of the kinetic reactions of the shaft bearings of the 
structures of the rigid body multi-coupled rotations and that is very important to analyze 
their intensity as well as their relative angular velocity and angular acceleration around 
axes of coupled multi-rotations. 
 Recommendation foe next research and for solving  three main mathematical 
tasks: a* Generalization of the expressions for derivatives of linear momentum and 
angular momentum for rigid body coupled multi-rotations around finite numbers axes 
without intersections; b* expressions for kinetic pressures on bearing to series of the axes 
of coupled rotations and corresponding numbers of coupled nonlinear differential 
equations depending of number of system degree of freedom with corresponding 
solutions   and c* build a algorithm for using obtained results  as a standard software 
program for analysis nonlinear dynamic phenomena in rigid body coupled rotation 
around finite number axes without intersections. These defined tasks need a team 
interdisciplinary research, and will be very useful for engineering practice in analysis and 
simulation numerous engineering system dynamics with coupled rotation and for vibro-
diagnostic.   
 

2.2. Tangent spaces of position vectors and angular velocities of their basic 
vectors in different coordinate systems 
 

Angular velocities of the basic vectors of tangent spaces of the position vectors of 
mass particles of the discrete rheonomic mechanical system are obtained in different 
coordinate systems [22]. Starting from real three dimensional coordinate systems of 
Descartes orthogonal three dimensional system type with fixed coordinates axis as a 
reference, by different coordinate transformations for each position vector of 
corresponding mass particle in discrete rheonomic mechanical system, basic vectors of 
position vector tangent three dimensional spaces are obtained in different curvilinear 
coordinate systems suitable to the corresponding geometrical scleronomic or rheonomic 
constraints applied to the considered rheonomic system. For each basic vector of the 
basic triedar of position vector tangent space of each mass particle of the discrete 
rheonomic mechanical system, angular velocity vectors of basic vector rotations are 
determined.  

Then, after consideration and analysis of the number and properties of the 
geometrical scleronomic and rheonomic constraints applied to the mass particles of the 



Advances in classical and analytical mechanics: A review of author’s results           303 

considered discrete rheonomic mechanical system, number of system degree of mobility 
as well as number of system degree of freedom are determined. Corresponding number of 
independent coordinates are chosen and corresponding rheonomic coordinates are 
introduced. By use extended set of the generalized coordinates contained corresponding 
number of independent coordinates and corresponding number of rheonomic coordinates,   
position vectors of the mass particles of the discrete rheonomic mechanical system,  are 
separated into two subsets. 

First subset contain position vectors of the mass particle, keep their three 
dimensional tangent space each with three basic vectors.  

Second subset contain position vectors of the mass particle, each depending, in 
general case, of the all generalized coordinates, independent and rheonomic. Then, each 
of the position vectors are with  Rn + -dimensional tangent spaces and with   basic 
vectors.   

 
2.2.1. Introduction 

 
Let us consider a discrete system with N mass particles with mass αm , and  

with corresponding position in real three dimensional space determined by geometrical 
points ( )αN , N,...,3,2,1=α (see Figure 2). For beginning we take that positions of the 
material points, as well as corresponding geometrical points coordinates are determined 
by coordinates in fixed orthogonal Descartes coordinate system with three coordinates as 
denoted by ( ) ( ) ( ) ( )( )αααα zyxN ,, . N,...,3,2,1=α , where O  is fixed coordinate origin, and 

Ox , Oy  and  Oz  fixed oriented coordinate strain lines-coordinate axes. Coordinates 
of the position vector of each material point are equal to coordinate of the geometrical 
point which determine mass particle position in the space. For Descartes coordinate 
system for position of the each mass particle we can write: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )kzjyixzyx
rrrr

αααααααρ ++=,, , N,...,3,2,1=α . 
Let us, now,  consider previous discrete system with N mass particles wirh 

mass αm , and  with corresponding position in real three dimensional space determined 
by same geometrical points ( )αN , N,...,3,2,1=α  in generalized coordinate system of 

curvilinear coordinates ( ) ( ) ( )( )321 ,, ααα qqq  N,...,3,2,1=α  corresponding to mass particle 
positions. For same geometrical points coordinates in considered three coordinate 
systems are: ( ) ( ) ( ) ( )( )αααα zyxN ,, . N,...,3,2,1=α  and ( ) ( ) ( ) ( )( )321 ,, αααα qqqN , 

N,...,3,2,1=α .. Formulae of coordinate transformation from previous coordinate system 
with fixed axes and new curvilinear coordinate system are: 

( ) ( ) ( ) ( ) ( )( )321 ,, ααααα qqqxx =  

( ) ( ) ( ) ( ) ( )( )321 ,, ααααα qqqyy =                           (1) 

( ) ( ) ( ) ( ) ( )( )321 ,, ααααα qqqzz =  
Position vectors of each mass particle and corresponding geometrical points are 

invariant geometrical objects in both coordinate systems, but their coordinates in 
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considered coordinate systems are not equal to coordinates of the corresponding 
geometrical point. In generalized coordinate system geometrical 
points ( )αN , N,...,3,2,1=α  have following coordinates: ( ) ( ) ( )( )321 ,, ααα qqq ,  

N,...,3,2,1=α and coordinate of position vectors of these geometrical points are 

( ) ( ) ( )( )321 ,, ααα ρρρ , N,...,3,2,1=α . For position vectors we can write: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )321
.

,,,, ααααααααααα ρρ qqqkzjyixzyx
vektorinvdef rrrrr =

=++=                  (2) 
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Figure 2. Discrete material system with N  mass particles and geometrical 

rheonomic constraints 
 
 

For first example in polar-cylindrical coordinate system geometrical points have 
the following coordinates: ( ) ( ) ( ) ( )( )αααα ϕ zrN ,,  N,...,3,2,1=α  and position vectors 

( ) ( ) ( ) ( )( )αααα ϕρ zr ,,
r

 of corresponding geometrical point are: ( ) ( )αα zr ,0,  and we can write: 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )kzrrkzcrrzr oo

rrrrrr
ααααααααααα ϕρ +≡+⋅+= 00,,                      (4) 

N,...,3,2,1=α  
where ( )αor

r
, ( )α0c
r

and k
r

, N,...,3,2,1=α  are basic unit vectors of tangent space of  
corresponding position vector in polar-cylindrical coordinate system. 
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For second example in spherical coordinate system geometrical points have the 
following coordinates: ( ) ( ) ( ) ( )( )αααα ϑϕρ ,,N  N,...,3,2,1=α  and position vectors 

( ) ( ) ( ) ( )( )αααα ϑϕρρ ,,
r

 of corresponding geometrical point are: ( ) 0,0,αρ  and we can write: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )αααααααααα ρρνρρϑϕρρ 0000 00,,
rrrrr

≡⋅+⋅+= c                       (5) 
N,...,3,2,1=α  

where ( )αρ0
r

, ( )α0c
r

and ( )αν 0
r

, N,...,3,2,1=α  are basic unit vectors of tangent space of  
corresponding position vector in polar-cylindrical coordinate system. 
 
 

2.2.2. Basic vectors of the position vector three-dimensional tangent space 
in generalized curvilinear coordinate systems 
 
 In real two-dimensional coordinate systems, position vector tangent spaces are 
three-dimensional and the basic vectors of the tangent spaces of each position vector of 
each mass particle we denote with ( )ig α

r
, N,...,3,2,1=α , 3,2,1=i  (see Figure 3). These 

vectors are in tangent directions to the corresponding curvilinear coordinate line and in 
general are not unit vectors. Basic vectors it is possible to obtain by following way (for 
detail see Refs. [22], [23], [24], [25], [26], [27], [28], [33]  and [34]): 
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or by formula coordinate transformation and by following expressions: 
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 Contravariant coordinates of the position vectors it is possible to obtain by 
following formulas: 
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2.2.3. Change of the basic vectors of the position vector three-dimensional 

tangent space in generalized curvilinear coordinate systems 
 

 Without losing generality, we consider change of basic vectors of a position 
vector of one mass particle during mass particle motion through real space and described 
in three-dimensional space. Also, we focused our attention to the orthogonal curvilinear 
coordinate system. For that case change (first derivative with respect to time) with time 
of the basic vectors of tangent space of a position vector are (see Figure 3.): 
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Figure 3. A position vectors and its three-dimensional space with corresponding 

curvilinear coordinate system and tangent space with corresponding three basic vectors 
of the position vector tangent spaces along mass particle motion through time 

 
   

 After analysis of the obtained derivatives of the basic vectors of position vector 
tangent spaces in three-dimensional orthogonal curvilinear coordinate systems we can 
separate two sets of the terms in obtained expressions (8).  First set correspond to the 
relative derivative of the corresponding basic vectors in the following forms: 
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These vectors present vector forms of extensions of the corresponding basic 

vectors and in scalar form it is possible to express relative change of the intensity – 
dilatation of the basic vectors in direction of its previous kinetic state. In differential form 
is possible to write: 
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From analysis of the obtained derivatives of the basic vectors of position vector 
tangent spaces in three-dimensional orthogonal curvilinear coordinate systems we can 
separate second set of the terms in obtained expressions (8).  Second set correspond to 
the rotation  change of the corresponding basic vectors in the following forms: 
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where we introduce notation 1pω
r

, 2pω
r

 and 3pω
r

 for vectors of the angular velocities of 
the corresponding basic vectors of the position vector  tangent space. When curvilinear 
coordinate system is not orthogonal and angles between three basic vectors are 
changeable with time these angular velocities are different for each basic vector. When 
basic vectors are orthogonal and without change orthogonal relation, all three angular 
velocity are same.     

 For the case of the discrete mechanical system N mass particles for 
each vector position of each mass particle is necessary, by analogous way as presented in 
previous part, is possible to determine change of the basic vectors of tangent space of 
position vectors.   

After analysis of the obtained derivatives of the basic vectors of position vector 
tangent spaces for each mass particle, in three-dimensional orthogonal curvilinear 
coordinate systems, we can separate two sets of the terms in obtained expression and 
corresponding for other two sets of the basic vectors.  First set correspond to the relative 
derivative of the corresponding basic vectors. These vectors present vector forms of 
extensions of the corresponding basic vectors and in scalar form it is possible to express 
relative changes of the intensities – dilatations of the basic vectors in direction of their 
previous kinetic state.  
From analysis of the obtained derivatives of the basic vectors of position vector tangent 
spaces for each mass particle in three-dimensional orthogonal curvilinear coordinate 
systems, we can separate second sets of the terms in obtained expressions.  Second set 
correspond to the rotation change of the corresponding basic vectors. We introduce 
notation ( ) 1pαω

r
, ( ) 2pαω

r
 and ( ) 3pαω

r
 for vectors of the angular velocities of the 

corresponding basic vectors of the position vector  tangent spaces. When basic vectors 
are orthogonal and without change orthogonal relation, all three angular velocity are 
same, for each vector position.   
 For example 1*: in polar-cylindrical curvilinear coordinate system by 
expressions (8), (9), (10)  and (11) we can write (see Figure 4.a*): 
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Angular velocities of the basic vectors of each position vector tangent space of 
mass particle motion in polar-cylindrical curvilinear coordinate systems are: 
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Figure 4. A position vectors and its three-dimensional spaces with corresponding 
curvilinear coordinate system and tangent space with corresponding three basic vectors 

of the position vector tangent spaces along mass particle motion through time 
a* polar-cylindrical curvilinear coordinate system; b* spherical curvilinear coordinate 

system 
 

 
For example 2*: in spherical curvilinear coordinate system  by expressions (8), 

(9), (10)  and (11), we can write (see Figure 4.b*): 
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Angular velocities of the basic vectors of each position vector tangent space of 
mass particle motion in spherical curvilinear coordinate systems are: 
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2.2.4. Dimensional extension of the position vector tangent spaces of the 
reheonomic mechanical system in generalized curvilinear coordinate systems 
 
 Considered discrete mechanical system is constrained by G  geometrical 
stationary constraints in the form: 
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and by R geometrical rheonomic constraints in the form (see Ref. [23]): 
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Considered system is rheonomic system with GNp −= 3  degree of the system mobility, 
and with RGNn −−= 3  degrees of the freedom. For the n  generalized independent 
coordinates we take  iq , ni ,....,3,2,1= .  Also, we introduce additional subsystem of the 

R  rheonomic coordinates ( )tqq n
γ

γγ φ== +0 , R....3,2,1=γ which correspond to number 
of rheonomic constraints. Then we have extended system of the generalized curvilinear 
coordinates iq , Rnnni ++= ,......,,...,,....,3,2,1 γ . Then we know that subsystem of R  

rheonomic coordinates ( )tqq n
γ

γγ φ== +0 , R....3,2,1=γ contain known rheonomic 
coordinates as functions of the time. But, force of the rheonomic constraints change are 
unknown (see Ref. [21]).  
 Let us now take into account that first n  coordinates of the position vectors of 
the mass particles are independent generalized coordinates. Extended system of the 
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generalized coordinates containing independent coordinates iq , ni ,....,3,2,1=  and 

rheonomic coordinates ( )tqq n
γ

γγ φ== +0 , R....3,2,1=γ , then it is possible to list in the 
form: 
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γγ φ== +0 , R....3,2,1=γ                                      (14) 
On the basic of the listed system (14), we can conclude that in considered case, we use 

coordinates of the positions vectors of the first ( )RGNnK −−=≤ 3
3
1

3
 mass particle as 

generalized independent coordinates. 
Then on the basis of previous for the coordinates of the geometrical point which 

correspond to the mass particle positions at arbitrary moment of the motion, we can 
write: 
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2.2.5. Concluding remarks  

  
We can see that in extended system of generalized coordinates, we can 

identified two sets of the position vectors of the mass particles: one  set (15) contain K , 

( )RGNnK −−=≤ 3
3
1

3
 position vectors of the mass particles depending of three 
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generalized coordinates, and second  set (16) contain the
3

RGKN +
≥− , 

( )RGNnK −−=≤ 3
3
1

3
  position vectors of the mass particles depending of all 

GNp −= 3  generalized coordinates in general case, or more then of three generalized 
coordinates. 
 Also we can conclude that in extended system of generalized coordinates, we 
can identified two sets of the position vectors of the mass particles, one  set (15) contain 

the K , ( )RGNnK −−=≤ 3
3
1

3
 position vectors of the mass particles with three-

dimensional tangent space and each with three basic vectors of this tangent spaces, and 

second  set (16) contain the
3

RGKN +
≥− , ( )RGNnK −−=≤ 3

3
1

3
  position vectors of 

the mass particles with  extended dimension of the tangent space and to each tangent 
space correspond  GNp −= 3  basic vectors in general case, or more than three basic 
vectors of the tangent space. 

Open directions for next research and applications. As a possible open 
directions for next research and application are: an analysis of expressions for 
generalized  Corilis forces introduced by changing position of motion observer from 
fixed coordinate system to rotate curvilinear coordinate system  correspond to vector 
position tangent space; applications of the previous results for solving problems of the 
numerous coordinate system properties used in astro-dynamics; extension and proof of 
extension Lagrange differential equations to the description of the rheonomic system 
dynamics  and necessary generalizations. 

 
3. ADVANCES IN ANALYTICAL MECHANICS. 
 
3.1. Analytical mechanics of hereditary discrete system vibrations 
3.1.1. Introduction 

 
Integro-differential equations and their applications in development of analytical 

mechanics of discrete hereditary systems are used by Gorosko and Hedrih (Stevanović)  
(see References III [35-54]) 

Research results in area of mechanics of hereditary discrete systems, obtained 
by Gorosko and Hedrih (Stevanović)  (see References IV [35-54]) are generalized and 
presented in the monograph [35] which contains first completed presentation of the 
analytical dynamics of hereditary discrete systems. Two classes of dynamically defined 
and undefined hereditary systems are defined and considered by introducing 
corresponding restrictions. Main results of mechanics of hereditary discrete systems are 
presented with new applications important to engineering.  

Approximation of expressions for the coefficients of damping and corresponding 
decrements as well as for circular frequency of oscillations of hereditary oscillatory 
systems are obtained with high accuracy in the first and second approximations.  
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Analogy between hereditary interactions and reactive forces in systems of 
automatic control is identified and a possibility to extend theory of analytical dynamics 
of hereditary systems to mechanical systems with automatic control is pointed out (see 
References [36] and [37]  by Gorosko and Hedrih (Stevanović)).  

The Lagrange’s mechanics of hereditary systems are extended and generalized to 
thermo-rheological [35,52] and piezo-rheological [35] discrete mechanical systems as 
well as to discrete mechanical systems with standard light creep elements. .   

Analytical dynamics as general science of mechanical system motions was 
founded by Lagrange (Joseph Luis Lagrange (1735-1813)) in the period of his work at 
Berlin Academy. The Lagrange’s book “Mècanique Analytique” contains basic analytical 
methods of mechanics and was published in France in 1788. Introduced analytical 
methods in Mechanics by Lagrange are main and first base of analytical mechanics in 
general.  Lagrange’s equations of second kind and Lagrange’s equations of first kind 
with unwoven Lagrange’s  multipliplicators of constraints are main fundament  of 
Analytical Dynamics.  

Analytical dynamics is largely applied and used in engineering system dynamics 
and in natural sciences as well as for investigation of mechanical system dynamics and in 
physics of the microworld.    
 Mechanics of hereditary continuum is presented by series of fundamental 
publications and monographs. In current literature term “hereditary” and “rheological” 
systems are equivalent. Mechanics of discrete hereditary systems up to a ten years before 
was presented only by separate single papers and containing only solutions of partial 
problems. 

Research results in area of mechanics of hereditary discrete systems, obtained 
by authors of this paper, are generalized and presented in the monograph [35], published 
in 2001 by Gorosko and Hedrih (Stevanović)), which contains first presentation of 
analytical dynamics of hereditary discrete systems. We can conclude that this monograph 
contains complete foundation of analytical dynamics theory of discrete hereditary 
systems and by using these results, numerous examples are obtained and solved (see 
Refs. [35-54]). In this analytical mechanics of hereditary discrete systems, modified 
Lagrange’s differential equations second kind in the form differential and integro-
differential forms with kernels of relaxation or rhelogy are derived.  

 
3.1.2. Models of hereditary elements in analytical dynamics of hereditary 

discrete systems.  
 
Hereditary system is each system which contains mutual hereditary interaction 

between material particles in the form of one or more coupling constraints with 
hereditary properties.  

Simple visco-elastic element is Voight’s type element (Woldemar Voigt, 1859-
1919). In the state of extension resultant force appears by two components, one by visco 
and one by elastic properties in the deformation of visco-elastic element and constitutive 
stress-strain relation given as relation between force and extension of element in the 
following form: 

( ) ( ) ( )tytcytP &µ+=                                                      (1) 
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In Mechanics of hereditary continuum in the case of axial (in one direction) 
stressed and deformed Voight’s type body stress strain constitutive relation is expressed 
by following relation:  ( ) ( ) ( )ttEt εµεσ &+= . More acceptable and precise and better 
compatible with experimental data with real hereditary body properties is model of the 
standard visco-elastic body  (Kelvin and  Poyting-Thompson’s body). Constitutive stress 
strain relation given as relation between force and extension of element in the following 
form: 
   ( ) ( ) ( ) ( )tyctynctPtPn ~+=+ &&                                        (2) 
In mechanics of hereditary system constants n , c  and c~  obtain special names: time of 
relaxation, rigidity coefficients, one momenteneous and  prologues one. 
 For generalized hereditary element model relation between force and 
deformation is possible to describe by differential equation high order derivative in the 
following form: 

 ( )∑ ∑
= =

+=+
m

r

m

k
k

k

k
k

k

k dt
xdbxbtP

dt
Pda

1 1
0                          (3) 

 For more complex viscose elements (represented by the Jeffreys’ bidy  (J-body) 
and Lethersich’s body) stress-strain state is described by differential equation in the 
form: 
 ( ) ( ) ( ) ( )tynbtybtPtPn &&&&

21 +=+                                         (4) 
 Equivalency and analogy of hereditary interactions and reactive forces in 

systems of automatic control gives possibility to extend theory of analytical dynamics of 
hereditary systems to mechanical systems with automatic control. For example, 
automaton with transfer function presented in the following form (see References [36] 
and [37] by Gorosko and Hedrih (Stevanović)):  

 n
n

n
n
papa
pbpbbpW

+++

+++
=

...1
...)(

1

10                          (5) 

presents a hereditary interaction (3) between material particles of the discrete mechanical 
system with one degree of freedom. 
 Parameters of the automaton of arbitrary structures are defined in an experimental 
way and it is possible to obtain amplitude-phase characteristic. In our opinion there are 
real possibilities and perspective to use method of amplitude-phase characteristic for 
experimental obtaining of mechanical characteristic of the hereditary discrete mechanical 
systems. It is possible to solve some difficulties with identification coefficient of the 
momenteneous rigidity which appear in the mechanical investigation of the  hereditary 
forms and  shortened longtime experiments.  
 
 
 3.1. 3. Integral models of the stress-strain state of the hereditary elements. 

 
 There are three mathematical forms for description of constitutive relations of 
hereditary properties of hereditary interaction [35], in the building of hereditary system’s 
mechanics. These forms are(see References [36] amd [37]  by Gorosko and Hedrih 
(Stevanović)):  
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 1* Differential equation, expressed in the form of dependence reaction force P  of 
the rheological coordinate x , usually presented  as deformation or relative displacement 
of the hereditary constraint in the form (3).  
 2* Integral equation, expressed in the form of dependence reaction force P  of the 
rheological coordinate y  , usually presented  as deformation or relative displacement of 
the hereditary constraint: 

( ) ( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−= ∫

t

dyttyctP
0

τττ-R                             (6)  

where ( ) ( )τ
τ

−−−
=−

t
ne

nc
cct

1~
R  is relaxation kernel, and 

n
1

=β is coefficient of the 

element relaxation.  
This integral relation (6) can be obtained by solving equation (2) with respect to the force 
P . By this integral equation, the relaxation of the reaction force P  depending on the 
rheological coordinate y , is presented and expressed. 
 For the case of the generalized standard hereditary element (3) integral equation 
is possible to obtain in the form (6) in which relaxation kernel ( )τ−tR presents  sum 
by sum of exponents.  

3* Integral equation, expressed in the form of dependence rheological coordinate 
y , usually presented deformation or relative displacement of the hereditary constraint 

and reaction force P : 

 ( ) ( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+= ∫

t

dPttP
c

ty
0

1 τττ-K                           (7) 

where  ( ) ( )τ
τ

−−−
=−

t
nc
c

e
nc

cct
~~

K     is kernel of rheology and  
nc
c~

1 =β  is the coefficient 

of the  creep or retardation or rheology.  
  
 3.1. 4. Three forms of equations of motions of a hereditary oscillator. 
 
 Simple model of a hereditary discrete system is hereditary oscillator with one 
degree of freedom which contains one material particle with mass m and one standard 
hereditary element P with material visco-elastic properties defined by following 
coefficients: n , c and c~ constitutive stress-strain relation expressed by relation (2) 
between force ( )tP and generalized and rheological coordinate ( )ty . Then by using 
principle of dynamical equilibrium of the oscillator it is possible to obtain equation of the 
oscillator motion in the following form: 

( ) ( ) ( )tFtPtym =+&&                                        (8) 

where ( )tP  is resistive reaction of the rheological element, ( )tF external forced 
excitation. Using constitutive relation (2) or (10) for stressed and deformed standard 
hereditary (rheological) element for eliminating  resistive reaction of the rheological 
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element  ( )tP  from last equation (8) we obtain three corresponding forms of the 
equation of motion of the rheological – hereditary oscillator with one degree of freedom 
listed as follow: one in differential form: 

( ) ( ) ( ) ( ) ( ) ( )tFtFntyctynctymtynm +=+++ &&&&&&& ~                         (9) 
and two in integro-differential forms:  
 ( ) ( ) ( ) ( ) ( )tFdyttyctym

t

=⎥
⎦

⎤
⎢
⎣

⎡
−+ ∫

∞−

τττ-R&&                               (10) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )∫∫
∞−∞−

+=⎥
⎦

⎤
⎢
⎣

⎡
++

tt

dFtctFdymttyctym ττττττ -- KK &&&&                            (11) 

For the case of the weak singular hereditary oscillator equation of the dynamic 
equilibrium (oscillator motion) in the differential form is not possible to obtain, but in the 
integro-differential forms is possible.  
 

3.1.  5. Thermo-rheological pendulum 
3.1. 5.1.  Light standard thermo-rheological hereditary element 

 
When standard hereditary element is modified by two temperatures ( )tTK  and 

( )tTM , which are introduced by thermo-modification of visco-elastic properties by 
temperature ( )tTK , and by thermo-modification of elasto-viscosic  properties by 
temperature ( )tTM , than constitutive relation between stress and strain state  of the 
thermo-rheological hereditary element (see Ref. [35]) is: 

( ) ( ) ( ) ( ) ( ) ( )[ ]0
~ ρρρ −+=+++ tctnctFtFntPtPn KM &&&                       (12) 

in which  
     ( ) ( )tTctF MMMM α= , ( ) ( )tTctF KKKK α=                              (13)       
are thermo-elastic forces, and ( )tρ  is rheological coordinate, KM cc , are coefficients of 
thermo-elastic rigidity, KM αα ,  are coefficients of thermo-elastic dilatations, n  is time of 
relaxation, and cc ~, an instantaneous rigidity and a prolonged one of an element. 
      Constitutive relation (12) of the thermo-rhelogical hereditary element from 
differential form, we can rewrite in two integro-differential forms. 
 

3.1. 5. 2.  Light standard piezo-and thermo-rheological hereditary element 
 

When standard hereditary element is modified by two polarization voltages ( )tU K  
and ( )tU M , which are introduced by piezo-modification of visco-elastic properties of 
subelement of piezoceramics, by ( )tU K  and by piezo-modification of elasto-viscosic 
properties by ( )tU M , and thermo-modified by two temperatures ( )tTK  and ( )tTM , than 
constitutive relation between stress and strain state  of the piezo-rheological hereditary 
hybrid element is in the form (12) in which   
     ( ) ( ) ( )tTctUctF MTMTMMUMUMM αα +=   

( ) ( ) ( )tTctUctF KTKTKKUKUKK αα +=                                                           (14) 
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are thermoelastic and piezo-elastic  forces, and ( )tρ  is rheological coordinate, 
TKTM cc ,  are 

coefficients of thermo-elastic rigidity, 
TKTM αα ,  are coefficients of thermo-elastic 

dilatations, UKUM cc ,  are coefficients of piezo-elastic rigidity, UKUM αα ,  are coefficients 
of piezo-elastic dilatations n  is time of relaxation, and cc ~, an instantaneous rigidity and 
a prolonged one of an hybrid element. 
 

3.1. 5.3. Pendulum with standard thermo-rheological hereditary element 
 
 The thermo-rheological hereditary pendulum has two degrees of freedom, one 

degree of motion freedom defined by angular coordinate ϑ   and one degree of 
deformations freedom defined by changeable length of thread as a coordinate ( )tρ .  

Let us compose the equations of the thermo-rheological pendulum dynamics  
with thread in which the standard thermo-rheological hereditary element with 
constitutive stress-strain relation (12) is incorporated. Now, by introducing force ( )tP  of 
the extension of the thermorheological hereditary thread from constitutive relation (12) 
presented into integral form, the equations of the pendulum motion are in the forms (for 
detail see Reference [52] by Hedrih (Stevanović)): 

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )[ ] ( ) ( )tPdFF
ccm

ctF
m

dt
m
cgt

t

KMM

t

o
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∫
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0

0

2
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1
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ττττ

τττρρθθρρρ &&&
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   ( )( ) ( )( ) ( ) ( )( ) ( )ttgttt M=+++++ θρρρθρρθρρ sin2 00
2

0 &&&&                      (16) 
            This system is a system with one integro-differential and one differential equation 
of the thermo-rheological hereditary pendulum with motion in vertical plane.   
            If the thermo-rheological pendulum is in the horizontal plane, from second 
differential equation of the previous system, we can obtain the relation between the 
length of the pendulum thread and of the angular velocity in the following form:  

 ( ) ( ) ( )
( )

2

0

0 00 ⎥
⎦

⎤
⎢
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⎡
+
+

=
t

t
ρρ
ρρθθ &&                                    (17) 

             By introducing this previous expression (17) in the first equation of the system 
(16) (for the case of horizontal plane) the following integro-differential equation for the 
pendulum length thread is obtained: 

  ( ) ( )[ ] ( )[ ]
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3.1..6. Concluding remarks 
 
Solution of obtained integrdo-differential equation (18) is mathematical problem 

in analytical mechanics of hereditary discrete system dynamics. 
  Also, solutions of the similar integro-differential equations are tasks for 
mathematics in the function of applications in mechanics and engineering system 
dynamics with hereditary properties.   

In the basis of the construction of Lagrange’s mechanics of hereditary discrete 
systems, the classical mechanics principles are used [35]. These principles are: Principle 
of the work of forces along corresponding possible system displacements, as well as 
Principle of dynamical equilibrium.  

Initial conditions of hereditary system dynamics are very important, containing the 
history of rheological interactions of the system. Then, it is important to take into account 
stress-strain history of viscoelastic elements – interactions between hereditary system 
material particles. 

Analogy between hereditary interactions and reactive forces in the systems of 
automatic control gives possibility to extend theory of analytical dynamics of hereditary 
systems to mechanical systems with automatic control.  
 For description of properties of dynamics of a  hereditary system by using 
relaxational or rheological kernel (resolvent), these kernels are expressed by exponential 
or fractional-exponential forms [35] . Descriptions of hereditary properties of the system 
by using differential forms (2) and integral form (6) and (7) with exponential kernels are 
equivalent. For the case of fractional-exponential forms of the kernel (6) and (7) in the 
integral form corresponding equivalent differential forms not exist.  
 The Lagrange’s mechanics of hereditary systems is extended and generalized to 
the thermo-rheological [35, 52] and piezo-rheological [35] mechanical systems.   
 Open directions for next research and applications. Directions for next research 
in area of mechanics of hereditary discrete system must be focused to find analytical 
forms of solutions or approximations of solutions of integro-differential equations and to 
build mathematical theory of the material memory of the history of previous stress and 
strains in the material before starting system motion and its observation.  Mathematical 
theory for slowing problems with determinations of the initial conditions of the 
hereditary system is second main task in this area. Present in science, there are numerous 
numerical approach and numerical experiments over the integro-differential equations 
and numerical procedure expressed by software tools but for advances in area of 
analytical dynamics of hereditary systems it is necessary analytical approach, solutions 
and qualitative methods for evaluations of the system solution stability. 

For practical applications in mechanics and engineering system dynamics  
analytical forms of the approximations of solutions of intgro-differential equations are 
necessary for easier quantitative estimation larger class of the dynamic phenomena 
hereditary system behavior. All real constructions and engineering structures are with 
hereditary properties.  
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           3.2. Analytical mechanics of fractional order discrete system vibrations 
3. 2.1. Introduction  

 
Differential fractional order equations and theirs applications in development of 

analytical dynamics of discrete and continuous fractional order systems with like single 
and multi-frequency modes, or fractional order modes are important results for 
applications in different area of science and practice (see References  (see References III 
[39-46] ). 

Discrete continuum method is based on the continuum discretization and 
coupling by standard light hereditary, or fractional order elements (see References [49] 
and [50]). Main nets, main chains and mail fractional order oscillators with main 
fractional order modes of plane as well as space coupled mechanical chains (cases with 
ideal elastic, hereditary and fractional order). Fractional order standard light elements 
have  applications in mechanics of continuum (models of longitudinal and transversal 
oscillations of beams), in biomechanics (mechanical models of double helix DNA chains 
[45]), to systems with coupled pendulums, as well is in signals transfer  (see 
ReferencesIII.). 
 

3.2.2. Standard light fractional order element  
 

Standard light coupling element of negligible mass is in the form of axially 
stressed rod without bending, and which has the ability to resist deformation under static 
and dynamic conditions. Standard light fractional order creep element for which the 
constitutive stress-strain relation for the restitution force as the function of element 
elongation is given by fractional order derivatives in the form (see References [40] and 
[41] by Hedrih (Stevanović)): 

( ) ( ) ( )[ ]{ }txctxctP t
α

αD+−= 0                               (1) 

where [ ]•α
tD  is operator of the thα  derivative with respect to time t in the following 

form: 
     ( )[ ] ( ) ( )( ) ( )

( )
( )

τ
τ
τ

α α
α
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α
α d

t
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dt
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txdtx

t

t ∫ −−Γ
===

01
1

D                             (2) 

where αcc,  are rigidity coefficients – momentary and prolonged one,  and α  a rational 
number between 0 and 1, 10 <<α . 
 
 

3.2.3. Governing equations of the fractional order multi-chain plane system 
model 

 
Coupled governing fractional order differential equations of the multi chain 

fractional order plane system vibrations, according notation in Figures 5.a* and b*, and 
determined standard light fractional elements by constitutive relation (1) and (2) , used 
for coupling of the mass particles, are in the following form: 
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 Figure 5. Discrete continuum fractional order model in a plane - Hybrid 
multi chain fractional order plane system. (a*) Hybrid multi-chain system, in one plane 
and in the form of coupled chains by standard light fractional order elements and in the 
cantilever form of boundary conditions;     (b*).  Three coupled chains ( )1−j -th , j -th 
and ( )1+j -th chains, Mj ,....,4,3,2,1= , as part – subsystem of the hybrid multi chain 
system with coupling elements and kinetic parameters: masses, stiffnesses and fractional 
order parameter of the fractional order element and generalized coordinates of the 
system.  Attached a separate j -th chain of the hybrid chain system with notation of the 
generalized coordinates 

jix ,
, Nk ,....,4,3,2,1= , Mj ,....,4,3,2,1= . 

 
For the homogeneous plane system corresponding to the system (3)  of 

fractional order differential equations let us introduce the coordinate transformation, in 
accordance with trigonometric method (see References [54] by Rašković and [43], [44] 
and [40] by Hedrih (Stevanović)) in the following form:  :     

      ( )∑
=

=

=
Ms

s
sskjk jx

1
, sin ϕξ , Nk ,....,4,3,2,1= , Mj ,....,4,3,2,1= .                                     (4) 

where ( )skξ  are normal coordinates  of the main chains of the hybrid plane system as 
well as generalized coordinates of the s -th main chain from the sets and for the 
corresponding linear system are in the form: ( ) ( ) ( ) ( )( )sksksksk tC αωξ += ~cos  and 
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( ) ( ) 2
sin4~~ 22 s

sksk m
c

m
cu ϕκκω == , 

( ) ( )ssk uu ~~ ≡  and sϕ  are eigen characteristic numbers of the hybrid 

system obtained by using the trigonometric method (see Refs. [54] by Rašković (1965) 
and  [40], [43], [44], [45], [46] and  [48] by Hedrih (Stevanović) (2002, (2004), (2007), 
(2009) and (2010)) depending of boundary conditions of the transversal chains in the 
form of the longitudinal chain connections.   

          ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )[ ] 0~~2~2 1111 =−++−+−++− +−+− sksksksktsksksksksk uu
c
m ξξκκξξξκξξ αα

αD&&

 Nk ,....,4,3,2,1= , Ms ,....,3,2,1=                                              (5) 
Let us introduce the following coordinate transformation:     
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=
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=

=

==
Nr

r
rrs

Nr

r
rsksk k

11

sin ϑηξξ , Ms ,....,3,2,1=                          (6) 

Taking into account that rkϑsin  is different them zero in arbitrary cases from 
(3), we can obtain the transformed system of the governing fractional order differential 
equations (5) of the eigen main chains as well as the  transformed basic governing system 
of fractional order differential equations (3), with respect to the new introduced 
coordinates ( )( )rsη  containing NM ×  independent subsystems for each pair of the ( )( )rs  
from the sets Ms ,....,3,2,1=  and Nr ,....,4,3,2,1=  in the following forms:  
     ( )( ) ( )( ) ( )( ) ( )( ) ( )( )[ ] 022 =++ rstrsrsrsrs ηωηωη α

α D&& ,                               (7) 
        Ms ,....,3,2,1= , Nr ,....,4,3,2,1=  
where  
       

( )( ) ( ) ( )( ) ( ) ( )skrsrs uu
m
c ~~122 κκκω ααα −++−= , Ms ,....,3,2,1= , Nr ,....,4,3,2,1=        (8) 

This last system of fractional order differential equations (7) represents NM ×  
independent partial fractional order differential equations describing independent 
fractional order oscillators each with one degree of freedom and eigen normal coordinate 
( )( )rsη  , Ms ,....,3,2,1= , Nr ,....,4,3,2,1=  of the considered fractional order hybrid system 

and containing N sets of the M eigen main chains normal coordinates 
( )( )rsη , Ms ,....,3,2,1=  , Nr ,....,4,3,2,1= .  Then, we can conclude that simultaneously with 

determination of the normal coordinates of the eigen main chains, we determine as well 
as normal coordinates of the considered hybrid fractional order plane system vibrations 
with NM ×  degrees of freedom. Also, we can conclude that normal coordinates for the 
linear system, correspond to the normal coordinates of the corresponding fractional order 
system and expressions for generalized coordinate transformation to the eigen normal 
coordinates of the basic linear system vibrations, we can use for the corresponding 
coordinate transformation of the corresponding  fractional order hybrid system vibrations  
to the eigen normal coordinates.  

 
 3.2.4. Eigen factional order signals and eigen main chain signals in the 
fractional order multi-chain plane system model 

 
Type of the obtained fractional order differential equations in the system (7) is 

same as in numerous author’s papers, but with different coefficients. These coefficients 
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are sets of eigen circular frequencies ( )( )
2

rsω  and fractional order material properties 

characteristic numbers ( )( )
2

rsαω in the form:  
         

( )( ) ( )⎥⎦
⎤

⎢⎣

⎡ −+= r
s

rs m
c ϑ

ϕ
κω cos12

2
sin4 22  , Ms ,....,3,2,1= , Nr ,....,4,3,2,1=           (9) 

        ( )( ) ( ) ( )
2

sin~4cos1212 22 s
rrs m

c ϕκϑκω ααα +−+−= ,  Ms ,....,3,2,1= , Nr ,....,4,3,2,1=         (10) 

which depend of boundary multi-chain system conditions  determining characteristic 
numbers: sϕ  and rϑ  (see Refs. [54] by Rašković (1965) and  [40], [43], [44], [45], [46] 
and  [48] by Hedrih (Stevanović)).  

Now, taking into account solutions of the fractional order differential equation 
(see Reference [38] by Bačlić and  Atanacković (2000)),  for the system of the fractional 
order differential equations (7), we can write corresponding solutions of ( )( )rsη  , 

Ms ,....,3,2,1= , Nr ,....,4,3,2,1= , in the form of fractional order like one frequency time 
functions which are eigen main modes and normal coordinate ( )( )rsη   of the fractional 
order plane system  in the following expansion: 
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                             (11) 

Ms ,....,3,2,1= , Nr ,....,4,3,2,1=  
This last expressions (11) determines eigen normal fraction order like one frequency 
modes of the hybrid fractional order system corresponding to one eigen circular 
frequency and corresponding eigen fractional order properties characteristic number (10) 
of material fractional order properties of standard light elements. Also, we can conclude 
that the expressions (11) are mathematical descriptions of the main normal fractional 
order like one frequency signals. 

Now, taking into account coordinate transformation: 

( ) ( )( ) ( )( )∑∑
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and solutions (11), we obtain expressions for the like multi-frequency fractional order 
generalized coordinate in the  following form:  

1* eigen normal coordinates for obtaining eigen main chains and generalized  
coordinate of the eigen main chains, 
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Np ,...,3,2,1= , Ms ,....,3,2,1=  
 
2* generalized coordinate of the hybrid fractional order system: 
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Np ,...,3,2,1= , MQ ,....,3,2,1=                               (15) 
   

3.2.5. Eigen factional order signals and eigen main chain signals in the 
fractional order multi-chain space  system model 

 
For the homogeneous fractional order multi-chain space system dynamics, 

presented in Figure 6, by the similar way as in previous chapter III.2.4. is possible to 
write system of coverning fractional order differential equations by use coordinate 
notation from Figure 6, and corresponding material system coordinates.   Then let 
introduce the following coordinate transformation:     
      

( ) ( ) ( ) ( ) ( )
( )∑

=

=

=
Ks

s
s

s
jikji kx

1
,,, sin ϕξ , Ni ,....,4,3,2,1= , Mj ,....,4,3,2,1= , Kk ,....,3,2,1= .           (16) 

where ( ) ( )
( )s

ji ,ξ , Ni ,....,4,3,2,1= , Mj ,....,4,3,2,1=  for each Ks ,....,3,2,1= , are normal coordinates  

of the main plane subsystems ( )sR , Ks ,....,3,2,1=  in the form of the independent K  
plane nets each consisting of the coupled M chains each with N  degrees of freedom.   

sϕ , Ks ,....,3,2,1=  are eigen characteristic numbers of the hybrid system and 
according trigonometric method (see Refs. [54] by Rašković (1965) and  [40], [43], [44], 
[45], [46] and  [48] by Hedrih (Stevanović)) depending on boundary conditions of the 
transversal coupled chains in the form of the normal direction of chain connections 
between parallel plane nets, determined by direction of increasing indices 

Kk ,....,3,2,1= .   Each of these K  main and independent plane nets are with MN ×  
degree of freedom with MN ×  normal coordinates ( ) ( )

( )s
ji ,ξ , Ni ,....,4,3,2,1= , Mj ,....,4,3,2,1=  for 

each Ks ,....,3,2,1=  and are like multi frequency fractional order time functions form K  

independent subsets of circular frequencies  ( ) ( )
( )s

ji ,ω   and corresponding fractional order 

characteristic numbers ( ) ( )
( )s

ji ,,αω  Ni ,....,4,3,2,1= , Mj ,....,4,3,2,1=  for each Ks ,....,3,2,1= . 
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( ) chainsthkj −+ ,1  

( ) chainsthkj −− ,1  

( ) chainsthkj −,  

( ) ( ) chainsthkj −−− 1,1  

( ) ( ) chainsthkj −−− 2,1  

kjim ,,  

kjim ,1, −  

2,1, −− kjix  2,1,1 −−− kjix  
2,11, −−+ kjix  

kjim ,1,1 ++  

2,1, −− kjim  2,11, −−+ kjim  2,1,1 −−− kjim  

1,1,1 −−− kjim  

kjim ,1,1 −−  

kjim ,,1−  

kjim ,1,1 +−  

kjim ,1, +  

 
a*      b*  

 
Figure 6. Discrete continuum fractional order space model - Hybrid multi chain 
fractional order space system. (a*) Hybrid multi-chain system, in space and in the form 
of coupled chains by standard light fractional order elements and in the cantilever form 
of boundary conditions;     (b* ).  The coupled chains ( ) kj ,1− -th , kj, -th and ( ) kj ,1+ -th 
chains, and ( ) kj ,1− -th , ( ) ( )1,1 −− kj -th ,  and ( ) ( )2,1 −− kj -th, Mj ,....,4,3,2,1= , 

Kk ,....,3,2,1=  as part – subsystem of the hybrid multi chain system with coupling 
elements and kinetic parameters: masses, stiffnesses and fractional order parameter of the 
fractional order element and generalized coordinates of the system, with notation of the 
generalized coordinates kjix ,, , Nk ,....,4,3,2,1= , Mj ,....,4,3,2,1= , Kk ,....,3,2,1= . 
 
   Taking into account that skϕsin  is different them zero in arbitrary cases from 
system of governing fractional order differential equations, we can obtain the 
transformed basic governing system of fractional order differential equations with respect 
to the coordinates ( ) ( )

( )s
ji ,ξ , Ni ,....,4,3,2,1= , Mj ,....,4,3,2,1=  containing K  independent 

subsystems of coupled  fractional order differential equations of like multi-frequency  
MN × -frequency main plane nets for each s  from the set of Ks ,....,3,2,1=  in the 

following forms: 
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 Ni ,....,4,3,2,1= , Mj ,....,4,3,2,1= , Ks ,....,3,2,1=                          (17) 
 

Previous obtained K  subsets of fractional order differential equations describing 
dynamics of the main subsystems is expressed by new coordinates ( ) ( )

( )s
ji ,ξ , Ni ,....,4,3,2,1= , 

Mj ,....,4,3,2,1=  containing K  independent subsystems for each s  from the set of 
Ks ,....,3,2,1=  . 

These subsystems present K  mathematical descriptions of dynamics of   independent 
eigen main plane (or surface) nets containing coupled chains with corresponding subset 
of the eigen circular frequencies and corresponding fractional order characteristic 
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numbers of main plane (surface)  nets. Through these eigen main plane nets is possible to 
transfer subset of the signals with frequencies from the corresponding subset of the eigen 
circular frequencies. These signals are fractional order like  MN × frequency signals.  
Next approach is similar as in the previous chapter III.2.4. for system containing coupled 
chains in one plane. Then, due to the limited length of the paper, we will not to present 
all derivatives and suppose writer to follow previpus chapter to obtain independent 
subsystems of the fractional order differential equations describing main independent 
fractional order oscillators each with one degree of freedom, in the form: 

( )( )( )
( )( )( )

( )( )( )
( )( )( )

( )( )( )[ ] 022 =++ prs
tprs

prs
prs

prs ζωζωζ α
α D&& ,                        (18) 

Ks ,....,3,2,1= , Mr ,....,3,2,1= , Np ,....,3,2,1=  
where  
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s
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=

=

= , Ni ,....,4,3,2,1= , Mj ,....,4,3,2,1= , Ks ,....,3,2,1=         (19) 
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rs
i

prsrs
i iψηζη sin

1
∑
=

=

=  , Ni ,....,4,3,2,1= . Ks ,....,3,2,1= ,  

Mr ,....,3,2,1=                               (20) 
 

Previous system (18) contains KMN ××  independent fractional order 
differential equations each only along one coordinate ( )( )( )prsζ , Ks ,....,3,2,1= , 

Mr ,....,3,2,1= , Np ,....,3,2,1= . . These coordinates ( )( )( )prsζ , Ks ,....,3,2,1= , 
Mr ,....,3,2,1= , Np ,....,3,2,1= , are normal coordinates of the hybrid discrete fractional 

order space system containing parallel coupled chains in the parallel planes and in the 
parallel lines in these planes.  

Number of fractional order partial oscillators is equal to the product KMN ××  
and equal to the number of the system degrees of freedom. 

 
3.2.6. Concluding remarks 
 
Then we can conclude that through eigen main plane (surface) nets ( )sR , 

Ks ,....,3,2,1= , it is possible to transfer like MN × -eigen frequency fractional order 
signals as independent on other subsets of plane like MN ×  eigen frequency fractional 
order signals in other eigen main plane nets ( )sR , Ks ,....,3,2,1= . 

Each eigen main fractional order plane nets ( )sR , Ks ,....,3,2,1=  is possible to 
decompose into M  independent eigen chains, in total there are KM ×  main 
independent chains of all space system, with normal coordinates ( )

( )( )rs
iη  

Ni ,....,4,3,2,1= , Ks ,....,3,2,1= , Mr ,....,3,2,1=  of these independent eigen chains .  Then we 
can conclude that through each independent eigen main chain is possible to transfer like 
N - frequency fractional order signal, as well as that coordinate ( )

( )( )rs
iη  are  N - 

frequency fractional order time functions  with corresponding main chains sub set of N - 
frequencies and corresponding characteristic fractional order properties numbers.  
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From the last obtained system (18) containing KMN ××  independent 
fractional order differential equations each along one normal coordinate 

( )( )( )prsζ , Ks ,....,3,2,1= , Mr ,....,3,2,1= , Np ,....,3,2,1=  we can conclude that each of these 
normal coordinates of the system is like one frequency fractional order time function 
with eigen circular frequency from the set  ( )( )( )

2
prsω , Ks ,....,3,2,1= , 

Mr ,....,3,2,1= , Np ,....,3,2,1=  and fractional order characteristic numbers ( )( )( )
2

prsαω , 

Ks ,....,3,2,1= , Mr ,....,3,2,1= , Np ,....,3,2,1=  describing fractional order properties of the 
system eigen vibrations. Number of fractional order partial oscillators is equal to the 
product KMN ××  and equal to the number of the system’s degrees of freedom. Then 
we obtain normal coordinates for the transfer of one frequency fractional order signals 
through space fractional order vibration structure. 

Then, we can conclude that simultaneously with determination of the normal 
coordinates of the eigen main nets and eigen main chains we determine as well as normal 
coordinates of the considered hybrid fractional order system with KMN ××  degree of 
freedom. Also, we can conclude that normal coordinates for the linear system, 
corresponding to normal coordinates of the corresponding fractional order space system 
and expressions for generalized coordinate transformations to the eigen normal 
coordinates of the basic linear system we can use for the corresponding coordinate 
transformation of the corresponding fractional order space hybrid system  to the eigen 
normal coordinates for the considered hybrid system.  

Open directions for next research and applications.  Directions for next 
research in area of mechanics of fractional order  discrete system must be focused to find 
analytical forms of solutions or approximations of solutions of fractional order 
differential equations different types and integrals.   

Also, applications of the fractional derivatives and fractional integrals for 
describing constitutive relations of different types and sources of material . Research in 
this area nust be focused also to the experimental investigation of the material constants 
and parameters defined by fractional order derivatives and operators.  

For practical applications in mechanics and engineering system dynamics  
analytical forms of the approximations of solutions of fractional order differential 
equations are necessary for easier quantitative estimation larger class of the dynamic 
phenomena fractional order system behavior. All real constructions and engineering 
structures are with plastic  properties.  

 
4. Advances in elastodynamics, nonlinear dynamics and hybrid system 

dynamics 
 

4.1. Krilov-Bogolyubov-Mitropolyski asymptotic method of nonlinear 
mechanics, method of constant variation and averaging method  

 
 The different first approximations of solutions of nonlinear differential 
equations have very large applications in engineering practice for fast evaluations of the 
kinetic parameters of engineering dynamics (see Reference [55-57] by Hedrih 
(Stevanović) and [58-60] by by Hedrih (Stevanović) and Simonović). Some time these 



Advances in classical and analytical mechanics: A review of author’s results           327 

first approximation are used for engineering practice with enough precisions and not 
necessary to use second and higher approximation.  One of the main reason that in this 
part we take into consideration a comparison between first approximation obtained by 
different method, as well as used different starting known solution for obtaining first 
approximation. 

Let compare three first approximations of the solution of a nonlinear differential 
equation with small nonlinearity, describing dynamics of nonlinear oscillator with one 
degree of freedom (see Figure 5.a*) , in the form  (see Reference [55-57] by Hedrih 
(Stevanović)): 

( ) ( ) ( ) ( )txtxtxtx N
3
1

2
11

2
1111

~2 ωωδ −=++ &&& ,  for 01 ≠δ , 0≠ε , 2
11 δω >2           (1) 

in which  111
~
δεδ =  and 2

1
2

1
~~~

NN ωεω = , and  ε  and 1ε are small parameters.  
We use three different approach and three methods for obtaining first 

approximation of the previous nonlinear differential equation (1). First is starting known 
analytical solution of a corresponding linearized differential equation which correspond 
to nonlinear differential equation (1). 

IV.1.1* In first case, for starting known solution, we can take solution of the 
linear differential equation in the following form: 

( ) ( ) ( ) 02 1
2
1111 =++ txtxtx ωδ &&& , for 01 ≠δ , 0=ε , 2

11 δω >2                        (2) 
with known analytical solution in the form: 

( ) ( )011011 cos1 αδ += − tpeRtx t , for 01 ≠δ , 0=ε , 2
11 δω >2                        (3) 

in which circular frequency of damped vibration is in the form 2
111 δω −= 2p  and,  01R  

and   01α  are integral constant depending of initial conditions. Amplitude of this 

oscillation is in the form teR 1
01

δ−  and decreasing with time. 
 4.1.2* For finding first approximation of the nonlinear differential equation (1), 
we take starting known analytical solution (3) of linearized differential equation in the 
form (2)  and as a possible firs approximation of the solution we take into consideration 
the following 

( ) ( ) ( )tetRtx t
111 cos1 Φ= −δ  , for 01 ≠δ , 0≠ε , 2

11 δω >2                        (4) 

in which ( ) ( ) tetRta 1
1

δ−= amplitude and full phase ( ) ( )ttpt 111 φ+=Φ  contain unknown 

functions of time ( )tR1  and ( )t1φ  which need to determine. For this fist approach, we 
applied Lagrange method of variation of constants to the known solution (3) of the 
linearized differential equation corresponding to nonlinear differential equation  (see 
Reference [55-56] by Hedrih (Stevanović)). After obtaining system of differential 

equation along unknown functions of time ( )tR1  and ( )t1φ  we applied average to the 

obtained members along one period of the 
2

111

22

δω

ππ

−
==

2p
Ta damping vibrations. 

Then, after differentiation along time of the proposed approximation of the 
solution (4) we obtain:  
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )ttetRtetR

tpetRtetRtx
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11111

1111111

sincos

sincos
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φ

δ
δδ

δδ

&&

&                                             (5) 

to which we introduce condition that this first derivative (5) of the proposed first 
approximation of the solution (4) have same form as solution (3) of the corresponding 
linearized differential equation (2), by other words, this condition express the following: 
that this first derivative (5) of the proposed first approximation of the solution (4) have 

same form as in the case that unknown function of time ( )tR1  and ( )t1φ  are constant. 
 After applying introduced previous condition  we obtain first derivative of the 
proposed first approximation (4) of the solution in the following form:  
 ( ) ( ) ( ) ( ) ( )tpetRtetRtx tt

1111111 sincos 11 Φ−Φ−= −− δδδ&                                      (6) 
and the following condition  
 ( ) ( ) ( ) ( ) ( ) 0sincos 11111 =Φ−Φ tttRttR φ&&                          (7) 

that unknown functions of time ( )tR1  and ( )t1φ  must to satisfy. 
Second derivative of the proposed first approximation (4) of the solution is in 

the following form:  
( ) ( ) ( ) ( ) ( )( ) ( )
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           (8)

 Alter introducing first (6) and second (8) derivatives of the proposed first 
approximation (4) of the solution into nonlinear differential equation (1) and taking into 
account condition (7) we obtain the system of differential equations along unknown 

functions of time ( )tR1  and ( )t1φ  in following form: 
( ) ( ) ( ) ( ) ( ) 0sincos 11111 =Φ−Φ tttRttR φ&&  

 ( ) ( ) ( ) ( ) ( )[ ] ( )ttRetptRtptR t
N 1

33
1

22
11111111 cos~sincos 1 Φ=Φ+Φ − δωφ &&  (9) 

 Previous obtained system of differential equations along unknown functions of 

time ( )tR1  and ( )t1φ  present a non homogeneous algebra system along derivatives of 

unknown function of time ( )tR1
&  and ( )t1φ&  with determinate in the form: 
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with following solutions: 
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 Then, after obtaining previous system of differential equation (11) along 

unknown functions of time, ( )tR1  and ( )t1φ , we applied average to the obtained 



Advances in classical and analytical mechanics: A review of author’s results           329 

members along full phase ( ) ( )ttpt 111 φ+=Φ  in interval [ ]π2,−∈Φ  correspond to one 

period of the 
2

111

22

δω

ππ

−
==

2p
Ta damping  vibrations: 

 ( ) ( )[ ] ( ) ( ) ( )tdtttRe
p

tR tN
1

2

0
11

33
1

2

1

2
1

1 sincos
~

2
1

1 ΦΦΦ= ∫ −
π

δω
π

&  

( ) ( )[ ] ( ) ( )tdttRe
p

t tN
1

2

0
1

42
1

2

1

2
1

1 cos
~

2
1

1 ΦΦ= ∫ −
π

δω
π

φ& , for 01 ≠δ ,                       (12) 

0=ε , 2
11 δω >2                        

Then, we obtain a system of differential equations along unknown functions of 
time ( )tR1  and ( )t1φ  in first averaged approximation: 

( ) 01 =tR&  

( ) ( )[ ]21
2

1

2
1

1
1

~

8
3 tRe

p
t tN δωφ −=&  for 01 ≠δ , 0≠ε , 2

11 δω >2                       (13) 

After integration of the previous system of differential equations along unknown 

functions of time ( )tR1  and ( )t1φ  in first averaged approximation for known initial 

values in first approximation 0=t , ( ) 011 0 RR = и ( ) 01
2
01

2
1

11
011

~
16

30 αω
δ

φφ +−== R
p N  we 

obtain: 
( ) constRtR == 011        

( ) ( ) 01
22

01
2

1
11

01
22

01
2

1
11

1
11 ~

16
31~

16
3 αω

δ
φω

δ
φ δδ +−=+−−= −− t

N
t

N eR
p

eR
p

t ,                  (14) 

for 01 ≠δ , 0≠ε , 2
11 δω >2                                         

where 2
01

2
1

11
0101

~
16

3 R
p Nω

δ
φα += , and full phase is in the form: 

           ( ) ( ) ( ) 01
22

01
2

1
11

101
22

01
2

1
11

1111
11 ~

16
31~

16
3 αω

δ
φω

δ
φ δδ +−=+−−=+=Φ −− t

N
t

N eR
p

tpeR
p

tpttpt , 

for 01 ≠δ , 0≠ε , 2
11 δω >2                                                  (15) 

Then first averaged approximation of the solution of the nonlinear differential 
equation with hard cubic small nonlinearity (1)  

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= −−

01
22

01
2

1
11

1011
11 ~

16
3cos αω
δ

δδ t
N

t eR
p

tpeRtx ,  

for 01 ≠δ , 0=ε , 2
11 δω >2                    (16) 

In the case that, we have a nonlinear differential equation with sogt  cubic small 
nonlinearity in the following form: 
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( ) ( ) ( ) ( )txtxtxtx N
3
1

2
11

2
1111

~2 ωωδ +=++ &&&  for 01 ≠δ , 0≠ε , 2
11 δω >2        (17) 

on the basis of the previous obtained firs averaged approximation of the solution we can 
write:   

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= −−

01
22

01
2

1
11

1011
11 ~

16
3cos αω
δ

δδ t
N

t eR
p

tpeRtx , 

 for 01 ≠δ , 0≠ε , 2
11 δω >2                                                               (18) 

where for known initial values in first approximation 0=t , ( ) 011 0 RR = иand 

( ) 01
2
01

2
1

11
011

~
16

30 αω
δ

φφ +== R
p N  we obtain:  

2
01

2
1

11
0101

~
16

3 R
p Nω

δ
φα −= .                          (19) 

For the case that for 01 =δ  we can use the system of differential equations 

along unknown functions of time ( )tR1  and ( )t1φ  in first averaged approximation (13) 
and before integration put 01 =δ , and after that applied integration, or find limes of the 

solutions (16) and 18) for 01 →δ , and taking into account that is ( ) te t
21lim

1

2

0

1

1

−=
−−

→ δ

δ

δ
, 

obtain first averaged approximation of the solution of nonlinear differential equations (1) 
as well as (17) 

( ) ( ) ( ) ( )txtxtxtx N
3
1

2
11

2
1111

~2 ωωδ m&&& =++                                    (20) 
in the following form: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= −−

01
22

01
2

1
11

1011
11 ~

16
3cos αω
δ

δδ t
N

t eR
p

tpeRtx m  

 for 01 ≠δ , 0≠ε , 2
11 δω >2                                                                         (21) 

where 2
01

2
1

11
0101

~
16

3 R
p Nω

δ
φα ±=  

( ) 01
2
01

2
1

1
1011

~
8

3cos φω
ω

ω +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±= tRRtx N ,  

for 01 =δ , 01 =ε  0≠ε , 2
11 δω >2                                (22) 

 
4.1. 2.1* In second case, for taking starting known solution for obtaining 

approximation of solution of the nonlinear differential equation (1), we can take solution 
of the linear differential equation in the following form: 

( ) ( ) 0~~ 2 =+ txptx&&                                        (23) 

with known analytical solution in the form: 
 ( )01cos)(~ α+= tpatx                                                    (24) 
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in which circular frequency of harmonic vibration is in the form 2
11 δω −= 2p  and,  a  

and    0α are integral constant depending of initial conditions. Amplitude of this 
oscillation is in the form a  and is constant and no depending of time. 

 

 

1m  

c

1b  

11
~,cc  

1x  

            

 

( )( )taΦ&  1p  

( )ta  ( ) constpt ==Φ 11
& - linear system with linear damping 

( ) ( )[ ]22
1

1
11

~
8

3 ta
p

pt Nω+=Φ& -  hard nonlinearity ( ) ( )[ ]22
1

1
11

~
8

3 ta
p

pt Nω−=Φ& - soft nonlineaity  

 
a*        b* 

Figure 7. a* Nonlinear system with one degree of freedom. b* Amplitude-frequency  
characteristic for free vibrations of the system damped nonlinear dynamics with of soft 

and hard nonlinearity 
 

 4.1. 2.2* For that case, we must transform nonlinear differential equation (1) 
taking into account the following generalized coordinate transformation:  

txex 1~ δ=  or  texx 1~ δ−= .                                       (25) 
After generalized coordinate transformation an transformation of differential 

nonlinear equation (1), we obtain:  

 ( ) t
N etxxp

dt
xd

1232
1

2
2

2
~~~~

δω −−=+                                                   (26) 

where  
( ) ( ) t

N
tt etxeexf 111 232

1
~~~~ δδδ ωε −− −= .                                     (27) 

 Let start with general form of the nonlinear differential equation in the form: 

⎟
⎠
⎞

⎜
⎝
⎛=++

dt
dxxfx

dt
dx

dt
xd ,2 2
2

2
εωδ                         (28) 

For small parameter 0=ε  we obtain linear differential equation  

02 2
2

2
=++ x

dt
dx

dt
xd ωδ                                                    (29) 

with solution: 
xeaex tt ~cos δδ ψ −− ==                                      (30)  

with amplitude tae δ− with phase αψ += tp , where 2δω −= 2p  and also: 

0=
dt
da         constp

dt
d

==
ψ                                      (31) 
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In which a and α are determined by their initial values. By generalized coordinate 
transformation (25) nonlinear differential equation (28)  take the following form: 

ttt ee
dt
xdexfx

dt
xd δδδεδω ⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+ −−

~
,~~~~

22
2

2
                       (32) 

or 

 ⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=+ −− τεε δδδ ,

~
,~~~~

,~~~~
2

2

2

dt
xdxfee

dt
xdexfxp

dt
xd ttt                       (33) 

In beginning, we supposed that δεδ
~

1= , and that 1ε  is same order of small value as 

ε and that tετ =  is slow changing time and that   for one period 
p

Ta
π2

=  change of the 

system dynamics is small, and that function ⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ −− τεε δδ ,

~
,~~~~

,~~
dt
xdxfe

dt
xdexf tt  satisfy all 

necessary conditions for application of the asymptotic method Ktilov-Bogolyubov-
Mitropolyski  for application f the method with slow changing system dynamics 
parameters and  with slow changing time  (see Reference [61-68] by Yu. A. 
Mitropolyskiy).  

Then, the n -the asymptotic approximation  of the two parametric family of a 
one frequency solution  of differential equation (33) we suppose in the form:  

( ) ( ) K+++== τψετψεψδ ,,,,cos~
2

2
1 aUaUaxxe t                                     (34) 

where ( )τψ ,,1 aU , ( )τψ ,,2 aU , …. periodic functions of  ( )tpt φψ += , with period  π2 , 

and no containing first harmonic of ψ , and where amplitude and phase  a and ψ are 
unknown functions which are determined by system of differential equations 
corresponding order n -th asymptotic approximation  along amplitude and phase in the 
form: 

( ) ( ) K++= τετε ,, 2
2

1 aAaA
dt
da   

( ) ( ) K+++= vaBaBp
dt

d ,, 2
2

1 ετεψ                                     (35) 

where ( )τ,1 aA , ( )τ,2 aA , …., and ( )τ,1 aB , ( )vaB ,2 ,…. Are unknown functions of 
amplitude and slow changing time. 
 Introducing, on the basis of previous formulated condition we can write: 

( ) mjdeaU i
j K,2,10,,

2

0

==∫ ψτψ ψ
π

                       (36) 

Then, we calculate first and second derivatives of the n -th supposed asymptotic 
approximation ot the solution in the following forms:  

( ) ( )

( ) ( ) ( ) ( ) K3221
1

1
121

2

11
11

,,sin,cos,

sin,cos,sin
~

ε
τ

ε
ψψ

ττψτψτε

ψτ
εψτψτεψ

+
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+−+

+
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂

+
∂
∂

+−+−=

UUpUaB
a

UaAaaBaA

UpUaaBaAap
dt
xd

        (36) 
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        ( ) ( )

K3

1
2

1
2

2

2
2

2

2
2

2
2

2
1

2

1
1

2

1
2

1
11122

2
1

1
1

2

1
2

2
1

2

2
1

2
211

11

2
2

2

...22

sin22cos2

sin,cos,cos2sin2

cos
~

ε

τ
ε

ψτ
ε

ψψψ
ε

ψψε

ψψ
ψτ

τ
τψτ

τ
τψψε

ψ

+

+
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
∂∂

∂
+

∂∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂∂

∂
+

+
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ++−⎟

⎠
⎞

⎜
⎝
⎛ −−+

+
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂∂
∂

+
∂
∂

+
∂
∂

+−+−−+

+−=

a
UAUp

t
UUpUpB

a
UpA

da
dBaABApApaBaB

da
dAA

t
Up

t
UUp

dt
d

d
adBa

dt
d

d
adApaBpA

ap
dt

xd

 (37) 

 After introducing previous asysmptotic aproximation of the solution (34) and 
their first and second derivatives into nonlinear differential equation (33) and applying 
method of equal coefficient of the small parameters un left and right side of 
transformation of nonlinear differential equation, we obtain series of the relation between 
unknown functions ( )τψ ,,1 aU , ( )τψ ,,2 aU , …., .  ( )τ,1 aA , ( )τ,2 aA , …., and 

( )τ,1 aB , ( )vaB ,2 ,….. For the reason that we need only first asymptotic approximation of 
the solution, we take into account the following relation obtained from coefficients with 
first step of the small parameter ε  

( ) { } { }( ) ψψψψτ δδδ sinsin,cos
~

sin.2 2
1

ttt eapeaefapA −=− −−  
( ) { } { }( ) ψψψψτ δδδ cossin,cos~cos.2 2

1
ttt eapeaefapaB −=− −−                       (38)  

Taking into account development of the previous expressions along full phase 
( )tpt φψ +=  we obtain relations – equations for obtaining unknown functions ( )τ,1 aA  

and ( )τ,1 aB in the following form  (see Reference [61-68] by Yu. A. Mitropolyskiy).: 

( ) { } { }( )∫ −−= −−
π

τδτδτδ ψψψψ
π

τ
2

0

~~~

1 sinsin,cos
~~

2
1. deapeaef
p

aA  

( ) { } { }( )∫ −−= −−
π

τδτδτδ ψψψψ
π

τ
2

0

~~~

1 cossin,cos
~~

2
1. deapeaef
pa

aB                                    (39) 

Then taking into account that ⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ −− τεε δδ ,

~
,~~~~

,~~
dt
xdxfe

dt
xdexf tt  and differential 

equation in the form (33) and introducing (27) in previous obtained expression (33) for 
obtaining functions ( )τ,1 aA  and ( )τ,1 aB  we can write: 

( ) 0.1 =taAε  

( ) t
NN ea

p
ea

p
aB δτδ ω

π
ω

π
τε 222

1
~222

11
~

8
3

4
3~

2
1. −− ==                                                (40) 

where  1δ  ( 111
~
δεδ =  and  2

1
2

1
~~~

NN ωεω = , for  ε  and  1ε same order small values. 

Then, system of differential equation (35) along a and ψ  in the first 
asymptotic approximation is possible to write in the following form:  

 0=
dt
da   

t
N ea

p
p

dt
d δω

π
ψ 222

1
~

8
3 −+=                         (41) 
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and first asymptotic approximation  of the solution in the form 
ψδ cos~ axxe t ==  or in the form: ψδδ cos~ tt aeexx −− ==          (42) 

 In the previous first asymptotic approximation  full phase is in the form: 

( ) ( ) 01
22

01
2

1
1

101
22

01
2

1
1

11 ~
16

31~
16

3 αω
δ

ψω
δ

ψ δδ +−=+−−= −− t
N

t
N eR

p
tpeR

p
ptt ,        (43) 

for 01 ≠δ , 0≠ε , 2
11 δω >2 , 2

11 δω −= 2p .   
We can see and conclude that first approximation of the solution of considered nonlinear 
differential equation (1) obtained by application different methods, first method of 
variation constant with average along full phase, and asymptotic method by Krilov –
Bogolyubov-Mitropolyski (see Reference [61-68] by Yu. A. Mitropolyskiy) give us same 
results, but with different methods and proof.  

 
4.1.3.1* In third case, for taking starting known solution for obtaining 

approximation of solution of the nonlinear differential equation (1), we can take solution 
of the linear differential equation in the following form: 

02
1 =+ xx ω&&                                           (44) 

with known analytical solution in the form: 
 ).cos()( 91 αω += tatx                         (45) 
in which circular frequency of harmonic vibration is in the form 1ω  and,  a  and    0α are 
integral constant depending of initial conditions. Amplitude of this oscillation is in the 
form a  and is constant and no depending of time. 
 4.1.3.2* For that case, for finding first approximation of the nonlinear 
differential equation (1), we take starting known analytical solution (45) of linearized 
differential equation in the form (44)  and as a possible firs approximation of the solution 
we take into consideration the following 

).(cos)()( ttatx Φ= , for 01 ≠δ , 0≠ε , 2
11 δω >2          (46) 

in which ( )ta  amplitude and full phase ( ) ( )ttt 111 φω +=Φ  contain unknown functions of 

time ( )ta  and ( )t1φ  which must to determine. For this third approach, we applied 
known Krilov-Bogolyubov-Mitropolyski asymptotic method of average to find first 
asymptotic approximation of the solution of nonlinear differential equation (1).  

Then we start with nonlinear differential equation 
),,(2

1 xxfxx &&& εω =+               (47) 
and suppose first asymptotic approximation in the form: 

).(cos)()( ttatx Φ=                          (48) 
where unknown functions )(ta and  )(tΦ  are determined from the system of differential 
equations of first asymptotic approximation  (see Reference [61-68] by Yu. A. 
Mitropolyskiy) in the following form: 

),()( aA
dt

tda ε=   
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),()(
1 aB

dt
td εω +=

Φ                          (48) 

where   

( ) ,sinsin,cos
2

1)(
2

0
1

1
ΦΦΦ−Φ−= ∫ daafaA

π

ω
πω

 

( ) .cossin,cos
2

1)(
2

0
1

1
ΦΦΦ−Φ−= ∫ daaf

a
aB

π

ω
ωπ

                       (49) 

For our nonlinear differential equation (1) 
( ),2),( 32 xxxxf Nωδ +−= &&                        (50) 

where  je ,11 δεδ =  .~ 22
1 NN εωω =  

 Taking into account initial values in first approximation 
( ) ( ) ooaat Φ=Φ== 0,0:0 we obtain that  

,)( 1 t
o

t
o eaeata δδε −− ==  

       ( ) ( ) .1
16

31
16

3)( 1222
1

11
1

222

1
1 o

t
oNo

t
oN eateatt Φ+−−=Φ+−−=Φ −− δδε ω

ωδ
ωω

δω
ω  (51) 

and first asymptotic approximation of the solution of a nonlinear differential equation (1) 
around  harmonic starting known analytical solution, we can write in the following form: 

( ) .1
16

3cos)( 11 222
1

11
1 ⎥

⎦

⎤
⎢
⎣

⎡
Φ+−−= −−

o
t

oN
t

o eateatx δδ ω
ωδ

ω                       (52) 

From this obtained first asymptotic approximation (52) of the solutions of 
nonlinear differential equation (1) with starting known analytical harmonic solution (45) 
in the case for damping coefficient tends to zero 01 →δ , and taking into account that is 

( ) te t
21lim

1

2

0

1

1

−=
−−

→ δ

δ

δ
, we obtain first asymptotic approximation of the solution for 

conservative nonlinear system vibrations in the form as in the previous two case obtained 
first approximation  of solution of same nonlinear differential equation (1) by use 
different method and different starting known analytical solution.  

   
4.1.4. Concluding remarks 
 
Let we made a general review of the obtained results for approximately solving 

of the nonlinear differential equation with small cubic nonlinearity in the form: : 
( ) ( ) ( ) ( )txtxtxtx N

3
1

2
11

2
1111

~2 ωωδ m&&& =++                                    (53) 

in which hard or soft, refers to m  sign approximately, 111
~
δεδ =  and 2

1
2

1
~~~

NN ωεω = , and  
ε  and 1ε are  small parameters (see Figure 7)..  
 By use first two methods, starting known analytical solutions in the form (3) and 
we obtained same first approximation of the solution in the following form: 
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( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= −−

01
22

01
2

1
11

1011
11 ~

16
3cos αω
δ

δδ t
N

t eR
p

tpeRtx m , 

  for 01 ≠δ , 0≠ε , 2
11 δω >2                         (54) 

where 2
01

2
1

11
0101

~
16

3 R
p Nω

δ
φα ±= . For the case that damping coefficient tends to zero, 

from this first approximation (54), we obtain first approximation of the solution for 
conservative nonlinear system dynamics in the following form: 

( ) 01
2
01

2
1

1
1011

~
8

3cos φω
ω

ω +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
±= tRRtx N ,  

for 01 =δ , 01 =ε  0≠ε , 2
11 δω >2                                                               (55) 

We can see that circular frequency of nonlinear dynamic of conservative system 
is not isochroous  and depends of initial conditions – initial amplitude. 

For the case that coefficient of the cubic nonlinearity tends to zero, from this 
first approximation (54), we obtain known analytical solution of the linear no 
conservative system dynamics in the following form: 

( ) ( )011011 cos1 αδ += − tpeRtx t ,  

for 01 ≠δ , 0=ε , 2
11 δω >2  oN =2

1
~ω                  (56) 

From the third case we start by harmonic known analytical solution in the form 
(45), we obtain the following first asymptotic approximation  of the solution of same 
nonlinear differential equation: 

( ) .1
16

3cos)( 11 222
1

11
1 ⎥

⎦

⎤
⎢
⎣

⎡
Φ+−= −−

o
t

oN
t

o eateatx δδ ω
ωδ

ω m   

for 01 ≠δ , 0≠ε , 2
11 δω >2                                             (57) 

This asymptotical approximation is different them in previous case (54) and this 
is normally because we take different starting analytical known solution if different basic 
linear differential equations as a two different linearizations of the considered same 
nonlinear differential equation.  

For the case that damping coefficient tends to zero, from this first approximation 
(57), we obtain first approximation of the solution for conservative nonlinear system 
dynamics in the following form: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Φ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
±= −

ooN
t

o taeatx 22
1

11
1 16

3cos)( 1 ω
ωδ

ωδ , 

 for 01 =δ , 01 =ε  0≠ε , 2
11 δω >2                                                               (58) 

same as in the previous cases (55). 
For the case that coefficient of the cubic nonlinearity tends to zero, from this 

first approximation (57), we cannot obtain known analytical solution of the linear no 
conservative system dynamics in the form (56) but we obtain: 
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( ) ( )011011 cos1 αωδ += − teRtx t , 

 for 01 ≠δ , 0=ε , 2
11 δω >2  oN =2

1
~ω                        (59) 

not acceptable, because  in this case starting solution was harmonic. In this case if we 
need harmonic solution we must annulled parameters of cubic nonlinearity and of 
dumping in the same time. 
 Then we can conclude that first two approach (54) for obtaining first 
approximation are more general and more suitable for use in the considered 
approximation of the solution them (59). 

Open directions for next research and applications.  Directions for next 
research in area of approximation must be focused to find analytical forms of 
approximations of solutions of nonlinear differential equations.  Present in science, there 
are numerous numerical approach and numerical experiments over the nonlinear 
differential equations for numerical slowing nonlinear one, or coupled system of 
nonlinear differential equations, but these are only particular solutions without proof  that 
these solutions are right, and general.  

For practical applications in mechanics and engineering system dynamics  
analytical forms of the approximations of solutions are necessary for easier quantitative 
estimation larger class of the nonlinear dynamic phenomena and nonlinear dynamics of 
the stem behavior.   

 
4.2. Hybrid system dynamics with complex structures and transfer energy  
 

4.2. 1. Governing coupled partial differential equations of transversal 
vibrations of coupled axially moving double belt system 

The sandwich belt system contain two belts coupled by distributed discrete light, 
neglected mass, ideally elastic belts with stiffness c m as a elastic layer. The both belts 

are represented by area of the constant cross sections A  along length l  between 
rolling and fixed bearings A  and B , and by ρ   the density of the belt material. Let 

suppose that sandwich double belt system is moving in the axial directions x  with an 
axial velocity ( )tv . The transversal vibrations of the sandwich double belts are 

represented by the transverse displacements ( )txw ,1  of upper belt and ( )txw ,2  of 
lower belt. b  is damping coefficient of the damping force distributed along belts.  Also, 
let suppose that displacements are small, and that cross sections during the transverse 
vibration haven’t deplanations.  Also, it is supposed that both belts are loaded by active 
axial force, due to the belts’ tension, and external distributed excitations 

( ) ( ) 2,1,, =itxq i  perpendicular to the x-axis, than in stressed state in the belt’s cross 

section appear normal stresses with intensity σ , almost sure constant intensity during 
the time vibrations and along the length of belt between bearings. Than we can conclude 
that normal stress σ  in belts of sandwich double belt system for a cross section during 
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vibrations change only direction.  For both belts in this double belt system, let’s accept a 
string (wave)-like type model between two rolling bearings. 

 In Figure 8. a* the kinetic parameters of the transversal forced vibrations of the 
axially moving sandwich belts are presented, and in 8.b* the elementary segment, with 
length dx , of the axially moving sandwich belt system excited by external transversal 
distributed forces  and notations of the kinetics parameters are pointed out. ( )txq ,1  and 

( )txq ,2  are external transversal excitations distributed along upper and lower belts 
between rolling bearings and are function of the coordinate x  directed in the direction of 
the axially moving belt system.  
 Using d’Alambert principle of dynamical equilibrium and applying to the 
transversal forced dynamics of the elementary segment of the axially moving sandwich 
belt with length dx  and notations of the kinetics parameters pointed out in Figure 8.b* 
for both component belts in double belt system, similar as in the paper [75], we can write 
the following system of the transversal forced vibrations of the component belts in the 
axially moving double belt system: 

( ) ( )

( ) ( ) ( )[ ] ( )dxtxqdxtxwtxwcdx
Dt

txDwb

dAA
Dt

txwDAdx

,,,,

sinsin,

112
1

1112
1

2

−−+−

−++−= αασασρ
 

( ) ( )

( ) ( ) ( )[ ] ( )dxtxqdxtxwtxwcdx
Dt

txDwb

dAA
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,,,,
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212
2

2222
2

2

+−−−

−++−= αασασρ
                      (1) 
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( )txq ,2

( )txq ,1  

22 αα d+
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∂
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∂
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Figure 8. Transversal forced vibrations of the axially moving sandwich belts 
a* Kinetics parameters of the transversal forced vibrations of the axially moving 

sandwich belts 
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b* Elementary segment of the axially moving sandwich belts with length dx  and 
notations of the kinetics parameters for the case of the forced regime 

 
 
Having in mind that the transversal belts’ displacements are small it is right to 

take into account the approximations as in Refs. [72] and [75], and also, introducing the 
following denotation 

 
ρ
σ

=0c  ,   
A
c
ρ

κ = ,     
A

b
ρ

δ =2 ,  ( ) ( )
A

txqtxq i
i ρ

,,~ =         (2) 

and the following partial differential operator: [ ]•tx ,L  

[ ] ( ) 2
0

2

02

2
2
0

2
02

2

, 222 κδδ +
∂
∂

+
∂
∂

+
∂∂

∂
+

∂
∂

−−
∂
∂

=•
tx

v
tx

v
x

vc
ttxL                            (3) 

and for the case constvv == 0 , previous partial differential equations (1) it is easy to 
rewrite in the following  forms: 
 ( )[ ] ( ) ( ) 0,~,, 12

2
1, =+− txqtxwtxwtx κL  

 ( )[ ] ( ) ( ) 0,~,, 21
2

2, =−− txqtxwtxwtx κL                          (4) 
These partial differential equations are coupled by last terms. 
 
4.2. 2.  Solution of the basic decoupled partial differential  equations  

 By using new independent coordinates in the following form: 
x=ξ  

tx
vc

v
+

−
= 2

0
2
0

0η                                                      (5) 

the partial differential operator (3)  obtain the following 

[ ] [ ] ( ) [ ]•−−•
−

=• ξηηξ LLL ~~~ 2
0

2
02

0
2
0

2
0

, vc
vc

c              (6) 

and corresponding decomposition into two independent operators in the following forms: 

[ ]
⎥
⎥
⎦
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⎢
⎢
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∂
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+
∂
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then coupled partial differential equations (4) of the moving sandwich belts obtain the 
following form: 

( )[ ] ( ) ( )[ ] ( ) ( ) 0,~,,~,~
12

2
1

2
0

2
012

0
2
0

2
0 =+−−−
−

ηξηξκηξηξ ξη qwwvcw
vc

c LL  

( )[ ] ( ) ( )[ ] ( ) ( ) 0,~,,~,~
21

2
2

2
0

2
022

0
2
0

2
0 =−−−−
−

ηξηξκηξηξ ξη qwwvcw
vc

c LL            (9) 



340 KATICA R. (STEVANOVIĆ) HEDRIH 

Basic decoupled partial differential equations are:  

( )[ ] ( )[ ] ( ) ( )[ ] 0,~,~,~ 2
0

2
02

0
2
0

2
0

, =−−
−

= ηξηξηξ ξηηξ iii wvcw
vc

cw LLL , 2,1=i         (10) 

 Solution of the partial differential equation type from previous system (10) can be 
looked for Bernoulli’s method of particular integrals in the form of multiplication of two 
functions (see book [53] by Rašković or Refs. [72] and [75]), from which the first 

( ) ( )ξiX , 2,1=i  depends only on space coordinate ξ  and the second ( ) ( )ηiY , 2,1=i  is 
function of η : 

( ) ( ) ( ) ( ) ( )( )ηξηξ iiiw YX=, ,  2,1=i                         (11) 
For beginning, the assumed solution (11) is introduced in previous system 

equation (10)  and we obtain two decoupled ordinary differential equations in the 
following forms: 

( ) ( )[ ] ( )( ) 0~
2
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2
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2
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+ ηηη ii c
vck YYL                         (12) 

( ) ( )[ ] ( ) ( ) ( ) 0~
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+ ξξξ ii vc
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and after denotations: 
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we obtain:  
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Particular solution of the transversal displacement of the decoupled belts on the 
elastic Vincler type foundation, described by the partial differential equation (10) is in 
the form (11) must to satisfy the boundary conditions: displacements in the rolling 
bearings must be equal to zero: 

( ) ( ) 0,
0
=

=xi txw , ( ) ( ) 0, 0 =
=
=

t
iw

η
ξηξ , ( ) ( ) 00 =iX , 01 =C ,   2,1=i , 

             ( ) ( ) 0, =
=lxi txw , ( ) ( ) 0,

2
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2
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2
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−
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t
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η

ξηξ , ( ) ( ) 0=liX , 0sin
~

2 =ll peC δ (17)        

and then characteristic equation have the following roots: 
l

πsps = , ,.......4,3,2,1=s  

Than, we obtain series of particular solutions for each  of the characteristic eigen 
numbers. Eigen amplitude functions are particular solutions of the ordinary differential 
equation  (15) in the following forms (see Refs. [72] and [75]): 
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Corresponding space - time η -functions are particular solutions of the ordinary 
differential equation  (16) in the following forms (for detail see Ref. [75]): 
:  ( ) ( ) ( )ηηη δη

sssssi qShBqChAe ~~ += −Y      
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22
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4.2.3. Approximation of the solution of the governing coupled partial 

differential equations 

 
For solving coupled partial differential equations of transversal forced 

vibrations of the sandwich double belt system  in the form (4) or (9) we take into calculus 
same eigen amplitude functions ( ) ( )ξsiX  for both belts in the form (18) and different 

unknown functions: ( ) ( )ηs1Y  and ( ) ( )ηs2Y . Than the solution suppose in the following 

expansions:  
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ss ew
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These expansion we put into the equations of the system (9), taking into account (15) and 
(16) previous system of the equations obtain the simplest form, and after multiplying first 
differential equation  by ( ) ( ) ξξξδ de riX

~2−  and second by ( ) ( ) ξξξδ de siX
~2−  and 

integrating along belt’s length l  between double belt system  bearings and taking into 
account modified  conditions of the orthogonality of eigen amplitude functions ( ) ( )ξsiX  
for both belts in the form (18), as well as that some terms of the sum disappeared for 
different:  rs λλ ~~

≠ for rs ≠ , and in  the corresponding result, we obtain s -th family 
system of the  two coupled ordinary differential equations with respect to the unknown 
functions ( ) ( )ηs1Y  and ( ) ( )ηs2Y  in the following form:  
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The solution of the system of second order no homogeneous ordinary 
differential equations (22) for the s -mode in the form of the expansion along eigen 
amplitude functions ( ) ( ) ( ) ( ) ( ) ( )ξξ sss XXxX 211 == , in the form (18), can be looked in 
the form: of the solutions for basic homogeneous system (see Ref. [75]) and we will 
apply the Lagrange's method of the variations of the constants of the eigen unknown 
function ( ) ( )ηs1Y  and ( ) ( )ηs2Y  in the form (20), introducing for integral constant  the 

following unknown functions ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ηηηη ssss NMDC 1111 ,,, of η  for a s -

mode, ∞= ,....4,3,2,1s . We propose that  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ηηηη ssss NMDC 1111 ,,,  are 

functions of η  and we can write: 
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where (for detail see Refs. [[72] and [75]) 
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In order to obtain first and second derivative with respect to η  of the proposed 

forms of functions ( ) ( )ηs1Y  and ( ) ( )ηs2Y , we suppose that first derivatives of the 

functions ( ) ( )ηsiY , 2,1=i , ∞= ,....4,3,2,1s  with respect to the η  are equal to the 

corresponding when coefficients ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ηηηη ssss NMDC 1111 ,,,  are constant and 

then we obtain the two equations-conditions. After introducing first and second 
derivatives of the proposed functions ( ) ( )ηsiY , 2,1=i , ∞= ,....4,3,2,1s  with respect to 
η  into the system of no homogeneous second order ordinary differential equations (22) 
for the  s -mode  in the following form (18)  and together with previous conditions for 
first derivatives,  we obtain the system of the no homogeneous algebra equations along 
unknown first derivative of the unknown coefficients ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ηηηη ssss NMDC 1111 ,,,  
with respect to η . After solving previous obtained system of the equations we obtain the 
first derivative of the unknown coefficients  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ηηηη ssss NMDC 1111 ,,,  with 
respect to η  and after integrating for unknown coefficients-functions 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ηηηη ssss NMDC 1111 ,,,  we have the following expressions: 
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where tx
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0η . Now, previous unknown eigen functions ( ) ( )ηsiY , 2,1=i , 

∞= ,....4,3,2,1s  depending on  η  for s - forced mode and eigen amplitude functions 

( ) ( ) ( ) ( ) ξπξξ ξδ

l

sess sin
~

21 == XX  are in the following form: 

( ) ( ) ( ) ( )[ ] ( )
( ) ( ) ( ) ( )[ ] ( )

( ) ( )[ ] ( )
( ) ( ) ( ) ( )[ ] ( )∫

∫

−−+++

−+++=

−−−

−−−

η
τηδηδ

η
τηδδη

ττηττηη

τττηττηηη

0
210101

0
2101011

~~sin~~
~~2
1~~sin

~~cos

~sin~~
~2
1~sin~cos

dpQQe
p

pNpMe

dpQQe
p

pDpCe

sss
s

ssss

sss
s

sssssY

        

                    (28) 
             

( ) ( ) ( ) ( )[ ] ( ) ( )[ ]
( )

( ) ( ) ( ) ( )[ ] ( ) ( )
( ) ( ) ( ) ( )[ ] ( )∫∫ −−−−++

−+−+=

−−−−

−−

η
τηδ

η
τηδ

ηδδη

ττηττττηττ

ηηηηη

0
21

0
21

010101012

~~sin~~
~~2
1~sin~~

~2
1

~~sin
~~cos~sin~cos

dpQQe
p

dpQQe
p

pNpMepDpCe

sss
s

sss
s

sssssssssY
      

where constants ( ) sC 01 , ( ) sD 01 , ( ) sM 01  and ( ) sN 01  are unknown constant defined by 

four initial conditions: belts’ point elongations and velocities at the initial moment. 
.The s-family of the particular solutions are in the following forms: 
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 The s-family of the particular solutions for pure forced vibrations of a double 
belt system excited by external excitation distributed function depending only of time, 
are in the following forms: 
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IV.2. 4.  Appendix 
 
Previous solutions are obtained on the basis previously obtained  solutions of 

the coupled partial differential equations describing free transversal vibrations of the 
axially moving double belt system.  

The s -family of the particular solutions for decoupled belts and  for free 
transversal vibrations are: 
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 Solution of the coupled ordinary differential equations for free oscillations  
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suppose in the following form: 
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 Characteristic equation of the formalized dynamical system have the following four sets 
of the characteristic eigen numbers: 
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The ratio between amplitudes of the own space-time η - functions ( ) ( )ηs1Y  and 

( ) ( )ηs2Y ,  ( ) ( ) ( )
ηλη s

sisi eD=Y  is not difficult to obtain in the form 

( ) ( )

( ) ( )

1
2

1 m=
rs

rs

D
D

, ,.......4,3,2,1=s .4,3,2,1=r . Then, we can conclude that 

considered system of the coupled ordinary differential equations have four different and 
complex sets of roots and eigen characteristic numbers for defining unknown own space-
time η - functions ( ) ( )ηs1Y  and ( ) ( )ηs2Y : having four sets of characteristic numbers  

we can conclude that corresponding four sets of the particular solutions for composing 
the functions ( ) ( )ηs1Y  and ( ) ( )ηs2Y exists in the following form: 
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Finally the unknown space-time η - functions ( ) ( )ηs1Y  and ( ) ( )ηs2Y  for free 
double belt system transversal vibrations  we obtain in the following forms:  
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The s -family of the particular solutions for free vibrations are in the following 
forms: 

( ) ( ) ( ) ( ) ( ) ( )txxtxw sisisi ,, YX= , ,.......4,3,2,1=s                   (A.11) 
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where sR , sU , sβ  and sγ  are unknown constants defined by initial conditions. 
Then, finally, the generalized solutions of the based coupled partial differential 

equations are  expressed by expansion in the following forms (free vibrations):  
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for coupled 
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where sR , sU , sβ  and sγ  are unknown constants defined by initial conditions, two by 
initial transversal displacements of component belts and by two transversal velocities of 
the component belts ( for detail see References [72] and [75]). 
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IV.2.5. Concluding Remarks 
 
Subject of mathematical description and analytical study, presented in this part 

of the paper, is a theoretical, pure classical model of hybrid elastodynamic model very 
useful for university teaching of elastodynamics as a fundamental part of the engineering 
science (mechanical, civil and physics), as well as, a good introduction of the students 
and engineers of the multifrequency wave phenomena in real mechanical systems with 
moving material.  

If we compare the expressions for coupled and uncoupled belts, we can 
conclude that for uncoupled belts’ transverse free vibrations contain one frequency 
damped vibrations in one eigen amplitude shape, and for coupled vibrations contain two 
frequency damped vibrations in each one amplitude shape, and that these two-frequency 
dumped vibrations are uncoupled with relation of the other shape own vibrations. This is 
visible directly from corresponding expressions (A.12), (A.13) or (A.14) and (A.16) 
presented in Appendix.  

For analysis forced regimes, we can use terms expressed by (30), (31) and (32) 
from which, we can conclude that forced vibrations in each mode should be contain three 
frequencies which are thwo frequencies of the free own double belt system vibrations, 
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, and one 

frequency of external forced excitation, frequencies iΩ . Free vibrations regimes are two 
frequency, and forced are three, or multifrequency, depending of number of frequencies 
of applied external transverse excitations.  

From last expressions for particular or generalized solutions (30), (31) and (32) 
as expressions of transverse displacements of double belt system, we can conclude that 
we can separate eigen amplitude functions ( ) ( )ξsiX  along the spaceξ -length-time 

( )tx,η  coordinate system as well  two eigen phase functions ( )xsβ
~

 and ( )xsβ
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( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−⎟

⎠
⎞

⎜
⎝
⎛−

−
= 22

0
2
0

2

2
0

2
0

2
0

2
0

2
0

2
0~

δπβ vcs
c

vc
x

vc
v

xs
l

,      ,.......4,3,2,1=s        (33) 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+−⎟

⎠
⎞

⎜
⎝
⎛−

−
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0
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2
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2
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2
0

2
0

2
0

2
0 2
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δκπβ vcs

c
vc

x
vc

v
xs

l
,   ,.......4,3,2,1=s (34)  
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If we compare the expressions for solutions with respect to the other way analysis, of 
the solutions for coupled and uncoupled belts, we can conclude that for uncoupled belts’ 
transverse displacements of forced vibrations contain one frequency damped vibrations 
and corresponding frequency forced regime in one eigen amplitude shape, with one eigen 
phase functions ( )xsβ

~
 (see expression from Ref. [75]) and for coupled double belt 

system vibrations contain two frequency damped free vibrations and corresponding 
frequency forced regime, as well as corresponding combinations in each one amplitude 

shape with two eigen phase functions ( )xsβ
~

 and ( )xsβ
~~

 expressed by (33) and (34). 
Also, in other way, we can compare amplitude forms of the dynamics of coupled and 
uncoupled belts and conclude that dynamics of the uncoupled belts  containing  two types 
of eigen amplitude functions: ( )

( ) ( )xC
siX  sin SIN  AND ( )

( ) ( )xS
siX  sin cos  corresponding 

to one frequency free vibration  mode and that double belt system dynamics   contains 
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also two types  eigen amplitude functions, but each of the both two frequencies: 

( )
( ) ( )xC

siX~  sin cos and  ( )
( ) ( )xS

siX~  sin sin  for first frequency of the mode and ( )
( ) ( )xC

siX
~~

 sin 

cos  and ( )
( ) ( )xS

siX
~~

 sin sin  for second of the same mode, contained in expressions (30), 
(31), (32) and  (A.12), (A.13), (A.14)  (A.15).   

In Figure 9. sixth cases of the possible vibrations firms of the double belt system  

with elastic layer for different eigen amplitude functions ( ) ( ) ξπξ ξδ

l

sesi sin
~

=X for 

the solution in the  tx
vc

v
+

−
= 2

0
2
0

0, ηξ  coordinates system are presented. 

We haven’t information if this theoretical model of a sandwich double belt 
system was applied in real systems, but in our opinion it is possible to use this hybrid 
model of sandwich belt system in the different kind of conveyer in which is necessary 
that upper (or lower) belt haven’t vibrations under transversal periodic excitation. It is 
possible in the condition of the dynamic absorption, when only lower (or upper) belt is in 
the forced regime of vibrations. This sandwich double belt system can be project as a 
dynamical absorber, when upper belt in the system is excited by external periodic 
excitation no vibrations, and only lower belt have forced vibrations. 

Series of the papers [69-92] contain results of analysis based on analytical expressions 
describing dynamics of hybrid systems with complex structure. These system contains 
coupled plates, beams or belts.  

4.3. A review of the study of the transfer energy between sub-systems in the 
complex structure systems. 

4.3.1. Transfer energy in spring pendulum system 

For introducing to the problem of the energy transfer or transient in the hybrid 
non-linear systems, it is useful to take, for simple analysis, into consideration the change 
energy between parts of the energy carrying on the generalized coordinates φ  and ρ  in 
the very known system, known under name spring pendulum system, with two degree of 
freedom. For the analysis of the energy in the spring pendulum we can write the kinetic 
and potential energies in the forms (see Refs. [72], [44], [56] and [83] by Hedrih 
(Stevanović)): 

( )[ ]222

2
1 φρρ &l& ++= mEk     

 and   

( )( )φρρ cos1
2
1 2 −++= lmgcEp                      (1) 

where: m is mass of the pendulum, l  length of pendulum string-neglected mass spring 
in the static equilibrium state of the pendulum, and c spring axial rigidity and φ  and 
ρ are respectfully, angle and extension part of length of the string-spring of the 
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pendulum with comparison of the sprig length in static equilibrium state of the 
pendulum, taken as the generalized coordinates of the system. For the linearized case for 
kinetic energy, after neglecting small member - part of kinetic energy on the generalized 
coordinate φ , we can taking into account following expression: 

* Expression ( ) 22
2 2

1 φρ &l+= mEk  changes into approximation  

( )22 2
1 φ&lmEk ≈ .                                                     (2) 

Only for small oscillations – perturbations from equilibrium position it is 
possible to use approximation of the expression for kinetic and potential energy in the 
form: 

( ) ⎥⎦
⎤

⎢⎣
⎡ +≈

22

2
1 φρ &l&mEk        and     22

2
1

2
1 φρ lmgcEp +≈                        (3) 

For that linerized case the generalized coordinates are normal coordinates of the 
small oscillations of the spring pendulum around equilibrium position  0,0 == φρ   and 
coordinates are decoupled. In this linearized case of the spring pendulum model, the 
energy carried on the these normal coordinates are uncoupled and transfer or transient of 
the total energy don’t appeared between proper parts of the separate normal coordinate 
and on the separate processes defined by normal coordinates are conservative systems 
each with one degree of the freedom. In this case each of the coordinate there are 
conversion of the energies from kinetic to potential, but sum of the both of one normal 
coordinates is constant.  

2

2
1 ρρ &mEk ≈       and    2

2
1 ρρ cEp ≈                        (4) 

 ( )2
2
1 φφ

&lmEk ≈      and    2

2
1 φφ lmgEp ≈                     (5) 

This is visible from system of the differential equations in the linearized form:  

 02
2 =+ ρωρ&&  where 

m
c

=2
2ω          

 02
1 =+ φωφ&&  where  

l

g
=2

1ω .                                                   (6) 

but for the non-linear case the interaction between coordinates is present and then energy 
transient appears. 

[ ]222222 2
2
1 φρφρφρ &l&&l& +++= mEk          and   

( ) ( )φρφρ cos1cos1
2
1 2 −+−+= mgmgcE p l                                                (7) 

We can separate the following parts: 
I* Kinetic and potential energies carrying on the coordinate ρ  are: 

2

2
1 ρρ &mEk =     and  ρρρ mgcEp += 2

2
1                                         (8) 
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By analysing these previous expressions, we can see that with these expressions 
for decoupled oscillator with  coordinate ρ , we have pure linear oscillator or harmonic 

oscillator with coordinate ρ  and frequency 
m
c

=2
2ω , and separated process is 

isochronous. 
II* Kinetic and potential energies carrying on the coordinate φ  are  

22

2
1 φφ

&lmEk =     and  ( )φφ cos1−= lmgEp                                                    (9) 

By analysing these previous expressions we can see that with these expression 
for decoupled oscillator with coordinateφ , we have pure non-linear oscillator with 
coordinate φ , and separated process is no isochronous. For linearized case this oscillator 

have eigen frequency  
l

g
=2

1ω .  

III* Then formally, we can conclude that in the spring pendulum, we have 
coupled two oscillators, one pure linear with one degree of freedom, and second non-
linear, also with one degree of freedom. In the hybrid system these oscillators are 
coupled and mechanical energy of the coupling contain two parts: one kinetic energy and 
second potential energy. Then, in the coupling, hybrid connections with static and 
dynamic kinetic properties are introduced. 
Kinetic and potential energies of the coordinateφ  and ρ  interaction in the non-linear 
hybrid model are: 

( ) [ ] 2
, 2

2
1 φρρρφ

&l+= mEk     and   

( ) φρρφ cos, mgEp −=                               (10) 
For non-linear case ordinary differential equations are in the following form: 

( )φρωρ cos12
2 −−=+ g&&                                (11) 

( ) ( ) ( )φρρρφρφφωφωφ &&l
l

l&&
l

&& 212sin 22
2
1

2
1 +−+−−=+                          (12) 

or in non-linear approximation forms for small oscillations around zero coordinates  
0,0 == φρ  or around stable equilibrium position of the spring pendulum are 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−+−−≈+ .....

!8!6242

8642
2
2

φφφφρωρ g&&                            (13) 

( ) ( )φρρρφρφφφωφωφ &&l
l

l&&
l

&& 212....
!7!5!3 22

753
2
1

2
1 +−+−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−−≈+              (14) 

If we introduce phase coordinate, then we can write: 
 ρ&=v  

( )φρω cos12
2 −−−= gv&  

φ&=u                                         (15) 
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     ( ) ( ) ( )φρρρφρφφωφω &&l
l

l&&
l

& 212sin 22
2
1

2
1 +−+−−+−=u  

or in the approximation  
ρ&=v  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−+−−−≈ .....

!8!6242

8642
2
2

φφφφρω gv&  

φ&=u  

( ) ( )uu &l
l

l&&
l

& 212....
!7!5!3 22

753
2
1

2
1 +−+−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−−−≈ ρρρφρφφφωφω               (16) 

From system equations (11)-(12), as well from their approximations (13)-(14), we can 
see that their right hand parts are non-linear and are functions of generalized coordinates, 
as well as of the generalized coordinates first and second derivatives. Also we can see 
that generalized coordinates φ  and ρ  are around their zero values, when 0,0 == φρ  at 
the stable equilibrium position of the spring pendulum, and that also are main coordinates 
of the linearized model. It is reason that the asymptotic averaged method is applicable for 
obtaining first asymptotic approximation of the particular solutions and it is possible to 
use for energy analysis of the transfer energy between energies carried by generalized 
coordinates φ  and ρ  in this non-linear system with two degree of freedom, but 
formally, we can take into account that we have two oscillators, one non linear and one 
linear each with one degree of freedom as two sub-systems coupled in the hybrid system 
with two degree of freedom, by hybrid connection realized by statically and dynamical 
connections. This interconnection have two parts of energy interaction between sub-
systems expressed by kinetic and potential energies in the forms expressed by (10).  
Taking into consideration some conclusion from considered system of the spring 
pendulum, we can conclude also that it is important to consider more simple case of the 
coupling between linear and non-linear systems with one degree of freedom with 
different types of the coupling realized by simple static or dynamic elements, for to 
investigate hybrid phenomena in the coupled sub-systems. 

4. 3.2. Forced vibratos of spring pendulum 

Let consider the energy transfer between parts of the energy carrying on the 
generalized coordinates φ  and ρ  in the spring pendulum system with two degrees of 
freedom excited by external excitations. For that analysis of the energy in the spring 
pendulum in the forced regime excited by external one frequency excitation – 
generalized forces ( ) ( )φφφ ϑ+Ω= tMtM cos0  and ( ) ( )ρρρ ϑ+Ω= tFtF cos0 , we can write 
the kinetic and potential energies in the forms (1). By taking into account all comments 
and asymptotic approximation as in the introductory part of this paper, as well as 
corresponding expressions (2) – (5), system of the differential equations of the linearized 
system is in the following form (see Refs. [72], [44], [56] and [83] by Hedrih 
(Stevanović)): 
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 ( )ρρρ ϑρωρ +Ω=+ th cos0
2
2&&                                                               (17) 

where  
m
c

=2
2ω , 

m
Fh 0

0 =ρ   

 ( )φφφ ϑφωφ +Ω=+ th cos0
2
1

&&                                                  (18) 

where   
l

g
=2

1ω , 2
0

0
lm

Mh =φ .   

Solutions of the linearized equations (17) an (18) are: 

          ( ) ( ) ( )ρρ
ρ

ρ ϑ
ω

αωρ +Ω
Ω−

++= t
h

tRt coscos 22
2

0
0222                                             (19) 

          ( ) ( ) ( )φφ
φ

φ ϑ
ω

αωφ +Ω
Ω−

++= t
h

tRt coscos 22
1

0
0111                                                (20) 

For that linearized case both chosen coordinates are main coordinates of the 
linearized model, and from solutions (19) – (20), we can see that free and also, forced 
vibrations are uncoupled, and not interaction between free, and also forced modes  of the 
vibrations. Then, we have two uncoupled oscillators with different eigen circular 

frequencies 
l

g
=2

1ω  and 
m
c

=2
2ω and different forced external excitation frequencies 

φΩ  and ρΩ and with possibilities of appearance two main uncoupled resonant regimes, 

when 
l

g
resonant ==Ω 2

1
2

, ωφ   and 
m
c

resonant ==Ω 2
2

2
, ωρ . 

In this case for linearized models and in the resonant cases, expressions for 
solutions are in the following forms:  

       ( ) ( )[ ]ρρ
ρ

ω ϑωϑωω
ω

ω
ω
ρωρρ

ρ
sinsinsin

2
sincos 222

2

0
2

2

0
20

2,
ttt

h
ttt

resonant
−+++=

=Ω

&
 (21) 

         ( ) ( )[ ]φφ
φ

ω ϑωϑωω
ω

ω
ω
φωφφ

φ
sinsinsin

2
sincos 111

1

0
1

1

0
10

1,
ttt

h
ttt

resonant
−+++=

=Ω

&
 (22) 

But, for the non-linear case the interaction between coordinates is present and 
then energy transient appears. 

Expressions for kinetic and potential energies are in the same forma as presented 
and analyzed in first part V.1.1 for free vibrations and named by (1)-(5) and (7)-(10). 
Then, the expressions for coordinates are different and must be taken in the forms (19)-
(20) and (21)-(22). 

By analyze corresponding expressions, we can see that with these expression for 
decoupled oscillator with  coordinate ρ , we have pure linear oscillator or harmonic 

oscillator with coordinate ρ  and frequency 
m
c

=2
2ω , and separated process is 

isochronous. By analyzed these corresponding expressions, we can see that with these 
expressions for decoupled oscillators with  coordinate φ , we have pure non-linear 
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oscillator with coordinate φ , and separated process is no isochronous. For linearyzed 

case this oscillator have eigen frequency  
l

g
=2

1ω .  

For forced non-linear case differential equations of the system non-linear 
oscillation are in the following form: 

 
( ) ( )ρρρ ϑφρωρ +Ω+−−=+ thg coscos1 0

2
2&&                                                 (23) 

( ) ( ) ( ) ( )φφφ ϑφρρρφρφφωφωφ +Ω++−+−−=+ th cos212sin 022
2
1

2
1

&&l
l

l&&
l

&&      (24) 

or in non-linear approximation forms for small oscillations around zero coordinates  
0,0 == φρ  or around stable equilibrium position of the spring pendulum 

( )ρρρ ϑφφφφρωρ +Ω+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−+−−≈+ thg cos.....

!8!6242 0

8642
2
2&&                         (25) 

   ( ) ( ) ( )φφφ ϑφρρρφρφφφωφωφ +Ω++−+−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−−≈+ th cos212....

!7!5!3 022

753
2
1

2
1

&&l
l

l&&
l

&&                            

                                                                                                                                  (26) 
If we introduce phase coordinate, then we can write: 

 ρ&=v  

( ) ( )ρρρ ϑφρω +Ω+−−−= thgv coscos1 0
2
2&  

φ&=u  

( ) ( ) ( ) ( )φφφ ϑρρρφρφφωφω +Ω++−+−−+−= thuu cos212sin 022
2
1

2
1 &l

l
l&&

l
&    (25) 

or in the approximation  
ρ&=v  

( )ρρρ ϑφφφφρω +Ω+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−+−−−≈ thgv cos.....

!8!6242 0

8642
2
2&  

φ&=u         (26) 

( ) ( ) ( )φφφ ϑρρρφρφφφωφω +Ω++−+−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−−−≈ thuu cos212....

!7!5!3 022

753
2
1

2
1 &l

l
l&&

l
&                           

From system of the differential equations (23)-(24), as well as from their 
approximations (25)-(26), we can see that their right hand parts are non-linear and are 
functions of generalized coordinates, as well as of the generalized coordinates first and 
second derivatives with respect to time and function of time. Also, we can see that 
generalized coordinates φ  and ρ  around their zero values, when 0,0 == φρ  at the 
stable equilibrium position of the spring pendulum are also main coordinates of the 
linearized model. It is reason that the asymptotic averaged method is applicable for 
obtaining first asymptotic approximation of the solutions  
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Then, it is possible that first asymptotic approximations of the solutions of the 
system of non-linear differential equations  (23)-(24), take into account in the  following 
asymptotic approximations for the small spring pendulum forced  elongations in the 
form: 
 ( ) ( )( )ttta ρρ ϕωρ += 1cos  

 ( ) ( )( )ttta φφ ϕωφ += 2cos                                                        (27) 

where amplitudes ( )taρ  and ( )taϕ and phases ( )tρϕ   and ( )tϕϕ  are defined by system of 
first order non-linear differential equations in first asymptotic approximation in the 
following form:  

( ) ( ) ( )( )ρρ
ρ

ρ
ρ ϑϕ

ω
−

Ω+
= t

h
ta sin

2

0&  

( ) ( )( ) ( )( )ρρ
ρρ

ρ
ρρ ϑϕ

ω
ωϕ −

Ω+
−Ω−= t

ta
h

t cos
2

0
2&  

( ) ( ) ( )( ) ( )
( ) ( )( )φφ

ρ

φ

φ
φφ

φ

φ
φ ϑϕ

ω
ϑϕ

ω
−

Ω+
+−

Ω+
−≈ t

tah
t

h
ta sin

3
sin

2 2

2

1

0

1

0

l
&

 
( ) ( )

( )( ) ( )( )

( )( )
( ) ( )( )φφ

ρ

φφ

φ

φφ
φφ

φρ
φφ

ϑϕ
ω

ϑϕ
ω

ωωϕ

−
Ω+

+

+−
Ω+

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+Ω−≈

t
ta

ta
h

t
ta

hta
t

cos
3

cos
22

1
12

2

2

1

0

1

0
2

2
1

1

l

l
&

                   (28) 

where 1ωφ≈Ω  and  2ωρ ≈Ω  are external excitation frequencies in the resonant rages 
corresponding eigen frequencies of corresponding linearized system. Previous system of 
four non-linear and first order differential equation in the first asymptotic approximation 
are obtained by asymptotic Krilov-Bogoliyubov-Mitropolyskiy method and for small 
amplitudes of external excitations and in the resonant rages of the both frequencies.  
 

4. 3.3.  Concluding remarks 
 
Taking into consideration some conclusion from considered system of the spring 

pendulum, we can conclude, also, that it is important to consider more simple case of the 
coupling between linear and non-linear systems each with one degree of freedom with 
different types of the coupling realized by simple static or dynamic elements (see Refs. 
[72], [44], [56] and [83] by Hedrih (Stevanović)) for to investigate hybrid phenomena in 
the non-linear system forced dynamics.  

Also, it is possible to use for energy analysis of the transfer energy between 
energies carried by generalized coordinates φ  and ρ  in this non-linear system forced 
dynamics with two degrees of freedom, but formally, we can take into account that, we 
have two oscillators, one non-linear and one linear each with one degree of freedom as 
two sub-systems coupled in the hybrid system with two degree of freedom, by hybrid 
connection realized by static and dynamic coupling. This interconnection have two part 
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of energy interaction between sub-systems expressed by kinetic and potential energy in 
the form (10).  

Taking into consideration some conclusion for considered system of the spring 
pendulum forced oscillations, we can conclude also that it is important to consider more 
simple case of the coupling between linear and non-linear systems each with one degree 
of freedom with different types of the coupling realized by simple static or dynamic 
elements, for to investigate hybrid phenomena in the system forced dynamics.  

 
4.4. Analysis of the trigger of coupled singularities in nonlinear dynamic of no 
ideal system  

 
4.4.1. Free vibrations of the heavy mass particle along rotate rough curvilinear 

line with Coulomb friction 
 

For beginning let to consider free vibrations of the heavy mass particle along rotate 
rough curvilinear line with Coulomb’s type friction, see Figure 8.a*. For the case that 
curvilinear line is in the vertical rotate plane Oxz  around vertical Oz  axis, we can take 
that equation of the curve-linear line is: ( )xfz = , or ( ) ( ) 0,1 =−= xfzzxf  and 

with the following properties ( ) ( )xfxf =−  and that coordinate pole is in the zero 

point ( ) 00 =f  in which line have minimum (see Figure 8.a*). Also we take that 

curvilinear line rotate around vertical Oz  axis with constant angular velocity k
rr

Ω=Ω  
(see Ref. [103] by Hedrih (Stevanović)). 

Heavy mass particle, mass m , moving along rough curvilinear line  with Coulomb’s 
type  sliding friction coefficient µ , is loaded by proper weight mg , as a active 

conservative force and by four no ideal constraint reactions, one NF  - normal ideal 
constrain reaction, second BNF in binormal direction and two additional,  1µF  first 
tangential component of the no ideal constraint reaction induced by friction and 
proportional to the normal component reaction NF , relN vsignFF

r
µµ −=1 , and 2µF  

second tangential component of the no ideal constraint reaction induced by friction 
caused by pressures in the binormal direction and proportional to the binormal 
component of the inertia force BNF , relBN vsignFF

r
µµ −=2 , caused by curvilinear line 

rotation around vertical Oz  axis with constant angular velocity k
rr

Ω=Ω ,  
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Figure 8. Heavy material particle motion along rough curvilinear line with Coulomb 
friction  

 
Force of the inertia of mass particle realtive motion along the curvilinear line which 

rotate around vertical Oz  axis with constant angular velocity k
rr

Ω=Ω ,  have two 
components. One component is force of the inertia of the circle rotation around vertical 
axis in the form uxmFjp

rr 2Ω= , and second is Coriolis inertia force of the system and we 

can write: [ ] BvmvmFF relreljCNB
vvrrr

αcos2,2 Ω=Ω=−= . Corresponding force of 
Coulomb’s type friction is in the 

form: αµαµµµ cos2cos22 rel
rel

rel
rel

rel

rel
NB vm

v
vvm

v
vFF

r
r

r

r

rrr
Ω−=Ω−=−= . 

 By use principle of dynamical equilibrium we obtain expression for the intensity 
of normal and binormal components of curvilinear  constraint reactions corresponding 
differential double non-linear equation of the heavy mass particle motion along rotate 
arbitrary curvilinear rough line, with   angular velocity of rotation Ω

r
, and  defined by 

function ( )xfz = , for the case that the coefficient of the Coulomb’s type sliding 
friction is µ , s in the following form: 

( )

( )
⎩
⎨
⎧

<
>

=Ω±±′
′+

+

+′
′+

Ω+
′+

′′
±⎟

⎠
⎞⎜

⎝
⎛ ′+

0
0

02
1

1
11

1

2

2
2

2
22

rel

rel

vfor
vfor

xz
z

g

z
z

x

z

zxzx
dt
d

&

m&&

µµ

µµ

                  (1) 

For the case of heavy mass particle motion along no ideal arbitrary rough 
curvilinear line without rotation, differential equation is in the form::: 

( )
⎩
⎨
⎧

<
>

=+′′
′+

±
′+

′
+⎟

⎠
⎞⎜

⎝
⎛ ′+

0
0

0
1

1

1
1 2

22
2

rel

rel

vfor
vfor

gzx
zz

zgzx
dt
d

&& µ         (2) 

Let consider special case of the rough curvilinear line with friction along normal 
surface contact (without last term x&Ω± µ2  in (1)) and let  introduce new variable in the 
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following form: 2xu &= , then previous differential double equation (1) of the mass 
particle motion along rough line is possible to transform in the following form: 

( )
( ) ( )( ) ( )( )

⎩
⎨
⎧

<
>

±′
′+

−′
′+

Ω−=
′+
±′′′

+
0
0

1
21

1
2

1
2 22

2
2

rel

rel

vfor
vfor

z
z
gz

z
x

z
zzu

dx
du µµµ

m              

       (3) 
Previous differential double equation  (3) of the material particle motion along rough 
curvilinear line according new helping coordinate u  is ordinary double differential 
equation first order with changeable coefficients and type in following form: 

( ) ( )xQuxP
dx
du

=± ,  with following solution: 

          

( )[ ]
( )
( )

( )( ) ( )( )
( )
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⎥
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∫
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zzdx
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22 1
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2
1

1
1

2
µµ

µµm

&

(4)   

From the previous first integral, the following  equation of the phase trajectories 
in the phase plane ( )xx &,   we obtain: 

( )

( )
( )
( )

( )( ) ( )( )
( )
( )

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
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⎣
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∫
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−
Cdxez

z
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z
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dx
z

zzdx
z

zz
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22 1
22

21
2

2

2

2
1

1
1

21
µµ

µµm
(5)             

where C integral constant depending of initial conditions, angular coordinate and angular 
velocity at initial moment, or starting terminate mass particle positions for next phase 
trajectory branch. 

For reason to compare properties of kinetic parameters of main considered 
system dynamics and corresponding fictive (neglecting terms with acquire of velocity 

2x& ) for comparison we transform corresponding differential double equations in the 
form of the system of first order differential double equations and for obtaining 
singularities for main system and fictive systems use conditions that right hand side all 
equations must be equal to zero (null). Then we obtain the following conditions: 

*For main system dynamics: 

0== v
dt
dx  

( ) ( )
( )
( )

( )
( ) 0
11

1
11 22

2
2

2
2

2 =
′+
±′

−
′+

′
Ω−

′+

′′
′+

′′′
−=

z
zg

z
zx

z
zx

z
zzx

dt
dv µµµ m

&m&       (6) 

*For corresponding fictive systems  

0== v
dt
dx  

( )
( )

( )
( ) 0
11

1
22

2 =
′+
±′

−
′+

′
Ω−=

z
zg

z
zx

dt
dv µµm

            (7) 
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and 

0== v
dt
dx  

( )
( ) 0
1 2

2
=

′+

′+Ω
−=

z
zgx

dt
dv

                         (8) 

We can see that for listed main system and for fictive system, conditions for 
obtaining singularities are same. Depending of the curvilinear line form ( )xfz = ,  we 
obtained two nonlinear algebra equations  in the following forms: 

 ( )
( )

( )
( ) 0
11

1
22

2 =
′+

±′
−

′+

′
Ω−

z
zg

z
zx µµm   and     

( )
( ) 0
1 2

2
=

′+

′+Ω
z

zgx
          (9) 

from which we can obtain, one or more roots.  
If corresponding algebra double  equation (9) have one root for 0=µ   then 

words are about one  equilibrium position with „one side left“  and „one side right“  
bifurcation of the equilibrium position and one fictive trigger of coupled singularities 
caused by Coulomb’s type friction between mass particle and rough  curvilinear line.  

If corresponding algebra double  equation (9) have odd number of  roots for 
0=µ   then words are about trigger of coupled singularities in a dynamics of a basic 

non-linear system correspond to the system with friction. In this case corresponding 
algebra double  equation (9) for 0≠µ  have corresponding odd number of  roots for each 
of the sets of the  sign ±  , but all these roots are selected in two subsets, first one an ”one 
side right“ singularities  and other ”one side left“ singularities correspond to the „one 
side left“ and „one side right“  relative equilibrium positions.  Then, each roots of the 
corresponding algebra double  equation (9) for 0=µ  , have two corresponding roots 
obtained from corresponding algebra double  equation (9) for 0≠µ  and then there are 
present new fictive triggers of coupled one side singularities. Then we have trigger of the 
coupled triggers  of coupled one side left, one central and one side right singularities, 
which are present in the system with Coulomb’s type friction  and with a corresponding 
nonlinear system with ideal constraints and with minimum a trigger of coupled 
singularities in its nonlinear dynamics. 

Example 1. For the case that line is a circle shaped by ( ) 222 RxRz =+− , 
22 xRRz −−= , for 0=µ  and  0≠µ , from (9)  there are two corresponding algebra 

equations, one of which for 0≠µ  is algebra double equations:  

0
22

2 =
−

+Ω
xR

xgx   and 

 01
2222

2 =
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
±

−
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
Ω µ

µ

xR

xg
xR

xx m                                                 (10) 

From first algebra equation for 0=µ  of previous system (10) is visible that 0=x  is a 
root correspond to the equilibrium position, but there are also pair of the roots: 
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4

2
2

3,1
Ω

−±=
gRx  for 12 ≤

ΩR
g . In this case for 0=µ  in system dynamics minimum a 

trigger of coupled three singularities exists. Also, we can conclude that second algebra 
equation for 0≠µ  have minimum two roots. First approximation of the minimum vales 

of first two roots are 23,1 2
Ω

±≈
gx µ , which correspond to the “one side right” and “one 

side left” equilibrium positions  and with 0=x  build a trigger of coupled two one side 
singularities appeared as a result of bifurcation by introducing Coulomb’s type friction. 
By qualitative analyzing of the second algebra double equation from system (10) in the 
form: 

 ( ) ( ) 042411 4

22
2

2

2

4

2
22224 =

Ω
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

Ω
±−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

Ω
+−−+

RggRxgRxx µµµµ ,  

 we conclude that, also, one trigger of coupled three triggers of coupled one side 
singularities appear.  

Example 2. For the case that line is an ellipse shaped by 12

22

=+⎟
⎠
⎞

⎜
⎝
⎛ −

b
x

a
Rz , 

2

2
1

b
xaRz −±= , for 0=µ  and  0≠µ , from (9)  there are two corresponding algebra 

equations, one of which for 0≠µ  is algebra double equations (see Figure 8.b*):  
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b
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b
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ax  (11) 

From first algebra equation for 0=µ  of previous system (11) is visible that 
0=x  is a root correspond to the equilibrium position, but there are also pair of two 

roots: 
2

223,1 1 ⎟
⎠
⎞

⎜
⎝
⎛

Ω
−±=

b
agbx   for  122 <

Ωb
ag . In this case for 0=µ  in system 

dynamics, minimum a trigger of coupled three singularities exists. Also, we can conclude 
that second algebra equation for 0≠µ  have minimum two roots. First approximation of 

the minimum vales of first two roots are 23,1 2
Ω

±≈
gx µ , which correspond to the “one 

side right” and “one side left” equilibrium positions  and with 0=x  build a trigger of 
coupled two one side singularities appeared as a result of bifurcation by introducing 
Coulomb’s type friction. By qualitative analyzing of the second algebra double equation 

from system (11) in the form: ( )
2

2
222

2

2 ⎟
⎠
⎞

⎜
⎝
⎛
Ω

=−⎟
⎠
⎞

⎜
⎝
⎛

Ω
± xgxxRgx µµ m , we conclude that 

appear also one trigger of coupled three triggers of coupled one side singularities.  
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4.4. 2. Theorem of trigger of coupled singularities  
 

  Previous considered differential double equations of the heavy mass particle 
along rough curvilinear line with Coulomb’s type friction  is possible to express in the 
following generalized form of differential double equation with double signs (see Ref. 
[103] by Hedrih (Stevanović)).: 

( )[ ] ( ) 00,,,2

<
>

=±+± xforxxfxxFkgxbx &m&&& µµµ                (12) 

where µb  coefficient depending of Coulombs type coefficient of friction, and µx  
parameter in coordinate dimension depending of Coulombs type coefficient of friction 
and with a corresponding governing differential equation for ideal system dynamics for  

0=µx  in the following form: 

( )[ ] ( ) 0, =+ xfxFkgx&&             (13) 
 
4.4. 3.  Theorem on the existence of a trigger of the coupled singularities and 

the separatrix in the form of number eight in the conservative system.  
 
By using nonlinear dynamic analysis of systems with described nonlinear 

phenomenon of the trigger of coupled singularities and corresponding families of phase 
portraits and potential energies (see References [84-103]) as well as the corresponding 
experimental investigations of such non-linear dynamics in mechanical engineering 
systems with coupled rotation motions (see Refs. [96] and [87]) it was easy to define and 
to prove a series of the theorem of the existence of a trigger of coupled singularities in 
non-linear dynamical conservative and no conservative systems with periodical structure.  

 
Theorem: In the system whose dynamics can be described with the use of non-

linear differential equation in the form (see Refs. [88] and [89]):  
( )[ ] ( ) 0, =+ xfxFkgx&&                        (14) 

and whose potential energy is in the form: 

( )[ ] ( ) ( )[ ]∫ ==
x

xFkdxxfxFkgm
0

,, GE                       (15) 

in which the functions  ( )xf    and ( )xg  are: 

( ) ( )∫=
x

dxxfxF
0

       and   ( ) ( )∫=
x

dxxkgxkG
0

,,        (16) 

and satisfy the following conditions: 
( ) ( )xfxf −=−   ( ) ( )xkgnTxkg ,, 0 =+   
( ) ( )xfnTxf =+ 0   ( ) ( )xkgxkg ,, =−  
( ) 00 =f   ( )[ ] ( ) ( )....,,,0, 3221 kkkkkforxFkg r ∪∈=                             (17) 
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( ) 0=sxf , 0sTxs = , ,...4,3,2,1=s 00 rTxxr ±±= ,  

,...4,3,2,1,0=r
2
0

0
Tx <  

 ( )[ ] ( ) ( )....,,,0, 3221 kkkkkforxFkg ∪∉≠  
and both functions  ( )xf    and ( )xg  have one maximum or minimum in the interval 
between two zero roots: 

a*  for parameters values ( ) ( )....,, 3221 kkkkk ∪∉ ≠ ,  outside of the intervals 
( ) ( )....,, 3221 kkkk ∪≠ , the trigger of singularities in the local area does not exist. 

b* for parameters values ( ) ( )....,, 3221 kkkkk ∪∈ ≠ ,  inside of the intervals 
( ) ( )....,, 3221 kkkk ∪≠  , the series of triggers of coupled singularities in the local domains 

exist. 
We can see that for the case a* the second derivative of the potential energy can be 

positive or negative: :  
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and equilibrium positions can be stable and unstable with corresponding singular points 
alternatively change, periodically, with period  0T .from stable center to unstable saddle 
point, and corresponding phase portrait is without trigger of coupled singularities and 
without separatrix in the form of number eight.  

Also we can see that for the case b* the second derivative of the potential 
energy can be positive or negative 
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and equilibrium positions can be stable and unstable with corresponding singular points 
alternatively change, periodically, with period  0T .from stable center to unstable saddle 
points, and corresponding phase portrait is with triggers of coupled singularities and with 
series of the separatrix in the form of numbers eights. Then, the triggers of coupled 
singularities exist in the phase portrait in the intervals defined by: 

⎟
⎠

⎞
⎜
⎝

⎛ ++−∈ sTTsTTx
2

,
2

00 ,...4,3,2,1,0=s . 

 Integral energy of the system is in the form:  
 ( )[ ] ( )( )[ ] consttxFkGxxFkGx =+=+ 0

2
0

2 ,2,2 &&           (20) 
 Equation of homoclinic orbit in the form number "eight" trough homoclinic 
point (0,0) is: 

( )[ ] ( )[ ] consthFkGxFkGx hc ===+ 0
2 0,2,2&                                     (21) 

for ( )[ ] ( ) ( ).....,,,0, 3221 kkkkkforxFkg r ∪∈= in which the functions  ( )xF    and ( )xkG ,  
are in the form (16) and satisfy the  conditions (17). 
 In Figure 9 B* and B* equivalent of potential energy ( )ϕpE  graph of  basic 

ideal mechanical system, which corresponds to no ideal Coulomb’s type friction, is 
presented.  In Figures 9 B*b*, B*c* and B*d* the  sets of the homoclinic phase 
trajectory layering, for 00 =α  and different values of the 11

2 ≤
Ω

==
l

gk
λ

 and axis 

eccentricity are presented. Homoclinic orbits in the form of number eight  appear and 
disappear with changing  parameter 11

2 ≥
≤

Ω
==
l

gk
λ

. Two sets of the of the singular points: 

πϕ ss = , ,...4,3,2,1=s  and πϕ sg
s 2arccos 2 ±Ω
=

l
, ,...4,3,2,1=s fort 11

2 ≤
Ω

==
l

gk
λ

 exists 

together with homoclinic orbits – separatrix in the form of number eight. 
  

In Figure 9. A*a* equivalent of potential energy ( )ϕpE  graph of  basic ideal 
mechanical system, which corresponds to no ideal Coulomb’s type friction, is presented 
as a function of coordinate the ϕ . In Figures 9. (A*b*), (A*c*) and (A*d*) series of the 
phase trajectory portraits,  for 00 =α , and different values of the 11

2 ≥
≤

Ω
==
l

gk
λ

 and 

eccentricity of axis of circle rotation are presented. Two sets (A*b*) and (A*c*) of the of 
the singular points in phase portraits are visible: πϕ ss = , ,...4,3,2,1=s  and 

πϕ sg
s 2arccos 2 ±Ω
=

l
, ,...4,3,2,1=s    for 11

2 ≤
Ω

==
l

gk
λ

.One set (A*d*) of singular points  in 

phase trajectory portrait is visible: πϕ ss = , ,...4,3,2,1=s  for 11
2 ≥

Ω
==
l

gk
λ

. 
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Figure 9. A* Equivalent of potential energy ( )ϕpE  graph of  basic ideal 

mechanical system (A*a*) corresponding to no ideal Coulomb’s type friction and phase 
trajectory portrait (A*b*), (A*c*) and (A*d*) for 00 =α  and different values of the 

11
2 ≥
≤

Ω
==
l

gk
λ

 and axis eccentricity. Two sets (A*b*) and (A*c*) of the of the singular 

points: πϕ ss = , ,...4,3,2,1=s  and πϕ sg
s 2arccos 2 ±Ω
=

l
, ,...4,3,2,1=s fort 11

2 ≤
Ω

==
l

gk
λ

.

 One set (A*d*) of singular points  πϕ ss = , ,...4,3,2,1=s  for 11
2 ≥

Ω
==
l

gk
λ

.      

Figure 9. B* Equivalent of potential energy ( )ϕpE  graph of  basic ideal 
mechanical system (B* a*) correspond to no ideal wich Coulomb’s type friction  and 
homoclinic phase trajectory layering (B* b*), (B* c*) and (B* d*) for 00 =α  and 

different values of the 11
2 ≤

Ω
==
l

gk
λ

 and axis eccentricity.  
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4.4. 4. Triggers of coupled singularities in non-linear dynamics of coupled 
double rotor systems with Coulomb’s type friction 

  
In this part, we start with a new model of the non-linear dynamics of two coupled 

rigid rotors with mass particle debalances and no ideal surfaces between rotor shafts and 
cylindrical bearing where appear Coulomb’s type friction (for detail see Reference [87]). 

 
In Figure 10. a* the structure of the coupled double rotor system with Coulomb’s 

type friction into contact surfaces  between rotor shafts and cylindrical bearings is 
presented.  In Figure 10. b* decomposition of this system with plan of the Coulomb’s 
type friction forces is presented. 
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Figure 10. Coupled double rotor system (a*)with Coulomb’s type friction into 

contact surfaces  between discs and shafts; Decomposition (b*) of the system with plan 
of the Coulombs type friction forces 

 
 

Governing nonlinear differential double equation of the coupled double rotor system 
dynamics with Coulomb’s type friction into contact surfaces  between rotor shafts and 
cylindrical bearings take the following form: 
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For 2=k  and for ideal constraints (by neglecting friction) previous differential 
equation obtain the following form: 

( )( ) 0sincos41
21 2 =−

+
+ ϕϕλ

λ
ϕ p

pR
g

&&            (23) 

Obtained differential equations (23) is in the class (13) and then on the basis of 
the listed theorem of trigger of coupled singularities in chapter VII.2.1..  we can conclude 

that non-linear dynamics in basic system when condition  1
4

1
≤

pλ
 is satisfied appear a 

trigged of coupled singularities and in the phase trajectory portrait appear a homoclinic  
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orbit in the form of number eight. Sets of singularities are: first πϕ ss =  and second 

ps λ
ϕ

4
1arccos=  for 14 ≥pλ , presented in Figure 9..   

 
4.4. 5. Concluding remarks  

 
Systems with coupled multi-step rotors are important for engineering applications, 

then it is important to investigate ideal as well as no ideal system nonlinear dynamics. 
Also, no stability in the working processes of like that system dynamics caused higher 
level of noise and vibrations. Present Coulomb’s type frictions in these kind of system 
dynamics caused new instability and more higher level of noise and vibrations. This is 
reason that is important to investigate non-linear phenomena in dynamics of other 
corresponding ideal as well as no ideal system dynamics. Also, system with vibro-
impacts are important for engineering practice. Vibro-impacts are strong non-linearity 
with discontinuities in the system kinetic parameters and alternations of the forced and 
velocities directions in comparison before and after impacts (see Reference [102] an 
[104] by Hedrih (Stevanović), Raičević and Jović). 

            4.5. A review of the study of non-linear and stochastic vibrations through  
scientific research projects and doctoral dissertation and magistar thesis defended 
at Mechanical engineering faculty University of Niš in period 1972-2011 in area of 
Mechanics  

IV.5.1. The study of the transfer of energy between sub-systems coupled in hybrid 
system (see Refs. [106-109], [55-56] by Heedrih (Stevanović) (1975, 1995a,b, 1887a,b, 
2007a,b, 2008a,b), [57-60] by  Hedrih (Stevanović) and Simonović (2009a,b,c) and [45] 
and [69]Hedrih (Stevanović) and Hedrih A. (2009a,b)) is very important for different 
applications. Two papers by author (see Refs. [72] and [76]  by Heedrih (Stevanović) 
(2005, 2006 and 2008) presents analytical analysis of the transfer of energy between 
plates for free and forced transversal vibrations of an elastically connected double-plate 
system. Energy analysis of vibro-impact system dynamics with curvilinear trajectories 
and no ideal constraints was done by Jović  in 2009 and in 2011 in his two theses (see  
References [128] and [12]), for Magister of science as well for   doctor’s of sciences 
degrees. Potential energy and stress state in material with crack was study by Jovanović 
and presented in his Doctor’s Degree Thesis in 2009 (see Ref. [126]). Energy analysis of 
the non-linear oscillatory motions of elastic and deformable bodies was done by Hedrih 
(Stevanović) her doctor’s degree thesis in 1975 (see Ref. [109]). Energy analysis 
longitudinal oscillations of rods with changeable cross sections was original research 
results in 1995 presented by Filipovski in his magister of sciences degree thesis (see Ref. 
[119]). For all previous results see References from list in Appendix I – References VII – 
[105-130]  and Appendix II – References VIII – [131-140] .  
 
 4.5.2. When, at an international conference ICNO in Kiev in 1969, my professor 
of mechanics and mathematics, D. P. Rašković (1910-1985) (see Refs. [32], [33], [34], 
[53]  and [54] Rašković (1965,1985) presented me to academician Yuri Alekseevich 
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Mitropolskiy (1917-2008) (see Refs. [61-68] by Mitropolskiy (1955, 1964, 1968, 1976 
and 2003) and when I started really to understand the differences between linear and 
non-linear phenomena in dynamics of mechanical real systems, I knew I was on the right 
path of research which enchanted me ever more by understanding new phenomena and 
their variety in non-linear dynamics of realistic engineering and other dynamical systems. 
(First my knowledge about properties of non-linearity and the non-linear function I 
obtained in gymnasium from my excellent professor of mathematics Draginja Nikolić 
and during my research Matura work on the subject of Non-linear elementary functions 
and their graphics as a final high school examination.)  

 For beginning of this chapter, a review survey of original results of the author 
and of researchers from Faculty of Mechanical Engineering University of Niš (see 
References from lists in Appendix I – References VII – [105-130]  and Appendix II – 
References VIII – [131-140]), inspired and/or obtained by the asymptotic method of 
Krilov-Bogolyubov-Mitropolyskiy, and as a direct influence of professor Rašković 
scientific instruction and also by published Mitropolskiy's papers and monographs, as 
well as  publications by Kiev Mathematical institute scientists in area of non-linear and 
stochastic dynamics . These results have been published in scientific journals, and were 
presented on the scientific conferences and in the bachelor degree works (see [107] by 
Stevanović, (1967)), Magister of sciences theses (see [108] by Stevanović (1972), [110] 
by Kozić (1982), [112]  by Pavlović (1982), [114] by Mitić (1985), [118] by Pavlov 
(993), [119] by Filipovski (1995), [121] by Janevski* (2004), [122] by Simonović 
(2008)) and doctoral dissertations (see [109] by (Stevanović) Hedrih (1975), [111] by 
Kozić (1990), [113] by Pavloić (1990), [115] by Mitić (1994), [127] by Knežević (2000), 
[124] by Perić (2005), [126] by Jovanović (2009), [127] by Janevski* (2010), [128] by 
Jović** (2011), [129] by Simonović (2011) and [130] by Veljović (2011))  supervised by 
Mitropolskiy (in period from 1972 to 1975) or by Rašković (in period from 1964 to 
1974) and  by  Hedrih in period from 1976  to 2011 year as well. For all previous results 
see References from list in Appendix I – References VII – [105-130]  and Appendix II – 
References VIII – [131-140]. 
 In area of stochastic stability a scientific supports by series of consultation to 
researchers was given by Kiev stochastic research group at Institute of Matmematics 
NANU , S.T. Ariaratnam (Canada) and A. Tylikowski (Polad) and also by their  papers.  

The original results contain asymptotic analysis of the non-linear oscillatory 
motions of elastic bodies: beams, plates, shells and shafts (see References by 
(Stevanović) Hedrih (1972, 1981, 1978, 1983, 1984, 1985, 1995); Hedrih and Rašković 
(1974); Hedrih, Kozić, Pavlović, Mitić and Filipovski (1983, 1984, 1985, 1986, 1993, 
1996, 1995)). Also, late a series of new research results are obtained by Janevski in 2003 
[121] and by Simonovic in 2008 [122, 129] an in 2011 and also by Veljovic in 2011 
[130] . The multi-frequency oscillatory motion of elastic bodies was studied. 
Corresponding system of partial differential equations of system dynamics, as well as 
system of first approximation of ordinary differential equations for corresponding 
numbers of amplitudes and phases of multi-frequency regimes of elastic bodies non-
linear oscillations were composed. The characteristic properties of non-linear systems 
passing through coupled multi-frequency resonant state and mutual influences between 
excited modes were discovered.  
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In the same cited papers amplitude-frequency and phase frequency curves for 
stationary and no stationary coupled multi-frequency resonant kinetic states, based on the 
numerical experiment on the system of ordinary differential equations in first 
approximation are presented. Resonant jumps are pointed out in the both series of 
graphical presentation: amplitude-frequency and phase frequency curves for the case of 
the resonant interactions between modes in the same frequency resonant intervals. 

Using ideas of averaging and asymptotic methods Krilov-Bogoliyubov-
Mitropolyskiy in the Doctoral dissertation  [109] and in References (see Refs. Hedrih 
(Stevanović) (1975, 1972, 1981, 1978, 1983, 1984, 1985, 1995)) author gives the first 
asymptotic approximations of the solutions for one-, two- , three- and four-frequency 
vibrations of non-linear elastic beams, shaft and thin elastic plates, as well as of the thin 
elastic shells with positive constant Gauss's curvatures and finite deformations, and 
system of the ordinary differential equations in first asymptotic approximation for 
corresponding numbers of amplitudes and phases for stationary and no stationary 
vibration regimes.  
   Some results of an investigation of multi-frequency vibrations in single-
frequency regime in non-linear systems with many degrees of freedom and with slow-
changing parameters are presented by Stevanović and Rašković article (1974). 
Application of the Krilov-Bogolyubov-Mitropolskiy asymptotic method for study of 
elastic bodies non-linear oscillations and energetic analysis of the elastic bodies 
oscillatory motions give new results in theses [108] by Stevanović in 1975. One-
frequency transversal oscillations of thin rectangular plate with non-linear constitutive 
material stress-strain relations and non-linear transversal vibrations of a plate with special 
analysis of influence of weak non-linear boundary conditions are contents of the articles 
by Hedrih (1979, 1981). 
   First approximation of an asymptotic particular solution of the non-linear 
equations of a thin elastic shell with positive Gauss’ curvature in two-frequency regime is 
pointed out in the article by Hedrih (1983). Two-frequency oscillations of the thin elastic 
shells with finite deformations and interactions between harmonics have been studied by 
Hedrih and Mitić (1983) and multi frequency forced vibrations of thin elastic shells with 
a positive Gauss's curvature and finite displacements by Hedrih (1984). Also, on the 
mutual influence between modes in non-linear systems with small parameter applied to 
the multi-frequencies plate oscillations are studied by  Hedrih, Kozić, Pavlović and Mitić 
(1984). 
     Multi-frequency forced vibrations of thin elastic shells with a positive Gauss'  
curvature and finite deformations and initial deformations influence of the shell middle 
surface to the phase-frequency characteristics of the non-linear  stationary forced shell's 
vibrations  and numerical analysis of the four-frequency vibrations of thin elastic shells 
with Gauss' positive curvature and finite deformations are content of reference by Hedrih 
and Mitić (1985). Also, initial displacement deformation influence of the thin elastic shell 
middle surface to the resonant jumps appearance was investigated by same authors 
Hedrih and Mitić (1987). By means of the graphical presentations from the cited 
References, analysis was made and some conclusions about non-linear phenomenon in 
multi-frequency vibrations regimes were pointed out. Some of these conclusions we 
quote here: Non-linearities are the reason for the appearance of interaction between 
modes in multi-frequency regimes; In the coupled resonant state one or several resonant 
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jumps appear on the amplitude-frequency and phase frequency curves; these resonant 
jumps are from smaller to greater amplitudes and vice versa. 

Unique trigger of coupled singularities (Hedrih (2003)) with one unstable 
homoclinic saddle type point, and with two singular stable center type points appear in 
one frequency stationary resonant kinetic state. It is visible on the phase-frequency as 
well as on the amplitude-frequency graphs for stationary resonant state. 
  In the case of the multi-frequency coupled resonant state and in the appearance 
of the more resonant coupled modes in resonant range of corresponding frequencies, 
unique trigger of coupled singularities, and multiplied triggers  of coupled singularities 
(see Refs. by Hedrih, 2004, 2005) appear. Maximum number of triggers of coupled 
singularities is adequate to number of coupled modes and resonant frequencies of 
external excitations. Multiplied triggers contain multiple unstable saddle homoclinic 
points in the mapped phase plane as the number of resonant frequencies of external 
excitations. For example, if a four-frequency coupled resonant process in u-v plane is in 
question, four homoclinic saddle type points appear. The appearance of these unstable 
homoclinic saddle points requires further study, since it induces instability in a stationary 
non-linear multi-frequency kinetic process.  

By use a double circular plate system, presented in the References by Hedrih 
(Stevanović) and Simonović (2005,2006 and 2007), the multi-frequency analysis of the 
non-linear dynamics with different approaches and by use different kinetic parameters of 
multi-frequency regimes is pointed out. Series of the amplitude-frequency and phase-
frequency graphs as well as eigen-time functions–frequency graphs are obtained for 
stationary resonant states and analysed according present singularities and triggers of 
coupled singularities, as well as resonant jumps. 

An analogy between non-linear phenomena in particular multi-frequency 
stationary resonant regimes of multi circular plate system non-linear dynamics, multi-
beam system non-linear dynamics and corresponding regimes in chain system non-linear 
dynamics is identified (see References by Hedrih (Stevanović) listed in the reference list 
from period 1972-2010). 

Using differential equations systems of the first approximation of multi-
frequency regime of stationary and no stationary resonant kinetic states, we analysed the 
energy of excited modes and transfer of energy from one to other modes. On the basis of 
this analysis, the question of excitation of lower frequency modes by higher frequency 
mode in the non-linear multi-frequency vibration regimes was opened. 

4.5.3. In the Reference by Hedrih (Stevanović) and Hedrih (2009), the 
expressions for the kinetic and potential energy as well as energy interaction between 
chains in the double DNA chain helix are obtained and analyzed for a linearized model. 
Corresponding expressions of the kinetic and potential energies of these uncoupled 
main chains are also defined for the eigen main chains of the double DNA chain helix. 
By obtained expressions, we concluded that there is no energy interaction between 
eigen main chains of the double DNA chain helix system. Time expressions of the main 
coordinates of the two eigen main chains are expressed by time, and eigen circular 
frequencies are obtained. Also, generalized coordinates of the double DNA chain helix 
are expressed by time correspond to the sets of the eigen circular frequencies. These 
data contribute to better understanding of biomechanical events of DNA transcription 
that occur parallel with biochemical processes. Considered as a linear mechanical 



372 KATICA R. (STEVANOVIĆ) HEDRIH 

system, DNA molecule as a double chain helix has its eigen circular frequencies and 
that is its characteristic. Mathematically it is possible to decouple it into two chains 
with their set with  corresponding eigen circular frequencies which are different. This 
may correspond to different chemical structure (the order of base pairs) of the 
complementary chains of DNA. We are free to propose that every specific set of base 
pair order has its eigen circular frequencies and its corresponding oscillatory energy 
and it changes when DNA chains are coupled in the system of double chain helix. 
Oscillations of base pairs and corresponding oscillatory energy for specific set of base 
pairs may contribute to conformational chances of DNA double helix, and its unzipping 
and folding. 

4. 5.4.  General concluding remarks  

For limited length of paper, now we made only some comments concerning the 
following  
 
 * Lissajous’ curves, orthogonal asynchronous and synchronous oscillations, 
asynchronization and synchronization of subsystem in hybrid system dynamics.  

Series of Lissajous curves as well as new series of the generalized Lissajous 
curves obtained by software MathCad as a results of the coupled orthogonal multi-
frequency oscillations are suitable for to build a method of 
asynchronization/synchronization for applications to the discrete continuum for 
synchronization some parts of discrete continuum. By this method based on attractors of 
asynchronization/synchronization of the component oscillations of the subsystems of 
hybrid system is possible and suitable for to obtain conditions of the integrity of the 
dynamical system. Generalized Lissajous curves can be used as attractors of 
asynchronization/synchronization of the component subsystem oscillations which are 
coupled as that these oscillations are orthogonal. By changing some parameters of the 
coupled oscillators synchronization and by use current software tools as it is MathCad (or 
MathLab or Mathematica), the  visualization of the  transformation of the generalized 
Lissajous curve, up to its degeneration into part of straight line,  can be obtain as results 
of the orthogonal coupling of oscillatory multi-frequency signals. If this degeneration is 
not possible, then these oscillators it is not possible to synchronized and corresponding 
parameter is not parameter of synchronization.   If as results of the change of some 
parameters of the coupled oscillators synchronization is transformation of the generalized 
Lissajous curve into one unique line then it is possible to obtain system parameters of 
the attractor of partially synchronization  or asynchronization of the coupled oscillators. 
 Also, there are some models of the discrete continuum in plane or in the space, 
which mass particles moves oscillatory as result of coupled two in plane, or three in 
space, orthogonal multi-frequency oscillations Trajectories of this mass particles are 
generalized Lissajous curves. Applications of the  knowledge about generalized 
Lissajous curves is important for constructions of some processing machines with 
working processes based on the motion of the coupled orthogonal multi frequency 
vibrations. 
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Ito’s stochastic differential equations and applications to stochastic oscillations 
of mechanical systems with hereditary properties are also actual mathematical task for 
open possibilities in engineering practice, as well as in other area of science.  

Mathematical analogy and phenomenological mapping by use mathematical 
models in applications to disparate physical models dynamics  open very large 
interactions between different area of science and easier transfer knowledge from one 
area of science to other. 

Also, one of main education task of  Serbian mathematicians and other 
university professor to fined minimum volume of the classical and new current 
mathematical knowledge necessary to be in the programs of Ph.D. study enough for 
mathematical background of new Ph.D. specialist for their next two decade  research and 
possibility to accept new and future mathematical discovery and be competent to applied 
these new mathematical knowledge in research and practice, as well as to define new 
mathematical tasks appear from his research and to directed to mathematicians for future 
research. 
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Apstrakt.  Dat je pregled, u subjektivnom izboru, autorovih naučnih rezultata u 
oblasti klasične mehanike, analitičke mehanike diskretnih naslednih sistema, analitičke 
mehanike diskretnih frakcionog reda oscilatornih sistema,  elastodinamike, nelinearne 
dinamike, kao i dinamike hibridnih sistema.  Glavni originalni autorovi rezultati su 
predstavljrni kroz matematičke modele mehanike sa primerima primene na rešavanje 
zadataka dinamike realnih mehaničkih sistema apstrahovanih do teorijskih modela 
mehaničkih diskretnih ili kontinualnih sistema, kao i hibridnih sistema. Rad prikazuje i 
metode i naučne rezultate autorovih profesora Mitropoljskog, Andjelića i Raškovića, kao  
i originalne naučne rezultate autora og rada dobijene primenom metoda njenih profesora. 
Vektorska metoda je zasnovana na vektorima momenata masa i odgovarajućim 
devijacionim vektorskim komponentama za pol i orjentisanu osu, koje je K. Hedrih , 
1991 godine, definisala i prikazala. Ovde su, takodje prikazani i rezultati u konsrukciji 
analitičke dinamike diskretnih naslednih sistema dobijeni u saradnji sa O.A. Goroshkom.   
Takodje je ukazano i na neke izabrane rezultate autorovih poslediplomaca i doktoranata u 
oblasti nelinearne dinamike. Spisak naucnih projekata kojima je rukovodio autor je 
prikazan, kao i spisak doktorskih disertacija i magistarskih teza koje sadrže naučne 
rezultate uradjene pod mentorstvom  autora ovog rada ili njenih prvih doktoranata.       

 
 Ključne reči: Pregledni, vektorska metoda, vector momenta mase, vector 

devijacionog momenta mase, rotator, spregnute rotacije, mimoilazne ose, bazni vektori 
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tangentnog prostora vektora položaja, ugaona brzina baznih vektora tangentnog prostora, 
brzina ekstenzije baznog vektora, reonomne veze, reonomne coordinate, pokretljivost, 
asimptotska aproksimacija rešenja, asimptotska metoda usrednjenja Krilov-Bogoljubov-
Mitropolzski, metoda varijacije konstanata, nasledni sistem, reološko i relaksaciono 
jezgro, standardni nasledni element, integrod-diferencijalna jednačina, izvod necelog 
reda, kovarijantne koordinate, kontravarijantne koordinate, fizičke koordinate, metoda 
diskretnog kontinuuma, prostorna frakcionog reda struktura, glavne sopstvene površinske 
mreže, glavni sopstveni lanci, oscilator frakcionog reda, karakteristični brojevi sistema 
frakcionog reda, prenos signala,  višefrekventni, materijalne tačke, kruto telo, reduktor, 
deformabilno telo, sistem više tela, transverzalni, longitudinalni, spregnute ploče, 
spregnute trake,  spregnute grede, stohastička stabilnost. 
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