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Dear Reader,

In March 2009 research team of Project ON155002 Theoretical and Applied Mechanics
of the Rigid and Solid Bodies. Mechanics of Materials (2006-2010) and Seminar
Nonlinear Dynamics - Milutin Mialnkovic, organized a one day Scientific seminar
named: Address to Mechanics: Science, Teaching and Applications, at Mathematical
Institute of SASA. Academician RAS Valery Kozlov Opening lecture. Jubilee of the 80"
birthday of Professor V.A.Vujicic was included in the Seminar program and a Booklet
of each two-pages abstracts was published.

After the seminar participants and other researchers were invited to submit full
papers for possible publishing in a special publication titled with the same name Address
to Mechanics: Science, Teaching and Applications.. All submitted manuscripts for
possible publishing in Special publication were evaluated by two reviewers and 19
papers were accepted for publishing.

At meeting on June 20th, 2012, Executing committee of the Serbian Society of
Mechanics decided to publish a special publication titled Address to Mechanics:
Science, Teaching and Applications in the form of Special Issue of the Journal
Theoretical and Applied Mechanics with Guest editor Katica (Stevanovic) Hedrih.

This special issue contains 18 original research papers and one review paper.
Research papers are grouped by area of mechanics and research results. The papers are in
following areas: general mechanics and theory of stability, nonlinear dynamics, robotics,
structural mechanics and damage mechanics, biomechanics, finite element method
applications, control of mechanical systems, geodesic on the surface, fluid mechanics,
celestial mechanics, computational mechanics, biologically inspired control in robotic
systems, .fractional calculus applications in mechanics, active control in mechanical
systems, estimation of life of structures, eigen sensitivity of mechanical structural
systems, vector position tangent space, vector method based on the mass moment vectors
applications, discrete continuum method, method of variation constants, dynamics of
systems with frictions and other.

I hope, that this special issue will provoke interest and be a good addition to the
quality of the Journal Theoretical and applied mechanics of our Serbian Society of
Mechanics,

At Belgrade, October 2012.

Guest Editor
Katica (Stevanovic) Hedrih.
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ON THE RESIDUAL MOTION IN DAMPED VIBRATING
SYSTEMS

UDC 534.16

Ranislav M. Bulatovié

Faculty of Mechanical Engineering, University of Montenegro,
81 000 Podgorica, Crna Gora

Abstract. In this paper, linear vibrating systems, in which the inertia and stiffness
matrices are symmetric positive definite and the damping matrix is symmetric positive
semi-definite, are studied. Such a system may possess undamped modes, in which case
the system is said to have residual motion. Several formulae for the number of
independent undamped modes, associated with purely imaginary eigenvalues of the
system, are derived. The main results formulated for symmetric systems are then
generalized to asymmetric and symmetrizable systems. Several examples are used to
illustrate the validity and application of the present results.

Key words: linear system, dissipation, residual motion

1. INTRODUCTION

Some of the simplest and most fundamental vibrating systems can be described by a

differential equation of the form
AG+B3g+Cqg=0,geR" 1)

where A, B, and C are nxn constant real symmetric matrices, q is the n-dimensional
vector of generalized coordinates and dots denote derivatives with respect to t (the time).
The inertia matrix A and stiffness matrix C are positive definite (>0), and the damping
matrix B may be positive definite or positive semi-definite (> 0). In the case B >0
dissipation is complete, and the case B >0 corresponds to incomplete dissipation. In the
latter case the system is called partially dissipative (damped).

It is convenient, although not necessary, to rewrite equation (1) in the form

X+Dx+Kx=0, (2)

using the congruent transformation x = AY?q, where AY? denotes the unique positive
definite square root of the matrix A, and D= A™?BA™? 'and K = A™Y2CA™?2,

All solutions x(t) of the equation (2) (or q(t) of (1)) can be characterized
algebraically using properties of the quadratic matrix polynomial
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L(A) =21 +AD+K, (3)
where | is the identity matrix. The eigenvalues of the system are zeros of the
characteristic polynomial

A(A) = det(L(1)) 4)
Since (4) is a polynomial of degree 2n with respect to A1, there are 2n eigenvalues,
counting multiplicities. If 4 is an eigenvalue, the nonzero vectors X in the nullspace of
L(A) are the eigenvectors associated with 1, i. e.,

L(A)X =0 ®)
In general, eigenvalues and corresponding eigenvectors may be real or may appear in
complex conjugate pairs.
If the dissipation is complete, it is well-known that the system (2) (or (1)) is
asymptotically stable (x(t) >0 as t — o for all solutions x(t)), see [1]. On the other

hand, the partially damped system (2) may or may not be asymptotically stable, although
it is obviously stable in the Lyapunov sense (any solution of equation (2) remains
bounded). Consequently, all eigenvalues of this system lie in the closed left-half of the
complex plane (ReA<0). Notice that if the system is asymptotically stable,
thenRe 1 <0.

Recently some attention has been paid to the question whether or not a damped
system has pure imaginary eigenvalues, i. e., in the terminology of the mechanical
vibrations, whether or not undamped modes are possible in such system (see [2] and
quoted references). From the above discussion it is clear that nonexistence of undamped
motions (also called “residual motions”) is equivalent to the asymptotic stability of the
system, and consequently, any test for asymptotic stability gives the answer of the
question. A survey of the stability criteria for linear second order systems is given in [3].
Also, it should be mentioned that the paper [2] rediscovered an old criterion for
asymptotic stability of the system [4], as was recently stressed in [5].

In this paper we are interested in the determination of the number of pure imaginary
eigenvalues of the system without computing the zeros of the characteristic polynomial
(4). The main result given in section 3 (Theorem 2) recently derived in our paper [6].
This result is based on the well-known condition of asymptotic stability [7], which
coincides with the rank condition of controllability of a linear system (see [8]), and a
transformation converting the system (2) into two uncoupled subsystems; one of them is
r-dimensional undamped subsystem, where r is the number of conjugate pairs of purely
imaginary eigenvalues of the system including multiplicity, the second is (n-r)-
dimensional damped asymptotically stable subsystem. When the matrix K has all
distinct eigenvalues, and r its eigenvectors lie in the nullspace of the damping matrix, the
decomposability of the system in modal coordinates was observed in [4]. In sections 4
and 5, when one of two matrices D and K is transformed on diagonal form, two useful
results are stated. Finally, in section 6 the results of section 3 are generalized to
asymmetric and symmetrizable systems.
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2. THE DECOMPOSABILITY OF THE SYSTEM

Theorem 1. Let tiw,..tiw, be eigenvalues of L(A). Then there exists an
orthogonal matrix Q such that

T 3 0, :
Q' DQ=D= (_O_TB;:J : (6)
and
; . (9,0
Q KQ=K-= (‘6‘:*12‘”:) : (7

where 0, is the zero square matrix of order r, and Q, = diag(@?,...,®?) .
To prove Theorem 1 we need the following lemmas.
Lemma 1. Let (iw, X),w € R,i = J-1,bean eigenpair of L(1). Then (»®, X) and
(0, X) are eigenpairs of the matrices K and D, respectively.
Proof. From
L(iw)X = (0?1 +ioD+K)X =0, (8)
we obtain
<X, (K=0’1)X >+im< X,DX >=0, 9)
where <.,.> denotes the inner product, and < X, (K -®°1)X >, and < X,DX > are
real quantities, since K and D are real symmetric matrices. Then < X, DX > =0, which
implies DX =0, since D > 0. This together with L(iw)X =0 gives KX = @?X .[J
It is clear that the eigenvector X in Lemma 1 can be taken to be unit (< X, X >=1)
and real.
Lemma 2. a) If (io, X®) and (iw,, X ) are eigenpairs of L(1) with o # w?,
then < X®, X @ >=0.
b) If the eigenvalue i of L(A)has multiplicity k, it possesses k eigenvectors which

are mutually orthogonal.

Proof. a) The result follows from Lemma 1 and the additional fact that eigenvectors
associated with distinct eigenvalues of a symmetric matrix are orthogonal.

b) Since the system (2) is stable, the multiple eigenvalue iw must be semi-simple,
which means that the eigenvalue has k linearly independent eigenvectors. Since a linear
combination of these k vectors is also an eigenvector of L(1)associated with iw, the

Gram-Schmidt process (see [9]) can be used to obtain k mutually orthogonal
eigenvectors. [

It is follows from Lemma 1 and 2 that the number of independent undamped modes is
equal to the number of conjugate pairs of purely imaginary eigenvalues (natural
frequencies), including multiplicity.

Proof of Theorem 1. By lemmas 1 and 2, there exists an orthonormal set of r vectors
X® . X such that
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DX =0,KXV =X j=1,...r (10)
Now, consider an orthogonal matrix Q having the vectors X® ... X as its first r
columns,
Q=(X®.., X" (11)

The matrices D and K are then orthogonally congruent to matrices D and K,
respectively, described by

D=Q'DQ=(< X" DX >) (12)
and

K=Q'KQ=(< X" KXW >), (13)
where i,j = 1,...,n. Using (10) and < X X@ >= ¢

i » Where o; is the Kronecker delta
andi,j=1,...,n, we compute
<X® DXxW>=0 (14)
and
< X0 KXD >=wls;, (15)

wherei=1,....,nand j=1,...,r. The relations (14) and (15) show that D and K have the
partitioned forms (6) and (7). [J

3. THE MAIN RESULTS

Introduce the nxn? matrix
®=(DIKD|.|.1.|K™D) (16)

which plays key role in a test for asymptotic stability of the system [7].

Theorem 2. The system (2) has  r =n-—rank® conjugate pairs of purely imaginary
eigenvalues, including multiplicity.

Corollary 1. If rankD =m,then 0<r<n-m.

This follows immediately from rankD < rankd <n.

Proof of Theorem 2. Suppose that A(+iw;) =0, ®; e R, j = 1,...,r and that remaining
zeros of A(A) take places on the open left-half of the complex plane. Then from
Theorem 1 it follows that there exists an orthogonal coordinate transformation

x:Q(yj,yeiR',ZEﬂi’”r, 17)
z
which transforms equation (2) to the form
)0
Z z z 0

where D and K have the partitioned forms (6) and (7). Under the above assumptions it
is clear that the (n-r) dimensional subsystem of (18)

7+D,,2+K,,z=0,zeR"" (19)
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is asymptotically stable and, according to well-known result [7], we have

rank(lf)n CIK, Dy T Kg‘j{’ltﬂ)w):n—r (20)
On the other hand, the matrix ® coincides with the matrix
QB IKD!. 1 1K™ D, (21)
where P =diag(Q",...,Q") . Then
rankd = rank(l§n CIK, D, T KD ﬁlﬁnfr), (22)

since Q and P are nonsingular, and D= diag(0,,D,_,), and Kjﬁ—diag(o
..)- Now, according to the Cayley-Hamilton theorem (see [9]), every matrix
7an4 with integer j > n-r can be represented by a linear combination of the matrices
D, K_D, . .. I%Q”’Hﬁn r,and consequently
rank(lf)rH L1 KD, r) rank(f)

The result then follows from (20), (22) and (23). [
Remark 1. The matrix (16) can be expressed in terms of the original matrices as

® = AV 2ddiag(AY2,..., AY?) (24)

LIRDL) ()

|..
n-r [

where
~(BieEahB .1 1. 1A "B) (25)

Consequently, rankd = rankd , since A is nonsingular.

In the case of “classical damping” in which D and K commute the following result
as a consequence of Theorem 2 can be obtained.

Theorem 3. If DK =KD, then the system has r=n-rankD conjugate pairs of
purely imaginary eigenvalues.

Proof. Since D and K commute there exists an orthogonal matrix such that both
D and K are orthogonally congruent to diagonal matrices [9]. Then, evidently,
rank® = rankD , and Theorem 3 follows from Theorem 2. [

In the next, two examples are given to illustrate the application of the above results.

Example 1. Consider the two-degree-of-freedom system shown in Fig. 1, where
¢, >0 and pB>0 stand for the spring constants and coefficient of viscous damping,

respectively, and g, and g, are the displacements from equilibrium positions of masses
m, and m, .

0 Q2 =

Cy [‘P C
m; mp

Fig. 1 The sysieim of exampie
The inertia, damping and stiffness matrices of this system are as follows

az|M Ol g gt tofa @ 26
_Omz'_ﬁ—ll'_OCz (26)
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It is clear that rankB =1, and consequently, the system is partially damped. The matrix
(25) takes the form

1 1 & a
®=p meoom (27)
-1 1 =2 =z
m2 mZ
Thus, by Theorem 2, we have
~ 0,c,m, #¢c,m
r:2—rank<l)={ v (28)
lLcm, =c,m,

In the case ¢;m, =c,m,, the system can oscillate such that relative motion between
the masses is absent, so that the damper dissipates no energy. If ¢;m, = c,m,, the system

does not have pure imaginary eigenvalues, and all motions lead up to dissipation of
energy.
Example 2. Consider the three-degree-of-freedom system (2) with

1 0 -1 2 -1 0
D=/ 0 0 0| andK=|-1 2 -1], (29)
10 1 0 -1 2

previously studied in [10].
It can be easily verified that rankD =1, and that DK = KD . Thus, by Theorem 3,
system of this example has two conjugate pairs of purely imaginary eigenvalues.

4. THE CASE WHEN K IS DIAGONAL (PRINCIPAL COORDINATES)
It is well known that there exists an orthogonal matrix Q such that
Q'KQ =Q=diag(e’l, ,...o{1, ), (30)
where @; and I, denote the distinct natural frequencies of the undamped system

(D=0 in (2)) with multiplicity n;>1 and the identity matrices of order n,,
n,+..+n,=n. Multiple natural frequencies are typical in vibrating systems with
symmetry or as a result of optimization.

On transforming to principal (modal) coordinates defined by p=Q'"x and using
(30), (2) reduces to

p+Rp+Qp=0, (31)

where the matrix R=Q"DQ is known as the modal damping matrix. Form a consistent
partition of R with Q:
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| [
R11| 12|-|R1k

R= _REl_i_R_ZZ_E_'_E_F_e?_k. (32)

We need the following statement.
Lemma 3. The system (31) is asymptotically stable if and only if n; =rankR;, j =

1, ...k
Proof. See [11].0J
k
Theorem 4. The system (31) has r= n—ZrankRjj conjugate pairs of purely
j=1
imaginary eigenvalues, including multiplicity. If w;i is an eigenvalue of the system, then
its multiplicity is equal to n; —rankR;; .

Proof. It follows from Theorem 1 and Lemma 3. [
Since rankR; <m=rankR, the next result recently formulated in [5] follows directly

from Theorem 4.
Corollary 2. If max(n;) > rankR, then system (31) has residual motion.
]

Next, we apply Theorem 4 to the example 1. For this example, the matrices R and
Q take the forms

\J - c,/m 0

R= ﬂ m2/m1 1 ,Q:(l 1 J (33)
Jmm, -1 Jm/m, 0 «c,/m,

Thus, by Theorem 4, r = 0 if ¢,;m, = c,m,, i. e., the system does not have residual motion

(the system is asymptotically stable), and r = 1 if ¢,;m, =c,m,.

5. THE CASE WHEN D IS DIAGONAL

Since D=D" >0 and rankD = m, there exists an orthogonal matrix Q such that

Sy |
S=0"DO=| %" 34
Q'DQ (0 foj (34)
where S, =diag(s,,...,$y,0,..,0), s;>0 for all j = 1,.m. By the coordinate

transformation
u
X=Q[-J,U6§Rm,Ve§R”m (35)
v
the system (2) reduces to the form

el Rl

where
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P=Q'KQ= [Fl_l_i_Pl_zJ (37)

is the transformed stiffness matrix written in the consistent partitioned form with (34).
Introduce the (n-m)xm(n-m) matrix
F :(le : I:’zzpﬂ : : Pzr;milpzl) (38)
Lemma 4. rank® = m+ rankF .
Proof. Substituting (34) and (37) into (16), after some rank persevering
manipulations, we obtain
S,1 0 0 0 |

| | | | 0 |
rank®d = rank[———r———i— ————— :*“z““:‘“’.“Tf“T‘J (39)
O | PZl | P22P21 | P22 PZl [ P22 PZl | 0

Since every matrix PJP,, with j>n-m, according to the Cayley-Hamilton theorem,

can be represented by a linear combination of the matrices P,,, P,P,,, ..., Py " 'P,, the

lemma is proved. [

Theorem 5. The system (36) has r=n-—m-rankF conjugate pairs of purely
imaginary eigenvalues, including multiplicity.

Proof. It directly follows from Theorem 2 and Lemma 4. [J

Let us give an example illustrating Theorem 5.

Example 3. (taken from [2]). Consider the tree-degree-of-freedom system (2) with

000 3 -2 0
D={0 2 0| andK=|-2 5 -3 (40)
000 0 -3 3

The damping matrix is positive semi-definite with m =rankD =1, whereas the
stiffness matrix is positive definite. By the orthogonal matrix

010
Q=1 00 (41)
0 01
we obtain
2,0 0 51-2 -3
S-Q'DQ=/010 0|andP=Q'KQ=|-2!3 0 42)
010 0 310 3
The matrix F takes the form
-2 -6
F:(_g _9} @)

Thus, by Theorem 5, we have r=(3-1)—rankF =1. This fact can be corroborated by

computing the eigenvalues of the system; the eigenvalues are
+1.7321i, -0.4203+0.3473i, —0.5797 £ 2.5283i .
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6. SOME GENERALIZATIONS TO ASYMMETRIC SYSTEMS

In this section, it is shown that theorems 2 and 3 can be generalized for a class of
asymmetric systems (i. e., the symmetry restriction are not met by inertia, damping and
stiffness matrices) commonly known as symmetrizable systems. Asymmetric coefficient
matrices appear in problems involving follower forces, gyroscopy, aero-/hydro-elasticity
and control effects, etc.

Assuming that the inertia matrix A is nonsingular, the equations of motion can be
written as

G+A'Bg+A'Cq=0 (44)
The symmetrizable systems are defined in [12] as systems that have symmetrizable
matrices A'B and A'C, i. e, such that factorizations A'B=S,S, and A'C =SS, are
permissible, where S, is symmetric and positive definite, while S, and S; need only be

symmetric. Additionally, it is supposed that A™'B has nonnegative real eigenvalues and
AT'C has positive real eigenvalues. Then, S, and S, are positive semi-definite and

positive definite, respectively, and the system described by (44) is stable [12].
Consequently, all eigenvalues of this system lie in the closed left-half of the complex
plane.

Using the transformation q =S}’ Eq. (44) is reduced to
X+Dx+Kx=0, (45)
where D=D'=5/?S,8/* and K=K'=5/?S,S"*. Since D=D">0 and
K =K' >0, the results developed in the section 3 can be applied to Eq. (45). From the
factorizations of A™B and A™'C, we have

D=S,"*A"'BS"? (46)
and
K =S"?A"CS"? (47)
Substituting (46) and (47) into (16) results in
® =S, "*ddiag(S;'?,...,S,"%), (48)
where
®=(A"B|ACAB!.|.|.|(A'C)""A'B) (49)

It is clear that rank® = rank® . Thus, the following proposition is proved.

Theorem 6. The symmetrizable system described by Eq. (44), where A™'B and
A'C have non-negative and positive eigenvalues, respectively, has r=n-—rankd
conjugate pairs of purely imaginary eigenvalues.

Remark 2. It is clear that rankd® is the same as rank of the matrix (25), because

D=AD.
Also, the following result can be easily established.
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Theorem 7. Suppose that A™'B and A'C have non-negative and positive
eigenvalues, respectively. If A™B and A'C commute in multiplication, then the
system ( 44) has r =n—rank(A'B) conjugate pairs of purely imaginary eigenvalues.

Example 4. Consider the asymmetric system described by

G+ 2 4 ]+ 44 =0 (50)
G 281 47
Here note that
a 2 4 1.2461 —-0.2769)2.8889 5.7778
A'B= = , (51)
1 2 -0.2769 0.3115 )| 5.7778 11.5556
and
o 4 4 1.2461 —0.2769)4.8897 7.5573
ATC= = , (52)
1 4 -0.2769 0.3115 )\ 7.5573 19.5599

so that the coefficient matrices have a common positive definite factor. On the other
hand, the eigenvalues of A™B in this example are 0 and 4, and those of A™'C are 2 and

6. Hence, A'B and A'C have nonnegative and positive real eigenvalues, respectively.
Thus, the Theorem can be applied. The matrix (49) takes the form

_ (2 412 24
D= (53)
12 6 12

and, consequently, r=2-rank® =1. This is in agreement with the eigenvalue
calculation for the system, which yields 4, =+iv2 and 4, = —2+iv2 .

Finally, observe that A™B and A™C commute for this example, rank(A'B)=1,
and, according to the Theorem 7, r =1.
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ON THE DETERMINATION OF SHIFTING OPERATORS
ALONG GEODESICS ON A SURFACE
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Zoran Draskovié
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Abstract: A procedure to obtain a closed form of the shifting operators along a known
geodesic line on a surface as a solution of a system of linear algebraic equations is
proposed. Its correctness is numerically demonstrated in the case of a helicoid surface
and a spherical one. The future use of these operators in finite element approximations
of tensor fields in non-Euclidean spaces is announced.

Key words: surface, geodesic line, parallel transport, shifting operators

1. INTRODUCTION
It is well known that the system of differential equations for determining the
components of a vector v parallelly propagated along a curve u” =u“ (s) on a surface
reads’
Dv*  dv” o pdu’

=— +T% vVV— =0 , 1
Ds ds P77 ds @)

where u“ are so-called surface coordinates, I"; are the Christoffel symbols of the
second kind determined for this surface, and s is the arc length of this curve. The
fundamental system of solutions Kj of this homogeneous system of differential
equations represents the operators of parallel transport (the shifting operators) with
respect to the surface along this curve, establishing the relation

vi(P)=Kj (R, P) V'(R) )

between the components of the vector v before and after its parallel transport from the
point P, to the point P . However, the existence of this fundamental system, i.e. the
existence of shifting operators along the given curve, does not necessarily mean it is easy

! Einstein's summation convention for diagonally repeated indices is used; Greek indices have the range {1,2},
while Latin indices will have the range {1,2,3}.
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to find them. Namely, “the explicit form of the function ... [ K" ] is not known ([5], p.
260) and even in the case of the geodesic lines on a spherical surface (its great circles)
the shifting operators are obtained in [6] by using a heuristic procedure (and not by
solving the corresponding homogeneous system of differential equations).

2. ALGEBRAIC APPROACH IN THE DETERMINATION OF SHIFTING OPERATORS

Nevertheless, it turned out quite unexpectedly that one can obtain a closed form of
these operators along a known geodesic line on a surface as a solution of a system of
linear algebraic equations using the fact that the tangent vector of a geodesic is a parallel
vector field along this line, i.e. the fact that

du”
—KZ(P,P 3
s (R, P) & 3)

P

o

du”
ds

and the insufficiencies of these two conditions for the determination of the four
coefficients Kj* is surpassed by introducing an additional vector also parallelly
propagated along the geodesic line
w=nxt 4

or in the component form

W, = gy n'te (®)
Namely, this vector — permanently orthogonal to the tangent vector t of a geodesic line
on this surface — is always in the tangent plane of the surface; n is the normal to the
surface and hence (s. [1], p. 214)

j 5k
Pepzizy (6, :\/aeaﬁ ,e”=e”[Ja, a=

) (6)

1
n=_¢ a,,

where z are the rectangular Cartesian coordinates, z, =oz'/6u® and & = €y ; for the
tangent vector twe have

t' =2 du”/ds ; @)

the surface components of the vector w (lying in the surface tangent plane) are

w,o=2'w ®)

in the case of the orthogonal coordinates u” we have w” = a”ﬁwﬂ and finally 9)
i i i i i du” 1 i iv du”

w' =a”zyw =a”zpe, 't =a” 26,60,z e Ea"l’]z'ﬁgijkﬁ"'(e“vgmn 2,2, =

Due to the parallel transport of the vector w along the geodesic line we have
W/ K5 (P, P) = wg (10)
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and the coefficients K can now be determined from (3) and (10)

du'| du? du'| dut
1 Ao 1| e
KR PY = | Ol OS] KR PY = O8], dsl,
wp oW w, W a1
du?| du? du'|  du? '
1= — kil
kiR, P) = ds ], Os] | KEEP)-—ds], ds],
det W2 W2 det wl 2
P o 0 P
where
e
det=|ds|, ~ds|, (12)
w, W

These expressions are implemented in the corresponding software tool in order to
compare some numerical results with the formerly checked ones for the shifting
operators on the spherical surface and exceptional coincidence is obtained!

However — bearing in mind that the relations (9) are not the promising ones
concerning the determination of the explicit expressions for the shifting operators and
that the surface components of the vector w are present in (11) — we can proceed
directly, considering w as a vector in the tangent plane of the surface orthogonal to the
tangent vector of a geodesic line on this surface; namely

a,, du’ \/7du ) (13)
\/7 ds \/_ds '

hence for the coefficients K’ we obtain the expressions

\/aT’dul du aj, du?| du?
1 _ 1 22
KHR.P)= Va \/g ds | \/> ds ds §

aj, du du1 a, du1 du?
K.Zl(POIP):_\/; N2 N%22 uu

ds ds ds

g j: " (asl,) @9
2 B a; du? du du| du? °
KZ(R,P)= 3, oy 05|, ), Va5, 65,
2 _ \/>du Ll azz du dU2
KZ(RP)= o, \/; ds |, \/> ds ds .

and in every single case one can try to find the explicit expressions for the components of
the operators of parallel transport along the known geodesic line on the surface under
consideration.
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3. EXAMPLES

3.1. Operators of parallel transport along geodesics on a spherical surface

In order to obtain the effective expressions for these operators, we shall use the finite
equation of the geodesic line (the great circle) on a spherical surface (with the radius
r = 0) in the form (s. for example [4], p. 167)

tg 9= Acosp+Bsing (15)

where {¢, 3} are the geographical coordinates (u' =9, u? = 9) and the constants A and
B can be obtained from the condition of passing through the points P, (¢,,$,) and

P(@Pi‘gp)

tg 8, = Acosg, + Bsing, (16)
tg 8, = Acosg, + Bsing;
hence it follows
sin g, tan 8, —tan 9, sin g,
A=Ay 05 8y %) =—— -
sin ((/JP —® )
tan 4 tan 3 )
an 9, cos¢, —cos g, tan 4,
B=B(g, 0% 9 %) =—— .
sin (¢ —9,)
Knowing that the components of the fundamental metric tensor in the system {go, 8} are
a,=a, =r’cos’ ¢ , a,=a, =a,=2a, =0, a,=a,=r (18)
we have
ds® = a,,du”du’ = r*(cos’ 9dg® +d.$*) (19)
and, bearing in mind the relation (15), we obtain
do_, !
ds  reos 8\/1+ cos® 9( Asinp—Bcos )’
20
dg_1 cos 3( Asing—Bcosg) (20)
ds r\/1+ cos? 9( Asinp - Bcos )’
Using (17), we have for example
d_(” _ sin ((pP _wo)
dslo reos 80\/sin2 (¢ — @, )+c0s* & [ cos (g, — g, ) tan 4, —tan 9, }2
(21)
dg cos 9, [ cos(p, — @, )tan &, —tan 9 |
ds|,

o r\/sin2 (¢ —,)+c0s” & [ cos (g, —, ) tan 4, —tan g, T
and similarly
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d_(/’ _ Sin((pP _(po)
9l reosg, \/sin2 (¢p 0, ) +c0s° %, [ cos(gp — g, ) tan g, — tan 190}2

22
dg c0s 9, [ cos(pp — @, )tan 9, —tan 9, | @2
dslp

P r\/sin2 (95 — @, )+c0s” % [ cos(p, — @, ) tan g, —tan 190}2

Finally — substituting (21) and (22) in (14) — we obtain the following explicit
expressions, in the geographical coordinates {¢),9}, for the operators of parallel
transport with respect to a spherical surface along the geodesic line connecting
R, (%, ) and P(g;. %)

1{003190 .

K(P,,P) = sin® (¢, — @, )~
i (R.P) 5 |coss, (2o —,)

—cos” 9, cos(p, —, ) tan 9, —tan 9, |[ cos(p, — ¢, )tan 9, —tan g, ]}

K (P, P) = —ésin(gop ~9,){[cos(¢p — ¢, )tan g, —tan 8, |+

4 Cos 9

c0s d, [cos(gp —¢,)tan g, —tan 5, |}

K2(P,,P) = ésin((pp —goo){cos 9, c0s 9, cos(p, — ¢, )tan I, —tan 4, |+
+c0s” 9, cos(¢, — ¢, )tan 9, —tan 9, ]}
1.
KSR P)= Slsin(os —0,)-

—c0s 9, 05 9, cos(pp — @, ) tan 9, — tan , [ cos (g, — ¢, ) tan 9, —tan %, | (23)

where

S =,/sin’ (@, —,)+cos® 9, | cos(p, — ¢, )tan 9, —tan 3, ?
o] 0] o] (0]

x \/sinz (95 — @, )+c0s* 9, [ cos(p, —, ) tan 9, —tan SOT

These expressions, in comparison with the ones in Appendix, have considerably simpler
form. Concerning the correctness of (23), as well of the expressions (11) and (14), the
accordance of the four groups of results (quoted in Table 1.) for an arbitrarily selected
pair of points on the spherical surface represents a numerical confirmation of the
usefulness of the previously obtained expressions for shifting operators.

3.2. Operators of parallel transport along geodesics on a helicoid surface
In the case of the helicoid surface
7' = pcose
7> = psing (b =const) (25)

3

" =bgp
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the components of the fundamental metric tensor in the system {p,go} (U=p,u’=9p)
are

a=a=1,a=a=a=a=0,a=a=p+b (26)
and we have

ds® =a,,du“du’ =dp® +(p* +b*)de* . (27)
On the other side, the equation of the geodesic line on this surface can be found in the
form (s. for example [3], p. 45)
Ddp

\/(p2+b2)(p2+b2—D2)

and, bearing in mind (27), we obtain

dp _, p?+b*>-D?
Loy |
ds p°+b . (29)

dop _ D
ds P’ +b?

(28)

¢:Cij

I+

Rewriting (28) in the form
Ddr

30
r2+b2)(r2+b2—D2) 0

el

we find C =g, (from the condition that ¢ =¢, when p=p,), while the constant D
should be determined from the condition that

Pp
o0 =0,% | Ddr . (31)

2 \/(rz +b?)(r* +b*-D?)

Due to the monotony of the subintegral function in (31), it is relatively simple to obtain a
sufficiently exact value of the constant D as a numerical solution of this equation. With
such approximative value for D, the evaluation of the components of the operators of
parallel transport along the geodesic line connecting the points P (p,,¢,) and
P(p.,@,) on a helicoid surface can be performed according to (14), using the
expressions (26) and (29).

In this case, in order to examine the correctness of the whole proposed procedure, the
numerical comparison is made between two approaches: the above described one using
shifting operators and the one without these operators. In the first case the contravariant
components of a vector v shifted on this surface from P, to P is calculated according to
the formula

v (P)=K5 (R,.P)V/(R) (32)
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(where v! =v”, v> =v*) and the Cartesian components of this vector at the point P are
determined in the usual way

oz’

o vZ(P) + —
op

V'(P) = > v (P) (33)

P

P

(but now v =v =v?, v2=v' =v¥, ¥ =v’ =v*). In the second case, the Cartesian
components of the vector v are obtained directly (without introducing the notion of the
operator of parallel transport with respect to a surface) from the condition that a vector
shifted along a geodesic line must close a constant angle with this curve at each of its
points (s. p. 143 in [2]). The results for an arbitrarily selected pair of points on the
helicoid surface (with b=h/2z and h=5) are quoted in Table 2. and the accordance is
evident.

4, CONCLUDING REMARKS AND FUTURE ACTIVITIES

The relatively simple and numerically efficient way to obtain the values of
components of the operators of parallel transport along a known geodesic line passing
through two arbitrarily selected points on a surface is described. Although this procedure
— based on a solution of a system of linear algebraic equations — can be used to obtain the
explicit analytical expressions for the shifting operators in some cases, the main benefit
is a possibility of its use in the future numerical testing of an approach in finite element
approximations of tensor fields in non-Euclidean spaces proposed in [7]. Namely, instead
of the usual approximation of components of tensor fields, the approximation of the
whole field (as a kernel) is performed and the operators of parallel transport play the
fundamental role in such approach.
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Table 1. Geographical components of the shifting operators along the geodesic
line connecting the points Po and P on a spherical surface

P(p,9)="P (7°,77° 1p 1(p
o(90:%) = R ( ) (K3 (R, P} = Klz(PO P) KZZ(PO P)
P((pprlgp): P(1301780) Kl (PO’P) KZ (Polp)
heuristic approach 107630424872861 0.490918399454177
—2.296023426624826E —2 0.994777456654368
algebraic approach 107630424872861 0.490918399454179
—2.296023426624818E —2 0.994777456654367
algebraic approach 107630424872861 0.490918399454177
—2.296023426624829E — 2  0.994777456654367
algebraic approach 107630424872861 0.490918399454182
—2.296023426624850E — 2 0.994777456654367

Table 2. Cartesian components of a given vector after parallel transport from the
point Po to the point P along the geodesic line on a helicoid surface

approach approach
P (P ) P (e, 9)
I l without with
P (1,85%) P (4,135°)
shifters shifters

0.990432849244363

—2.184434556431047E-2
—0.136255626322580

0.990432849244364

—2.184434556431003E~2
-0.136255626322580

O ODREDPIVANJU OPERATORA PARALELNOG POMERANJA
DUZ GEODEZIJSKIH LINIJA NA POVRSIMA

Zoran Draskovi¢

Apstrakt: Predlozen je postupak za dobijanje zatvorenog oblika operatora paralelnog pomeranja
duz poznate geodezijske linije na nekoj povrsi kao resenja sistema linearnih algebarskih jednacina.
Njegova korektnost numericki je pokazana na primeru sferne i helikoidalne povrsi. Nagovestena je



buduca upotreba tih operatora u aproksimacijama konachim elementima tenzorskih polja u
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neeuklidskim prostorima.

Kljuéne reci: povrs, geodezijska linija, paralelno pomeranje, operatori paralelnog pomeranja

Appendix: Operators of parallel transport along geodesics on a spherical surface

The explicit expressions — obtained in [6] by using a heuristic procedure — for the
operators of parallel transport with respect to a spherical surface along the geodesic line
(the great circle) connecting P, (¢,,$,) and P(gp,,9,) read (geographical coordinates

(heuristic approach)

are in question!)

where

Ki'(R,,P) =

cos 9., =

c0os Y,

{sin @ sin(p —ye,) +c0S Pp COS(Pp /g, ) COS I, 1%
cos Y,
x [Sin (ﬁo Sin((oo “Yeu ) +COos @o COS((DO “Yeu ) cos 19Eu ] +

+ COS(¢7P Ve ) COS((DO - l//Eu)Sinz lglEu}

1 PR _
K3 (R, P) = LIsin @ Sin(gp — /e, )+ COS 3 OS(9 —1/e, )OS ] x
P

><{Sin ‘90 [Siﬂ (Bo COS((DO “Yeu ) —Cos (50 Sin((po Ve ) cos I9Eu ] +
+c08 4, sin 9z, COS @, }—

—COS((p — /e, )SiN G, [5in 9, Sin(, e, )sin G, +C0s 9, oS Iz, 1}

K;?(P,,P) = cos 30{{sin I [Sin @p COS(@p — g, ) —COS @p SIN(Pp — g, ) COSIe, ]+

+€0s 9, sin I, COS P, }x
x [Sin (ﬁo Sin(¢o - ‘//Eu) +Cos @0 COS(% Ve ) Cos ‘9Eu ] -
—COS(0, /e, )SiN e, [SIN 5 SiN(gp — /g, )SiN e, +COS Ty €05 95, 1}

Kﬁz (Pm P) ={Siﬂ 19F’[Sin @P COS((”P A= ) —Cos (ZP Sin(¢P _WEU)COS ‘gEu]+

+C08 9, Sin Je, COS Pp 1
><{Sin ’90 [Sin (770 COS((OO _V/Eu) _COS(ZO Sin((po —U/EU)COS LgEu]+
+c0s 9, sin 9z, COS P, }+
+[sin 3, sin(pp — g, )sin I, +€0s Y, COS G, 1%
x[sin &, sin(p, —wg,)sin I, +€0s Y, cos Y, ]

cos@, =c0s Y, cos(p, —ywg,) , COSQ, =C0SY; COS(@p — Wy, )
_sing, cosd, sin G, —sin 3, sin g, c0s Y,
~ cos @, cos 4, sin Y, —sin g, cos g, cos Y,
COS @, 0S4, Sin ¢, €0S Y, —Sin @, oS %, COS @, COS I,

tg

l//Eu

(sing, cos 9, sin &, —sin &, sin g, cos G, ) +
+(sin 9, cos g, cos &, —Cos @, Cos Y, sin 9, )* +
+(cos @, cos 9, sin g, cos 9, —sin @, €os 9, cos g, os I, )
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and y, and 9, are the Euler angles: the precession w, is the angle of inclination of
the line which represents the intersection of the plane OP,P and the coordinate plane
0z'z°, while the nutation 9, is the angle between the normals to the planes Oz'z* and
OP,P (the angle of proper rotation is ¢, =0).
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Abstract The geometry of OscM spaces was introduced by R. Miron and Gh. Atanasiu in
[6] and [7]. The theory of these spaces was developed by R. Miron and his cooperators from
Romania, Japan and other countries in several books and many papers. Only some of them
are mentioned in references. Here we recall the construction

of adapted bases in T(Osc*M) and T"(Osc*M), which are comprehensive with the J

structure. The theory of two complementary family of subspaces is presented as it was done
in [2] and [4].

The operators J , 3 0, 5 p, p* are introduced in the ambient space and subspaces.

Some new relations between them are established. The action of these operators on Liouville
vector fields are examined.

Math. Subject Classification 2000: 53B40, 53C60

Key words and phrases: projector operators, J structure, 0 structure, subspaces in
Osc*M .

1. TANGENT AND COTANGENT BUNDLES ON Osc*M

Let E=0sc*M be a C*, (k +1)ndimensional space. Some point u < E in some
local chart has coordinates:

U:(yOa,yla, _____ ’yka):(y/_\a)l AGE. ain

The set of allowable coordinate transformations are given by

yOa’ _ yOa' (yOa) or Xa’ _ Xa’(xa) (1_1)
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yla' = (aanoa.)ylav aAa = ayAa ’ A= 0’ !

y2a' = (aoayla')yla + (alaylal)yzal"'!

Y = @oay PNV @Y Y e+ Opeyay )Y

Theorem 1.1. The transformations of type (1.1) form a pseudo-group.

The natural basis B of T(E) is

B ={dy®, dy*,...,dy*}.

As elements of this basis are not transforming as tensors, we introduce the special
adapted basis

B* :{SyOa’Syla,m’ Syka}

where
" (o b _
05‘7 0 0 0
[ 0b] ~ _
@]b @Mgfg ﬂsg 0 0 dy®
oy 0 1
@Zb 2 2b 2 1b 2 b dylc
e (e (- o o ca
: : : : : dykc
_@kb_ L=
K\ ko k (k-1)b k (k-2)b K)o
0 MOc 1 |V|0c 2 MOc K 5c
or shorter
5" |= {5 Joye | 13)

Theorem 1.2. The necessary and sufficient conditions that 8y”* are transformed as
d -tensors, i.e.

al —
sy =% sy A = Ok (1.4)
oX

are the following equations:
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(1
M éﬁaanOb = [

OJMéZ:aOb yo + Op yY, (1.5)

. (2 . . (2 . . (2 .
MgsaanOb :(OjMozcb'aotnyoc +(1JMéE'aObyR +[2J60by2b yeeny

. (k . . (k . . k .
Mgg@anOb :(OngS'aObyoc +[1JM(§E'M aot:y1c +---+[kj60bykb .

The natural basis B of T(E) is

B ={aOa’ala""’aka}'
The elements of this basis are not tensors, so we introduce the special adapted basis
B :{Soalsla""lska}7

where
[80a’51a1"'1 8kaL]: [80a’ala""’ aka ][N ((:))]’ (16)
0 b _
0 Sa 0 0 0
1 1 - o
_(o Ng @5{; 0 0 dy™
N [ %Nz ?Ing > 0 jyi (17)
@1~ 0] o 1]Noa o [a y .
| dy*
k k k k
o P D VS b &
i 0 1 2 k |
or shorter
[6.1=[6,]INDT. (1.8)

Theorem 1.3. The necessary and sufficient conditions that dy,,, A = 0,k are
transformed as d -tensors, i.e.

ox*®

On = 5

6Aa (: (aoa'yoa)gAa) (1-9)
are the following equations:

N()B;I(aaxal) = NoBz:chyBV + Né:_l)ca(afl)cbel +ot Négalcbe' - aanBb') , (1.10)
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1<B<Kk.
Theorems 1.2 and 1.3 first time was proved in [6] and [7] for the special adapted
bases B and B"which are comprehensive with the structure J. In [6] and [7] one
solution of (1.5) and (1.10) using only the metric tensor in M (x*) was given. They are

formally different from these theorems because in [5]-[12] instead of y** from (1.1) it
Aa

appears y A = 1k.

Al
Theorem 1.4. If the bases B_ and B_ are dual to each other, then B"and B will be
dual if NM =1 i.e.the matrices N and M are inverse to each other.

Proof. By assumption is [dyCIab]= dg1 . From (1.3) and (1.8) we have
[By“1[5.] = M Ay° T, 1IN G 1= M G TSSIINGT = [METINGT = 851 (L.11)

In this form, Theorem 1.4 was proved in [2], [3], but in the explicit form it was given
already in [6], [7]-

2. THE PROJECTION OPERATORS

The projection operators are well known in linear algebra. Here they are presented in
the tensor form in the special adapted bases of Osc*M .
Let us denote by H"V,,V,,.V, the subspaces of T'(E) generated

by {Syoa}, {Sy161 },...,{Sy"a} respectively. The following decomposition is true:
T E)=H @V, eV, ®..8V, .

Let us denote by H,\V,V,,.,V,the subspaces of T(E) generated by
{80a } {812 1 852 }---» 18,a | respectively. Then

TE)=H®V, &V, &..8V, .
If X eT(E), then we can write
X = X %8, + X188, + X 28, +...+ X958, = X5, (2.1)

Let us define p,p,,P,,.. Py, the projector operators of T(E) on H,V, V,,.,V,
respectively, where:
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1 O O 8y0b

00 --- 0 Sylb
pO:80b®8y0b:[80b81b'“6kb ® y

1 (2'2)
00 - 0] |oy®

P, =08, ® Sylbv

Po =g, @Y™ = [60b61b"'6kb . ®

We have:

Po+ P, +P,+ P =1.

Theorem 2.1. For the vector field X given by (2.1) and the projector operators
defined by (2.2) the following decomposition is valid

X = poX + plx + pzx +..t+ ka :(po"' P+ P+t pk)X )
where

PoX = X%8gy, PX = X8y, PX = X8,
The one form field o €T (E) can be written:
© = 1y, 8" + 0,8y +...+ m,, Oy (2.3)

Let us define pg,p;,... P, the projector operators of T'(E) on H™,\V,'\V, ...V,
respectively, with

Py =8y” @3, (2.4)
p, =dy* ®3,, ...,
p, =8y ®3,, .
If we write p,, p; ..., P, in the matrix form, it is easy to see that

Py = Pos P; = Pyovees Py = Py (2.5)

where " ~ " means: transposed of.
We have
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P+ P+ p =1

(2.6)

Theorem 2.2. For the one-form field w given by (2.3) and the projector operators

Py, Pr oy P defined by (2.4) the following relation is valid:
W= PoW+ P W+...+ PeW = WP, +Wp, +...+Wp, ,
where
W, 8y " = poW=wp, ,
W, Y™ = p;w=wp,,...,

ka5ykb = pW=wp,.

3. THE J AND 6 STRUCTURES

The structure J is a tensor field on space T(E)®T (E) defined by

0 - 0 0 Sy% |
0O - 0 0 Sy

J = [603812855--8]=| 0 2 - 0 0|®|sy™|=
0 0 - k 0] |&y*

81y ®BY* +25,, ®By™ +35,, ®By* +...+ k5, @y =

01, ® dy® + 20,, ® dy*? +30,, ® dy® 4.+ ko, ® dy‘Da,

From Definition 3.1, we get
Remark 3.1. We have

I8y, = 8y, I8y, = 205, I8, =383, .., IO, 4y, = KOy, ISy, =0
From the above it follows
J:H->V, -V, »>.->V_,->V —>0.
From (3.1) it follows
Remark 3.2.

dy®JI =0, dy*J =3dy™, dy*J =28y",..., 8y = kdy* M’

0 H <V, «V, «..<V, <V, :J.

2.7

3.1)

(3.2)

(3.3)
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Definition 3.2. The structure & is a tensor field on space T(E)®T (E) defined by

01 0 0 - 0
0 0 % 0 - of [ &™
1 6y1a
0 0 0 = -0 Sy?
9 = [80a61a62a“'8ka] 3 ® . =
. Sy(k—l)a
0 0 0 O = ka
k| Lo
0 0 0 O 0
5, ®8y™ + 15, ®yP +.. 425, . Oy = (3.4)
Oa y E la y I (k-1)a y = .

Doa @ dy™ +%51a ®dy*® + ...+%6(H)a ® dy*.

Remark 3.3. The structure 6 satisfies the following relations:

dy®e =3dy™, dy™0 = %Sy“’ sonn, Oy Pg = %aykb , 8y =0 (3.5)

0V, <V, <.V, <V, «<H:0.

From (3.4) it follows
Remark 3.4. The following relations are valid

1 1
080, =0, 08y, =85y, 0825 =285y, 08 =+ By, (3.6)

ie.
0:V, »V,,—>..-V, >V, >H->0.
Definition 3.3. The transpose of the structure J denoted by J is a tensor field on
T(E)®T(E) defined by

o 1 0 - 0
8Oa
o 0 2 -0 5
3=[SyoaéSyla...E‘Sy"a : ® =
00 0 - K : 3.7
8ka
(10 0 0 - 0

By ®3,, + 20y ®8,, + 33y ®3,, +...+ kdy* M @3,
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Definition 3.4. The transpose of the structure 6 denoted by 6 is a tensor field on

T(E)®T(E) defined by

0= [SyoaéylaSyza...Syka] 0

0

N|— O

0

-0

a 1 a 1 a
Syt ®80a+58y2 ®81a+...+?%yk ® 8y pa

Remark 3.5. For the structure J the following relations are valid:

Jsy® =0, Joy® =8y®, oy =28y, ..., Ioy*® = kay*P®,

*

IV, 5V, 5.V 5V 5 H 50

Bopd =8y, Bypd =285, B350 =385 1.0, 81y = KBy, By J

L0V, V.V, «V, «H:J.

Remark 3.6. For the structure 6 the following relations are valid:

éﬁyOb _ 6y1b , §5y1b :%SyZb ,m,ésy(k—l)b :%Sykb7 ésykb -0,

0:H SV, 5V, 5.5V, 50

=~ 1 -~ 1
80,0 =0, 8,0 =3, 62be=561al""6kbe=E8(k—1)bl

O—HV, <V, ..V <V 6.

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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Theorem 3.1.The structures J, J, 6, 0, the projectors Py, Py, Pes Pos Prreves Pi
are connected by

J0=1-p,, J6=1-p; (3.13)

0J=1-p,, 0J=1-p;. (3.14)

Proof. It is easy to see that

J0= Sla ®5"° +82a ®35% +...+8ka ®8ka,
0 =3y, @™ +8, ®™ +...+ 8y, ®3 D2,
Jo=08y"® 8pa + Y ®8, +. + Oy ® S e

00 =8y ®5,, +8y2 ®3,, +..+ 0y ®5,, .

Proposition 3.1. From the above it follows that

JO is the identity operator on V, ®V, ®...®V, ,

JO is the identity operator on H™ @V, @..®V,,,

JO is the identity operatoron H @V, ®...®&V, ,,

JO is the identity operator on V, @V, ®...®V, ,

Theorem 3.2. The structures J, J, @, fare k -tangent structures, namely:

1 +1

o, 320, 0 =0, 8 =0

Proof. The proof is obtained by direct calculation.

Remark 3.7. In Osc'M p, = p,, Py = P,, Py + P, =1,p, + P, =1, and from (3.13)
we obtain J0+6J =1,J6+6J =1 .

The first relation can be found in [5].

One kind of the Liouville vector fields in the natural basis of T(Osc*M) [1], have the
form

k a
Ty :( Jyl Fya s 3.15)
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k 2a k-1 la
Lo = 1 Y0 + 0 Y 0 nya s

k 3a k-1 2a k-2 la
L) = 3 Y 0 + 1 Y 0y + 0 Y O zya e

= YO0 + k-1 yE 20 et 2 y?0,, + L Y0, .
(k) k—1 ka k—2 (k-1)a 1 2a 0 la

It can be proved that (k — (i —1)}I};) given above are exactly the Liouville vector

fields F(i)given by R. Miron and Gh. Atanasiu in [6], [7].

The action of J structure on Liouville vector fields was determined in [6], [7] and in
some modified version in [1]-[3].

It is known that the k-structure J transform the Liouville vector fields in the
following way [1]:

0 = 20 3y, Iy =30 p)n gy = (k = 1), 0, =k, Iy =0 (3.16)

The connection between Liouville vector fields and the structure 6 are given by

Theorem 3.3. The action of the structure 6 on the vector fields I' are given by

k a
F(z) = keF(l) + (l]yz aka ) (317)
K 3a
F(S) :(k—l)GF(2)+ 5 y 6ka,
k 4a
r(4) = (k - 2)9r(3) + 3 y aka ,

k a
[y =260, ) + (k _Jyk Ora -

Proof. As J0 =0,, ® dy™ +0,, ® dy*® +...+8,, ® dy**, the action of structure J on
r(z),r(s),...,r(k) giVeS (Jaka = 0)
i) =k, iT) = (k =)l JT = (k = 2)),..., I = 21, -

The above equations are (3.16).
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k
4. THE suBSPACES oF Osc'M

The theory of subspaces of Osc“M in the form used here, is given in [4]. For the
understanding the action of operators J, # and p on subspaces, we recall the notations,

definitions and theorems, which give relations between different adapted bases.
Here some special case of the general transformation (1.1) of M will be considered,

namely, when
Yo =y, u%m, %M ) = yoe (an,l)og) , 4.1)
0,6, =120, By, =12, M, 6By, 8 =M 410

and the new coordinates of the point u in the base manifold M with respect to another
chart (U",¢") are (u,...,u®™ v v}, where

g = u0a'(u01,m,u0m)' L0 = UOa'(UO(erl),m’UOn),

om0y UOn'): yOa' (U o UOa') _

yOa' _ yOa'(uor’m,u

We shall use the notations

' Ov A| OAI
BY =d,,u*, B =0 .v™,
o Oa

B2 =0,y =0,x*, B*=0 .y =0.x*.
o Oa o
If the transformation (4.1) is regular, then there exists an inverse transformation:
yoe :u0a(y0a)7 V0% — UOa(yOa).

Let us denote

T o

then the following equations are valid:

BB =8, B’B?=0, B!B*=0, B’B*=5", B?B? +B*B’ =52 4.2)

We shall use the notations:
la _ dyoa ka — d kyOa

Codt dt*
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deOa
ukon

la dU o
u = K
dt

Tt

A dUOa A dkl)Om
l)il.ot Ukot

Todt dt*

In the base manifold we can construct two families of subspaces M, and M, given
by equations

M, : Yo — yOa(UOa’COQJ M, Yo — yOa(COapo&j,

where we suppose, that the functions appeared in (4.1) areC”. The subspaces M, and
M, of M induces subspaces E, =0Osc“M, and E, =0sc*M, in Osc*M . Some point

ueE has coordinates (u°*,u',..,u*)and some point veE, has coordinates
(o“‘;,ol‘;,...,ok&) . We have
dim(Osc*M, )= (k + 1)m, dim(Osc*M 2): (k+1)n—m)
We can construct the special adapted bases B, and B, of T(E,) and T (E,), further
B, and B, of T(E,) and T"(E,) respectively.

B, = {8081 reesB }» By = %30&,51&,...,6

N

ka

B, = fou’,su' .., suk}, B;={500&,501&,...,80k&}.

Definition 3.4. The special adapted bases B,, B, ,B, , B, are defined by

1) = [0 NG haﬂ - [%]][N([g] |

where [Ng‘] and {N(aq are matrices obtained from (1.7) by substitution (a,b)— (e, )
U
and (a,b)e(&,gj respectively. The matrices [Mg‘] and [MEQJ] are obtained from

[}
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A B
(1.2) by substitution (a,b)— (o) and (a,b)— (a,Bj respectively.

Theorem 4.1. The necessary and sufficient condition that &u® (8v"*) are
transformed as d -tensors, i.e.

SuA = B 5 [Sva“' _ Bf"éSvA‘;} A=0.k (4.3)
are given by (1.5) if (a,b,c,y) is substituted by (a,B,v,u) [(ab,c,y) is substituted by

(G,B,’Y,V] '

Theorem 4.2. The necessary and sufficient condition that 6, [0 .] are transformed
Ao

as d -tensors, i.e.

8 pe = BESU {6 _=B% A}A=0._k (4.4)
Ao’ o' Aa

are given by (1.10) if (a,b,c,y) is substituted by (o.,B,y,u) [(a,b,c,y) is substituted by

AN AN A

CHARAVIE

Theorem 4.3. The necessary and sufficient conditions that B, be dual B,, B, be
dual to B, are the following equations

[M ((VB)) ][N ((;;]z 65 -

-

Now we want to obtain the relations between the adapted bases B and B', where
B ={80a/810:81a

1U 2 001’80&’8111161&1 18ka18k&}:
further between B” and B™, where
B*:{Syoa,Syla,...,Sy"a},

* *

B" =B, UB; ={5u°“,6v°&,sum,avl&,...,6uka,5vk&}.
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The adapted basis B, B', B*,B" are functions of
(a) (a) (o) (o) [a] (aj
M INg] [M(B)HN(B)IIM[E] ”N(Bj] '

which have to satisfy the conditions given in previous text. It is clear, that the adapted
bases are not uniquely determined.

For the easier calculations we want to obtain such adapted bases, for which the
following relations are valid.

8, =B, +BIS,,, A=01,...k (4.5)
Sy* =B2su™ +B%v’, A=01...k (4.6)

The adapted bases $B$, $B {*}$, $B'$ and $B"{*}$ satisfy (4.5) and (4.6)

Theorem 4.4. The adapted bases B, B", B', B satisfy (4.5) and (4.6) if different
M and N are connected by

e e s o] e
®d ] ® (@] ® O ® (@] @)

{B(B)}{N(b)}:{N(B)}{B(a)} 10) {N(b)}= N(é) 5@| g
oL @ @l @ "ol @ o @

The proof of Theorems 4.1-4.4 are given in [4].

and

5. THE STRUCTURES P ) J AND 0 ON THE SUBSPACES

Let us denote by H'V',,V',,..V', the subspaces of T(E,) generated by
{80s 1 810 oo 84} respectively and by H",V*, V",,..,V", the subspaces of T(E,)
generated by iﬁo& i iﬁl& } iSk&; respectively.

Now we have

T(E)=H'@V'|®..0V",

T(E,) = H"®&V",®..0V",
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Let us denote by H™, V™.V the subspaces of T'(E,) generated by
{8u°“},{8u1“},...,{6uk“} respectively and by H™,V™,,..,V"™", the subspaces of T(E,)

generated by {SVO&},{Svl‘; } {Sv"g‘} .

The following relation is valid
T'(E)=H"oV,®. .0V,
T(E,) =H™"aV,"®..®V,™.
The basis vectors of B, B", B,, B,, B, and B, are connected by (4.5) and (4.6)

i.e.
8, =BUS,, +BIS ., 8y" =BSuM + BV, A = 0K (5.1)
Ao o
Let us examine the operators p, J and @ on the subspaces.

Proposition 5.1. The projector operators p,,p; ..., P, given by (2.2) can be
decomposed in the following way:

Po = plo"'p"o (5-2)
P, = p|1+p"1 [EREE]
P = Pk +P"

where
Pa'=8,, ®BU™, P =5 @5V, A = 0K,

(no summation over A).
Proof. From (2.2) and (5.1) we get

Pp =0, ®SY™ =(B§6Aa + Bf‘sA&)@(B;Su Py Bgs\/’*f‘j =
BYBES,, ®5U™ + B B3, ®5u" + BB, ®v* 1 B B3 ® v
From (4.2) it follows
BUBS =52, BIBf =0, BIB® =0, stg :5[:3 .

Now we get

pA:SAa®6uA“+8A&®6vA‘;= p',+p s, A =0,
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Arbitrary vector field X eT(E) given by (2.1) can be expressed in basis
B'=B, UB, in the following way

X=X"5, = an(Bgsm +B%S Aj:

Ao (5.3)

=X"§,, +X"B .,
A

where
X = ox*e | XA = BEX™®
Proposition 5.2. The vector field X can be expressed in the form
X =X"+X",
where
X'=(po Py P )X
X"=(pg"+P, ... + P")X
Proof. Using (5.2) and (5.3) we get
X084, + X198, 4.+ X 9§, +
X'= (80 ®BU% +58,, ®8UY +...+5, ®3UF| . P ’
X 80&+X 81A +..+ X,

o ko

when B, isdualto B,, B, isdual to B,, i.e. the conditions of Theorem 4.3 are satisfied,
i.e.

(5u,5, )= 5%, [SVA&,SAéj =6§.

(SUAU,SA[;):O' [SVA&;SAszox A = W

we get
X'= X8, + X8, +..+ X 5, =X 5,,.

Similar for X".
Proposition 5.3. The projection operator

Po+pPy+t Py =, on T(E)

P o+ P 2t P =l nimyenmy ON T(E;)
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i.e. p',is the projection operator of T(E) on H',P,'(A = 1,_k) are the projections
of T(E) onV,". Similarly for the second part of theorem.
Proposition 5.4. The one-form field WGT*(E) given by (2.3) can be written in the
basis B"'= B, UB, in the form
wW=Ww+w",
where

W'= Wy, 3% +wy, U™ +...+ w,, Su
wW'=w ,Su’* +w du +...+w duk*.
Oa lo ko

Proposition 5.5. The projection operators pg,p, ..., p, defined by (2.4) can be
decomposed in the form

Po =Py + Py, (5.4)
Py = PP Pro= PR
where
p:‘I: SU ho ® SAEX

pL'=8v** @5 ., Afixed, A = OK.

Proposition 5.6. For the 1-form field w given by (2.3) and the projector operators

*

p,' and p,"the following relation is valid
W'=(py+p; +et Py W
W= (P3Pt PW
where
p;‘w‘z(SuA“ ® 8, Wgy8™ =
Wy 8U 8280 =w,,8u™*, A fixed.
From the above it is obvious that
Pyt Py P'= Ly ON T (E)

pou+ p1”+”'+ pk”: I(n—m)x(n—m) onT (Ez)
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and p;'is the projection of T*(E,)on H™, p,"is the projection of T"(E,)on V,";
p,"is the projection of T'(E,)on H™';p,"is the projection of T"(E,)on V.",
A=1k.
Proposition 5.7. The structure J which in B and B" can be expressed by (3.1) in
the bases B'= B, U B, and B" =B, U B, can be written in the form
J=1'+1", (5.5)
where

J'=38,, ®du* +28,, ®du™ +---+k3,, ®dukH* (5.6)

J"=38,, @™ +25,. @V +---+kd,, ® v

Proof. The proof is similar to the proof of Proposition 5.1, where the relations (4.2)
are used.

Remark 5.1. The structure J defined by (3.7) in the basis B' and B" can be
expressed by

T=T43 (5.7)
where
V=% ®6,, + 200" ®© 5y, + kU @6, (5.8)
37 =% @, + 2007 ® 5y +. A kU @5,
Proposition 5.8. The structure © defined by (3.4) in the bases B' and B" can be
expressed by
0=60'+6", (5.9
where
0'=5,, ® Ul + =5, ®5u>" LS, ®du* 5.10
= 0gy, @ou +E 10 & OU +"'+I (k-1)0. @ OU, (5.10)

" a1 a 1 o
0"=5,, ® V" +561& ® dv? +-~-+F8(H)& @ v .
Remark 5.2. The structure 6 defined by (3.8) in the bases B' and B' can be
expressed by
60=0+0", (5.11)
where

0= ®5, +%aﬁ“ ® 8y + v +%a‘uk“ ® Sk-1)e (5.12)
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0" =" ®5,, +%d125’®51&+ ......... +%&Ik&®5(k-1)d

Theorem 5.1. The structure J, J, 0, 6, p, p_ on the subspaces are connected by:

Jo = lxm — pE) m: linsm — p*I(

30" = omp(nom) = P6 3"0" =1 am(nom) — P (5.13)
Proof. From (5.4)-(5.12) it follows
J'0'=8,, ®3U™ +38,, @ +---+8,, ®U, py'=5,, ®du™ (5.14)
J0'=3U" ® 8, + U™ ® 8y, +-+3u D @5 ., pe'= U ®F,,
J"0"=8,, @V +8,, BV +--+8,, ®NV, p,"=5,, ® U™
JU0"= V" @8y, + VI @, ++ VEDT @, p = 0u @5, .
Proposition 5.9. The following relations are valid:
J'0 is the identity operator on V,'®V,'®---®V,'
J'0' is the identity operator on V, '@V, '®---®V,,",
J"0" is the identity operator on V,"®V,"®---®V,"
J"0" is the identity operator on V'@V, "®---®V,".
Theorem 5.2. The following relations are valid:
09'= L = Py 0=l — Py’ (5.15)
0"3"= Lo myutoem — P 0"3"= s mptomy — Po""-
Proof. It is easy to see that
0'd'=8y, ®8U +8y, ® U™ +--+ 5y, @D p =5, @  (5.16)

0'1'=8U @8, +8U @5, +---+8U ®F,,, py'=u" ®,,
0"1"= 5y, ® NV +8,, @V +-- 45y, ®NVDE p =5, @V
0"J"= V! ®8,, + V2 ®8,, +--+ OV ®B,, py'= OV ® 8y, .

Proposition 5.10. The following relations are valid:
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0'J" is the identity operator on H™'®V,'®---®V, '
6'J" is the identity operator on VeV, ®---®V, ",
0" J" is the identity operator on H"'®V,"'®---®V, ;"

0" 3" is the identity operator on V'V, "®--- @V, "
From the above we have
Theorem 5.3. For the subspaces in Osc*M the following relations are valid:

Lin = P'o= Pk (5.17)

J||e||+e||J||: 2|(n_m)x(n_m) _ p"o_p"k

J'6+0'J'=

<
CDI

0= 20— PP
J10"+6"J"= 21 ooy~ P o= P e

Proposition 5.11. For the subspaces in Osc'M we have p', = pL P =p"L

p*lk = p*ll, p*“kz p*nl and

Po+tP 1= lnms PotP" 1=l mynm)

p lO+p I1: Imxm! p 0+p (n m)x(n-m) *

From (5.16) and Proposition 5.11 we have
Theorem 5.4. For the subspaces in Osc'M the following relations are valid:

J'040'3'= | (5.18)

mxm

J"G”+9"J”= I

(n-m)x(n-m)

< |

10+03'=1,,,

J"0"+0" 3= yeinom) -

As dimE, =(k+1)m, dimE, =(k+1)(n—m) the notion I, is not precise, it
means (k +1) blocks on diagonal, each of which is of form mxm.

The exact form of (5.16) and (5.17) can be obtained from (5.13) and (5.15).

Theorem 5.5. The structures J',J",J',3",0',0",0',0", are k- -tangent structures,

namely
(@F =0, (@ =0, (7 -0, (f -0

@) =0, @) -0, (#f =0, ["f -0
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RAZNE STRUKTURE U PROSTORIMA 0Osc*M
Irena Comié¢ and Radu Miron

Geometrija prostora Osc*M je uveo R. Miron i Gh. Atanasiu u [6] i [7]. Teorija ovih
prostora je razvijena od strane R. Mirona i njegovih saradnika iz Rumunije, Japana i drugih
zemalja i prikazana je u mnogim ¢lancima i knjigama. Samo neki od njih su spomenuti u literaturi.

Ovde predstavljamo konstrukciju takvih adaptiranih baza u prostorima T(OsckM) i
T*(OSCkM) , koje su saglasne sa J strukturom. Teorija dva komplementarna podprostora je

ovde data kao u [2] i [4]. Operatori J , 3, 0, 6 p, p* su uvedeni u okolnom prostoru, kao i u

potprostorima. Medu njima su uspostavljene neke nove relacije. Ispitana je akcija ovih operatora
na Liouville-ova vektorska polja.

Kljuéne reéi i fraze: operacija projekcije, J struktura, 0 struktura, potprostori u
Osc*M .
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NINETY YEARS OF DUFFING’S EQUATION
UDC:531.36

Livija Cveti¢anin

Faculty of Technical Sciences, Trg. D. Obradovica 6, 21000 Novi Sad, Serbia

4bstract. In the paper the origin of the so named ‘Duffing’s equation’ is shown. The
author’s generalization of the equation, her published papers dealing with Duffing’s
equation and some of the solution methods are presented. Three characteristic
approximate solution procedures based on the exact solution of the strong cubic
Duffing’s equation are shown. Using the Jacobi elliptic functions the elliptic-Krylov-
Bogolubov (EKB), the homotopy perturbation and the elliptic-Galerkin (EG) methods
are described. The methods are compared. The advantages and the disadvantages of
the methods are discussed.
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1. INTRODUCTION

In 1918, in the Edition Vieweg, No0.41/42 the publication entitled “Erzwungene
Schwingungen bei veranderlicher Eigenfrequenz und ihre technische Bedeuting” by
Georg Duffing (Fig.1), Ingenieur, appears. The first sentence in the Preface of the book
[1] is: “Die Anregung zu der vorliegenden Studie wurde mir zunachst durch
Beobachtungen an Maschinen gegeben”. This statement proves the appropriation of
Georg Duffing to experimental-applied dynamics. He was a serious experimentalist who
studied mechanical devices to discover geometric properties of dynamical systems [2].
The theory of oscillations was his explicit goal. In Jahrbuch der Mathematik (1916-
1918), (see [1]), a reviewer G.H. wrote that the aim of the paper [2] was to clarify the
resonant oscillations which are evident in the pendulum (Fig.2) whose motion is given
with a differential equation
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where y is the pendulum displacement, t is time, £ and ;* are positive constants, y, is the
initial deflection, k and w are the amplitude and the frequency of the excitation force.
Duffing simplified the equation into

d?y

dt 2
and calculated the first term Hsinat of the periodic solution in the first approximation [3].

He obtained a cubic algebraic equation for H which has three solutions: two stable and an
unstable one.

—L+a’y-py? -y =ksinot 2

Fig.l. Georg buffi g, 1861-1944. Fig.2. Duffihg’s oscillator

Duffing gives the problem to mathematicians to give the initial conditions for the
unstable motion. Besides, Duffing considered the simplified versions of the Eq. (2) for
describing the motion of the symmetrical pendulum

d2y
—+ 3
e W= @)
and the unsymmetrical pendulum
d2
S vay-py= (4)
dt?

For the case of small non-linearities (y<<« and p<<c), Duffing gave the approximate
solutions in the form of Weierstrass  (t) elliptic function [4]. The main disadvantage of
the solutions was their complexity and unsuitability for practical use.

During the last years the Eq. (2) is modified and some generalizations are introduced.
Usually, the differential equations with polynomial type of non-linearity are called
‘Duffing’s equation’. The most often investigated type of the Duffing’s equation is with
the cubic non-linearity

2
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where ¢J'is the damping coefficient.

About 2000 papers are published dealing with qualitative and quantitative analysis of
Eq. (5). Two approaches are assumed: one, based on assumption that the non-linearity is
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small (e>0, y<<a) and the other, the non-linearity is strong (y=¢). Various analytical
approximate solving procedures are developed. For the small non-linearity the most
widely applied methods are: the method of multiple scales [5], the Bogolubov-
Mitropolski [6], the Krylov-Bogolubov method [7], the straightforward expansion [8],
Linstedt-Poincare method [9], etc. The author of this review modified the suggested
methods for solving a second order differential equation with slow time variable
parameters [10], a system of two coupled differential equations with constant coefficients
[11]-[15] and slow time variable functions [16]-[21]. For all of these methods it is
common that they represent the perturbation to the linear one and the difference between
the approximate solution of the non-linear system and the linear one is of small order.

For the case of strong cubic non-linearity, the analytical approximate solution of (5)
is based on the exact solution of the differential equation

2
d°y N

dt—z—ayi%’3=0 (6)

The author of this paper developed the approximate analytical solving methods [22] for

d’y, . 3 dy

g2 tAEN f(y,dt) O
where f is an additional linear or non-linear function which need not be small, and also
for the system of coupled Duffing’s equations [23]-[31]. The strong non-linear
differential equations with slow time variable parameters are also considered [32]. The
chaotic motion in the strong coupled system with constant and changeable parameters is
investigated in [33]-[36]. The special cases of differential equations are those with pure
non-linear term (see [37]-[40]). In the paper [40] the general form of the pure non-linear
differential equation of Duffing’s type is introduced.

In spite of the fact that a numerous methods are developed for analytic solving of the
strong non-linear differential equations, the asymptotic approaches still need to be
considered. Namely, all of the suggested asymptotic solving procedures have beside their
advantages also some disadvantages. All the methods can be grouped as: residual
methods, perturbation techniques and homotopic methods. In this paper the elliptic-
Galerkin method which is the conceptually simplest analytic approximate procedure, the
perturbation elliptic-Krylov-Bogolubov method, and the homotopy perturbation method
which is adopted for solving of the Duffing’s equation, will be shown.

2. DIFFERENTIAL EQUATION WITH STRONG CUBIC NON-LINEARITY
The Eq. (6) with initial conditions
y(0)=Yo, ¥(0)=Yo ®)
has an exact analytic solution in the form

y=Yep(a)t+9,k2), 9)
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where ep denotes a convenient Jacobi elliptic function [41], «(Y) is the frequency, k(Y)
is the modulus of the elliptic function and Y and 6, i.e., the amplitude and phase angle are
arbitrary constants dependent on the initial conditions (8).

Dependently on the sign of the coefficients « and y the following type of equations
are evident: 1) the hard one: a>0 and y>0, 2) the hard-soft one: o >0 and y<0, 3) soft-
hard one: a<0 and y>0.

For the case of strong cubic non-linearity of hardening type, the differential equation

yray+yy’=0 (10)
has an exact analytical solution in the form of the Jacobi elliptic function
y =Yen(ot +0,k?) (11)

where cn is the Jacobi elliptic function [48], @ and k are the frequency and modulus of
the function

}){2

2 _ 2’ K2 —
o =a+N —2(a+;){2)

(12)
and Y and @ are arbitrary constants dependent on the initial conditions (8). Substituting

(11) and its time derivative into (8), we obtain the amplitude Y and the phase angle &
according to the relations

%Y4+aY2—{ay§+gyg+y§}:0 (13)
and
s0(0,k2)dn(6,k?) =~ (14)
Yo®

For the special initial conditions
y(©) =y, y(0)=0 (15)
the amplitude and phase angle are

Y = yO! 920 (16)
and for
y(0)=0, ¥(0)=Y, (17)
it yields
> 1/2
Y=[_2+z 1+2y37] - 0=K() (19)
vy a

where K(k%) is the complete elliptic integral of the first kind [41]. Assuming the series
expansion of the square root the approximate amplitude is Y~ Y, .

Using the aforementioned procedure Yuste and Bejarano [42] give the solutions for the
hard-soft and soft-hard systems.
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Table 1 Solutions for the hard-soft and soft-hard systems.

Type Solution Frequency Modulus
Y y~ =Ysn(wt + 0,k7) a)zza—}){—>0 kZ:W
2 20°
a<0,y>0 y® =Yen(at +6,k?) @*=X?-a>0 2 w2
20°
Remarks:

1. It is obvious that the solution for the hard oscillator exists for all values of parameters
a and y, but for other oscillators (hard-soft and soft-hard) the motion is oscillatory only
for some special relations between the parameters « and yand initial amplitude Y.

2. The arbitrary amplitude Y and phase @are calculated according to the initial conditions
(8), (15) or (17).

3. For the pure cubic equation, when o=0, the modulus of the Jacobi elliptic function is

constant (k’=1/2) and the frequency is @ =Y \/; The closed form solution is

y=Yen(Ytyy +6.1/2) (19)

For the initial conditions (8), the amplitude of vibration is

2.
Y={y3+—y§}
4

3. THE ELLIPTIC HOMOTOPY PERTURBATION METHOD

Let us rewrite the differential equation (7) in the form

§+ay+n°=-9(y,y) (20)

and apply the initial conditions (15). For g=0 the differential equation has the exact
solution (11) with (16). According to this result, we assume the initial approximate
solution of (20) in the form

Yo(t) = Yo = yoen(ant, k) = yocny (21)

where @ and k12 transform into @ and k? when g=0. Due to definition of homotopy

X:4X[0,1]>R, that the two continuous functions from one topological space can be
"continuously deformed" into the other, and introducing the embedding artificial
parameter p with the values in the interval [0,1], as it was suggested by He [43], a
homotopy transformation of the differential equation (20) yields
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A- P)(X +aX +9X3) = (Yo + Yy + X+ p[X +aX + X3 +g(X,X)]=0

with initial conditions

X(0,p)=Yp, X(0,p)=0 (23)
Namely, for p=0 the Eq. (22) simplifies into
X +aX +X*=0 (24)
with the exact solution
X (t,0) = y°(t) = Yen(aot + 6,k ?) (25)

When p=1 the equation has the same form as the original equation
X +aX + X3 =-g(X,X) (26)
and the solution is
X(t,1) = y(t). 27)

It can be concluded that for the change of p from zero to unity the solution is
continually changing from (25) to (27).

For X(t,p), which is the solution of (22) in the whole domain pe[0,1] and is smooth
enough to have kth order partial derivatives respect to p at p=0, the Maclaurin series is as
follows

X(t,p) = Yo(t)+z[ Y “’j (28)

Substituting (28) into (22) and separating the terms with the same order of the parameter
p a system of linear differential equations is obtained. For p* the first-order deformation
equation is
y1+O‘Y1+3WOZY1=—[Y.0+aY0+7){03+9(Y01Y0)] (29)
with initial conditions
y1(0)=0, ¥,(0)=0 (30)
Introducing (21) into (29), yields

§y +ayy +3weentyy = —[-yewfcn (L-2k{ +2k7en ) +ayqen, + pyoeny

+9(YoCn,— Yoy snydn )],

(31)

where sn; =sn(ayt,k;) and dn, = dn(wyt,k;) are Jacobi elliptic functions [48].
For

a=0, g(y.y)=-B8y*, r>p (32)

(22)
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the Eq. (31) is specified as
Yo +3pyientyy = ~[-yoorcny (L-2k7 + 2kfeny’) + pygen; + pygeny)] (33)
Solution of (33) is assumed as a sum of a constant and a linear term of elliptic function
cny
Substituting (34) into (33) and separating the terms with the same order of elliptic
function cn; the following system of algebraic equations is obtained
(Ky + yo)aof (1-2k{) =0,
35Ky +AKG =0, (35)
3BY5 Ky + W5 — 2(Ky + Yo )kf of =0.
Due to initial conditions (30) the relation Kq and K is
Solving equations (35) and (36) it follows:
+ 1
wf:g;;yg?’yo—ﬂ, K2=2, Koz_Klz_ﬁ 37)
3N + B 2 3y

Using the relations (21) and (34) with (37) and according to (27) and (28) the solution in
the first approximation is

__B B NothB 1
O =2+ Dyentyat 37 2L (@)

Analyzing (37) it is obvious that the coefficient £ has no influence on modulus of Jacobi
function. Frequency and argument of Jacobi function and also the accuracy of the
approximate solution (38) depend on coefficient ratio 4/y. For smaller ratio (4/)<<1 the
difference between exact solution and approximate solution is negligible. For higher
values of the ratio gy the difference is significant and the solution in the first
approximation is not acceptable.

4. ELLIPTIC-KRYLOV-BoGoLuBov (EKB) METHOD

Let us modify the differential equation (7) by introducing the small parameter e<<1

d?y 3 dy
— = (y,—= 39
e ] (y Olt) (39)
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Due to idea of Krylov and Bogolubov [44], Eq. (39) can be transformed into a system of
two coupled first order differential equations. Namely, the solution of (39) is assumed in
the form of the solution (19) for &=0, i.e.,

y(t) =Y ()en(y (t),k?) =Yen (40)

where the amplitude and the phase are time dependent
t
w(t) = j o(s)ds +0(t) (41)

and, also, the frequency and the modulus of Jacobi elliptic function (12)
2
o= MO, KO=3 T @2)

The first time derivative of (40) is

Y _y,0Cn (43)
dt oy

with the constraint

2
d_ch da o(cn) Ly o(cn) o(k°) dy _

+Y (44)
dt dt oy  o(k?) oy dt
Substituting (40), (43) and the time derivative of (43) into (39), we obtain
2 2
d_Y[(w+Y6_a)) a(cn)+Yw o°(cn) ok )]+Y de &° o2°(cn) — o (Yen,Yo 8(cn)) (45)
dt oY’ oy owo(k?) oY dt oy? oy

After some transformation of (44) and (45), the two coupled first order differential
equations follow

acn,,, (cn+Yen,

dy dw a(k?) a(k?)
E[(a) +Y a—Y)(an )% +Yaxn,cn, - ~ )]

=¢[ f(Yen,Yaxn,, )]en,,,
o(k?2 )) (46)

do dw a(k?

—t[(a)+Y W)(cnw)2 +Yacn,,cn,, <(9Y ) —aen,,,, (cn+Yen,

6(k2))
oy

=—¢[f(Yen,Yacn, )](cn +Yen,

2 2
where cn,, = o(en) cn,, = 0 (CS) Ny = 0 (Cng _
oy oy opo(k?)

The aim is to solve the system of differential equations.
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For the pure cubic Duffing’s equation, where =0 and the modulus of the Jacobi
elliptic function is constant (see (19)), the system (46) simplifies to

cn]=¢&[ f (Yen,Yacn,, )Jen,,,

dy ow 2
E[(w +Y W)(Cny/) - ;//;//

q (47)
Y d—f[(a) +Y Z—?)(cnv,)2 — aen,,, en] = —[ f (Yen, Yacn,, )]en,

where cn, =-sndn,cn,, =—cn(1-2k* +2k®cn®). Using the value for the

modulus (k*=1/2) and the frequency (@ = Y\/;) of the Jacobi elliptic function, and also
the relations between the elliptic functions, we have

Y 2\/;%_? = —¢[ f (Yen,~Y 2/ysndnen,

Yy (31_: — —¢[ f (Yen,—Y 2.y sndn]sndn.
At this point the averaging procedure is introduced. The averaging is over the period of
the elliptic function 4K (k?), where K(k%) is the complete elliptic integral of the first kind.
The averaged first order differential equations (48) are

(48)

% —ﬁi I f (Yen,~Ywsndn)sndndy (49)
4K

dae e 1

—=———_| f(Yen,~Ywsndn)cnd 50

dt Yo 4K>([ ( @ Jendy 0

where for the modulus k’=1/2 the elliptic integral is K = K(1/2) =1.85407 and
cn=cn(,1/2), sn=sn(y,1/2), dn=dn(y,1/2).

a) For the special case when the small non-linear function depends only on the
deflection, i.e., f = f (), the first order differential equations (49) and (50) simplify to

4K
dy d49 £ 1
—=0, — f(Ycn)end 51
dt dt Yo 4K ) (Yemendy 1)
i.e., Y=const. and é=cAY),
where
f (Ycn)end 52
4Kij (Yen)endy (52)

Then, the EKB approximate solution is
y=Ycn[(w+ eO)t + 6,1/ 2] (53)
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where from the initial conditions of the oscillations Y and &, are obtained.
b) For f = f(dy/dt), the Egs. (49) and (50) have the form

4K
dy ¢ 1
YT ! f (-Ywsndn)sndndy (54)
do
9% _p 55
at (55)
The EKB solution yields
t
y=Y(t)enl(yy j Y (t)dt) + 6.1/ 2] (56)
0

where Y(t) is the solution of (54).
Examples
1) For the differential equation with strong non-linear cubic term and the weak linear part

J+y +ey=0 (57)
the phase angle is due to (52)

4K
1 2 1 2E 0.4569
O=——|en“dy =—(—-1) = 58
4Kw -([ v a)( K ) (58)
and the approximate solution of (57) is according to (53) and (58)
y = Yen[(w+ 22%y 1 g, 1/2] (59)

where E=E(1/2)=1.35064 is the complete elliptic integral of the second kind for modulus
k*=1/2 and @ = Y\/;.
The exact solution of (57) is according to (11), (12) and (15)

y=Yon[tye+ ¥ 2 + 05, 7 212( + ¥ 2)] (60)

For e<<1 using the series expansion of the functions in (60) the approximate solution is
obtained

y =Yen[t(e +—-) + 6,1/ 2] (61)
2w

Comparing (59) and (61) it is evident that the difference is negligible.
2) For the differential equation with small linear damping term

Y+’ +2=0 (62)
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the amplitude of vibration is according to (54)

dv _ e(20)Y AJL(snz an?dy £

dt 4K 4K Q (63)

Y=Y, exp(—MQ)t (64)

4K
where Q = J.sn2 dn2dy . Using (56) and (64) the solution of (62) follows
0

2
y=Yoop(- 0k Quntveyfy 5 - exp(- HEI) 4y 112)
After some simplification the approximate solution is
y =Yy exp(-———— g(2§)t Q)cn[Yot\/; +6,,1/2] (65)

The amplitude of vibration decreases exponentially. The period of vibration increases,
but very slow. It allows the assumption of the constant frequency of vibration.

Remark:

The EKB method is usual known as that with time variable amplitude and phase, as it is
assumed that the perturbed amplitude and phase of the solution differs for a small value
to trial solution.

5. ELLIPTIC-GALERKIN (EG) METHOD

Let us consider the differential equation

Jray+py+¥°=0 (66)

The approximate solution will be obtained by applying the Galerkin method which
represents one of the weighted residual methods. In the previous papers, usually, the trial
solution of (66) is assumed as a linear combination of the circular functions and the
arbitrary weight function also belongs to that group. Our intention is to extend the
method by applying of the Jacobi elliptic function.

We introduce a trail solution to (66) as a linear combination of independent cn Jacobi
elliptic functions

y = Kyen(at, k?) + K,cn? (ot k?) = K,en + K,cn? (67)

where K; and K, are constants, » and k are the frequency and modulus of the cn elliptic
function which have to be calculated.
Substituting (67) into (66), the residual function is obtained
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r(y) = Kyo? (cn)"+2K,,0°[(cn)' T2 + 2K ,0? (cn)(cn) +a[K,cn + K, (cn)?]
+ AIKZ(en)? + 2K, K, (cn)® + K2 (cn)*1+ y[K; (cn)® + 3K 2K, (cn)* (68)
+3K, K2 (cn)® + K3(cn)®],

where ()’=d()/dy;, ()"=d*()/dy” and y=at. If (67) is the closed form solution of Eq.
(66), the residual function r(y) is zero. The goal is to construct y(y) so that the integral
of the residual will be zero for some choices of weight functions w(y). As the weight
function is arbitrary one, let us choose it as the derivatives of the constant K; and K,
respectively, of the assumed solution (67), i.e., (dy/oK,) and (0y/0K,). Multiplying (68)
with the weight function and integrating over the interval [0,4K(k)], where K is the total
elliptic integral of the first kind and 4K is the period of cn function, one obtains
4K (k) 4K (k)

j r(y)endy =0, j r(y)endy =0 (69)
0 0
ie.
4K (K)
I—Kla)zcnz(l— k? +k?%cn?) + aK,cn? + 28K, K,en® + y[Kien® + 3K KZen®1dy =0
0

4K (K)
I— 2K cn‘ow® (1-k? + k*cn?) + 2K, w’sn’cn’dn® + aK cn*
0

+ B[KZen® + KZen®]+ #3K 2K ,en® + K3en®]dy = 0.

(70)

Egs. (66) and (69), i.e. (70), are equivalent, because w(y) is any arbitrary function. To
apply the method, all we need to do is to solve the two algebraic equations for the

coefficients w = w(K;, K,)and k% =k?(K;,K,)
@’ [(1-k?)C, +k*Cyl=aC, + (2K, + K{)Cy +3K3)Cq (71)

K,»?[2(2-3k?)C, + 4k?Cq —2(1-k?)C, ]

(72)
= (BK{ +aK,)Cy + (BK, + 3K )K,Co + K3Cq,

where (see [48]): k’?=1-k?, Co=4K(K), C, =|:12(E ~-k'?K) and

2m(2k? —=1)C,,, + (2m-1)k'2Cyp,
(2m+1)k?
Eliminating e from (71) and (72) we obtain the algebraic equation

for m=1,2,3.

C2m-¢—2 =
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K3
1-k?)C, +k?C,

_ (BK{ +aK,)Cy + (BK, +3/K7)K,Co + K3Cs
2(2-3k?)C, +4k*Cq —2(1-k?)C,

[aC, + (2K, + 7’K12)C4 + 3K227C6]

(73)

which is not easy to be solved. Analyzing the relation (71) and (73) it is seen that the
both strong non-linear terms have a significant influence on the modulus and the
frequency of the Jacobi elliptic function. Only, for the case when o=/=0 the modulus of
the Jacobi elliptic function is independent on the initial amplitude, but the frequency
depends, as it is previously stated in Eq. (19).

Remark: The accuracy of the solution depends on our ability to find the most convenient
combination of functions.

6. CONCLUSION

In the paper three procedures for solving of the so called Duffing’s equation are shown:
the elliptic-Galerkin (EG) method, the elliptic-Krylov-Bogolubov (EKB) method and the
homotopy perturbation method. For all of the methods is common that the solutions are
based on the exact solution of the strong cubic differential equation given with Jacobi
elliptic function. The mentioned methods have some advantages, but also disadvantages.
The EG method is one of conceptually simplest analytical approximate procedure which
leads to algebraic equations; however the results may be with small accuracy as it
depends on the investigator to chose the most adequate weight function. The elliptic-
Krylov-Bogolubov (EKB) method is of perturbation type. The perturbation method is
based on the assumption that a small parameter (e<<1) must exist in the equation. This
so-called small parameter assumption greatly restricts applications of perturbation
technique. Many non-linear problems described with Duffing’s equation have no small
parameter at all. Then, an appropriate choice of a small parameter leads to accurate
results, but an unsuitable choice to a bad result. The homotopy method does not require a
small parameter in the equation and eliminates the previous limitations. The main
disadvantage is the question of convergence of the solution. Farther investigations are
necessary.
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DEVEDESET GODINA DUFINGOVE JEDNACINE

Livija Cveti¢anin

Abstrakt. U radu su dati izvorni podaci za tzv. Dufingovu jednacinu. Pirkazana je

generalizacija koju je izvrSio autor ovog rada, prikazani su njeni radovi koji se bave Dufingovom
jednacinom kao i neke od metoda za reSavanje ove jednacine. Date su tri najznacajnije procedure
nalazenja pribliznog resenja na bazi tacnog reSenja Dufingove jednacine sa jakom kubnom
nelinearnosti. Koriste¢i Jakobijeve elipticke funkcije opisane su sledece metode: elipticki-Krilov-
Boboljubov (EKB) metod, homotopijski perturbacioni i elipticke-Galerkinov (EG) metod. Metode
su poredjene. Prikazane su prednosti i nedostaci pojedinih procedura.

Kljuéne reéi: Dufingova jednacina, elipticki-Krilov-Boboljubov (EKB) metod, homotopijski
perturbacioni metod, elipticke-Galerkinov (EG) metod
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INTRODUCTION

The governing equations are given by

dn =V(u, (U1 VN =nVV))+ceny —cgn(Ny =Ny ) 1)
6tp:V(,up(UTVp— pVV))"' can(Ntr _ntr)_cbntrp (2)
Oy = Ca(Ntr —Ny )+ CoNir P—CcNy +Cy n(Ntr - ntr) 3)
&AV =q(n+n, - p-C) (4)

Here n denotes the density of electrons in the conduction band, whereas p is
the density of holes in the valence band, with p, n being opposite charges. The

position density of occupied traps is given by n, ; and by C,,C,,C.,C; we
denote the rate constants. The quantity U is the so-called thermal voltage. In the

following, we consider a semiconductor crystal with a constant (in space) number
density of traps N,, .

In the Poisson equation (4), V (x; t) is the electrostatic potential, &, the

permittivity — of the semiconductor, g the elementary charge, and C = C(x) the
doping profile. By adding equations (1),(2),(3), we obtain the continuity equation
o(p-n-ng)+Vv{3, +3,)=0 (5)

with current densities
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In :yn(UTVn—nVV) (6)

and

Jp=u,(UrVp—pvV) )
Note that for the current density we use the simplest possible model, the drift
diffusion ansatz, with constant mobilities £, £, . Moreover, as there is no flux,

there is no current density J,. .The gap between the valence and the conduction

band (which is called the bandgap) is very large for semiconductors, which
means that lots of energy is needed to transfer electrons from the valence to the
conduction band. This process is referred to as the generation of electron-hole
pairs (or pair-generation process), i.e., an electron is created in the conduction
band and a hole in the valence band. The inverse process is termed recombination
of electron-hole pairs.

We now introduce a rescaling of n,p, and N, in order to render the
equations  (1)-(3)  dimensionless: n—Cn, p —>Ep : Ne = Ny s

C—CC,x—Lx, n—Cn, /Un,p_>;/un,pl naEn,Jn'paMJn'p, and

C is a typical value for C. Moreover, we rescale time t — to make sure

tr
R C R
that all constants are of order 1, and set ¢, =c4C ny,cy =¢4—,C, =¢,C py,
Tn

C
and C, = — .Given the scaling assumption & :% «1, we finally obtain

T

on=vJ, +R, (8)

op=-VJ, +R, 9)

g0iny =R, =R, (10)
VW=n+en, —p-C (11)

where
I =1, (Vn=nvV) (12)
and

J,=—p,(Vp-pVV) . (13)

By R, and Rp we denote the recombination-generation rates for n and p,
respectively:

Ry == (o0 ~n(i-n, ) (14)

n
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1
Rp :T_(pO(l_ ntr)_ pntr) (15)
P
Note that 0<n, <1 should hold from physical point of view. Moreover,

both n and p are nonnegative.

MAIN RESULT
We consider initial-boundary value problems with initial conditions
n(x,0)=n; (x), p(x.0)= py (x).1 (x,0)= "y 4 (x) (16)
and with mixed Dirichlet-Neumann boundary conditions on 6Q , i.e., let
n(x,t)=np (x), p(x,t)= pp (X),V (x,t)=Vp (x),x € 8Qp < 0Q (17)
and
@f—p:ﬂ:o,aQN =0Q\0Qp (18)
ov ov ov

where v is the outward unit normal vector along 0Q, .1t is allowed to impose only
homogenous Neumann boundary conditions on all of 0Q, i.e. we set 0Qy =@, and
the following Theorem will hold.

Theorem Let n,,p, eL”(Q) (and non-negative), 0<n,, <1 and let
C e L”(Q) . Then, the solution of (8)-(11) satisfies n, p e L ((0,00), L (@)~ HY(Q))
and 0<n, <1.

tr —

Proof: We will use the result from [5], which was obtained for homogenous
Neumann boundary conditions. We can show by a straightforward computation

d j{(n—nD)q +<p—pD>q}dX:

dtd| qu, au,

_ a-1 _ a-1
4{—(” ZD) (V3, + Ry —oynp )+ (2P0 ) :’D) (—VJp+Rp—atpD)}dx
n p

: _(q _1).'{(“ - nD)HV(n _nD)i_n_(p - Pp )HV(D - pD)i_p}dx

+01J’(nq + pq)dx+Cl
=—(q —1)'[(n—nD)q‘2V(n—nD)Vndx +
@-2)[(p=po)"?V(p—po Ve

+(@-1tn-np )" n¥(n—n5)~(p— po ) ? pV(p - pp JIVVelx



68 JULKA KNEZEVIC - MILJANOVIC

+C1J.(nq + pq)dx+Cl
=+l +13+1,
where the term 1;from (19) can be rewritten as follows:

I3 = I[(n—nD)q‘lV(n—nD)—(p— Po )V (p— pp IVVdx+

+ [l =np "> V(n=np o ¥V )~[(p— po ) V(p — pp (PHVV X

(19)

=L Jitr-no) ~(p= po lin— p--an, ~Cx

—ﬁ (n—np ) (Vo VV +np (n— p+en, —C)dx

1 _
+ﬂ (p-pp ) 1(VF’DVV + pp(n—p+en, —C)dx.
We have used partial integration, and (11) to obtain the last expression. By applying

Holder inequality with coefficients q’, r; s and using the fact that il+£=1, we
g q

obtain the following estimate
1
152 [0 (= po ¥ -5 ~(p - po

+C 4G (1% + p* o Cafp + V. -+ e

AV = p,|VV||s <C|lo|[VV] s <[VV],y2a Where p=n+en, —p-C.
For g > 2and even, one obtains for |,

l, = —I(n —np ) Avn[fdx + J.(n —np )2 VnyVndx (20)
By rewriting the integrand in the second integral from (20) as

(n—ng)"?Vnyvn :(n—nD)%VnV(n—nD)L;anD (21)

and applying the Cauchy-Schwarz inequality, we have the following estimate for (20):
I, < —I(n —np )"V dx + \/I(n —np )% |vnl? de'(n —np )2V [ dx

< j (n—np Y2 vnfax + [V 2 [n - np (22)

For |,, the same reasoning (with N.n replaced by P.py , respectively) yields an

analogous estimate.
Collecting all the estimates, we finally obtain:

d I{(n—na)q L (p=pp)’ }dx:

datd| qu, A,
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1 _ _
<2 (0= no 7 dx +fn | ZJn ol
1 _ _
5 (0= o) [vp[" k4o oo — po 1s”
1
—a_[[(n - nD)q —(P - pD)q]|Vn|2(n —Np — (p - pD))dX

#Cy+Cs [ 19+ p7x+ ol + {7
1d
q dt

n+ p||LcI (23)

LI'
In=noll +1p= poll P Il [In-nofax+[polf. [l - pol“ex
+Call+ % + Cllf% + Col b0l

<C.2{n=no|f% +Inol% + - pol% +[poll ] (24)

Corollary Given the assumptions of Theorem, consider equations  (8)-
(112) with homogenous Neumann boundary conditions. Then

n, pe L ((0,) L* (@) HY ().
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Abstract. We consider numerical simulation of temporal hydrodynamic instability with
finite amplitude perturbations in plane incompressible Poiseuille flow. Two
dimensional Navier Stokes equations have been used and reduced to vorticity-stream
function form. Trigonometric polynomials have been used in homogeneous direction
and Chebyshev polynomials in inhomogeneous direction. The problem of boundary
conditions for vorticity has been solved by using the method of influence matrices. The
Orr-Sommerfeld equation has been solved by Chebyshev polynomials, and linear
combination of the obtained eigenfunctions has been optimized with regard to the
corresponding eigenvalue. We present here the results of simulation for the
perturbations optimized in regard to the least stable eigenvalue for the Reynolds
number Re =1000.

Key words: direct numerical simulation, perturbed Poiseuille flow, subcritical instability,
optimized perturbation, pseudospectral method

1. INTRODUCTION

It is well known that classical Hydrodynamic stability theory is not capable of
describing the initial transient growth mechanism that has been observed by
experimentators for viscous channel flows. The reason for such behavior has been
ascribed to the asymptotic behavior of the unstable eigenvalue, since the perturbation is
formed only by the unstable eigenvalue and the corresponding eigenfunction. So, for
Poiseuille flow the critical Reynolds number is 5772, and for this value of Reynolds
number the eigenvalue has the positive imaginary part, and so the flow is asymptotically
unstable, i.e. for large values of time, when t—co

We have simulated the streamfunction-vorticity form of the 2D Navier-Stokes
equations, and carried out the perturbation of laminar Poiseuille flow, by forming the
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optimized linear combination of the all eigenfunctions normalized on the corresponding
eigenvalue, in this case the least stable eigenvalue. The simulation has been carried out
for the subcritical Reynolds number Re=1000, defined on channel half height H, middle
channel maximal fluid velocity U, and fluid kinematic viscosity-v

2. PROBLEM STATEMENT AND GOVERNING EQUATIONS

We consider the problem for plane Poiseuille flow, where H is channel half height, L-
is its lenght. Incompressible fluid flows through the channel from left to right, whereby
the pressure at the inlet is p; and at the outlet cross section is p,. Momentum equation by
means of which we describe this isothermal incompressible flow can be written in
nondimensional form [1]

5t &+ (Vv V =2 F —Euvp+—aV, ®
ot Fr Re

where is V-Hamilton’s differential operator. In the above expression A-designates
nondimensional Laplace’s differential operator. The continuity equation reads

VIV =diw =0. )

In the above expressions V is nondimensional velocity vector of 2D flow in Cartesian

coordinates, F —nondimensional ~ force  field, ~p-nondimensional  pressure, t—
nondimensional time, St-Strouhal number, Fr-Froude number, Eu-Euler number, Re-
Reynolds number. Nondimensional form of the momentum equation has been obtained
by using the following caracteristic scales for various independent and dependent
variables: Lo=H — for all lengths, Vy =U —maximal velocity at the middle of the
channel, for all velocities, p,—pressure at the outlet of the channel, for pressure, and g—
gravity acceleration for body force. Four dimensionless parameters are thus occuring,
namely,

st== pr=9 gu= P peBYoP 3)

Vo W , pVOZ ’ &

where are p - dynamic viscosity, p - fluid density. We take that St =1, Eu =1 and Fr =1,
and we introduce the v~dimensionless kinematic viscosity, which is the inverse of
Reynolds number. So we have now

%t_ﬂ(\izv) V=E_VpivaV, (4)

If we take the curl of this equation, and having in mind the definition of vorticity

o =VxV =curlV, (5)

then we obtain the following transport expression for vorticity
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Z+(VIV) &=VxF +vA®. (6)

We have taken into account that the curl of arbitrary scalar function gradient, in this
case pressure function, is by definition equal to zero. The velocity vector can be
expressed as curl of stream function

V =V xy = curly, 7)

and after substitution of this expression (7) into (6), and after projection to z-axe, we
obtain the following equation for transport of vorticity

of 2 o
o 0y 2o 8w8m:_y_i+v(6(o amj_ ®

ot ay ox oxody ox oy o oy

If we substitute the expression (7) in (2) the continuity equation is identically
satisfied, and can not be used for closure the system of equations. For closure the system
of equations we use the definition of vorticity given by the expression (5) and velocity
vector given through the streamfunction vector by (7). So the second equation for closure
the system of equations reads

2 2
ZX‘Z" + gy‘z" -0. ©)
The system of the equations (8) and (9) with appropriate initial and boundary conditions
should be solved in space and time. Boundary conditions can be formulated in the
following manner

o+

v(xLt)=g, (x1), %’(X,Lt):m(x,t) on I, xT, (10)
oy

v(x,-Lt)=g_(xt), E(x,—l,t):hf(x,t) on I';xT, (11)

v(%Y,0)=y,(xy) on Q, (12)

here domain Q is defined as Q = { (x,y)eh? | 0< x<2m A —1< y<1 }. We have designated
the upper domain boundary T, = {(x,y)eh? | 0<x<2n A y=1 } and the lower domain
boundary T',= { (x,y)eh? | 0 <x < 21 Ay = —1}. The time domain is defined as T={ teh |
0< t<T. }, where T, is the end of the simulation. We have anticipated the periodic
boundary conditions in streamwise direction (x-axe), which are in accordance with the
periodic perturbations obtained by the solution of Orr-Sommerfeld equation of
hydrodynamic stability.
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3. NUMERICAL PROCEDURE FOR THE SOLUTION OF PROBLEM

For the problem stated in the previous section, for the basis function in x-direction we
have taken trigonometric polynomials, and for y-direction we have taken Chebyshev
polynomials. The domain in x-direction is equally discretised Ax = 2x/N, and domain in
y-direction is discretised by Gauss-Lobatto-Chebyshev points defined as y; = cos(nj/N)
for 0<j<N, where is N-number of discretization points in x- and y-direction. For
streamwise direction we have used Fourier-Galerkin method, and for stream normal
direction Chebyshev-collocation method. The truncated Fourier series for streamfunction
and vorticity read

k=N/2

oy (x,y,t):kiz/ o (y.t) e, (13)
k=N/2
Wi (X’y’t):k,z/ \I’k(y:t) e', (14)

In the above expressions | =+/—1is imaginary unit, k-wave number, &k(yj,t)and

W (y i ,t) are Fourier coefficients for vorticity and streamfunction respectively. In order

to have 2r-periodicity in the flow domain, we have chosen that wave number must be
from the set of integers, keH. In order to implement Fourier-Galerkin method to the
system of equation (8) and (9), we firstly approximate nonlinear convective terms on left
hand side, in the following manner

_(oy 0o N2 1Bl oe ol
w5, e ZNJa—a—} 9 4

N, = [%"X’ gij (yt)= S [é&% (y.t) &' (16)

Substituting the (13), (14), (15) and (16) in the (8) and (9), we obtain the following
residual equations

o N2 olox N/2 Ia_la Hex N/2 5‘5 lex
S ales ¥ [g"’a—ﬂkw.t)ek - {%ﬂ(y»)ek :

=—N/2 k=—N/2 k=—N/2

17
- hf FA(yt) hx_y o 4+ o* hf o (y.t)e" =0 o
k=—N/2 “ ox? 5)/2 k=—N/2 A ’

& Ikx 82 62 & ~ 1k x
Do (y)e" | —+—1| X W (y.t)e'™* =0. (18)
k=—N/2

ox* oy
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We have introduced the following expression for the curl of body force,

of of N/2 L
F=t~_—X= Fo(x,y,t)e"™ 19
ox  ody k:—ZN:/Z k( g ) 19)

If we apply Galerkin method to the equations (17) and (18), i.e. we take for the
weight functions the same as basis functions , we obtain

N/2

=-N/2

_ i,i%%ﬂ}k(y t)< 1kx le>_ hf 3 (yt)< Ikx |Ix>_ (20)

k=—N/2

62 az N/2 " « X
—v(—+ijz cok(y,t)<e'k e ):o, 1=0,1,...,N/2.

2
oX ““N/2

NZ/:Z &)k(x,y,t)<e'kx,e”x>+[—k2+ azjk% ﬁ/k(x,y,t)<e”‘x,e”*>=0, 21)

k=-N/2

1=01...,N/2.

where we have denoted with ( , ) the inner product. Recalling that  , = @, , i.e. Fourier

coefficient of inverse wave number is complex conjugate of the corresponding wave
number, it is not necessary to take I= —N/2,...,N/2, but 1=0,1,...,N/2. Having in mind the
orthogonality relation

2z 2n, I =k
eIkx,ellx _ elkxe—llde: ! ! 22
N S P e

the system of equations (20) and (21) takes the following form

ol Eyv & k(v,t){%%}k(vvtkFl(y:t)”(aayzz_kz)&)k(y’t) (23)

I=k=01...,N/2

2

o (y.t)+ —k2+6a—2]q;k(y,t)=o, l=k=0,1...,N/2. (24)
y

Applying now the Chebyshev-collocation method in inhomogenuous direction (y-
axe) to the above system of equations, we obtain the following system
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6y X ox ay (25)
[ k2+2d]|j O yJ, , k=01..,N/2, j=1...,N-1
63kN<yj: ) [ k2+zd1|]WkN(va ): , (26)

k=01,...,

N/2, j=1..,N-L.

Here the subscript index N denotes the number of discretization points in y-direction,
and it is worth reminding that we have taken N,=N,=N. Differentiation with regard to y-
variable has been substituted with Chebyshev differentiation expressions [2] given by

P R N .

)= (0)= 2o (). 1=0..n e
1=0

R ~ N -

—a“;;N(Yj):\VSu)(yi):;dﬁ) v()s 1=00N. (28)

The next step to be carried out is the temporal discretization of the governig
equations. For this purpose we have used the following two-step generalized method
defined in the following way

(1+s)mﬂ,§1(y) ZSmKN(y) (1-¢) oy (y1)+

2At
o 0 @l’@ n @va
" [5y 6(;() 5y 6(;() . (yj) (1 Y1 Wa_()’() (29)
oy 0 ) oY &
- (5_\”5_()”)J (6\:(1 G;OJ (y,) (1-m- (%%J ( )
+vk2[ewml Vi )+ 0,00 (v;)+( 1-0, -0, ) dp’ ( ]
_de“ |: G&Eﬁl(yl)+62&)EN(yl)+( 1_91_92)6)E’\—‘1(yl)]=

_eFkrlllﬂ(yj)"'eZFAk'lzl (yj)+(1_61_92)FAkrl:l71(yj)’
k=0,.,N/2 j=L1..N-1 n=1..M

for the spatially discretised momentum equation (25) and
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N
“r]+1_k2“q+1+ d(_2)"n+l:0,
(’OJ \VJ Z(; jl \VI (30)

| =i
k=0,..N/2, j=1..,N-1 n=1...,M.

for the spatially discretised the definition of vorticity equation (26). Here is denoted
t=nAt, where At-time step, n-the number of time step.
The same procedure must be carried out to boundary and initial conditions.

N/2

g+,N/2(X’t): Q+,k (t) e < =g+(X,t) (31)
Inp(xt)= 3 4., (1) e ~g (xt) (32)

howe ()= > ﬁ+,k(t) e'"*xh, (xt) (33)

k=-N/2

N/2 L

h+,N/2(X't)= Z h, (t) e zh+(x’t) (34)

k=—N/2

N/2

‘Vo,le(le)z Z ‘I’o,k(y) e

k=-N/2

I k x

~yo(x.Y) (35)

Having in mind the expression (14) for streamfunction, boundary conditions (10) and
(11), as well as their trigonometric polynomial approximation given by (31)-(35), after
implementing Galerkin method and applying the orthogonality relation (22), we obtain
the following boundary conditions in space of Fourier coefficients

v (Lt)=4,,(t), k=0,...,N/2. (36)
Ve (-Lt)=§_,(t), k=0,..,N/2 37)
o, N

—&(Lt)=h,, (1), k=0,..,N/2 38
oy L= (Y (38)
a\i\/k N
—%(-1t)=h_,(t), k=0,...,N/2. 39
oy (RO =R () (39)

After time discretization and application of Chebyshev collocation method for boundary
conditions, the above boundary conditions read as follow

‘Tfrk]ff}:@szll y=1 k=0,..,N/2, (40)

yrl=gmt y=-1 k=0,...,N/2 (41)
k,N k

N ~
zdf()? \T/Ejl:hn,ﬂ y=1 k=0,...,N/2, (42)
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dr(\ll,)l ‘?’Ejl:ﬁff: y=-1 k=0,...,N/2. (43)

M=

]
o

This system of equations (29) and (30) together with boundary conditions (40) to (43)
should be solved numerically. The system is represented by 2(N+1)x2(N+1) three time
levels matrix equation. The nonlinear advective terms have been computed by
pseudospectral technique [3], so that full Navier-Stokes equation in vorticity-stream-
function formulation can be simulated for the case of 2D viscous channel flow. The
problem of two boundary conditions for stream function and none for vorticity has been
successfully resolved by applying the influence matrix method [4].

4. TEMPORAL HYDRODYNAMIC STABILTY

In order to simulate the process of instability of viscous fluid flow between two
parallel horizontal plates, we solved Orr-Sommerfeld equation of hydrodynamic linear
stability for the given velocity profile, in this case for plane Poiseuille flow, and formed
the streamfunction perturbation as the linear combination of the eigenfunctions obtained
as the solution of this equation. It is well known fact that there is no analytical solution of
this equation. The first numerical solution of this equation is given in the paper [5], and
the critical Reynolds number of this type of flow has been found to be 5772. In order to
show how we perturbed the Poiseuille flow, we start from the equation (8) in which we
substitute

0o=0+0', y=Y+y', F=F+f’ (44)

where we have taken in account the expression (19), so that we have

%(Q+w')+%(‘¥+¢/’)%(Q+a)')—a%(‘{’+1//')%(Q+a)'):
) 5 (45)
=F+f '+v(§7(9+w')+%(9+a)’)j

The capital letters designates the basic flow values, and the prime denotes
perturbations of the corresponding physical values. If we subtract (8) from (45) the above
equation is reduced to following form

6_a)'+ oV 0w Oy'oQ Oy o' Oy 0Q oY oo’

ot oy ox oy Ox oy ox OXx oy OX oy

' ’ 2 2 1 (46)

+

aXZ ayz

Neglecting the nonlinear terms of perturbed values as small values of higher order than
we have

+

’ ’ ’ ' ’ 2 o1 2 o1
o0 ¥ 3w V' 0 0y o ¥ oo _ [aaaz) %ycg] )
X
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In plane channel flow, better to say, in Poiseuille flow we have U=0¥/dy =1-y* ,
V=—0W¥/0x=0, Q=-dU/dy, and also 6Q/ox =0, so finally we have

0w oY 0w’ Oy’ 0Q , 0 o
ow. _ - 4
ot tay ox ox oy | +V(ax2 Ty (48)
We anticipate that f'=0, and @' =-Ay’, so that we have now
a ’ 6 v_al//' dZU _ 2 1
atAl// +U axAl// X dy? =VvAy (49)
with boundary conditions
' oy’
viy=+)=0  L(y=+1)=0 (50)

oy

We have used modal approach for solving this problem, anticipating the that the
perturbations are 2x periodic in x-direction, and are represented in the following way

\II'(X, y,t) = %(\Vl +y; ) - %(ﬁj(y)eia(x—ct) +{|}(y)* efia'(x—yt)) (51)

Here v, is the normal mode form of stream function perturbation, and the values
denoted by * designate their complex-conjugate value. Thus the sum of normal mode
and its complex-conjugate gives the real valued function y’. Since the complex-

conjugate value y; can be easily obtained from the complex-valued function v, itself, it
is only necessarily to substitute , in the (49), so that it reads

~ ia(x—c d2U ~ ia(x-c ~ ia(x-c
[£+UijAy/(y)e( 1R LR v (e (5

which after some differentiation and rearrangements gives

d*v oo ~dWU _ v 4- :d’y  dy
(U C)( & a V/J W v _ia(a W —2a & + o ) (53)

This equation known as Orr-Sommerfeld equation, together with appropriate boundary
conditions

F(1)=0, ¥(-1)=0, %(1):0, %(4):0, (54)

should be solved numerically. Numerical procedures are given for examples in [5], [6],
[7] and [8]. This equation can be reduced to operator form
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d?u _v
dy2 i

(U—c)(D?y -’y )-y (¢'y —22"D%) + D) (55)
where is A = d/dy differential operator, which can be solved as generalized eigenvalue
problem, where ¢’s are eigenvalues and \y ’s are eigenfunctions.

We can fix now two parameters o and v, and compute the eigenvalue c, what
correspods to the case of temporal hydrodynamic stability. If we choose to fix ¢ and v,
and to compute o, that would be the case of spatial hydrodynamic stability. In the first
case we have a.ch and ceh, and in the second case ceh and o eh. Here ¢ is the velocity
of traveling wave, and « is its wave number. In general case C=Cre+ i Cjy and a=0lret |
oym , but since we have only one equation and two unknowns, we have to make some
assumptions concerning these unknowns. In our calculations we have anticipated o=1.

The results obtained for Re=1000 (v=1/1000) are presented in fig.1 and are obtained
for the N=128 Gauss-Lobatto-Chebyshev point in y-directions. For creating the
perturbation that can exhibit the transieth growth mechanism, we have used the
optimized linear combination of all eigenvectors which is normalized with regard to the
least stable eigenvalue. This optimized perturbation was superposed to the initial
unperturbed velocity profile, and the flow was driven by the force term determined from
the perturbed Navier Stokes equation. This transient growth is possible due to non-
normality of Orr-Sommerfeld operator, but the all eigenvalues and eigenvectors have to
be used for creating linear combination, not only the least stable eigenvalue and
correspoding eigenvector, see [9],[10],[11]. The results of simulation Fig.1land Fig.2 are
given in the next section for the dimensionless time t=nmx, n=1,...,10.

5. THE RESULTS OF TRANSIENT FLOW SIMULATION

The initial condition for our simulation is the solution of the problem for laminar
Poiseuille 2D-flow is

U(x,y,0)=1-y* V(xy,0)=0, on Q. (56)

Our goal is to simulate the transition process from laminar to perturbed state for the
value of Reynolds number Re=1000 which is beneath the critical value Re,=5772, to
simulate the transient growth of kinetic energy and enstrophy. We have carried out this
simulation by imposing the perturbations obtained by solution of Orr-Sommerfeld
equation on laminar velocity profile. The simulations are driven by forcing term which is
determined by the perturbed Navier-Stokes equation,

0 0 0

Foer :§(Q+a)')+5(‘{’+l//’)&(9+a)')—
0 0 o° o? 1)
_&(\I’+l// )E(Q+a) )_V{ﬁ?(Qer )+W(Q+a)) :

Here O and W are the values determined from (56) at initial time, and later they are
results obtained from our numerical procedure and our MATLAB code, and the v’ and
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®' are obtained as solution of Orr-Sommerfeld equation, and as optimized linear
combination of all eigenvectors,

v (%, y.t) ZBn\vn gt ZB\vn leatieal) (o)

and,
o' (x,y.t)=-Ay'. (59)

Here y, ’s are eigenvectors and c,’s are eigenvalues of generalized eigenvalue

problem of Orr-Sommerfeld equation for the case of plane Poiseuille flow, and B, are
coefficient which should be determined by appropriate optimization procedure. The
procedure we used in this paper is according to [7, p.121,fig.4.7] and is based on method
first developed in [11].

Here B is perturbation spectar obtained by using the matrix ¥, whose columns are
eigenvectors 7, (y) , in the following way

B=¥"y'(y.0). (60)

Functional to be minimized is

f =y Oy =(¥B)D(¥B)=p ¥ ¥YB=PB'TAB. (61)

In other words, the functional is the dot product of perturbation vector of stream
function and its complex conjugate. If we put the condition that the i-th mode is of unit
magnitude, then the variational problem can be reduced to the following function

f =B"LAB+A(Ble -1). (62)

Here we have designated with e; — the unit vector, i.e. the column vector whose the
only the i-th element is different from null. Let find the derivative with respect to B, e.i.
let find the first variation of the above function f and equal it with zero, so that we have

df
@B dB[B CAB+A(Ble,~1)]= AB+ e =0. (63)
And after rearrangements
AB=-Le;, (64)

so that after multiplication both side with inverse matrice A*from the left we have
B=-1A"g,. (65)

The optimized spectar can be normalized by appropriate calculation of coefficient A, so
that the value ;=1 can be obtained. Having this in mind we have
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- [ 4-1 o-1 -1 -1~ o
Yo &y &, ... & an o
1 " ~1 -1
182 Ay 8y ... Ay AN 0
= —ﬂ/ —l _1 . _1 _1 : y (66)
.,@ & & & oy |11
) :—1 :—1 :—1 - i1
LA Lag ay, ... ay ... ag L0
and the value of A is determined by this expression
A= __'Bi — __1 (67)

-1
ii

a'

a

Fig.1 shows the vorticity fields for six different times, for dimensionless time t=nr,
n=1,...,6. Since the least stable eigenvalue for Re=1000 equals c=0.3462-i0.0421, we can
see that the velocity of traveling wave perturbation optimized with regard to this mode
has 34.62% of the fluid velocity in the middle of the channel. In the time t=r we can see
the vorticity distribution similar to that given in reference [6, p.121, fig.4.7], and as we
can see the middle of the channel is almost unperturbed. In the next time for t=2r we can
see that vorticity has advected and diffused in the direction of the middle of channel, and
that the maximal amplitudes has been decreased, what is in our opinion the consequence
of the relaxation from the initial perturbation to the exact solution to Navier-Stokes given
by (56). This can be seen on colorbars in the first two figures, where on the first one we
have maximal magnitude 6.2 and on the second one 5.5 in dimensionless vorticity units.
In the next instant of time for t=3x, it can be observed the merging of perviously
separated vortexes with the same sign, which are deformed due to wall normal velocity
perturbation, which is not shown here due to space limitation.

In t=4r, two circled vortexes have been formed with the centers located at y=0.2
positive one and y=-0.2 the negative one. The positive one with counter-clockwise
rotation (red color) and negative vortex with clockwise rotation (blue color), in the
middle of the channel, where this vortex pair is being deformed by the velocity gradient
of the flud flow. The vortex pairs on upper and lower wall are in the form of romboid
since the velocity of perturbation is greater than the velocity of surronding fluid near the
walls, because the velocity of perturbation is cgre=0.3462 and velocity of the fluid is given
by (56). This velocity difference decreases with going away from the walls according
with this expression till the normal coordinate reaches the value where these two
velocities are equal, better to say, till to the value of critical fluid layer y=0.8, since U=1-
0.64=0.36. So we can notice that the velocity of perturbation traveling wave (phase
velocity) is much higher in the wall region than the streamwise fluid velocity, but
opposite is valid for the middle of the channel, where fluid velocity U (-0.8<y<0.8) is
greater than phase velocity.
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Fig.1. vorticity distribution o(x,y,t) in 2D channel viscous fluid flow for t=r,...,6n for
streamfunction perturbation optimized to least stable eigenmode.

In the next instant of time for t=5n it can be noticed that these vortex have been
deformed in streamwise direction, by the mean velocity gradient., and this process is
continued in the next instant of time t=6mx.
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Fig.2: vorticity distribution w(x,y,t) in 2D channel viscous fluid flow for t=7=,...,107 for
streamfunction perturbation optimized to least stable eigenmode.

In the next vorticity fields for t=7,..,10m, the process of vortex distorsion is
continued, and advected in downstream direction. The maximal and minimal values of
vorticity are on the upper and lower wall respectively , and their values decrease with
increase of time. Vortex pair on lower plate consist of two vortexes, the negative one
which atains the value ®;,=—4.8 and positive one with the value ®n,=1 at instant of
time t=10x. The opposite is true on the upper wall; the negative vortex attains the value
Ominr=1 and vortex with counter-clockwise rotation (red color) reaches the value
Mmax=4.8. These vortex pairs moves in downstream direction with phase velocity
Cre=0.3462, which can be seen on the figures above, since the displacement of the center
of the vortex between two instant of time can be determined in the following way: s=Cg.

At=0.3462-3.1416=1.0876, and this is what we can see on this fig.2 between four
different instant of time.
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6. CONCLUSION

The most important results can be seen on the colorbars for ten different instant of

times. It can be noticed that the maximal vorticity displayed on colorbars attains its
maximal value at time t=4n (®mx=6.85) and t=5n (Wmx=6.75), and afterwards the
intensity of vorticity monotonically decreases, so that for =10 we have the value ®max
=4.94. In this way we have two time periods, the first one when the maximal values of
vorticity increases with time until it reaches t=4x, and second one when the extreme
values of vortex intensity decline and the kinetic energy and enstrophy are monotonicaly
decreasing functions of time.
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EVOLUCIJA VRTLOZNOSTI U POREMECENOM
POASEJEVOM STRUJANJU

Milos M. Jovanovié¢

Apstrakt: U radu se razmatra direktna numericka simulacija vrtloznosti viskoznog nestisljivog
fluida za slucaj Poasejevog strujanja (strujanja izmedu horizontalnih paralelnih ploca pod
dejstvom gradienta pritiska u horizontalnom pravcu), kod koga je polju strujne funkcije fluida
pridodato poremecajno polje konacne amplitude. Ovo poremecajno polje je dobijeno
optimizacijom linearne kombinacije svih sopstvenih vektora dobijenih kao reSenje Orr-
Sommerfeld-ove jednacine za granicne uslove koji odgovaraju opisanom primeru.

Navije-Stoksova jednacina u obliku strujna funkcija—vrtloznost je numericki simulirana
koriSéenjem pseudospekttralnog metoda. Za aproksimaciju u pravcu x-ose koriséen je Furije-
Galerkinov metod, dok u nehomogenom pravucu, u pravcu y-ose koridéen je Cebiseljev kolokacioni
metod. Za diskretizaciju po vremenu koriSéen je poluimplicitni metod Adams-BaSvorta koji je
drugog reda tachosti. U radu su prikazana poremecajna polja vrtloZnosti za deset razlicitih
trenutaka vremena, u periodu tzv. prelaznog rasta energije do trenutka kada ona pocinje da opada,
odnosno do pocetka procesa relaminarizacije.

Kljucne reci: Direktna numericka simualacija, poremecajno Poasejevo strujanje, podkriticna
nesabilnost strujanja. optimizovani poremecaji, pseudospektralni metod.
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Abstract (bold). Flow visualization is an important topic in, experimental
and computational fluid dynamics and has been the subject of research for
many years. This paper presents an overview of flow visualization
techniques. The physical basis and applications of different visualization
methods for subsonic, transonic and supersonic flow in wind and water
tunnels are described: direct injection methods, (smoke, dye, fog and
different small particles), gas and hydrogen bubbles, , flow visualization by
tufts, oil, liquid crystals, pressure and temperature sensitive paints, shadow,
schlieren, interferometry, Laser Doppler Anemometry, Particle Image
Velocimetry and other special techniques. Almost all presented photos have
been recorded during tests in laboratories of MTI Belgrade.

Key words: flow visualization, wind tunnel, water tunnel, optical methods,
LDA, PIV

1. INTRODUCTION

Most fluids are transparent media and their motion remains invisible to the human eye
during direct observations. However, the motion of such fluids can be recognized using
techniques by which the flow is made visible. Such techniques are called flow
visualization techniques. These techniques are valuable tools in various scientific and
engineering disciplines. They allow to see the invisible: the optical inhomogeneities and
motion in transparent media like air and water.

Flow visualization probably exists as long as fluid flow researches itself and dates
back to the mid - 1400's, where Leonardo De Vinci sketched images of fine particles of
sand and wood shavings which had been dropped into flowing liquids. Ludwig Prandtl,
one of the pioneers of aerodynamics in Gottingen, performed first qualitative
visualization of unsteady flows behind profiles and other models in his simple water
channel by observing the movement of tracer particles on the surface of the water.
Today, one hundred years later, most physical quantities of interest to mechanics,
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aerodynamics and hydrodynamics can be determined quantitatively by image based
experimental techniques. Modern image based measurement techniques such as Particle
Image Velocimetry, following the same simple physical principles.

The progress made with optoelectronics and computer, lasers, video techniques has
stimulated the development of a great number of image based measurement techniques.
These techniques are now utilized for fundamental research, in industrial applications
and for comparison with the results of numerical calculations. They allow a much better
understanding of complex unsteady flow phenomena and providing quantitative
information about the complete flow field [1-6].

Experimental flow visualization techniques are applied to get an picture of fluid flow
around a real object or a scaled model of object, without any calculations and to develop
or to verify new models and new theories of fluid flow.

If the flow could be made visible by some kind of flow visualization technique, then
it would be possible to observe flow phenomena e.g., vortex flows, flows distant from
surfaces, as well as those phenomena which are dominated by the effects of viscosity,
e.g., boundary layer flows, separation) [1-41].

Flow visualization may be divided into surface flow visualization (tufts, fluorescent
dye, oil or special clay mixtures) and off-the-surface visualization (tracers as smoke
particles, oil droplets or helium-filled soap bubbles). Surface flow visualization gives
important information on such things as the state of the boundary layer (laminar or
turbulent), transition, flow separation and so on. The second type of visualization gives
the information about whole flow field. Each of these methods requires appropriate
lighting and some device for recording the image such as a still or video camera. Flow
visualization offers integration of photographic art and engineering techniques.

Recently a new type of visualization has emerged: computer-aided visualization. In
the area of fluid dynamics, computers are extensively used to calculate velocity fields and
other flow quantities, using numerical techniques to solve the Navier-Stokes equations.
Usually, when data sets are computed that provide a huge amount of sampled vector
information spread over a two or three-dimensional domain. Without visualization it is
impossible to investigate such data sets. To analyze the results computer visualization
techniques are necessary and very often used. Humans are capable of comprehending
much more information when it is presented visually, rather than numerically.

Three basic types of experimental techniques can be distinguished: methods with
adding foreign material, optical methods and methods with adding heat/energy.
According with these principles, one possible classification of the flow visualization
techniques may be:

I Non optical methods:
1.Visualization with tracers (photochemical production of tracers, elektrochemical
production of tracers, injection of tracers, smoke, dye, air and hidrogen bubbles,
powder, fog and so on)
2.Surface visualization (tufts visualization (ordinary tufts, fluorescent tufts), oil
emulsion, liquid cristals, termo sensitive paint, pressure sensitive paint,clay
mixture)

11 Optical methods:
1.Shadow method
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2.Schlieren metod (paralel or focused, gray or color)
3.Interferometry (classical, holographic)
4.Electronic speckle interferometry and shearography
5.Laser Doppler anemometry
6.Particle Image Velocimetry
111 Special methods:
7.Energy adding
8.Refractometry
9.Laser light sheet

This paper reviews flow visualization techniques applied in wind and water tunnel
tests. Wind tunnels are devices for experimental study of the wind effects on different
structures or objects: aircraft and missiles models, vehicles, cars, bridges, buildings,
machines, pipe and so on. But main task of the wind tunnels are experimental support of
research and development during design phase of aircraft projects. The hydrodynamic
behavior of submerged bodies in flowing water is studied in water tunnels, experimental
facilities, where water is used as the working fluid [6,7].

Wind and water tunnels are equipped with modern instrumentation, making possible
various measurements: force measurements on 3D models, half models or wing section
(2D) models, simultaneously using external and internal wind tunnel balances, pressure
distribution measurements, using Scanivalves, mechanical or electronically scanned
pressure sensors, stability derivatives measurements, flow visualization, store loads
measurements, hot film and hot wire anemometry, Laser Doppler anemometry,
holographic interferometer, Schlieren systems, aerodynamic noise measurements and so
on.

The flow visualization techniques used in aerodynamic laboratories of MTI [5,7],
are: wall tracing method with pigment oil film (TiO2, color pigments, graphite powder,
lampblack, fluorescent dye ) and liquid crystals, surface tuft methods with thin nylon or
silk monofilaments and fluorescent mini tufts, smoke visualization techniques: smoke
produced in smoke generator; smoke introduced at front of the test section and by
vaporization of TiCl4 for local application, water tunnel flow visualization by the use of
gas bubbles, milk as tracer, aniline and methylene dye, aluminum powder and
polystyrene particles, shadowgrafy, schlieren method, holographic interferometry, hot
wire and hot film anemometry, Laser Doppler Anemometry.

2. TRACER METHODS

The visualization technique of streamlines, filament lines or particle paths, which
injects some foreign material into a flow as a tracer is the most popular one and has been
long and widely used up to the now. These three curves coincide if the flow field is
stationary. But in the flow that depends on space and time as well, the tree types of
curves are different from one another. Which curves will be visualized depends on the
choice of: where particles are introduced, the length of the exposure time, and the
reference system from which the flow is observed or photographed. There is no
difference between liquid and gaseous flows [1,2,5].
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2.1. Smoke Visualization of the Flow

Resent developments indicate that smoke visualization in wind tunnels, one of the
oldest flow visualization technique, will continue as an important experimental tool in the
study of complex flow dynamic phenomena. Improvements in generation and injection of
smoke as well as in lighting (laser as a light source), in technique of acquisition and
computation have continued to increase the scientific value of this method [1-5,9]. The
similarly results give the flow visualizations with fog and vapor.

There exists no upper limit of speed for smoke line visualization.

d
Fig. 1: Flow visualization in the MTI wind tunnels by different type of smoke.

Smoke line can be generated in a wind tunnel by introducing smoke (produced by smoke
generated devices [1]) through small pipes placed in front of a test model, or through
holes on the model surface. The smoke must be dense and white for visibility, no toxic,
and no corrosive. The quality of the observed or photographed smoke line depends also
on the choice of the illumination system. The smoke can be obtained by the vaporization
of a mineral oil (paraffin, kerosene) mist resulting from the vaporization of certain
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substances containing bromide or chloride, and smoke from burning or smoldering wood,
paper, or tobacco. The burning or vaporization is done in a smoke generator. The flow
visualization without smoke generator is possible if one deposits a drop of TiCl,
(titanium tetrachloride) or CLOH,Br (bromnaph-thalin) onto the surface of test model in a
wind tunnel, a white stream of smoke will originate from this drop. When the liquid
TiCl, contact with the moist air develops powder TiO, and HCI. TiCly, liquid and vapor
are corrosive and toxic because of HCI [5,9].

Fig 1. shows some examples of smoke visualization (flow is left to right): the smoke
line in the MTI small smoke tunnel (fig.1a ), visualization obtained with smoke
introduced in the flow trough the ship chimney (Fig 1b), and flow visualization with
TiCl, around airplane model and sphere (figs.lc and 1d), smoke and laser sheet
visualization of turbulent convection patterns (fig.1le).

One of the more significant improvements in the filed of smoke visualization in the
past several years has been the introduction of laser light illumination. By using a light
sheet, cross section of the wake can be illuminated and the position of the vortices can be
located (fig.1e). Unsteady flow can be tested with pulsed laser. Recording of the flow
visualized effects can be affected by still or movie camera. Some times that method is
classified as special flow visualization method [4,5,12].

2.2. Visualization using dye

The visualization of the liquid flow patterns by ejection of a dye is an analog of
the smoke visualization technique[1-6,12,13]. The dye can be injected in a tested flow
either from a small ejector tube placed at a desired position or from small orifices, that
are provided in the wall of a model (fig.6a), without the component perpendicular to the
model surface. It can be generated in the flow too, without disturbing the flow. The dye
has to be stability with respect to diffusion, to have the same specific weight as the
working fluid and high contrast.

For the purpose of flow visualization can be used the food coloring dyes, aniline,
methylene, potassium permanganate, ink or fluorescent dyes (fluorescent rhodamine),
mixing in milk or alcohol. The fattiness of the milk retards diffusion of the dyed solution
into water and give high contrast of the dye line. In a rotating flow, it is important to have
dye solution with the same specific weight as working fluid (mixing dye with alcohaol).

The aniline violet, red and blue dye, injected from small orifices placed in the top of
the model, in the cabin region, visualizes the flow around tested models (flow is left to
right): 1/48 scale model of F-18 aircraft in flow visualization facility (ONERA, fig. 2a
[9]) and in MTI water tunnel, fig 2b. Fig. 2c shows flow visualization around hydro
profile in MTI water tunnel with aniline dye and fig 2d. is vortex visualization Karman
vortex street behind a cylinder at increasing Re number, using fluorescent dye and laser
sheet.



92 SLAVICARISTIC

c d
Fig. 2. Flow visualization by different dyes

The dye methods used in a closed circuit water tunnel increasingly contaminate the
water. The tunnel has to be emptied and refilled after each experiment. Visualization with
dye is not suited for turbulent flow, since the filaments would decay and the dyes would
mix with surrounding fluid immediately after being ejected [1,3,5,9-12].

Electrolytic and photochemical reactions can produce different dye in aqueous
solutions, which allows flow visualization and velocity profile measurements. Focusing
light from a flash tube or pulsed ruby laser onto a point in the photoactive solution fluid
(pyridine dissolve in ethyl alcohol or nitrospyran in kerosene) initiates a photochemical
reaction, which yields a spot of blue dye within a few microseconds [1].

2.3. Visualization by different small particles

Adding small particles in the flowing flow (water or air) supposed that the velocity
of the particles and fluid are identical. The tracer particles can be either solid, liquid, or
gaseous and the fluid liquid or gaseous, for example: dust, magnesium, (Mg), Al203,
TiO2, aluminum (fig. 3) and polystyrene or cosmetic powder, licopodium, hostaflon,
cigarette smoke, metaldehyde, atomized DOP, glass sphere, marble dust, oil drops, water
drops, hydrogen, gas, helium bubbles, ...The diameter of the particle is between 0.1 to 20
microns [1,4,5].
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o8 L7
Fig. 3.Visualization the flow around two cylinders (a) and moled of Concorde with
Al powder (ONERA)[1,9]

For determining the trajectory and local velocity of a spherical particle, the equation
of the motion of a single particle must be solved. It is necessary to complete the equation
of the motion with gravity and "lift force" acting on the particle in the flow with velocity
gradient. The particle velocity approaches exponentially the constant fluid speed. The
approach is the faster, the density and the size of the particle are smaller. In the
compressible flow, with shock waves, particles of finite mass and size cannot follow such
an abrupt change of the state of motion. The used particles should be as small as possible,
neither corrosive nor toxic and to have high degree of light reflectivity. The injection into
the fluid should be located far enough upstream the test regime. In principle two
methods exist; to take a single or multiple photographic exposure of the flow field with
controlled exposure time or to take exposure of the flow field so that each moving
particle is reproduced on the photograph by a single streak of finite length. Stereoscopic
photos or holograms may overcome the problem of localization of the particle. Today
there are a lot of different methods for illuminating and recording. [1,2,5].

Particle Image Velocimetry (PIV) is an experimental method for indirectly flow
visualization but method providing directly, instantaneous velocity vector measurement
in a cross section of a flow. The method is classified as special method or as the flow
visualization method by small particles. The basic principle involves photographically
recording the motion of microscopic particles that follow the fluid flow [5,13]. The
technique is ideal for unsteady aerodynamic flows. The software for PIV is a visual
programming language combining complete control of the acquisition, redaction and
analysis. The application of PIV method is illustrated with example presented in figure 4.
The measured velocity distributions performed by PIV image of the flow with the Mach-
4.5, on the upper part of the 20°- half angle wedge with flow is left to right (fig.4a) is
shown in Figs. 4b and 4c for the horizontal and vertical velocity component, respectively.

Laser Doppler Anemometry (LDA) is optical technique for investigation of velocity
and turbulence in gas, liquid, and mixing fluids, flame, rotating machinery, in
combustion, channels, chemically reacting flows, wave tanks wind or water tunnels, in
biomedical applications, atmospheres, oceanography and in various spectrum of
scientific and industrial research. LDA is power fool method for indirect flow
visualization, too[11,14,15]. The basic idea underlying LDA is to measure the velocity of
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tiny particles transported by the flow. If these particles are small enough, their velocity is
assumed to be that of the stream and LDA provides a measure of the local instantaneous
velocity, the mean velocity as well as the turbulent quantities.

b c
Fig. 4. (a) PIV image of wedge, (b) horizontal flow velocity, (c) vertical flow
velocity [13]

Laser anemometers offer some advantages in comparison with other fluid flow
instrumentation: non-contact optical measurement. LDA probe the flow with focused
laser beams and can sense the velocity without disturbing the flow in the measuring
volume, non calibration — no drift. The laser anemometer has a unique intrinsic response
to fluid velocity—absolute linearity, well-defined directional response. The quantity
measured by the LDA is the projection of the velocity vector on the measuring direction
defined by the optical system, high spatial and temporal resolution, multi - component
and multi - directional measurements and so on.
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a b
Fig. 5: Some details of experimental setup, a) water tunnel and 1D LDA, b) hydrofoil in
W(CT test section and laser beams[11]

a b
Fi. 6: LDA, experimental (a) and numerical (b) results of visualization by vector velocity
distribution for flow around hydrofoil positioned at a = 25°, Veo=5.32 m/s, (flow is left to
right)[14]

2.4. The gas bubble visualization

Gas bubbles visualization is a tracer method where tracer particles have low (in the
water), or similar density (in the air) as the flow. The observation of such gaseous tracers
in a gaseous flow requires the use of optical visualization methods. The gas bubbles
change its shape during the motion, and as a consequence, the drag coefficient of these
gaseous tracer particles is not only a function of the velocity difference between fluid and
particle, but also a function of the deforming forces acting on the particle. The gas
bubbles can be injected in the flow or generated by electrolysis [1, 5].

In a conventional arrangement hydrogen bubbles are produced on the cathode. They
mark a line of fluid elements whose position coincided at a given instant with the
position of wire. Any later position of these rows of tracer particles is called a "time
line", that is a measure of the local velocity profile (fig.7a), while fig 7b shows co-
rotating vortices and saddle points upstream of a bluff protuberance mounted on a flat
plate (flow from top) visualized by hydrogen bubbles and laser sheet flow visualization
in a water tunnel.
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a " b
Fig. 7. Rows of the hydrogen bubbles indicete the velocity profil over the plate [1]
and co-rotating vortices

a b
Fig. 8: Flow visualization in MTI water tunnel with air bubbles around hydrofoil
with different quantity of injected air [11]

The bubble motion can be recorded with a still or move camera. Time of
observation bubbles in the flow is limited by the dissolution of the gas bubbles in the
fluid (in water the time is approximately 3 s). The application of this method is limited in
the laminar, low speed flow [2,3]. Fig.8 shows the flow around hydrofoil in the water
tunnel (MTI) visualized by air bubbles [11].

3. FLOW VISUALIZATION BY TUFTS

Very frequently, flow visualization in the vicinity of model, in subsonic flow, is
performed using tufts. [1-5,16-18]. However, tufts size, their distribution on the model
surface and sticking are important for turbulent flow testing and for higher quality
boundary layer visualization on complex models. A grid with attached or glued tufts as a
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screen can be used to visualize the vortex shedding behind model or in the interaction
regime of different field. [2].

Fluorescent tufts have numerous advantages in comparison with the ordinary silk
tufts [1, 5, 16-18]. By using fluorescent dyes, the tuft diameter virtually increases as well
as the illumination, thus allowing higher quality of recording and using thinner tufts
(0.01-0.1 mm). They can be stuck onto the model surface using very small glue
quantities, (0.04 mm), thus avoiding boundary layer disturbances. Strong centrifugal
forces interfering with flow field act on tufts stuck onto the model surface and their
resultant determines tuft orientation.

The problem with small size diameter is overcame by using light source with rich
ultraviolet part of the spectrum, or special filters transmissible to that part of the
spectrum. This increases tuft luminance making it look much thicker and brighter. Hg or
Xe lamp with UV filters for /= 350 nm are used for steady flow testing. Stroboscopic
light sources are most frequently used for unsteady flow. Fluorescent tufts are also used
for flow visualization in water tunnels, as well as in-flight flow testing.

Figure 7 demonstrates the results of experiment in subsonic wind tunnel; flow
visualization with fluorescent silk tufts. The light combat aircraft model has surface
painted in opaque black with 840 tufts stick on it. Tufts are made of silk 0.05 mm and 20
mm long (figure 9a). Fluorescent spray was used for tufts dying. The flow speeds have
been between 20 and 40 m/s, and angle of attack has been altered from -8 to +24°. UV
lamp with 100 W has been used as light source.

Fig. 9: Flow visualization with fluorescent tufts in subsonic wind tunnel (flow is left
to right)[18]

4, SURFACE FLOW VISUALIZATION METHODS

For observation of flow characteristics close to the wall of a model, the body wall
can be coated with a certain material which indicates the local wall temperature, surface
pressure, or the streamline pattern of flow adjacent to the wall [1-5,19-22].
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4.1. Surface Qil Film

Oil film or dots on the model surface enable one to quickly and easily obtain a
picture of flow pattern at the surface of the model placed in wind tunnel [1-5,]. The
special mixture can be prepared of appropriate oil and a fine pigment (Al,Os; TiO,,
powder, fluorescent dye, coloring pigments, and graffito). The technique allows
observation the lines of separation and reattachment of the flow at the body.

Fig. 10a and 10b shows the visualization with TiO, + oil on the surface around
two and three vertical cylinders fixed on the plate in subsonic wind tunnel for V=50 m/s
and around sphere used for turbulence test for M=0,2 (fig. 10c)[5,22]. Figure 10d is oil
flow visualization of the airflow on end wall of a turbine blade cascade. Boundary layer
flow visualization on the laser guided bomb model with oil film, performed in the large
trisonic wind tunnel, top of the model with fins (a) flow on the fin upper surface (b), on
the wing upper surface (c) for M.,= 0.9 is presented on fig. 11.

c d
Fig. 10: Flow visualization around two (a) and three (b) cylinders fixed on plate in
large wind tunnel T-35 for M= 0,5 with oil film, around sphere for M=0,2 (c) [9] and
airflow on end wall of a turbine blade cascade [25].

Test of the flow field around the axysimmetrical body — model of the torpedo
without fins and control surfaces, was performed in the trisonic wind tunnel T-38 of
MTI, for the speed of undisturbed flow which corresponds to Mach number M.=0.3.
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Aerodynamic forces and moments were measured by six-component internal strain gage
balance. Oil emulsion film with addition of oleic acid and TiO, powder was used for
flow visualization in the boundary layer (fig. 23)[20-23].

c
Fig. 11. Boundary layer flow visualization on the laser guided bomb model with oil
film, top of the model with fins (a), flow on the fin upper surface for M.,= 0.9(b) and
flow on the wing upper surface (c)[19].

b
Figure 12: Flow pattern on the model obtained by the experiment (a) and by the
simulation of the flow for Moo = 0.3 and o = 8° (side view) (b) [21].

The goal of the experiment was to make possible comparison of the aerodynamic
coefficients and flow pattern obtained by the experiment and by the simulations of the
flow. Fluent 6 was used for simulation of the flow. Analysis of shown photographs
(figure 12a and 12b) demonstrates an excellent agreement of flow patterns obtained by
the experiment and the numerical simulations.
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4.2. Liquid crystals and temperature sensitive paints

A surface-temperature distribution can be gained by coating a test model with
cholestric liquid crystals. [1,2,5]. If they are illuminated with white light under a certain
angle of incidence, then liquid crystals reflect only one light wavelength at each viewing
angle, depending of small temperature changes in the crystals sheet. The colors of liquid
crystals are reversal if the temperature changes in the opposite direction. Because of that,
liquid crystals are very attractive for boundary-layer studies. Model to be tested should
be made of a material with low heat conductivity and coated with black paint as base.
Fig 13 demonstrates the application of liquid crystals for hot streams visualization in a
subsonic wind tunnel.

The surface temperature, the local heat transfer rate and coefficient on a body
tested in high speed flow facility can be measured by means of temperature sensitive
paints. The important difference between liquid crystals and temperature sensitive paints
is, that the temperature span over that liquid crystals change colors is much smaller (a
few degrees only) than that of paints (several hundred degrees).

Figure 13: Flow visualization in small wind tunnel with liquid crystals [5]

4.3. Pressure sensitive paint (PSP)

The spatially continuous pressure and temperature distributions on aerodynamic test
surfaces is important for understanding complex flow mechanisms and for comparison
with predictions of computational-fluid-dynamics models [5,26]. Conventional pressure
measurements are based on pressure taps and electronically scanned transducers.
Pressure taps provide pressure information only at discrete points.

PSP technology is an alternative for determining static and transient surface-
pressure fields for aerodynamic applications and for flow visualization. The pressure
sensitivity is based on the oxygen (O,) quenching of luminescent molecules dispersed in
a film that is coated onto a test surface. In practice, the PSP/TSP (temperature sensitive
paint) coating is illuminated with light of the appropriate energy (color) to excite the
coating-entrapped probe molecules. The resulting luminescence output is inversely
proportional to the surface pressure or temperature of the test model.

The output of the CCD array can be visually represented as a two-dimensional
image, with the luminescence corresponding to a gray or false-color scale. Figure 14
represents the illustration for PSP applications.
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5. FLOW VISUALIZATION WITH SPECIAL TECHNIQUES

Third group of visualization methods is based on two principles: introducing a
foreign invisible substance into the incompressible flow, and visualizing the density
variations in flow by optical methods. The foreign substance in this case is energy
transferred to certain portions of the flow that increase energy level (spark, electron beam
and glow discharge methods) and make artificially density variations. Such portions of
the flow have an altered density and can be visualized by the optical methods.

Fig. 14. A comparison of pressure results between PSP (right side of model) and
Computational Fluid Dynamics (left side)[26]

They are applied to visualize the rarefied gases that are for several reasons
distinguished from the ordinary compressible flows [1]. A technique which can be used
even for very low density fluid flows is electron-beam flow visualization. A beam of
electrons traverses the gaseous fluid. When electrons collide with gas molecules, these
gas molecules will be excited and emit radiation. The intensity of the radiation is
approximately proportional with the density of the fluid. By moving the electron beam,
the entire flow area can be scanned (fig.15).

An intensive hot spot can be obtain by means of a spark discharge across two
electrodes into a gas stream or using a giant pulse laser for producing the luminous
plasma (Q-switched giant pulse ruby laser of 100 MW). Another way of artificially
introducing density changes in a flow is to seed the flow with a foreign gas of different
refractivity (benzene vapor, CO2).
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Fig. 15: Flow visualization by electronic beam in hypersonic wind tunnel for M= 10

(5]

Very often as special flow visualization techniques are mentioned methods where
the double refracting liquids, solutions or suspension of certain macromolecules in a
neutral solvent, are used. A transparent medium can be birefringent if it consists of
optically anisotropic molecules.

For the purpose of flow visualization high speed photographic techniques are
usually applied in connection with one of the visualizing method. High speed cameras
with exposure time of 10° to 10 s in connection with associated illumination systems
can record the shock wave motion.

6. COMPRESSIBLE AIR FIELD AS AN OPTICAL OBJECT

Airflow around aerodynamically models, in optical sense, is a transparent
environment with complex light refraction index. Light refraction index n in each point is
the function of air density, which, on the other side, is the function of speed, pressure and
air temperature [1,5,27-37]. The relation between air density p (x,y,z) and refraction
index n(x,y,z) is the Gladstone-Dale: n =1 + Kp. The constant K has dimension of p*
and it is different for each gas.

According to Snell's low [1,3,5,27], a light ray, passing through inhomogeneous
refracted field, is deflected from its original direction and a light path is different from
that of undisturbed ray. If recording plane is placed in front of light ray, after disturbing
media, three quantities can be measure: the vertical displacement of disturbed ray, the
angular deflection of disturbed ray with respect to the undisturbed, the retardation of
deflected ray, i.e. the phase shift between both rays [1].

Optical visualization methods are based on the recording one of these three
quantities, or a combination of them. Shadowgraph used the first phenomenon, the
Schlieren the second, and interferometry the last. The shadowgraph is sensitive to
changes of the second derivative of density or refractive index &n / dy? Schlieren to
changes of density first derivative on / dy, and the interferometry is capable to measure
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absolute density n changes. If, using the optical method, light refraction index n(x,y,z) in
flow is determined, another physical parameters of tested environment, significant to
aerodynamic testing, can be indirectly determined as well.

6.1. Shadowgraph method

The oldest and the simplest of all optical methods for flow visualization is
shadowgraph [1-5].

Figure 16a shows the bow shock wave ahead of sphere in supersonic wind tunnel
T-36 at M,, = 1.86 [5,7]. The trace of the shock wave on the photo is a band of absolute
darkness bounded on the downstream side by an edge of intense brightness. The exact
geometrical position of the shock front is the other edge of the dark zone. The shock
wave represents a jump of the refractive index. The air density increases after the shock
and the incident ray deviates to inside edge.

Since the density in the disturbance is lower than in the surrounding field,
(Prandtl-Meyer expansion fan at the sharp end of the nozzle) the bright band appears at
the beginning of the shadow [1-5,27]. The same result is obtained when the compressible
boundary layers is visualized. Figure 16b is typical shadowgraph showing flow around
spherical tipped cylinder mounted on flat plate [5].

Shadowgraph methods with short duration light pulses can be used for fine
visualization of turbulent compressible flow.

f
a b
Fig. 16: Shadowgraph visualization around sphere (a), and typical shadowgraph
images showing spherical tipped cylinder mounted on flat plate (b) [5]

6.2. Shlieren method

As is mention before, Schlieren method is sensitive to change of the first derivative
of density on / oy, (or refractive index) and it can record the angular deflection of the
disturbed ray with respect to the undisturbed in a transparent medium with local in
inhomogeneities [1-5,27,32,33,36,37].

The Schlieren method is the most frequently used in aerodynamic laboratories,
since it is relative simple and very useful method. If a parallel beam of light passes
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trough air with density gradient normal to the direction of the beam, the beam is refracted
towards the region of greater density.

The most simply is the Schlieren system with parallel light through the test section
of the wind tunnel. Toepler system in hypersonic wind tunnel, as the base of all other
systems, is illustrated in Fig 17. Detail description of the system is presented in
references [5].

The modern schlieren system uses color filter or phase optical elements instead of
the knife-edge, and have several parallel, transparent, colored strips (most often three
colored sheets, red-blue-yellow or blue-green- red). The color filter can be consisted of
four differently colored strips arranged in a square filter for visualize the grad n in two
direction. If the flow is axis symmetric, complementary colors appear for the same event
(compression or expansion) above and below the flow axis.

The recorded pure colors and color combinations are a measure for the local
direction of density gradient in the test section. Figure 17 shows parts of schlieren
systems in T-34 hypersonic wind tunnels in MTI [5,7].

Figure 17: The photos of schlieren system components, model in the test section of
hypersonic wind tunnel T-34 and TV camera with monitor

Attempts to increase the amount of information extractable from schlieren effects,
the various opaque filters with different geometries, as well as transparent phase and
color filters are used [1-5].
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a b
Fig. 18: Black and white schlieren in wind tunnel T-36 for M,, = 0.86 (a) and M,, =
1,1 (b), and instantaneous image of Bullet and Muzzle Blast from 22-Caliber Rifle (c)

Figure 19 shows color schileren effects around blunt body and thin protruding
probe mounted in front of a blunt body, used to reduce the drag and the rate of heat
transfer, for M.,=1.86 [5,33]. Flow visualization in two dimensional model of the
supersonic rocket nozzle without and with vertical, different height barierres is tested by
schlieren method and the effects are presented in the fig 20. The nozzle is designed for
Mach number in the output plane M.,= 2.6 [31,36,37].

The classical schlieren photos obtained with color schlieren system are presented in
fig, 21. The flow around cone with top angle of 15° and sphere with ®=40mm is tested
in supersonic wind tunnel T-36 for different Mach number and position of color filters

[5]

a b c
Fig. 19: Color schileren effects around blunt body and thin protruding probe (flow
is left to right)



106 SLAVICARISTIC

d e
Figure 20 Schlieren visualization of the supersonic nozzle flow(flow is left to right)

The combined holographic interferometer and schlieren devices [5,35-37], have
been designed, made and tested for small supersonic and large trisonic wind tunnel. The
device can be included in tests either as schlieren system or interferometer.

Improvements to the basic schlieren system include the Rainbow Schlieren
[1,3.5] where a colored bull’s eye filter is used rather than a knife edge to quantify the
strength of the refraction. The other variety of sclieren methods is obtained including
laser as a light source. Figure 22 illustrates rezultats schlieren system in T-36 with He-
Ne laser as a light source.
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c d
Fig. 21: Color schlieren photos obtained in T-36 wind tunnel for M,, = 1.02 , and
1.56 around cone with 15 degrees top angle(a,b) and shpere with ®=100mm (c,d) [5].

Fig. 22. Schieren system with laser as light source in T-36 and schlieren effect
around cone for M,, = 1.1 [5]

6.3. Interferometry

Interferometry is based on the fact that a change in density not only results in a
refraction of the light, but also in a phase shift. In an interferometer parallel light is split
into two beams. One of the beams enters the flow field, the other beam does not enter the
flow field. When both beams are merged and projected on the same photographic plate,
interference occurs when the phase of one of the beams is shifted by a change of density
in the fluid flow [1-5,27-37].
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The most used classical interferometer in the wind tunnel tests is Mach-Zehnder
interferometer (MZ1) [1,27]. MZI can be applied to any case of gas flow investigations,
where density difference becomes noticeable as: thermodynamic data, thermal
conductivity of gases, dissociation, aerodynamic application, turbulence, wave or sonic
booms.

6.3.1. . Holographic Interferometry

Holographic interferometry is an optical method that makes possible complete flow
field testing. The method is non-contact and it does not disturb flow field. It is used for
testing of different object and phenomenon [1-5,27]. The greatest advantage of
holographic interferometry, in relation to schlieren method, is the fact that it provides
complete information stored in a single plate, allowing a postponement selection of
specific types of flow visualization.

The base of this method is holography, developed in last forty five years [27]. If, on
the some plate, the image of one object is recorded two times in different moments, in the
process of reconstruction both images appear simultaneously and on the same place in
the space. Object waves interfere becouse of mutually coherence (they originate from the
same light beam that illuminate the hologram) and the interference effects can be
observed in the reconstructed object image. If no change occurs on object between first
and second exposition, then there is no difference in images and there are no interference
fringes. If certain difference appears, then the reconstructed image contains the system
of interference fringes N that indicate that change.

Quantitative flow testing, using holographic interferograms is performed by
determining the number of fringes N(x,y) in the field image with respect to a reference
point of known density. After that, the index of light refraction n(x,y) and the air density
p(x,y) can be calculated. For the isentropic flow, there existed relations between N, n,,, p,
pressure P, temperature T, velocity V, and Mach number M The physical base and
mathematical interpretation of the holographic interferometry are explained in references

The simplest case for analyzis is the 2D flow [9,21,31-35]. For the processing of
interferograms of axi-symmetrical phase objects, the method of inversion, based on the
Abel transformation, is used. The experiment geometry is usually selected in order to
simplify the mathematical representation of flow and changes occurring at the path of the
laser light beam through the test section [5,29-32].

Computer tomography is an important technique for reconstructing 3-D fields from
holographic interferograms [1,27-29]. Several techniques have been developed for
computer tomography as: implicit methods (series expansion, discrete element
representations), explicit methods (convolution method), and Fourier transform method.
The choice of the best algorithm depends on structure of the density field, the amount
and format of available data.

Holographic interferometer with parallel beams is at the same time schlieren and
shadow device. Fig. 1 shows the schematic diagram of the experimental setup. Detail
description of interferometer components is given in previous paper. During the
experiments synchronized measurements were performed. Double exposition technique
was used for holographic interferograms recording: wind off (when homogeneous flow
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field exists) and wind on (when there is complex flow field for testing) [1,3,5].
Stagnation pressure (Po), atmospheric pressure (Pa), and Mach number (M.,) were
measured by the primary measurement system (PMS) in the wind tunnel, at the moment
of recording hologram, shadow and/or schlieren results.

Fig. 23: The schema of the holographic interferometer/schlieren and shadow device in
supersonic wind tunnel

6.3.2. Review of holographic interferograms

In order to demonstrate advantages of holographic interferometry in complex flow
field testing, and compared with other classical methods, the series of experiments were
performed in MTI supersonic and trisonic wind tunnel at flow velocity from M,, = 0.7 to
3.24. The photos of holographic interferograms illustrate this method. Figure 24 show
some interferrograms of different flow.

Fig. 24: Holographic interferogram of flow around missle for M.,.=1,56 (a), cone
90° and M.,=0,86 (b) and 2D cylinder M,,=0,76 (flow is left to right)[31]

The usage of classical methods of nozzle flow field testing comprises the
introduction of probe within the expansion region and holes perforation on nozzle
surface. These interventions would significantly change the flow field. Optimization of
this measurement is made by the holographic interferometry.
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Fig. 25. Visualization of supersonic flow ( left to right)around 2D 90° nozzle edge
(Prandelt-Mayer expansion) M,,=1,56: a) shadow, and b) interferogram

In order to demonstrate and to compare complementary possibilities of optical
methods in quantitative flow visualization, Prandlt-Mayer expansion tested by three
optical methods is presented. Figure 25a,b and ¢ show the flow visualization around 90°
corner end edge for supersonic nozzle M, =1,56. The interferogram is recorded by
double passing, collimated, object beam trough the wind tunnel test section. The shadow
is recoded on a holographic plate, because of collimated beams. The color schlieren is
recorded in the some time with hologrphic interferogram.

The holographic interferograms were used for numerical calculation of flow field
parameters in the vicinity of nozzle edge where the expansion fen is formed (fig. 25c).
The fringe number N was read from this hologram. Points in front of expansion fen have
N=0, since the last fringe has N=17. The theoretical and experimental values of Mach
number in the expansion area are in good agreement Mgy, = 2.15, Mye = 2.13 [5,29].

The photos in figure 26a and 26b present holographic interferograms of flow
around sphere for M,,=0.8 (without shock wave) and M,,=1,06 (bow shock wave is in
front of model). Fig. 26b is combination of holographic interferograms (upper part) and
schlieren photo for the same flow. On the interferometric part of photo easily seen are:
the stagnation point, the detached bow wave, the vortex sheet generated past sphere and
SO0 on.
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a b
Fig. 26: Holographic interferogram of flow around sphere for Me = 0.82 (a) and
mix; hologram and schlieren for M,, = 1.06 (b)

Very interesting is example of flow visualization around tunnel wall perforations
[5,30,32]. Many transonic tunnels are operated with performed walls in the test section.
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A number of investigations have been performed to determine how the flow in the test
section is affected by the presence of the perforation. The next photos (Fig 27) reports on
test performed in T-36, with a single slanted slot in the bottom plate of the test section.
The disturbances originating from the slot are expressed by distortions of the parallel
fringe system. A concentration of fringes indicated the formation of a pressure wave. The
slanted slot was used because it had been reported that such geometry would consi-
derably reduce the perturbation of free flow.

c

Fig. 27: Test section (a) and holographic interferograms of flow (flow is left to
right)in the empty wind tunnel test section with wall perforation (slanted slot) (b) and
with cone for M,, =0,83 (c) [30]

The interferogram however shows that the disturbance from the slot is not at all
negligible and reaches even beyond the axis of the test section (to about 60 % of the test
section height). The perturbation has the influence on the model sting in the central line
of the test section (fig 27c).

The interferograms of several supersonic racket nozzle configurations (fig. 28a)
without and with different barriers are recorded in order to provide a good insight in the
physical processes (figs. 28b,c,d). [5,7,31,36,37].
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The theoretical value of Mach number in the output plane of the nozzle is estimated
to be M=2.6. Using the data for pressure measurements, it is obtained M=2.46 and by
means of holographic calculations, Mach number is M=2.56. The placing of barriers in
the supersonic flow, leads to the appearance of the stagnation zone, shock and expansion
waves. Visualization of the flow field made in the experiment indicates strong interaction
of the turbulent boundary layer with the oblique shock wave in the divergent part of the
nozzle.

Fig. 28. Holographic interferograms for 2D supersonic nozzle without and with three
barriers

Beside two-exposition method, there are used the real time method, the average or
sendvich methods, the specle interferpmetry, refraction interferometry, differential
interferometry and so on. Optical holography use laser light in visible spectrum, and
interferencial effects are recorded on photo or thermosensitive emulsions. Electronic
holography uses CCD cameras. In some specific cases acoustic and microwave
holography, with electron beam, X — rays, or computer holography can be used. With
similar possibilities, today are used speckle interferometry, moiré interferometry and
shearography [1-5, 27,28].

6.4. Flow visualization by infrared thermography

Thermographic systems have been considered to analyse fluid-dynamic
phenomena thirty years ago. Nowadays high resolution and differential infrared
thermographic measurement systems open up new possibilities in it application [38,39].
Temperature field that can be measured by a thermographic system on the surface of a
solid body invested by a flow is determined by a lot of combined effects. VVery important
effects are: conversion of Kinetic energy of the flow into thermal energy, flow
temperature variation in time and space, convection heat transfer phenomena between
flow and body, conduction phenomena inside the body and radiation heath exchange of
the body surface with surroundings. By correspondence between convective heat transfer
coefficient and local turbulence it’s possible to carry out information about the boundary
layer. In addition to the laminar-to-turbulent transition boundary, the infrared camera was
able to detect shock waves and present a time dependent view of the flow field. Figure
29 shows thermograms of tests have been performed using an high resolution
thermographic system for fluid-dynamics analysis of a known test case, a wing profile, in
a wind tunnel under variable and constant temperature condition at different air flow
velocity[41,42].
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A time dependent heat transfer code was developed to predict temperature
distributions on the test subject and any necessary surface treatment. A commercially
available infrared camera can be adapted for airborne use. Readily available infrared
technology has the capability to provide detailed visualization of various flow
phenomena in subsonic to hypersonic flight regimes.

Fig. 29 Black aluminium airfoil with incidence of 7,5° clockwise (a) and airfoil with
incidence of -7,5° clockwise [42]

6.5. Computer Graphics Flow Visualization

Data originates from numerical simulations, such as those of computational fluid
dynamics need to be analyzed by means of visualization to understand the flow. With the
rapid increase of computational power for simulations, the demand for more advanced
visualization methods has grown. Computer graphics flow visualization centers around
visualization mapping, or the translation of physical flow parameters to visual
representations. Starting from a set of standard mappings, a number of data preparation
techniques is developed, to prepare the flow data for visualization [5,36,37,41].

The current strong demand for new flow visualization techniques, especially for

large scale 3D numerical flow simulations, can only be satisfied by combining the efforts
of fluid dynamics specialists, numerical analysts, and computer graphics experts.
Additional knowledge is required from perceptual and cognitive psychology, and artists
and designers can also contribute to this effort.
Conceptually, this process centers on visualization mapping or the translation of physical
flow parameters to visual representations. Starting from a set of standard mappings partly
based on equivalents from experimental visualization, a number of data preparation
techniques is used, to prepare the flow data for visualization. Next, a number of
perceptual effects and rendering techniques are described, and some problems in visual
presentation are discussed. The paper ends with some concluding remarks and
suggestions for future development.
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Scientific visualization with computer-generated images can be generally divided on
several stages: -data generation: production of numerical data by measurement or
numerical simulations

- data enrichment and enhancement: modification or selection of the data, to reduce the
amount or improve the information content of the data.

- visualization mapping: translation of the physical data to suitable visual primitives and
attributes.

- rendering: transformation of the mapped data into displayable images.

- display: showing the rendered images on a screen.

Test of the complex flow field (as the flow in the two dimensional supersonic nozzle
with the deflector) by holographic interferometry, shows again the significant advantages
of the holographic interferometry compared to shadow, schlieren and other classical
ones. This method has special advantages when the complex flows are tested, e.g. flow
around deflector, in the vicinity of the shock wave, etc.

Figure 30a shows numerical flow visualization of path line colored by velocity
magnitude (m/s), for different times and V=5.32 m/s, around 2D hydrofoil in water
tunnel [15]

Recently, flow visualization methods give the broad base for comparisons with
numerical methods. The considered problem is very complex because both the Reynolds
number and the Mach number influence the flow in the supersonic nozzle with deflector
at the exit plane. An oblique shock wave and large region of separated flow are caused
by the deflector (figs 28 and figs.31).

t=0.001s  t=0.01s t=0.1s t=0.149s

Figure 30: Numerical flow visualization of path line colored by velocity magnitude
(m/s), for different times and Veo=5.32 m/s, around 2D hydrofoil in water tunnel [15].
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Fig.31

The complex two-dimensional supersonic flow in the nozzle with three deflectors at the
exit is numerically simulated by the solution of the Reynolds-Averaged Navier-Stokes
equations with a two-equation k- turbulent model. This model of turbulence is based on
the Boussinesq approximation[36]

The used code captured main flow features and differences obtained with S-A and
k- turbulence models are not substantial. It is shown that convergent results were
obtained with all the meshes except the extra fine mesh.

7. CONCLUSION

This paper presents an overview of techniques for flow visualization. A brief
introduction to experimental flow visualization methods is given. Every method is
illustrated with photos of flow visualizarion effects. The advent of computer technique,
new tehnology for illumination, modern and very powerfull devices for digital image
recording and processing make possible automatically analyze flow visualization effects
and extract qualitative and quantitative information, which may not be readily available
from conventional flow measurements. Experimental flow visualization is a starting point
for numerical flow visualization of simulations using computer graphics. Parallel usage
of experimental and numerical methods confirms the possibilities of numerical method
application for complex flow analysis.
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VIZUALIZACIJA STRUJANJA - POGLED U NEVIDLJIVO

Slavica Ristié¢

Vizualizacija strujanja je veoma znacajna oblast u eksperiemntalnoj i komjuterskoj
dinamici fluida i dugi niz godina je predmet istrazivanja. U ovom radu su prikazane
izabrane tehnika vizualizacije strujanja. Opisani su osnovi fizicki principi ovih metoda, kao
i njihova pimena u vizualizaciji podzvucnih, okozvucnih i nadzvucnih strujanja u
aerodinamickim i vodenim tunelima: metode sa direktno ubacivanjem markera (dim, boje,
magla, razlicite male cestice), gasni ihidrogenski mehuri¢i, vizualizacija strujanja sa
konci¢ima, sa uljanim emulzijama, tecmim kristalima, bojama osetljivim na promenu
temperature ipritiska, optickim metodama kao Sto su metod senke, Sliren, holografska
interferometrija, Laser Doppler anemometrija, anemometrija za merenje vektora brzine
mikroskopskih cestica u fluidu, pomocu njihovih slika i drugih specijalnih tehnika. Skoro
sve prikazane slike su snimljene u labotarorijama Vojotehnickog institute u Beogradu.

Kljuéne reéi: vizualizacija strujanja, aerodinamicki tunnel, vodeni tunnel, opticke metode, LDA PIV
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Abstract. The standard radius of the Earth's gravity sphere is 917.000 km. Here we
present that the radius is 1.400.000 km.
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LOOPS IN THE SUN’S ORBIT
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Milutin Marjanov
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Abstract. Besides translation, spin around its axis and rotation around center of the Milky
Way, the Sun performs relative motion in the solar system Laplacian plane, also. This motion
was anticipated by Newton himself, in his Principia.

The form of the Sun’s orbit is substantially different from the other solar system bodies’
orbits. Namely, the Sun moves along the path composed of the chain of large and small loops
[1, 2, 6, 9]. This chain is situated within the circular outline with the diameter approximately
twice as large as the Sun’s is. Under supposition that the solar system is stable, the Sun is
going to move along it, in the same region, for eternity, never reitereiting the same path.

It was also shown in this work that velocity and acceleration of the Sun’s center of
mass are completely defined by the relative velocities and accelerations of the planets
with respect to the Sun.

Key words: loops in the Sun’s orbit, velocity, acceleration

1. INTRODUCTION

As said, Isaac Newton was the first who pointed to the fact that the Sun moves
around the center of mass of the solar system (Philosophiae Naturalis Principia
Mathematica): ,, ...since that centre of gravity (the solar system mass centre) is constantly
at rest, the sun, according to the various positions of the planets, must continually move
every way, but will never recede far from that centre*.

If the solar system is treated as a stable, isolated system of the point mass particles
moving under mutual gravitational interactions, two dynamic conservation principles
may be used for the study of its motion: conservation of the momentum and of the
angular momentum of the system.

The consequence of the first rule is uniform motion of the system’s mass center C,
while the consequence of the second is motion of the system in one, Laplacian, or
invariant plane [3].

This plane is within 0, 5° of the Jupiter’s orbital plane and may be regarded as the
weighted average of all planetary orbital planes. The point mass particles solar system
model, involves necessity of neglecting differences between the orbital planes mainly
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originated in the transfer of the (small, but changeable) Sun’s and planet’s spin angular
momenta to its total angular momentum.

Neglecting rotation of the solar system, as a whole, around the center of our galaxy,
this plane moves translatory, together with the mass center C through the space.

2. COORDINATE SYSTEMS
Existence of the invariant plane permits introduction of an "inertial” reference frame

xCy lying in it. Another Cartesian coordinate system x’0y’ (0x” and Oy’ parallel with Cx
and Cy) was adopted as the relative, that is, the heliocentric frame of reference (Fig. 1).

Fig. 1. Inertial and Relative Frame of Reference.

3. POSITION, VELOCITY AND ACCELERATION VECTORS OF THE SUN

It seems that, using astronometrical data positioning the outer planets from 1653. to
2060., P. D. Jose was the first one to determine the Sun’s orbit, in his work [1], 1965.
This paper was abundantly cited later in the works treating the sunspot activities.

In his work [2] R. Bitsch has determined the Sun’s orbit integrating differential
equations of motions of this celestial body exposed to the resultant of the planets’
attracting gravitational forces. It was supposed that these heavenly bodies are in circular,
uniform motions around the Sun. The initial planet’s configuration was adopted arbitrary,
because the author assumed that, in the long term, it does not affect the shape of the orbit.

One would be tempted to use term Kepler’s for the model employed in the work [1]
and Copernicus’ for the model in [2], but it would not be correct, since the Sun moves in
both models, of course.

In fact, the choice of either model in determining the trajectory, velocity or
acceleration of the Sun is completely irrelevant, since the orbit, velocity and acceleration
of the Sun’s center of mass are very small compared with the correspondent kinematic
parameters characterizing motions of the planets. Correctly defining the initial conditions
is all that matters.

For that reason "Copernican" model is the adopted here: the planets move at an
average distance, with average angular velocity around the Sun.
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Taking the planets’ configuration on 21 March 1978 [5] as initial conditions and the
model in which all planets, excepting Mercury (its orbit is not stabilized in the solar
system’s invariant plane yet) move uniformly around the Sun, M.Marjanov [9] obtained,
practically, the same form of the Sun’s path as Jose had. This trajectory covers the time
interval of fifty years: 21. 03. 1978. + 50.

Since, in the inertial plane of reference must be

8 8 8
kark szkvk :kaak :0
k=1 k=1 k=1

and
8 - 8 . 8 .
moro +zmk (FO + Rk)=0, m0\70 +ka(\70 + Rk) :O, moéo +zmk(éo + Rk) :O
k=1 k=1 k=1
it follows out that
8 - 8 . 8 ..
ka R« ka R« kaRk 8
— k=1 = k=1 = k=1
h=—"—=——, Vg=—"=——and ay=—""——,where M=>» m
0 M 0 M 0 M Z k

k=1

Thus, position, velocity and acceleration of the Sun’s center of mass are completely
defined by the relative positions, velocities and accelerations of the planets with respect
to the Sun.

Fig.2 shows the orbit of the Sun from 21. 03.2000. to 21. 03.2040. It, as mentioned,
corresponds to the orbit that got Jose /1/, but is substantially different from the one given
by Bish /2/, as the latter had wrongly assumed that initial conditions do not affect the
form of a path.

The contour of the Sun is given as referential and the dot marks denote years.

Concerning the influence of the inner planets on the form of the path, Jose was right:
it is quite negligible. Their influence would become visible only if a part of seemingly
smooth path was magnified thousand to ten thousand times. The influence of the inner
planets actions is far more evident when speed and acceleration of the Sun are
considered.

The maximal distance from Sun to the center of mass of C ~1,5-10% km is
obtainable when all planets are lined up on the same side of the star and the minimal
~21 000 km, when Jupiter is on one side and all the other planets on the other side of
the Sun, in the same direction.

Of course, chances for exactly such alignments of the celestial bodies are reduced to
zero /11/.

The anticipated path of the Sun over the next 2000 years is represented in the Figure
3. It is situated within the circular outline with the diameter at least twice size of the
Sun’s. Again, the Sun’s disk is given for comparison.

Provided that the solar system is stable, Sun is going to move in this region for eternity,
never reitereiting the same path.
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Fig.2. Sun’s Path from 21.03.2000. — 21. 03.2040.
4. ORBIT

6. VELOCITY

Sun's velocity from 21 03.2000. to 21 03.2040. is represented in the Figure 4. Here
we can see again that the outer, giant planets, especially Jupiter and Saturn have
dominant influence on this kinematical quantity. When these two planets are in
conjunction (~ every 20 years), the speed of the Sun is maximal
~16m/s (15.7m/s), and when in opposition, the velocity is minimal, about
S m /s (B.8m/[s).

6. ACCELERATION

The acceleration diagram from 21. 03.2000. to 21. 03.2040. is given in the Figure 5.
It shows much more irregularities and roughness than the previous diagram and
represents, of course, a measure of the resulting planets’ gravitational attractions. No
need to say that the peaks in this diagram correspond to the different conjunctional
combinations of two or more planets.
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Fig. 4. Sun’s Velocity from 21. 03.2000. to 21. 03.2040.
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If all the planets fell in the same direction, on the same side of the Sun, therefore, when
they were all in conjunction, the Sun would have a maximal acceleration ~ 0,27 u/s?.
When Jupiter is on one side and all the other planets on the other side of the Sun, in
the same direction, acceleration of the Sun is minimal ~ 0,14 q /s2.
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Fig. 5. Sun’s Acceleration from 21 03.2000. to 21 03.2040.

Table: Average Sun - Planets & Maximal Planet- Planets Interactions

Sun  Me \Y E Ma J S U N

Sun 3,13 13,20 8,52 0,39 100,00 8,90 0,34 0,16
Me 3,13 0,00 0,00 0,00 0,00 0,00 0,00 0,00
Vv 13,20 0,00 0,00 0,00 0,00 0,00 0,00 0,00
E 8,52 0,00 0,00 0,00 0,00 0,00 0,00 0,00
Ma 0,39 0,00 0,00 0,00 0,00 0,00 0,00 0,00
J 100,00 0,00 0,00 0,00 0,00 0,04 0,00 0,00
S 8,90 0,00 0,00 0,00 0,00 0,04 0,00 0,00
U 0,34 0,00 0,00 0,00 0,00 0,00 0,00 0,00
N 0,16 0,00 0,00 0,00 0,00 0,00 0,00 0,00
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7. SOLAR SYSTEM BODIES” GRAVITATIONAL INTERACTIONS

Previous diagram will be more understandable if one looks at the following Table of
the of the mean Sun - planets and the maximal planet- planets interactions.

The exposed table contains two kinds of data. The first row and the first column
represent mean Fy_., k = 1.2,...8 | that is, the average Sun — planets interactions.

These forces are average because of the adopted "Copernicus’™ and not of the "Kepler’s"
model.

Of course, the Sun-Jupiter interaction is the greatest one and it was taken to be the
referential: its value is 100. An interesting fact is that the second one is the Sun - Venus
interaction and that the Sun-Earth is of the same order of magnitude as the Sun-Saturn
interaction, although the Saturn’s mass is 95 times greater than the Earth’s.

All the other values in the Table 1 represent sup £ _;. k,j = 1.2,.....8 : maximal, that

is, conjunctional interactions of the planets. In the range of the here adopted five digit
precision, the only existing is the one between Jupiter and Saturn.

It is evident that motions of the inner planets, especially that of Venus and Earth are
the main cause of the fluctuations around a smooth acceleration curve representing the
influence of the outer planets, and above all, the influence of Jupiter Saturn.

8. CONCLUSION

The Sun and the planets in the paper were simulated by the model of stable, isolated
system of the point mass particles, moving under mutual gravitational interactions in the
averaged Laplacian plane.

Shape of the solar path is entirely different from the orbits of the other bodies moving
around it. Namely, the Sun moves along the path in the form of chain consisting of large
and small loops. This chain is situated within the circular outline with the diameter
approximately twice as large as the Sun’s is. Under supposition that the solar system is
stable, the Sun is going to move along it, in the same region, for eternity, never
reitereiting the same path.

Then the velocity and acceleration diagrams of center of mass of the Sun were given.

At last, for better understanding of the obtained results, Table of the of the mean Sun
- planets and the maximal planet- planets interactions was contributed.
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PETLJE U SUNCEVOJ PUTANJI
Milutin Marjanov

Pored translatornog kretanja, rotacije oko centra Mlecnog Puta i oko svoje ose,
Sunce obavlja i relativno kretanje u Laplasovoj ravni Suncevog sistema. Na to kretanje je
ukazao jo$ Njutn, u svome delu Principia.

Oblik Sunceve putanje bitno se razlikuje od orbita ostalih tela koje oko njega kruze.
Sunce se, naime, krece duz putanje u formi lanca sacinjenog od velikih i malih petlji. Taj
lanac je smesten u okvir kruzne konture ciji je precnik priblizno dva puta veéi od
precnika Sunca. Uz pretpostavku da je Suncev sistem stabilan, Sunce ¢e se vecno kretati
duz njega, u istoj oblasti, nikada ne ponavljajudi isti put.

Zatim su dati dijagrami brzina i ubrzanja centra mase Sunca.

Na kraju je prilozena tablica prosecnih interakcija Sunce — planete, kao i
maksimalnih interakcija medu planetama, s tacnoS¢u od pet brojcanih jedinica. Ona je
dobar pokazatelj zbog cega na oblik orbite, kao i na dijagram brzina najviSe uticu
spoljne, dzinovske planete, dok na izrazito neujednacenost forme dijagrama ubrzanja
uticu, pre svega, unutraSnje planete.

Kljuéne redi: petlje u Suncevoj orbiti, brzina i ubrzanje centra mase Sunca
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Abstract: Newton's formula for gravity force gives greather force intensity for atraction of
the Moon by the Sun than atraction by the Earth. However, central body in lunar (primary)
orbit is the Earth. So appeared paradox which were ignored from competent specialist,
beacause the most important problem, determination of lunar orbit, was inmediately solved
sufficiently by mathematical ingeniosity — introducing the Sun as dominant body in the
three body system by Delaunay, 1860. On this way the lunar orbit paradox were not
canceled. Vujici¢ made a owerview of principles of mechanics in year 1998, in critical
consideration. As an example for application of corrected procedure he was obtained
gravity law in some different form, which gave possibility to cancel paradox of lunar orbit.
The formula of Vuji¢i¢, with our small adaptation, content two type of acceleration —
related to inertial mass and related to gravity mass. So appears carried information on the
origin of the Moon, and paradox cancels.

Key words: Lunar orbit paradox, gravity law, gravity and inertial mass, concepts
in physics

1. INTRODUCTION

The Earth's satelite Moon is the nearest celestial body, with very complex description
from standpoint of celestial mechanics. The Earth / Moon mass ratio is equal 81.3, mean
density ratio 1.647, enough that baricenter of this two body system lies inside of Earth
and out of Earth's planetary nucleus. It produce many effects which can be important for
geophysics, as termal and tidal influence, and effect which are not neglegible for celestial
mechanics — Earth's baricentric motion along orbit around the Sun. Determination of
lunar orbit around the Earth was additionaly complex because the solar gravity force to
the Moon calculated from Newton's gravity law formula gives 2.2 times greather value
than Earth's gravity force to the Moon. So appeared a paradox that the Moon's orbital
motion is around the Earth, and as secondary with the Earth around the Sun [1].
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2. LUNAR ORBIT SOLUTION

The lunar orbit paradox was noted in Newton's time. In the 18. century astronomers
made attempts to solve this problem, but it was not satisfactory succesful. Clairaut
(1742) introduced the furth order corective term:

Fm(m_am_j )
r r
D’Alembert (1749) made the same using the third order term, [2]:
m m
Foeem| M _Zj | 2
l[ rg r3 ( )

Both solution can be mathematically satisfactory. But what is their physical sense? This
type of solution today presents only a numerical fitting if additional term is not assumed
as gravitational influence of the third mass. How the most might in gravity interaction
with the Moon is the Sun, and solar gravity force is bigger than the one produced by
Earth's over two times, both formulas can not be adequate physically. Other words, these
solutions are out of conceptual foundation of physics.

In the next century problem was pushed at margins of interest by succesful solving
most important problem for astronomers — analitical determination of lunar orbit around
the Earth, for needs of ephemeridal astronomy. Delaunay (1860) are simple considered
the Earth — Moon system as double planet system in motion around the Sun [3], and
solved orbital motion. (Fig.1)

Fig.1. Earth (E) — Moon (M) system with baricenter (B) in motion along eliptic orbit
around the Sun (S) governed by gravity forces F, F, ,F,., .

se ! sm?

Lunar motion in geocentric orthogonal coordinate system OXYZ was determined by
equations [4]:

d°x =—x*(mg +m )£+d—R
dt? : T dX (3.1)
a Y drR
o =—x"(Mg+my)—+—
t r° dy (3.2)
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d? , Z drR
pre =—k"(Mg+my)—5+-—
t r° dz (3.3)
R=—«?-mg e *Mw | Me | My | (3.4)
Mg -My \ s Tsm

Here are: R — perturbation function, & —gravity constante. Solar motion is along elipse
in XOY plane around baricenter (B) of the Earth — Moon system.

This solution were often quoted as argument that paradox of lunar orbit exist not.
Solar force to the Moon converts into components with origin in lunar center, the first is
paralel to direction of baricenter — Sun, and the second in direction to the Earth. But, this
explanation is not correct as argument that lunar orbit paradox exists not. The Moon —
Earth distance visible from the Sun is under angle of only <0.147 degree, and additional
force which the Sun gives to the Moon in direction towards Earth is insufficient to
explain rotation around the Earth. Because the force component to the Sun stay twice
bigger than the sum of solar force component of Moon to the Earth and Earth's atraction
of the Moon, problem stay open.

3. GRAVITY LAW DERIVED BY NEWTON

Deduction of gravity law Isaac Newton started from Kepler laws, Galilean
determination of gravity acceleration at Earths surface, Piccard's determination of Earths
radius, and Huygens centripetal acceleration. All other were assumptions and principles
introduced by him self. The first hypothesis was that at Earth surface centripetal
acceleration g, determined by Galilei, must be equivalent to centrifugal acceleration
caused by lunar rotation around the Earth — biger (“central™) body in the Earth — Moon
system. These hypothesis must be valid in the system Sun — Earth, general in solar
system, too. Newton so obtained gravity law in well known form:

Foort 2m2 , @)
r
with x —gravity constante. This form of law is usuable for two masive body in relative
quite too, because gravity constante value is known. Obvious in text books is not given
what is contented in Newton's gravity constante. Here we quote result derived by
Newton:

B 4z’ -a’
m-T% '
with a — big semiaxis of planetary orbit, T — period of planetary revolution. It presents the
third Keplers law — in astronomy known as Kepler’s constante, divided by mass of
central body. It can be usefful explanation with purpose to make Newton's procedure
simplest to understand, now from standpoint of mathematical logic [5].
Kepler (1609) introduced hypothesis on the mass of central body as the cause of
planetary orbital motion in Astronomia nova sive Physica coelestis. It is conceptualy
logical, because only this quantity is the same (or equal) in the interaction with each

K

(®)
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planet. In the third Kepler's law, the constante is expresed as product of the central body
mass and new constant - gravity constant:

vir=const=y-m,. (6)

Here we used mean planetary distance from the Sun, physical notion of mathematical
term big semiaxis, and mean planet velocity along orbit. Now we easy insert centripetal
acceleration which is equal to the ratio of squared velocity and distance. From previous

formula dividing by r? obtain acceleration to the central body:
2 2
vilr=y-m/r°=a_, ()

enough for description of planetary motion. Just connection of centripetal acceleration
and planetary mass into gravity force made Newton, using his the second principle. So
follows directly the gravity law:

F=m,-a, =y-m-m,/r?, ®)

The previous consideration gave a possibility for definition of the gravity constante in
solar system as Kepler's constante on mass unit of central body, i.e. via kinetic
parameters of planetary body :

y=virim. 9)

Also, we see that gravity constant connect Kepler's kinetic concept with Newton's
dynamical concept in description of motion. Mass stay as a cause of motion, but kinetic
parameters describe motion. (The other known explanation is Einstein's space curvature,
introduced 3 century later, into different mathematical concept.) In the pairs of body as
Earth — Moon and other planet — satelite, the same numerical value were obtained for
gravity constante, so that can be word on the universality of this constante. Validity of
this constante for gravity atraction between two body in relative quite confirmed
Cavendish (1798).

From inverse procedure, i.e. by application of Newton formula to binary star system
(where mass ratio is not much bigger than 1, how it is in solar system) obtains more
general formula for gravity constant:

y=r> (v Imr +vZ/mr,), (10)

where are V;,V,— baricentric velocities, I, I,— baricentric distances both bodies, and

r=r +r,. Itis important underline, because a general trend is colloquial present in

many text books on the gravity constant as only proportionality parameter for
dimensional equalization.
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4. NEWS INSERTED BY VUJICIC

Vuji¢i¢ made in Preprinciples of Mechanics [6] an critical consideration and overview
of foundation of mechanics, where gave few important critical opinion and suggestion
very important from conceptual standpoint. As a result, by application of corrected
procedure to two body motion appeared gravity law formula in some different form (see
also [7],[8]):

mm, P’ + PP —Var

F = 2z = 7 o 11
2 =X 0 X m, +m, (11)

where p —denote previously used r and p, p- radial velocity and acceleration.
Authors opinion is that this form of gravity law is more general than Newton's. Our
opinion is the same, but after small intervention. Applied in given form equivalent of

gravity constant (11) appears not constant, as it is (9). Physicaly, we underline two
remarks:

Fig.2. The Moon's face visible from the Earth is the same, modified in periode 19 years
11.3 day by Moon phases and lunar libration in latitude and longitude. This uniqual
composite picture obtained Hubble space telescope.(Photo:NASA)
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a/ it is confirmed as reality that values of gravity force depend from distance not
linear than squared (for two body as considered examples it is not controversial),

b/ constante in Newton formula realy present a constant. (Into interval of time
used for measurement, it is not discutable, too.)
This two fact previous formula give not. How harmonize new result with physical facta?
The simplicity in natural science is often present, and here it appears as simultaneous
multiplying and dividing with distance:

m,m 5+ pp—V-
F2:7 122’ 7:p pp orp. (12)
m, +m,

This form of Vuji¢i¢ equation is fully adequate and realy present generalization of
Newton’s formula, and  is equal to known gravity constant.

5. INERTIAL AND GRAVITY MASS

Before of application this corriged formula to the lunar orbit paradox we wish
underline the importance of dual nature of the mass, which follow from Kkinetic
description of motion. Galilean physics describe radial motion in gravity field, Kepler —
Huygens — Newton's physics describes circular / tangential motion around field source.

Einstein (1905) derived complete (kinetic) physical theory of gravity from Galilean
starting position. Oetwes (1911) confirmed in ingenios experiment impossibility of
differentiate in realy messure eventualy different numerical mass values for inertial and
gravity mass. Eight decade later Hayashy derived complete physical theory of gravity
starting from circular motion.

Einstein's work on theory relativity presents just an example of building physical
theory based on philosophycal concept. In principles of general theory of relativity
Einstein introduced the assumption on equivalence between each mass, gravity, inertial,
electromagnetic, etc. But the equivalence is not the same as to bee identical. Into same
principle implicite is built a reserve, that in any way can exist situation in which these
peculiar properties can be dominant, and can not be ignored.

6. THE PARADOX EXPLANATION

Vujici¢'s formula for gravity force applied with purpose to calculate acceleration
obtain form:

.2 .. 2
a- F _P PPN P (13)
mm, /(m, +m,) P P

Strictly, this formula content two type of acceleration — a, - which is related to gravity
mass, a;— related to inertial mass:
.2 . 2
+ V,
azag_i_aizu_i_ (14)
P P
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This formula we applied to explain and cancel paradox of lunar orbit. Orbital data - mean
distance ( p) , period (T), eccentricity (e) and mean tangential velocity (v) for the Earth
and the Moon used in calculation are:

ps, ~1.496-10 (m); e=0.01667

T, =365.2422-86400(s); v, =29700(m/s)
Py ~3.844-10°(M);  e=0.0549

T,, = 29.53-86400(s);  v,, =1020(m/s)
Both derivation of distance as mean value can be calculated via orbital eccentricity:
. pe. . p
A VU YV
Calculated values for the Sun — Moon / Earth system (index SM) and the Earth — Moon
system (index EM) are:

(pSZM Ip) =0.068 (u-9); pPoy =4.084 (19); (Vgr I p)su = 601.052 (ug)

(15)

(P2 1 p) =0.290 (u-Q);  fuy =5.288 (ug); (V2 /p)e, = 275.898 (uQ)

Here acceleration is expressed in gravity acceleration ¢ =9.81(m/82)at Earth’s
surface as unit, giving for acceleration:
ag, = 4.152(19)—-601.052(19)

ag, = 5.578(ug) - 275.595(uQ) .

Evidently, summary value is practically the same which gave Newton’s formula, but
here we have possibility to separate acceleration connected with gravity mass (the first
term) and with inertial mass.

Solar acceleration to the inertial mass of the Moon (the second term) is greather than
Earth's, 2.18 times but Earth's acceleration to the gravity mass of the Moon (the first
term) is 1.34 times greather than solar acceleration. The relation between inertial mass
acceleration and gravity mass acceleration is equal 1.622 what is very close (99.97%) to
Fibonacci golden ratio number, with meaning of stable harmonized ratio.

This can be explained as generic origin of the Earth and the Moon, strictly — the
same primary mass from which were built both body, with the same kinetic properties
according to the Sun as central body. This can be read just as the same what implicite
assumed Delaunay solving problem of lunar orbit !

If it is correct idea, paradox of lunar orbit is canceled. We have additional argument to
support this opinion — the same side of the lunar surface (Fig. 2) is permanent visible
from the Earth. What is realy meaning of this fact? Answer gave P. Savi¢ and R. Ka3anin
in monograph “The Behaviour of the Materials under high Pressures”, | — IV, 1962 —
1965. Here we quote last paragraph No 22 in the fourth part of monograph [9]:
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“The Moon: By studying the ionization of various elements (as we have done in part
111), we reached the conclusion that the ionization due to pressure can be brought about at
the earliest moment during transition from phase 2 to phase 3 (for instance, in case of
aluminum). If thus, a certain celestial body has not the phase 3 in its interior, because of
its small mass, then it certainly does not have a magnetic moment, no matter of which
material it is made.

This is the case, for instance, with our Moon, since its mass is small for such a
process; this was shown in parts Il and I11. This is why the Moon has neither a magnetic
moment nor a rotation of its own.»

Finally, we can add the sense of this comment, in context of our consideration: The
Moon is generic originated with the Earth. Also, the same conclusion derived N. Tesla
(1919) from analisys of lunar mechanical motion [10].

7. NIELSEN’S INTERPRETATION OF GRAVITY

Previous exposed present only one from few different form of gravity conceptual
interpretation. For correct presentation mathematical forms must be in the same
conceptual frame, what many people did not. Analogy between electricity and gravity
was subject of many authors, but mostly not in the correct way. Maxwell’s equations are
the crown of classical physics. It is not well known that exist analog equations form for
gravity, too [11], [12], by Nielsen. For fully understand result exposed here, Nielsen’s
paper is crucial appendix which must be present in the consciousness.

Nielsen introduced in fully correct way rotational gravity field as analog form with
electricity and magnetic field, starting from special theory of relativity and invariance of
electric charge. Static and dynamic components of electric interaction (here important —
with very different amplitude, much stronger static) as conceptual correct notation,
following formal mathematical analogy Newton’s and Coulomb’s formula obtained from
measurement, must posses full analog for gravity, too. Electromagnetic induction as
consequence of relativistic Thomas rotation, generate the same effect for gravity, what
Nielsen shown. It is bright final completing of classical physics, but in the time (year
1972) in which it is not in main stream of physics, and so in fact — ignored!

Nielsen used Lorentz equations for position, time, velocity and force, and
presumption that gravity mass is Lorentz invariant, too. Newton’s formula obtain form

E - m-m, r (16)

O o -dzortr
in which gravity constant is changed into form equivalent to electric constant

1
/10 =— a7
Ar -y
in Coulomb’s formula
Ife: g, -9, ZL_ (18)
gy dm-r ‘r‘

Electric charges of the same sign show repulsiveness, charges of the different sign
attractiveness. Gravity interaction is only attractiveness. Nielsen searched full analogy, so
that mathematic isomorphism must be physical content, too. Formal analogy with
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electricity is possible in physical sense if introduce two different mass, too. So appeared
except of positive mass in static, negative mass in motion, what follows from Newton’s
formula. Conceptual, this is condition sine qua non for analogy. And, this condition
really equalized both law in the frame of classical physics.

Maxwell’s, for electricity:

VE=Le 9xE=-B GB=0 VxBosylitmeal (19)
& ot ot
Nielsen’s, for gravity:
V.6=L0 9xG=-MN §.Nz0, FxN =K, Jo+Ko-4p- 2. (20)
Z ot at

Here are &, u,— dielectric constant and magnetic permeability of vacuum, 4,, K, -
gravity constant and eddy permeability for mass in vacuum, Pgr Pe~ density of mass

and charge, j,, jg— density of charge and mass current. It is obvious that nature of

acceleration given by formula presented here

.2 . 2

P PP Vo (21)
P P

is in congruence with Nielsen’s conclusions, because tangential component of velocity

(3" term in formula) produce acceleration in direction normal to motion (for negative

mass). If radial acceleration component (2™ term in formula) determines (static) radial

acceleration for positive mass, radial velocity (1" term in formula) determines

acceleration normal to radial acceleration, what can be responsible for baricentric motion,

and evolution of circular orbit to eliptic.

a=a,+a =

8. REMARKS ON THE BARICENTRIC MOTION

Solar system are described in different paradigm, depending of accuracy in
measurement. In all presentations planets motion is described as “around the Sun”, Moon
motion “around the Earth”. Baricenter of solar system describes curve like pulsating
(Arhimedes) spiral [13], and baricenter can be distant from center of the Sun up to 2.3
solar radius. (Fig.3.)

Objection of some criticist was that the Moon and the Earth motions must be
described as motion around of his baricenter, and around the Sun. It is Delaunay
interpretacion, mostly correct mathematicaly. Baricenter of lunar motion is always into
Earth. Conceptual correct is just motion around the Earth.

Each opinion with pretension to explanation must be presented in conceptual frame
so that it can exist in time longer than time in which is reported. Mathematic is
fundament of physics, but it is not physics. Needs measurement, concept, experiment,
modeling, etc, what leads to development by permanent expansion of physics into other
scientific area, also in philosophy.
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Fig. 3. Orbit of the baricenter around the solar center, in solar radius as unit,
in period 1939 -1990. year.

9. CONCLUSIONS

The law of gravity interaction between two body was derived by Newton, 1687,
primary from Kepler laws for planetary motion and few axioms which established
dynamics. It has been applied on the lunar motion around the Earth and Earth's motion
around the Sun. Newton's formula gives greather force for atraction of the Moon by the
Sun than by the Earth. However, central body in lunar (primary) orbit is the Earth, not
the Sun. Theoretical foundation of physics stay at formal logic and philosophical
concepts. («Physics is an attempt of conceptual construction of the real world and its
legal structure.» [14])

So appeared paradox which were ignored from competent specialist, beacause the
most important problem, determination of lunar orbit, was inmediately solved sufficiently
by mathematical ingeniosity — introducing the Sun as dominant body in the three body
system (Delaunay, 1860). On this way the lunar orbit paradox were situated in the corner,
not canceled. Vuji¢i¢ (1998) in critical consideration made an owerview of principles of
mechanics. As an example of application corrected procedure was obtained gravity law
in some different form, which gave possibility to cancel paradox of lunar orbit. With our
small intervention presented as follows in text, the result of Vujici¢ present a
generalization of classic gravity law. This formula content two type acceleration, one
related to inertial mass, the second related to gravity mass. This appendix related to
gravity mass carry information on generic origin of the Earth and the Moon, i.e.
information that these two body present finally formation from the same initial mass
condensed in process of planet birth in solar system genesis.
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With small intervention by author, which we made here, litle different formula
related to Newton's formula for gravity law, which derived Vujici¢ in strictly defined
circumstances, really present more general form of gravity law in classic physics. This
formula content two type acceleration, one related to inertial mass, the second related to
gravity mass. This appendix related to gravity mass carry information on generic origin
of the Earth and the Moon, i.e. information that these two body present finally formation
from the same initial mass condensation in process of planet birth in solar system
genesis. Nielsen’s analogue to gravity of Maxwell equations for electricity is conceptual
fully congruent with our conclusions.

Acknowledgement: The author would like to thank to the professor Veljko Vujici¢ for common
consideration which born solution for paradox, how it he proposed.

REFERENCES

1. Perel’man Ya. |., (1958), Zanimatel’naya astronomiya, Izdanie 9-e, pod redakciej P.G. Kulikov-
skogo, Gos.izd. Fiz.Mat.lit, Moskva. ( p. 212.)

2. Idel’son N.I.:(1975), Etudi po teoriy nebesnoj mehaniki, Nauka, Moskva.

3. Deprit A.: (1971), Ch, 1 in (Ed.) Z. Kopal, Physics and astronomy of the Moon, Second Edition,
Academic Presss, NewYork and London.

4. GrebenikovE.A., Ryabov J.A.: (1976), Cast 4 , gl. 10 u (Red.) Duboshin G.N.: Spravocnoe
rukovodstvo po nebesnoj mehanike i astrodinamike, Nauka, Moskva.

5. Tomi¢ A.S.: (2007), (Eds. Sumarac D, and Kuzmanovi¢ D.) Proceedings of the 1% Internat.
Congress of Serbian Society of Mechanics, 10-13 April, 2007, Kopaonik, p. 636 :Deduction of the
gravity law and quantum mechanical model of discretization in the macroscopic gravity system
from Solar system data, p.636 in.

6. Vujici¢ V.A.: (1999), Preprincipi mehanike, ZUNS Beograd, 1998.( Preprinciples of mechanics,
Mathematical institute SANU, Belgrade.

7. Vujici¢ V.A.: (2000), Facta Universitatis, Ser. Mechanics, Automat.Control and Robotics, Vol.2
No 10, p. 1021-1034. (Acction of force — formality or essence)

8. Vujici¢ V.A., He J.H.: (2004), Int. Journal of nonlinear Sci. and numerical Simulations, 5 (3),
283 — 286. (On two fundamental statements of mechanics)

9. Savi¢ P., KaSanin R.: (962, 1963, 1964, 1965), The Behaviour of the Materials under high Pressu-
res”, | - 1V, SANU, Belgrade.

10. Tomi¢ A., Jovanovi¢ B.: (1993), Publ. Astron. Obs. Belgrade, No 44, 119-126. (Proceedings of
the X national conf. Of yugoslav Astronomers, Belgrade, 22-24. sept. 1993); (Nikola Tesla - The
Moon’s rotation)

11. Nielsen L.: (1972), Gamma, No 9, Niels Bohr Institute, Copenhagen. (A Maxwell analog gravita-
tion theory.),

12. Nielsen L.: 2000, http//www.rostra.dk/louis/(Holistic quantum cosmology with decreasing
gravity)

13. Tomi¢ A., Koruga D.: (2005), Publ. Astron. Soc. R.Boskovic, No 6, 289-294, ( Proceedings of IV
Serbian/Bulgarian astronomical conference, 21-24 April, 2004, Belgrade). (Baricebtric motion of
the Sun).

14. Mari¢ Z.: 1979, Theoria, 22, No 4, 5 -15. (Albert Einstein) ; Holton G.:1968, Spring 1968, 636.

(Deadalus)



146 AS.TOMIC

PARADOKS MESECEVE PUTANJE

Aleksandar S.Tomié

Apstrakt:  Njutnova formula za gravitacionu silu daje vece privlacenje Mesca Suncem nego
Zemljom. Ipak, centralno telo u mesecevoj (primarnoj) putanji je Zemlja. Tako se pojavio paradoks
koji kompetentni specialisti ignoridu, jer je mnogo vazniji problem, odredivanje Meseceve putanje,
u meduvremenu zadovoljavajuce reSen matematickom domisljenoS¢u — uvodenjem Sunca kao
dominantnog tela u sistemu tri tela (Delaunay, 1860). Ali, tako paradoks meseceve putanje nije
razreSen. Vujici¢ (1998) je kritickim razmatranjem uradio pregled principa mehanike. Kao primer
primene korektne procedure dobio je formulu zakona gravitacije u malo drugacijoj formi, koja
pruza mogucénost da se razreSi paradoks Meseceve putanje. Vujiciceva formula, sa nasim malim
prilagodenjem, sadrzi dva tipa ubrzanja — koja Se odnose na inercionu masu i na gravitacionu
masu. Tako se pojavljuje sacuvana informacija o poreklu Meseca i otklanja paradoks.

Kljuéne re¢i: paradoks meseceve putanje, zakon gravitacije, gravitaciona masa,
inerciona masa, koncepti u fizici
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Abstract. We express our opinion about the role of Computational Mechanics (CM) in
science, applications and education. The presented thoughts rely on our experience
gained by working over decades (first author in particular) in the field of CM.

First, as a challenge of an opinion that computational mechanics is rather a tool, not
the science, we give our view that computational mechanics is a complex
interdisciplinary scientific field where new methods and solutions are sought, new
hypotheses are tested, and events in material world are elucidated or predicted. It is
quite an art to achieve the goal that general analytical formulations or experimental
findings become useful and practical numbers, graphs, and even simulations of living
systems response.

Second, we would like to emphasize the enormous impact of CM in applications;
ranging from the support of experimental investigations, to everyday engineering in
design and industry, to bioengineering and medicine. Giant steps have been undertaken
by invention of the finite element method in the 6th decade of last century. From that
time on, a huge number of researchers have opened new frontiers, introducing new
computational methods, improving the algorithms and incorporating achievements in
computer technology.

Third, we want to address the issue of the CM participation within university
programs. We believe that the CM methods, software development and application
should be a significant part of the overall education in engineering departments, but
also (to appropriate extent) in other departments of natural and biomedical sciences,
technology and medicine. All courses should be accompanied by the corresponding
software. We here cite our experience where around 40 PhD and MS theses have been
completed at University of Kragujevac, with the CM topics, development of engineering
software (our system of programs PAK) and applications in engineering and
bioengineering. This approach in education will result in preparing students to use
modern CM tools and software in their work after university studies.
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Key words: methods of computational mechanics, finite element method, discrete
particle methods, computer application, education

1. INTRODUCTION

Mechanics is the branch of applied science concerned with the study of mechanical
phenomena: the behavior of solids, fluids, and complex materials under the action of
forces. CM s that sub-discipline of mechanics dealing with the use of computational
methods and devices to study events governed by the principles of mechanics. It is
fundamentally important part of computational science and engineering based on the use
of computational approaches to characterize, predict, and simulate physical events and
engineering systems governed by the laws of mechanics (Oden, 1987).

It can be considered that CM has three aspects (Felippa, 1994). The first one is
engineering application; this is mainly in the fields of classical and recently developing
new engineering disciplines. The second one, the backbone of the field, is the theoretical
mechanics which uses continuum approach. The third one is the numerical solution of the
analytical equations.

Fig. 1 Fluid and solid finite elements used in modeling blood flow with blood vessel
deformation (according to Kojic et al. 2008)

The main goals of CM are directed to the development and application of
computational methods based on the principles of mechanics. With the use of these
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computational methods CM has had a profound impact on science and technology. It has
effectively transformed much of classical Newtonian theory into practical and powerful
tools for prediction and understanding of complex systems and for creating optimal
designs. Active research topics include improvements of classical (Figs. 1 and 2) and
development of new finite element methods (e.g. discontinuous Galerkin method),
computational acoustics and fluid-—structure interaction, algorithms for dynamical and
transient transport phenomena, adaptive solution schemes using configurational forces,
modeling the behavior of complex materials and biological tissue, and coupled problems
(multiphysics) where multiple interacting physical fields are modeled. Methods and
algorithms for high —performance computing including massively parallel computing
(Morton, 1976) are important for complex applications are currently in development
stage. A recent research in CM is focused on multiscale methods to solve problems
involving mutually dependent events occurring on different time and length scales.

Fig. 2 Shell finite element which relies on the classical theory of shells, used in structural
mechanics (according to Kojic et al. 2008)

In the next sections we present several examples to illustrate the role of CM in
various fields, ranging from treating the fundamental problems in mechanics to
applications to practical problems which could not be addressed without the CM
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methods. Then, a brief discussion regarding the role of CM in education is given,
followed by concluding remarks.

2. SELECTED EXAMPLES OF USE OF CM METHODS

Applications of CM methods in science, engineering and medicine are so broad that it
is very hard to select the most representative examples. Based on our experience, we here
give a few examples in which we and our collaborators have been involved, which may
illustrate complexity and variety of CM methods.

2.1. Flamant problem in solid mechanics

The famous Flamant problem in solid mechanics (Flamant 1892) represent the
problem of finding the solution of the stress distribution when an elastic semi-space is
loaded by concentrated force normal to the free surface. It is known from experiments
that tensional stresses develop in the vicinity of the force action point, but which cannot
be obtained by classical continuum mechanics theory. Use of a microstructural doublet
mechanics (DM) theory (Ferrari et al 1997) is illustrated graphically in Fig. 3. A
challenge was to develop a computational procedure to include the DM so that it can be
used for general analyses of problems involving microstructural material description.

Fig. 3 Microstructural kinematics of deformation described according to doublet
mechanics theory (Ferarri et al. 1997)

The basic equation expressing elongation strain of a “doublet” (a pair of neighboring
particles used for microstructure representation) is given as

Moz aklkz...klu_ au. o%u.
=Y Tt e Ty e 6y
— x! K OXy, Xy oX, 2 OX, OX,

sumon j,k,m =1,2,3; no sumon «
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a

where Tjk are coefficients as products of directional cosines of the doublet, U; are

displacements and 77, is the microstructural scaling factor. This equation has been built

into the FE framework and the correctness of the methodology and software (PAK, Kojic
et al. 1998, 2010) is illustrated in Fig. 4.

Fig. 4 Flamant problem. Microstresses for the three doublets: a) Hexagonal packing (two
orientations); b) Diamond packing. ¢) Macrostresses for both packings a) and b). d)
Displacement of the point A where the constant force is acting during time for the
viscoelastic constitutive relations (according to Kojic et al. 2011).
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2.2. Modeling of inelastic deformation of material

Material response to mechanical or other loadings (such as thermomechanical) is
described by a constitutive law which relates the stress vs. deformation measures. The
constitutive law can be simple, as linear elastic, but it can be very complex, described by
complex functions and parameters, and can include the material history of deformation.
Examples of these constitutive laws are those used for elastic-plastic or creep
deformation of engineering materials, or for biological materials. Constitutive
relationships are usually established by simple experiments (e.g. for metal plasticity,
Kojic and Bathe 2005). However, it has been a challenge to find material response in real
conditions of loading within structures or in biological systems, and generally represents
a scientific task and art to develop adequate computational methods. We here show one
concept, known as the governing parameter method (GPM), introduced in Kojic (1996)
for modeling inelastic material deformation; and its application to a real engineering
problem.

P
lae Nl s I

e’ T~——]  nel
P_.

Elastic region
at start of step

Fig. 5 Return mapping according to the GPM. a) A bisection procedure in finding zero-
value of the governing function — solution is between points P and Py,inis. b) Graphical

interpretation of search the final point "ip starting from PF (according to Kojic and
Bathe 2005).

Using the GPM it is possible to implicitly integrate constitutive law (providing the
best solution accuracy) within a load step and to satisfy the yield condition at end of the
step, see Fig. 5. In case of plasticity, the problem of calculation of stresses and plastic
strains is reduced to finding the zero of a monotonic function,
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where Ae” are increments of plastic strains, 6 are elastic stresses, CF is elastic
constitutive matrix, C” is the matrix related to internal parametersfp, N and n, are

normals to corresponding to yield surface fy and internal parameters; and the left upper

index n+1 indicate that evaluation of quantities is performed at end of load step. This
solution procedure is illustrated in Fig. 5, generally termed as the return mapping.

Figure 6 shows FE solution and comparison with experiment for large deformation of
a car joint, based on the GPM within the program PAK.

Fig. 6 Finite element solution (large strain elastic-plastic analysis) and experimentally
determined deformation of a joint of car structure (Zivkovic and collaborators 2006)

2.3. Muscle model

Modeling of biological materials remains a big challenge and requires further
experimental data and specific computational methods. Some solution concepts are
presented in Kojic et al. (2008). Here, we show a model of tongue using a relatively
simple Hill’s model and imaging technique to simulate motion of tongue produced by
internal excitation which is governed by the nervous system and biochemical processes
within the tongue tissue.

Fig. 7 Multiscale model of tongue contraction. Muscle fibers are determined using a DTI
tractography images (the left panel), the domain is discretized into finite elements with
fibers, and material behavior is described by Hill’s model for fibers deformation
(according to Mijailovic et al. 2010)
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Computational procedure form muscle modeling introduced in Kojic et al. (1998) and
further generalized in Stojanovic et al. (2007), is implemented to tongue model
(Mijailovic et al. 2010), Fig. 7.

Field of active stresses for two specific times is shown in Fig. 8.

Fig. 8 Active stress distribution within the tongue for: a) t=370ms and b) t=500ms
(according to Mijailovic et al. 2010)

2.4. Mass transport of LDL through blood flow and plaque growth model

Fluid flow problems and transport phenomena have been the subject of investigations
over centuries. Many problems have been solved in analytical form for simple boundary
conditions. However, those analytical methods are practically of no use for complex
flows and mass transport. Methods of computational mechanics enable us today to treat
the real engineering, scientific and medical problems. Here we select few of those of
interest in medicine. The first one is related to transport of the LDL proteins within the
blood, which cause plague initiation and growth.

The model of plaque formation include the following processes: a) transport of the
LDL within blood (fluid domain); b) transport of LDL within tissue (solid domain); and
plaque formation within the tissue.

The governing equations for blood flow are described by the Navier-Stokes equations
and continuity equation (here for incompressible fluid), while the mass-balance diffusion
equation (with diffusive and convective terms) is the governing equation for the
concentration field of the LDL within the blood. Those equations can be transformed to
the FE balance equations and further used for general boundary conditions, today in a
routine manner.

Specifics for this problem are first related to mass transfer of LDL within the arterial
wall, which coupled with the transmural flow. This mass transport is modeled by a
convection-diffusion-reaction equation as follows

v-(-b,Vc, +kc,u, ) =r,c, (3)

in the wall domain, where c, is the solute concentration in the arterial wall, D, is the
solute diffusivity in the arterial wall, K is the solute lag coefficient, and r, is the
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consumption rate constant. Second, the LDL transport in lumen of the vessel is coupled
to these equations by Kedem-Katchalsky equations (details are given in (Filipovic et al
2010).

c) d)

Fig. 9 a) Oxidized LDL distribution 0.37%; b) Macrophages distribution 4.2% from
media; ¢) Cytokines distribution 0.39%; d) three-dimensional representation of the model

Finally, the model of plaque formation includes the inflammatory process. This
process is described b three additional reaction-diffusion partial differential equations
(Calvez et al 2008), (Boynard et al 2009):

0,0x = d;AOx—k,Ox-M

oM +div(v,M)=d,AM —kOx-M +S/(1-S) )

,S = d,AS — AS +k,0x-M + y(Ox—0x™)
where Ox is the oxidized LDL in the wall, M and S are concentrations in the intima of
macrophages and cytokines, respectively; d;,d,,d; are the corresponding diffusion
coefficients; A4 and y are degradation and LDL oxidized detection coefficients; and v, is
the inflammatory velocity of plaque growth, which satisfies Darcy’s law and continuity
equation (Filipovic et al 2010). Since geometry of the blood vessel changes during
inflammation, a 3D mesh moving algorithm and ALE (Arbitrary Lagrangian Eulerian)
formulation for fluid dynamics was applied (Filipovic et al 2006).
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The above models are incorporated into a FE scheme and solved using massive
computational procedures, as well as experimental data for material constants and
imaging technique for geometry of blood vessels. The computed results are verified by
experimental observations using histology analysis and image processing. Figure 9
shows the computed distributions of the three model constituents within a blood vessel
wall, while in Fig. 10 are given graphs of distributions within the media of the wall.
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Fig. 10 a) Dimensionless wall LDL concentration profile in the media; b) Oxidized LDL
concentration profile in the media ¢) Macrophages profile in the media d) Cytokines
profile in the media

2.5. Self-healing material model using Dissipative Particle Dynamics (DPD)

A self-healing material is used to cover surfaces of vital parts of structures in order to
prevent corrosion. When a nanoscopic scratch occurs, a healing material follows from
nanocontainers into scratches. This process can be modeled using molecular dynamics
(Tyagi et al 2004). Another approach to this problem is a mesoscoping modeling using
the DPD method (Groot and Warren 1997, Filipovic et al. 2008a,b). Here we show how
the DPD can be applied in modeling the self healing process.

Motion of each DPD particle (further called “particle”) is described by the following
Newton law equation:



Computational Mechanics in Science, Applications and Teaching 157

mv; = Z(Fljc+F.}D+Fin)+ ™ ©)
i

where m; is the mass of particle “i”; V; is the particle acceleration as the time derivative

of velocity; FijC : FijD, and Fin are the conservative (repulsive), dissipative and random

(Brownian) interaction forces, that particle “j” exerts on particle “i”, respectively,

provided that particle “j” is within the radius of influence I, of particle “i”; and FiEXt is

the external force exerted on particle “i”, which usually represents gradient of pressure or

gravity force as a driving force for the fluid domain. The total interaction force
_rc D R H s e i [

F;=F +F +F (Fig. 11). Description of these forces is given in literature (e.g. Groot

and Warren 1997).

Fig. 11 Interaction forces in the DPD method.

The additional interaction forces between particles of inhibition agents, which are
placed in the primer layer and metal substrate particles, are added similarly as it was done
in a model of thrombosis in Filipovic et al. (2008a) (also in Jovanovic and Filipovic
2006, Filipovic et al. 2008c). These attractive forces are expressed as

Ls
Fa = ksf [1_ Lm;X] (6)

sf

where L is the distance of the inhibition particle from the substrate, kg is the effective

spring constant, and L':fax is the maximum length of inhibition particle attractive domain.

Solution example is shown in Fig. 12. This DPD model, with inhibitors in the primer
layer with thickness of 4 um, consists of a 2D rectangle crack domain with depth of 0.1
mm. Total number of DPD particles was 24 000 (240x100). Diameter of nanocontainer
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was 100 nm and concentration of nanocontainers inside the primer layer was 10%. The
total number of time steps for simulation was 100 000.

Fig. 12 The DPD model after 100 000 time steps (200s). Red particles represent the
inhibition particles, green particles make primer layer, grey particles (substrate) are
considered to be fixed in space domain. The surrounding particles are shown with light
blue color and represent the fluid.

3. COMPUTATIONAL MECHANICS IN EDUCATION

Courses in Mechanics has a tradition in Serbia as solid, well designed and lectured,
supported by exercises and literature. Those courses refer to mechanics of rigid and
deformable bodies and fluid mechanics. On the other hand, due to development of
computer technology new courses in informatics emerged at almost all departments in
natural and technical sciences and medicine.

However, courses in computational mechanics are quite rear in any of the current
level of education. Based on the current stage of CM, its use in various fields of science,
technology and medicine, illustrated above through several examples, and from our
experience, we offer the following ideas.

e There should be special at departments in technical sciences and mathematics
devoted to computational mechanics. The courses should be accompanied by
use of various software packages within exercises. Example of use of such
software is shown in Fig. 13.
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b)

Fig. 13 Use of software in Kojic et al. (2008) to parametrically model beam bending. a)
Displacement field; b) Comparison of analytical (solid line) and FE (dots) solutions.

e Advances courses in mechanics should include parts related to CM as an
extension of the classical analytical methods.

e Within courses in medicine there should be sections devoted to computer
modeling. There, without going to deep into theoretical considerations, it is
possible to connect the basic procedures in medicine with the possibilities of
modeling using computational methods and software. Figure 14 illustrates blood
flow through an aneurism can be modeled by using a software package.
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Fig. 14 Computed velocity field of blood within an aneurism (software accompanying
book Kaojic et al. 2008)

The above ideas are particularly of interest in the Ph.D. programs, within courses and
research.

4. CONCLUDING REMARKS

The main goals of this discussion are to outline the role of CM in research and
education. This discussion is based on experience of the authors and their collaborators.

In modern research it is simply a necessity to use methods of CM and software to be
able to elucidate problems in various fields of science, technology and medicine.

Teaching courses in Computational Mechanics should be designed for students to
become familiar with modern methods of computational mechanics and various
applications. The courses may contain theoretical background, with details usual for any
other branch of scientific disciplines, for students of mathematically or technically
oriented studies. For students in the fields where CM and software are used as a tool for
modeling purpose, the courses should be oriented to applications, with an outline of the
theoretical background.
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RACUNSKA MEHANIKA U NAUCI, PRAKTICNOJ PRIMENI |
OBRAZOVANJU

M. Kojic N. Filipovic

U radu pokazujemo ulogu racunske mehanike u nauci, prakticnoj primeni i obrazovanju.
Izlaganje se oslanja na naSe iskustvo steceno dugogodisnjim radom (posebno prvog autora) u
oblasti proracunske mehanike.

Prvo, kao odgovor na misljenje da je racunska mehanika radije alat, a ne nauka, dajemo nas
pogled da je racunska mehanika kompleksna interdisciplinarna naucna oblast gde se traze
nove metode i reSenja, testiraju nove hipoteze, i razjadnjavaju i predvidaju pojave u
materijalnom svetu. Prava je umetnost posti¢i da uopStene analiticke formulacije ili
eksperimentalni rezultati budu pretvoreni u prakticne brojeve, grafike, ili ¢ak simulacije
odziva zivih sistema. Drugo, Zeleli bismo da naglasimo ogroman uticaj racunske mehanike,
pocevsi od podrske eksperimentalnim istraZivanjima, svakodnevnih inzenjerskih poslova u
dizajnu i industriji, bioinZenjeringu i medicini. Preduzeti su ogromni koraci otkrivanjem
metode konacnih elemenata u Sestoj deceniji predhodnog veka. Od tada, ogroman broj
istrazivaca je pomerio granice, otkrivajuci nove racunske metode, poboljSavajuci algoritme i
povezujuéi nauca dostignuca sa kompjuterskom tehnologijom.

Trece, zelimo da se pozabavimo pitanjem ukljucivanja racunske mehanike u univerzitetske
programe. Verujemo da racunska mehanika, razvoj i primena softvera moraju zauzimati
nacajnu ulogu u ukupnom obrazovanju na inzenjerskim smerovima, ali takode (u
odgovarajucoj meri) i na ostalim smerovima prirodnih i biomedicinskih nauka, tehnologiji i
medicini. Sva predavanja treba da imaju softversku podrsku. NaSe iskustvo se ogleda u
priblizno 40 odbranjenih doktorskih i magistaskih teza na Univerzitetu u Kragujevcu, na
temu proracunske mehanike, razvoja inZzenjerskog sofivera (nas sofver PAK) i primena u
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Abstract. In this paper, the applications of biologically inspired modeling and control
of (bio)mechanical (non)redundant mechanisms are presented, as well as newly obtained
results of author in mechanics which are based on using fractional calculus. First, it is
proposed to use biological analog—synergy due to existence of invariant features in the
execution of functional motion. Second, the model of (bio)mechanical system may be
obtained using another biological concept called distributed positioning (DP). which is
based on the inertial properties and actuation of joints of considered mechanical
system. In addition, it is proposed to use other biological principles such as: principle of
minimum interaction, which takes a main role in hierarchical structure of control and
self-adjusting principle (introduce local positive/negative feedback on control with great
amplifying), which allows efficiently realization of control based on iterative natural
learning. Also, new, recently obtained results of the author in the fields of stability,
electroviscoelasticity, and control theory are presented which are based on using
fractional calculus (FC).

Key words: biologically inspired systems, control algorithms, modeling, fractional
calculus, stability

1. INTRODUCTION

The field of biomimetics and biologically inspired principles from the application of
methods and systems found in nature to engineering and technology, has spawned a
number of innovations far superior to what the human mind alone could have devised,
[1-3]. Also, the fast growing interest in flexible, versatile and mobile robotic
manipulators demands for robots with inherent high passive safety suited for direct
human-robot interaction. Traditional robotic systems and industrial manipulators
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demonstrate outstanding specifications regarding, for example, precision and speed
movement. Some complex industrial — and especially non-industrial tasks — recently
induced a new approach to robot design and control in order to achieve very stable, fast,
and accurate systems. Biologically inspired approaches have recently succeeded in
design and control in robotics [2-4]. Biological systems have been evolved to optimize
themselves under selective pressures for a long time. Biological organisms have evolved
to perform and survive in a world characterized by rapid changes, high uncertainty,
indefinite richness, and limited availability of information. General biomechanical
systems including the human body as well as the bodies of mammals and insects are also
redundantly actuated. For example, mobility of the human upper-extremity (arm) can be
considered as 7 DOF’s, while it has 29 human actuators (i.e, muscles) and accordingly, it
has 22 redundant actuators, [3]. A robotic manipulator is called kinetically redundant if it
has more degrees of freedom (DOF) then required for a realization of a prescribed task in
a task space. The kinematic redundancy in a manipulator structure yields increased
dexterity and versality and also allows avoiding collisions with obstacles by the choice of
appropriate configurations, [5]. Also, redundant actuation can be also found in many
robotic applications, [6].
First, it is proposed using biological analog-synergy due to existence of invariant
features in the execution of functional motion, Bernstein (1967)_(i.e. rule(s) that can be
developed by central nervous system (CNS) based on some principles), [1]. New,
synergy approach allows resolving redundancy control problem i.e. actuator redundancy,
in the framework of optimal control problem which it is solved by Pontryagin's
maximum principle. It is suggested joint actuator synergy approach which is established
by optimization law at coordination level, where it is introduced a central control, [7]. In
that way, one may obtain a specific constraint(s) on the control variables. Also, modeling
and resolving kinematic redundancy of (bio)mechanical/robotical system in synergy like
fashion, can be achieved using optimization law with suitable kinematic and dynamic
criteria which are the function of generalized coordinates, velocities, accelerations and
control vectors, respectively, [8, 9]. Second, model of (bio)mechanical system may be
obtained using another biological concept called distributed positioning (DP) which is
based on the inertial properties and actuation of joints of considered mechanical
system,[3], [8-10]. At last, using other biological principles is proposed, such as:
principle of minimum interaction which takes a main role in hierarchical structure of
control, [11] and self-adjusting principle (introduce local positive/negative feedback on
control with great amplifying), [8], which allows efficiently realization of control based
on iterative natural learning. In that way, control problem of coordinating segments of
(non)redundant (bio)mechanical system can be stated as an optimization problem which
is most likely to biological principle of minimum interaction. Also, the common
observation that human beings can learn perfect skills trough repeated trials motivations
the idea of iterative learning control for systems performing repetitive tasks where for
improving the properties of tracking is proposed applying principle of self-adaptability.
In the second part of this paper, new, recently obtained results of author in fields
of stability, electroviscoelasticity, and control theory which are based on using fractional
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calculus (FC) are presented, [12-20]. FC has attracted attention of researchers from
different fields in the recent years and the fractional integro-differential operators are a
generalization of integration and derivation to an arbitrary order operators and they
provide an excellent instrument for the description of memory and hereditary properties
of various materials and processes and, also obtaining more degrees of freedom in the in
the model,[3]. First of them, is an example within a new theory of electroviscoelasticity,
which describes the behavior of electrified liquid-liquid interfaces in fine dispersed
systems, and is based on a new constitutive model of liquids: fractional order model
(generalized the Van der Pol equation) with corresponding non-integer time derivative
and integral order, especially linear and nonlinear case,[4]. Also, new algorithms for
fractional iterative learning control (ILC), aD%,PD%,PI*D” types are proposed for
fractional time delay system and fractional process control PI“ D# type which include
ILC feedback control is also presented. At last,stability test procedure (finite time and
practical stability) is shown for (non)linear (non)homogeneous time-invariant fractional
order time delay systems where sufficient conditions of this kind of stability are derived.
Specially, previous results can be applied for robotic system where it appears a time
delay in PD“ fractional control system,[5].

2.FUNDAMENTALS OF BIOLOGICALLY INSPIRED MODELING AND CONTROL

As we know, control exists everywhere in complex biological systems. Recent rapid
development of biological science and technologies will further improve the active
applications of control engineering. Meanwhile, system control theory itself will also be
promoted by advanced biomimetic researches, [2], [4],_ [12]. Several theoretical concepts
have been evolved in control theory, typified by feedback control, optimal control,
sequence control, and so on,[11]. The main roles of feedback control are regulation and
adjustment, whereas optimal control involves planning and supervision with a higher
level of control state than feedback control. Meanwhile, it becomes more and more
important for the artificial systems to have high flexibility, diversity, reliability, and
affinity. System control theory, which forms the core foundation for understanding,
designing, and operating of systems, is still limited and insufficient to handle complex
large-scale systems and to process spatial temporal information in real time as biological
systems. Under this background, biomimetic and biologically inspired control research is
becoming a very important subject, [2]. In the first approach, technology approximates
the end result or function of an organ or organism. In the second approach, the principles
extracted from bio-systems may be applied in ways very much unlike those exhibited in
the originating organism. The analysis and clarification of functions of complex
biological systems mathematically at the system level, and imitation of them in
engineering, will lead to a deeper understanding of ourselves and will be significant for
constructing the next generation of advanced artificial systems such as human friendly
robots.
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2.1. Biologically inspired principle-synergy

The organization and development of brain nervous system’s motor control functions
largely depend on the physical interaction with the external environment. Self-
organization of the environmental adaptive motor function is one of the most interesting
characteristics that we should learn in biomimetic control research. From a mechanical
point of view, any human or animal represents a redundant mechanism, [2], [3]. The
nervous system takes advantage of kinematic and multi-muscle redundancies to control
actions in a flexible way so that, for example, the same motor goal can be reached
differently depending on our intentions, external environmental (e.g. obstacles) or
intrinsic (neural) constraints. Despite this flexibility, the central control of actions is
unambiguous: each time the body moves, a unique action is produced despite the
possibility of using other actions leading to the same goal. It is amazing how these
seemingly opposite aspects — flexibility and uniqueness- are combined in the control of
actions. Following Bernstein [1], we refer to these aspects of action production as the
“redundancy problem”. In other words, it was observed in the execution of functional
motions that certain trajectories are preferred from the infinite number of options [1],
[11]. Such behavior of organisms can be only explained by the existence of inherent
optimization laws in self-organized systems governing the acquisition of motor skills.
Existence of invariant features in the execution of functional motions points out that
central nervous system (CNS) uses synergy (i.e rule(s) that can be developed by the CNS
based on some principles). In fact, such behavior implies that it obeys the optimization at
the coordination level where the goal is to minimize efforts in terms of synergy patterns.
Speaking mathematically, the synergy imposes specific constraints on the control
variables of joints which are related to the task dependent functions pertaining to classes
of motor acts. For example, the control of arm movement in humans also relies very
much on distributed usage of different joints, and inherent optimization of muscles which
are active. Arm muscles are found grouped in pairs about simple hinge joints where even
in the simplest case of two antagonist muscles about a joint there are two distinct control
variables. Moreover, muscles should be regarded as functional units with more than one
control and activation parameter. Also, the biological muscle is the starting point for
many new approaches by the development of new actuators for robotics. Beside the
direct simulation of biological systems [2], there are different approaches to mimic
biological operational principles in technical systems, [11].

Here, the redundancy control problem has been discussed in the framework of optimal
control problem which is solved by Pontryagin's maximum principle. Joint actuator
synergy approach is suggested which is established by optimization law at coordination
level, where is introduced a central control as suggested Bernstein in [1]. In that way, one
may obtain a specific constraint(s) on the control variables. The dynamic model of robot
can be described with application set of the 2n Hamiltonian equations with respect

to Hamiltonian phase variables g, p; [13] where conjugate (canonical) momenta p;
. _OH . JH

g, _5_pi D, =—0,7—qi+Qi(u), i=12,..,n (1)



Biologically Inspired Control And Modeling Of (Bio)Robotic Systems And ...... 167

where is H (q, p) Hamiltonian and Q;, i=12,..,n be non-conservative control forces.
For a global optimization, the problem is set up as following

t
J = [ f,(q, p,u)dt — min )
fo
The goal is to find wu(t), t, <t<t,  which drives system from given initial state
(9o, Po) to a final state (q,, p,) under the condition that the whole trajectory minimizes
the performance criterion. Performance criterion is introduced at coordination level as the
energy criterion which is, in our case, functional sum of weighted controls of the robot

f (u) :%UT Ru (3)

Alternatively, the control can be smoothed by minimizing an energy function, quadratic
in control, in addition to time. Here, t, t, are the initial and final time of an end-effector

movement, which are known and fixed. The control weighting matrix
R=diag{n,r,,...r,} is symmetric positive definite matrix; u(t) must be entry of a
given subset U of admissible controls of m-dimensional Euclidean space:
u(t)eU = R™. Itis also assumed that optimal control problem has a solution. Applying
biologically inspired concept of control, and introducing central control u_ as suggested
Bernstein [1], one may introduce control vector u :[ul,uz,us,uC]T. Also, generalized
forces can be presented as functions of components of control u as

Q=u+u,i=123 u=[u,u,,u,u] 4)

It means that we have four motors, a “central” motor which produces u,, and rest of

motors (corresponding controls u, u,,u,) are placed at each joint separatery. In that way,

one of possible control strategies is established. Taking in a account condition of optimal
control based on the Pontryagin’s maximum principle and applying the matrix theory it
implies that following condition must be fulfilled:

10 0 ur
01 0 u
det Ll g ©)
00 1 ur
1 1 1 ur,
After some algebraic operations it yields
UsTy = Ui T +UsT, +UgT, (6)

Equation (6) presents an invariant on control variables “control synergy”- which is
established by optimization law at coordination level. In order to obtain finite solutions
of the problem mentioned, it is necessary to solve two-point boundary value problem for
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a system of ordinary differential equations or, even in particular cases, to solved
complicate algebraic problems. The proposed biologically inspired optimal control is
illustrated by simulation results of a robot with 3 DOF's (Fig.1) and 4 control variables
(Fig.2-5),see [7].

Fig 1. Autolemec ACR with three DOFs

Hy

Fig.2. Optimal control ul Fig.3. Optimal control u2
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] ™

Fig.4. Optimal control u3 Fig.5. Optimal control uc

2.2 Biologically inspired principle - distributed positioning (DP)

The relatively new approach in modeling redundant mechanism is based on biological
analog i.e, the modeling is based on the separation of the prescribed movement into two
motions: smooth global, and fast local motion, called distributed positioning (DP).
Distributed positioning is an inherent property of biological systems. It is based on the
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inertial properties and actuation capabilities of joints. Humans, when writing, as shown
in literature control their proximal joints, while the movement of distal joints follow
them. Writing is a good representative of task that is characteristic for humans, but at the
same time interesting for robots. It is fast and accordingly very demanding from the
viewpoint of dynamics (high accelerations produce high inertial loads). In humans highly
inertial arm joints (shoulder and elbow) provide smooth global motion, and low inertial
hand joints (fingers) perform fast and precise local motions, [3],[10]. Acceleration of
massive segments leaded to drive overload and required redundancy. Let, the position
of the arm be defined by the vector of joint (internal) coordinates of dimension

n=28:q =[q1 a, ...qS]T. The position of the terminal device (pencil) is defined by the

vector of external coordinates of dimension n,=5: X =[xy z (p]T, where x,y,z
define the tip position and angles @,¢ define the pencil axis. The kinematic model of the

arm-hand complex i.e. the transformation of coordinates (internal to external and vice
versa) is highly nonlinear

X =f(q) ()

where f is the function: R® — R®. The inverse kinematics (calculation of g for given X)
has an infinite number of solutions since (7) represents a set of 5 equations with 8
unknowns. this is due to presence of redundancy. The dimension of redundancy is
n, =n-n, =8-5=3. The kinematic model can be written in the Jacobian form of the

first or of the second order
X=3(a)q, X=3(a)4+A@9) (8)
where J is n,xn (i.e. 5x8) Jacobian matrix and A is n,x1 (i. e. 5x1) adjoint vector

containing the derivative of the Jacobian. Let X7 be the subvector containing the
accelerated motions (dimension N,), and X, be the subvector containing the smooth

X = Xy 9
) g

The redundant robot (n=8DOFs) is now separated into two subsystems,Fig.6. The
subsystem with n, =5 DOFs with greatest inertia is called the basic configuration. The

other subsystem is the redundancy having n. =3 DOFs. It holds that n=n, +n, .
Analysing the plane writing task one finds that there are n,=2 accelerated external
motions : x(t) and y(t). The others (z,8,¢) are constant or smooth. According to DP

motions ( n, —n, ). Now

concept we introduce X, =[x y]T and X, =[z 0 go]T. It can be defined the basic

T
configuration as a mechanism g, :[q1 a, ....q5] .The resting joints, one wrist joint

ge and “fingers " (g, dy), form the redundancy and ¢, =[q, g, qSJT defines the

position of the redundancy. The DP concept solves the inverse kinematics of a redundant
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robot in two steps. At the first step the motion of basic configuration is calculated (qp)
using kinematic model and properties DP concept, and at the second step the motion of

redundancy ((, ) is determined, [3].
hand

support

shoulder

~

Fig. 6. Eight-DOF arm-hand complex

2.2. Principle of minimum interaction in hierarchical control

Also,motor control is organized as a multilevel structure, is generally accepted. In
assistive system involves man as the decision maker, a hierarchical control structure can
be proposed with three levels from the left to right: voluntary level, coordination level,
actuator level. This imposes the robotic system is decomposed into several subsystems
with strong coupling between subsystems. For an instance, the system dynamics of
redundant robot are described by:

F,={U,Y,Z):R =0,F, =0}, (10)
where U € R™ is the control input vector, Y € R" the output vector, and Z e R" the

vector representing interactions between the two subsystems(segments),Fig.7. The cost
function of a multiple-system is the sum of the cost functions of all subsystems:

J(U,Z,Y):iJi, (11)
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Fig.7. Coordination of two subsystems

The problem of coordinating multiple systems can be stated as an optimization problem:
minimize the cost function J subject to the constraint F,. In monograph [8], it is stated
and solved the Bernstein problem which is related to kinematic redundancy of ARA. It
is treated control of a anthropomorphic robot arm (ARA) with three degrees of
freedom. The optimal control problem of continuous nonlinear dynamic systems -
(redundant robotic manipulators), with quadratic performance index can be stated as
follows. Determine U € L, (t,,t, ) such that under system constraints is minimized.

t
1
1= j["x(t)— X, (t)": o + 2ol }n > min, (12)
tO
X(t)=%= F(x(t),u(t))=g(x(t))+h(x(t)u(t), x(t,)=X,, (13)
z(t) = x(t) dimx=n,dimu=m,dimz=n, (14)

where X,U state and control vectors and Z is interaction vector; weighting matrices
Q,R,S are all block diagonal. So, problem of coordinating multiple systems can be state

as an optimization problem which is most likely to biological “principle of minimum
interaction” which is formulated by Gelfand and Tsetlin, [11]: “For complex controlling
systems, the typical structure permits the separation of individual, relatively automatic
subsystems. For each subsystem of that type all the remaining subsystems belong to the
outside environment and the expediency of the subsystems appears in the minimization of
interaction among them so that in stable conditions these subsystems function as if
independently, autonomously.” A major consequence of this principle is that the
complexity of each subsystem does not depend on the complexity of the whole system.
The application of the minimum interaction principle also leads to a structural form for
the “self-organizing” controller. The solution of stated problem of control is generated in
a sequence of steps involving a heuristic techniques of genetic algorithm that provides
reliable initial guesses. Genetic algorithms are stochastic adaptive algorithms whose
search method is based on simulation of natural genetic inheritance and striving for
survival. To solve local problems, the minimum principle is used where the multi-level
univariate hierarchical strategies is proposed. The problem is divided into two-level
optimization problem which is solved iteratively until the desired performance is
achieved, [8].
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2.3. Iterative learning control, self — adaptability

Recently, there have been extensive research activities in the topic of learning control
for controlling dynamics non-linear systems in a iterative manner. The learning control
concept differs from conventional control methodologies in that the control input can be
appropriately adjusted to improve its future performance by learning from the past
experimental information as the operation is repeated. The common observation that
human beings can learn perfect skills trough repeated trials motivations the idea of
iterative learning control for systems performing repetitive tasks. Therefore, iterative
learning control requires less a priori  knowledge about the controlled system in the
controller design phase and also less computational effort than many other kinds of
control. Learning control for controlling dynamics systems, a class of tracking systems is
applied where it is required to repeat a given task to desired precision.

ui(t) vd(®)
© T ym
€i(t) d + + i+ {t robotic =
" KE ‘ 2 _ wi () manipulator T
—
- ui(t)
é ei-1(t)
S
g

Fig.8. Block diagram of iterative learning control

In these equations t denotes time, t € [0,T], t € R, x; the state vector, x; € R", u; the
control vector, v; the vector uncertainties, u; € R™, y; the output vector of the system,

y; € R" and i denotes the i-the repetitive operation of the system. The learning controller
for generating the present control input is based on the previous control history and a
learning mechanism. Motivated by human learning, the basic idea of iterative learning
control is to use information from previous executions of the task in order to improve
performance from trial to trial in the sense that the tracking error e; (t) is sequentially
reduced. It is proposed applying biological analog - principle of self-adaptability which
introduce, here, local negative feedback on control with great amplifying. In the simplest
| case learning control law can be shown such as (see Fig.8):

Ui,y (8) = —Aug,, (1) +U; (1) + K () , (15)
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where uj4(t7) =Ujq(t—7), 7— the small time delay, denotes a vector of the delayed

control signal. If the feedback delay can be neglected, (for example using very fast
processors) then: uj,q(t) =ujq(t).

3. SOME APPLICATIONS OF FRACTIONAL CALCULUS IN MECHANICS

In the second part of this presentation are presented, new, recently obtained results of
author in fields of stability, electroviscoelasticity, and control theory which are based on
using fractional calculus (FC). FC has attracted attention of researchers from different
fields in the recent years and the fractional integro-differential operators is a
generalization of integration and derivation to an arbitrary order operators and they
provide an excellent instrument for the description of memory and hereditary properties
of various materials and processes and, also obtaining more degrees of freedom in the in
the model,[14-18].

3.1. Brief historical introduction

When in the 17th century the integer calculus had been developed, Leibniz and
L’Hospital probed into the problems on the fractional calculus (FC) and the simplest
fractional differential equations (FOEs) through letters. Leibniz asked in a letter
addressed to L"Hospital:

Can the meaning of derivatives of integral orderd" f (x)/dxn be extended to have

meaning when n is not an integer but any number (irrational, fractional or even
complex-valued)? L’Hospital responded: What if n be 1/2? d“zf(x)/dx”2 =2 for

f(x)=x. Leibniz, in a letter dated from Sept. 30, 1695, replied: It will lead to a

paradox, from which one day useful consequences will be drawn.In these words
fractional calculus was born.

Following L’Hopital’s and Liebniz’s first inquisition, fractional calculus was
primarily a study reserved for the best minds in mathematics. Futher, the theory of
fractional-order derivative was developed mainly in the 19" century. In his 700 pages
long book on Calculus, 1819 Lacroix [19] developed the formula for the n-th derivative

of y=x", m-is a positive integer,

m! m-n

Dn m=—
X (m—n)!X '

(16)

where n (s m) is an integer. Replacing the factorial symbol by the Gamma function, he
further obtained the formula for the fractional derivative
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F(ﬂ+l) .
— 7 X
F(,B—a+1)

D“x” = (17)

where o and S are fractional numbers and Gamma function T'(z) is defined for
z>0 as:

F(z):Te’xdex, I(z+1) =12I'(z), (18)

In particular, he calculated

v2,, I'(2) 12 _
D X—L_(slz)}x =2Jx/lr, (19)

On the other hand, Liouville (1809-1882) formally extended the formula for the
derivative of integral order n

D"e® =a"e® = D% =a%e®, « - arbitraryorder , (20)

Using the series expansion of a function, he derived the formula known as Liouville’s
first formula for fractional derivative, where o may be rational, irrational or complex.

D“ f (x) = zcnaﬁ!eanx , 21)
n=0
where
f(x):icn exp(a,x), Rea, >0, 22)
n=0

However, it can be only used for functions of the previous form. Also, Liouville
formulated another definition of a fractional derivative based on the Gamma function
(see below) such as:

a F(a+ﬂ) X—[)’—a
r(p)
which is known as Liouville's second definition of fractional derivative.Also his second

definition is useful only for rational functions.Neither of his definitions was found to be
suitable for a wide class of definitions.The derivative of constant function g =0 is zero

because I'(0) = <. On the other hand, the Lacroix definition gives:

D*x " =(-1) >0, (23)

1
Dl=——x“%0,, 24
F(l—a)x ” 24)



Biologically Inspired Control And Modeling Of (Bio)Robotic Systems And ...... 175

But,Lacroix's method could not be applied to many functions, so was not useful in a
broad context. The modern epoch started in 1974 when a consistent formalism of the
fractional calculus had grown to such extent, that in 1974 the first conference was held in
New Haven. In the same year the first book on fractional calculus by Oldham and
Spanier [15] was published after a joint collaboration starting in 1968. Applications of
FC are very wide nowadays, in rheology, viscoelasticity, acoustics, optics, chemical
physics, robaotics, control theory of dynamical systems, electrical engineering,
bioengineering and so on, [14-18].The main reason for the success of applications FC is
that these new fractional-order models are more accurate than integer-order models, i.e.
there are more degrees of freedom in the fractional order model. Furthermore, fractional
derivatives provide an excellent instrument for the description of memory and hereditary
properties of various materials and processes due to the existence of a “memory” term in
a model. This memory term insure the history and its impact to the present and future.

3.2. Fundamentals of fractional calculus

Fracional calculus is a name for the theory of integrals and derivatives of arbitrary
order, which unify and generalize the notions of integer-order differentiation and n-fold
integration. At present, based on the different background and purpose there are some
other definitions of FC. There exist today many different forms of fractional integral
operators, ranging from divided-difference types to infinite-sum types, Riemann-
Liouville fractional derivative, Grunwald-Letnikov fractional derivative, Caputo’s,
Weyl’s and Erdely-Kober left and right fractional derivatives and so on, Kilbas et
al.[16]. At first, one can generalize the differential and integral operators into one

fundamental D, operator t which is known as fractional calculus:

dP
r (
D =1 1 R(p)=0, (25)

i(df)” R(p) <0,

The two definitions generally used for the fractional differintegral are the Grunwald-
Letnikov (GL) definition and the Riemann-Liouville (RL) definition [14-16]. The
original Grunwald-Letnikov definition of fractional derivative is given by a limit, i.e
1 [(t-a)/h] (o
» aDj’f(t)=|higgh—p > (—1)1(1_] f(t-jh), (26)
=0

where a, t are the limits of operator and [x] means the integer part of x. Integral version
of GL is defined by

D F(M) =3 (27)

7,
o (=p+k+1) T(n-p)3 (t —r)pfn*l

n-1 f(k)(o)rmk . 1 j. f(n)(r)

The Riemann-Liouville definition of fractional derivative is given by
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e 1 d" ¢ f(2)
DI = I( mETL (28)

for (N—1< p <n) and for the case of (0 < p <1), the fractional integral is defined as

@ g, (29)

D)= F(p)It o

where T'(.) is the well known Euler's gamma function. Also, the chain rule has the form

—dﬂf(g(t))=i[ﬂj [dﬁk jdk f(9(t) (30)

dt” colk ). Ldt7 ™ ) dt

Where k €[] and [fj are the coefficients of the generalized binomial

B r'(1+B)
(k jr T T(L+k)T(1-k+B) (31)

For convenience, Laplace domain is usually used to describe the fractional integro-
differential operation for solving engineering problems. The formula for the Laplace
transform of the RL fractional derivative has the form:

© n-1
j ey DP F (Ddt =s"F(s) - "D (1), (32)
k=0

0

In practical applications, the initial conditions ODl"""lf(t)‘t:O are frequently not
available. Also, Caputo,[20] has proposed that one should incorporate the integer order
(classical) derivative of function X, as they are commonly used in initial value problems
with integer-order equations. In that way, one can use the derivatives of the Caputo type
such as:

sDP[f®)]= f(l)(f) dr 0<p<l, fO@)=df /dr (33)

dpf 1 j-
o

From definition of Riemann-Liouville and Caputo derivatives one may observe that the
relation between the two fractional derivatives is as follows:

eDP[f®]=, DF[(f-T,,[D®)] , (34)

where T, [f] is the Taylor polynomial of order (n—1) for f , centered at 0. So, one
can specify the initial conditions in the classical form
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f¥0) =¥, k=01,..,n-1, (35)

The two Riemann-Liouville and Caputo formulation coincide when the initial conditions
are zero. For numerical calculation of FC one can use relation which has the following
form:

+p ?pN(l) (+p) ; (+p) (+p) 1+p ) ep
((t_L)D; f(t)=h Z[:)bj f(t—jh), by"" =1 bj = 1—T bjjl (36)
=

where L is the "memory length”, h is the step size of the calculation,

N(t) = mm{[%}{%}} [x] is the integer part of X and bgi“) is the binomial coefficient.

3.3 Electroviscoelasticity of Liquid/Liquid Interfaces: Fractional-Order Model

Also, number of theories that describe the behavior of liquid-liquid interfaces have
been developed and applied to various dispersed systems e.g., Stokes, Reiner-Rivelin,
Ericksen, Einstein, Smoluchowski, Kinch, etc. According to this model liquid-liquid
droplet or droplet-film structure (collective of particles) is considered as a macroscopic
system with internal structure determined by the way the molecules (ions) are tuned
(structured) into the primary componentns of a cluster configuration. How the
tuning/structuring occurs depends on the physical fields involved, both potential (elastic
forces) and nonpotential (resistance forces). All these microelements of the primary
structure can be considered as electromechanical oscillators assembled into groups, so
that excitation by an external physical field may cause oscillations at the
resonant/characteristic frequency of the system itself (coupling at the characteristic
frequency),[21-24]. Up to now, there are three possible mathematical formalisms
discussed related to the theory of electroviscoelasticity,where the first is tension tensor
model, the second is VVan der Pol derivative model,and the third model presents an effort
to generalize the previous Van der Pol equation, i.e. the ordinary time derivative and
integral are now replaced with corresponding fractional-order time derivative and
integral of order p < 1. Hence, the study of the electro-mechanical oscillators is based on

electromechanical and electrodynamic principles. At first, during the droplet formation it
is possible that the serial analog circuits are more probable, but later, as a consequence of
tuning and coupling processes the parallel circuitry become dominant. Also, since the
transfer of entities by tunneling (although with low energy dissipation) is much less
probable it is sensible to consider the transfer of entities by induction (medium or high
energy dissipation). A nonlinear differential equation of the Van der Pol type represents
the initial electromagnetic oscillation
du (U s 1
Cdt +(R an+7/U +LIUdt 0, (37)

where U is the overall potential difference at the junction point of the spherical capacitor
C and the plate, L is the inductance caused by potential difference, and R is the ohmic
resistance. The « and y are constants determining the linear and nonlinear parts of the
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characteristic current and potential curves. The noise in this system, due to linear
amplification of the source noise, causes the oscillations of the “continuum” particle
(molecule surrounding the droplet or droplet-film structure), which can be represented by
the particular integral

du (1 1
C—+|=—a |U+U%+=[Udt+=-2A cosamt, 38
L (R a] WL A, cosw (39)

where o is the frequency of the incident oscillations, [21]. The noise output appears as an
induced anisotropic effect. In an effort to generalize the previous equation the ordinary
time derivative and integral are now replaced with corresponding fractional-order time
derivative and integral of order p.[22]. Here, the capacitive and inductive €lements,

using Riemann-Liouville definition of differintegral forms, fractional-order p e[O,l)

enable formation of the fractional differintegral equation, i.e. more flexible or general
model of liquid-liquid interfaces behaviour, as follows (linear case):

c,DF U (t)]+(%—aju +% D [UM]=i), (39)

Using Laplace transform of (39) leads to
U(s) sP o 1
= =sPG,(s), Gy(S)=————,
i(s) Cs®+(1/R-a)s”+1/L :(8). G(s) as?? +bs” +c ' (40)
a=C,b=(1/R-a),c=1/L

G(s)=

The term-by-term inversion, based on the general expansion theorem for the Laplace
transform, [2] produces

1$ (—1)k c) 2p (k1)1 = (k) b

G,(t) =5§T(gj t°P E o 2pspk (—gtp) , (41)
where E, , (z) is the Mittag-Leffler function in two parameters.Laplace transform of
the Mittag-Leffler function in two parameters is:

Tefttﬂ—lEa ﬂ(zt")dt :i, (|Z| <1, (42)
5 ' 1-z

Using inverse Laplace transform of G(s) one can obtain an explicit representation of
the solution (39) such as:

u(t) = je(t—r)i(r)dr , 43)

So,the initial electromagnetic oscillation is represented by the equation (43) i.e, a
(non)homogeneous solution (Fig.9) may be obtained in following manner using
numerical procedure (Grunwald definition). Also, one can obtain equivalent nonlinear
problem applying differentiation of (37) such as:
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i
cd—g+(i—a+3yu2jd—u+iu =0, (44)
dt R dt L
0.016 . - - . . - 0016 ——
0014 0014}
02 . 0.012¢
o 0.0
go.ooa %om
) 0.006 — —_— i 0.006
0.004 o 0.004
0.002 0.002
o w I?;c; B 100 120 R 0 ‘t[icnl 0 w0 120
homogenous case Fig.9 nonhomogenous case
a=099%5 Wo=15nV, a=0% W=15mV, p=0%Br=0%
p=095, T=000ls T=001s An=006m

Taking into account of Caputo definition [4] and introducing vector

X (0 =U (1), %) = DU, pea x(t)=(x.%)", (45)

one can get:

s [0 1 x ()] |0 0 %, (t)
oD X(t)_[—llLC —(1/R—a)/cHx2(t)}{o —Syxf(t)/Csz(t)}' (46)

It is easily observed that previous case is a one of the general case for this nonlinear
problem which can be obtained in the form:

sDPx() = f(t,x(t) x¥0)=x¥, k=01..[p], (47)

Fig. 10. Homogeneous solution of (Eq. 37)
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The initial electromagnetic oscillation is represented by the non linear fractional
differential equation (39), homogeneous solution may be obtained using numerical
calculation of Caputo derivative and predictor-corrector algorithm as it is shown in
Fig.10. The calculation has been done for the following parameters:

¢=8-10"7 Uo=8mv p=12T =0.004s,7=3-10_3

3.4 Iterative learning feedback control algorithms of P1“D” type in process

control systems

In classical control theory, state feedback and output feedback are two important
techniques in system control. Also, in recent years, there has been a great deal of study to
overcome limitations of conventional controllers against uncertainty due to inaccurate
modelling and/or parameter variations. As one of alternatives, the iterative learning
control (ILC) method has been developed [25], where the concept of ILC was originally
proposed by Arimoto [26] for accurate tracking of robot trajectories. Motivated by
human learning, the basic idea of iterative learning control is to use information from
previous executions of the task in order to improve performance from trial to trial in the
sense that the tracking error is sequentially reduced. Therefore, iterative learning control
requires less a priori knowledge about the controlled system in the controller design
phase and also less computational effort than many other kinds of control. The basic
strategy is to use an iteration of the form:

Uing (1) = F (Ui (0),6 (1), § O =yg®)-V;), (48)

where f(.,.) defines the learning algorithm and remains to be specified, y;(t) is the
output at the ith operation resulting from the input u;(t) and y4(t) represents the
desired output. The new control input u;,4(t) should make the system closer to the
desired result in the next execution cycle. Here, it is suggested the learning control
scheme comprises two types of control laws: a P1“D” feedback law and a feed-forward

control law,[27]. In the feedback loop, the P1“D” controller provides stability of the
system and keeps its state errors within uniform bounds. In the feed-forward path, a
learning control rule/strategy is exploited to track the entire span of a reference input
over a sequence of iterations i.e:

U (0) = F (i (0).8 (1), 6 (1), 0 < <1 (49)

where ui(t) is the control vector at the i -the iteration, while e (t)=y4(t)-y;(t), is
the tracking error signal between the desired signal y,(t) and the actual output
trajectory one y;(t) at the i-the iteration. Here, te [O,T], where T presents terminal

time which is known and finite. Here, it is considered the non-integer (fractional) linear
system described in the form of state space and output equations.
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X (t) = A (1) +Bu,(t), %(0)=x,(0)=0, O<a<1l

50
Yi (t) = CXi (t), ( )

where is f(.) fractional order derivative, A,B, and C are matrices with appropriate
dimensions. Here, it is suggested the learning control scheme which comprises two types

of control laws: a PD” feedback law and a feed-forward control law (Fig.11). In the

feedback loop, the P1“D” controller provides stability of the system and keeps its state
errors within uniform bounds.

Figurell. Block diagram of PI1“D” iterative learning feedback control for a LTI
system

Here, it is introduced feedback control as follows:

Uit (1) = Q(DYe 1 (D) + 7€, (1) (51)
and in feed-forward it is proposed a new PI1#D* -type ILC updating law for given
system such as:

U (8) =u; () + e (t) + T D% () + H, Dtiﬁei (1), (52)

and Uiy (1) = U (1) + U (1)) (53)

where Q,I',IT,H are gain matrices appropriate dimensions, where y >0 is real
constant; u g, (t) the feedback control input, u,(t) the feed-forward input; u(t) the
value of the function at time t . A sufficient condition for convergence of a proposed
feedback ILC is given by the main theorem and proved as follows.

Main theorem: Suppose that the update law Eqgs.(51-53), is applied to the system (50)
and the initial state at each iteration satisfies (50). If matrices IT1,Q , exist such that

[[¥-micB][1-D]| < p <1, (54)
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then, when i— o0 the bounds of the tracking errors
[ (£) =% O], | Vg ©) = y; ®)]], Jug (€)= u; @®)], converge asymptotically to zero.

3.5. Finite time stability analysis of linear autonomous fractional order systems
with delayed state —example PD“ fractional control of robotic time delay systems

The problem of time delay system has been discussed over many years and time
delay is very often encountered in different technical systems. The existence of pure time
delay, regardless of its presence in a control and/or state, may cause undesirable system
transient response, or generally, even an instability. Here, another approach is presented,
i.e system stability from the non-Lyapunov point of view is considered. In practice one is
not only interested in system stability (e.g. in the sense of Lypunov), but also in bounds
of system trajectories. A system could be stable but still completely useless because it
possesses undesirable transient performances. Thus, it may be useful to consider the
stability of such systems with respect to certain subsets of state-space which are defined a
priori in a given problem. Besides that, it is of particular significance to concern the
behavior of dynamical systems only over a finite time interval. Recently, there have been
some advances in control theory of fractional differential systems for stability questions.
However, for fractional order dynamic systems, it is difficult to evaluate the stability by
simply examining its characteristic equation either by finding its dominant roots or by
using other algebraic methods. The problem of sufficient conditions is examined that
enable system trajectories to stay within the a priori given sets for the particular class of
linear fractional order time-delay systems in state space form. A linear, ordinary,
multivariable time-delay system can be represented by differential equation:

dx(t)
——==AX(t)+ A x(t—7),
at AgX(t)+ A x(t—7) (55)
and with associated function of initial state:
X)) =y, (), —-r<t<0, (56)
or lwlc = max|w (@) (57)

-7<0<0
where7 >0 s a pure time delay. Dynamical behavior of an autonomous system (55) is
defined over time interval J =1{to:t, +T}. . Time invariant sets, used as bounds of system
trajectories, are assumed to be open, connected and bounded. Let index ¢ stands for the
set of all allowable states of system and index 8" for the set of all initial states of the

kA0, <o), where Q1
system, such that the set Ss =S. and S, = X-”X(t)"Q <Pf, where Q is assumed to be

symmetric, positive definite, real matrix. It is assumed that the usual smoothness
conditions are present so that there are no difficulties with questions of existence,
uniqueness, and continuity of solutions with respect to initial data. Here, it presented a
result of sufficient conditions that enable system trajectories to stay within the a priori
given sets for the particular class of linear autonomous fractional order time-delay
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systems.System given by (55) satisfying initial condition (56) is finite stable w.r.t
{te.3.6,6,7}, 5 <& if and only if:
vl <o (58)
implies:
[x®)|<e . vtel (59)

where ¢ is areal positive numberseR, < ¢.

Here, it is considered a class of fractional linear autonomous system with time delay
described by the state space equation:

d¥x(t)
——= = Agx(t) + Ax(t—7)
dt* (60)
with associated function of initial state (57), where it is discussed the case O<a<l,

Main theorem [28]:
A) Autonomous system given by (60) satisfying initial condition (57) is finite time stable

wrtid.enty 3}, d<e , if the following condition is satisfied:

A _ a G (1=10)"
14 Omae(t=t)" | e <gl5, Vtel. (61)
F(a+1)

where Fmax () being the largest singular value of matrix (.), namely:

O-rﬁax = O-max (A) ) + O-max (Al )’ (62)
Here, particular attention is paid to the finite time stability of robotic system Newcastle

robot where a time delay appears in PD fractional control system,[29].The equation of
motion of Newcastle robot with one degree of freedom in case of PD“ controller is:

mg(t)+cq(t)+kq(t)=

=Q,(1)+K, [qd (t-7)—q(t- z')] +K, [qga) (t-7)- q* (t- Z')j| ©3)

For the small ¥ =Y —0 perturbation and after linearization leads to the linear time
delay-differential equation as follows:

y(t)+28y(t)+ay(t) =k, y(t—7)+k, y@ (t-7) (64)
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So,one may convert some linear equations with commensurate multiple fractional
derivatives into linear system of fractional differential equations of low order, one can
obtain:

0 1 0 x(t) 0 0 0 0| x(t-2)

DY2x(t) = 0 O 0 x,(t) 0 0 0 0 x(t-17) (65)
0 1 x(t) 0 0 0 0fx(t-7)
-w° 0 =28 0|[x,(®)| |ko ky, O O} x,(t—7)

In that way using results of previous theorem, one can easily check stability condition
for this system. Besides, it is also established new stability result for the particular class
of nonlinear perturbed autonomous fractional order time-delay systems described by the
state space equation,[30],[31]:

dx(t) _

e (Ag+AA ) X(t) + (A +AA ) X(t—7) + T, (X(1)), (66)

[fo (x| < & [x(t)], te[0,0) (67)

with the initial functions (57)of the system and vector functions fo satisfied (67).
Main theorem: Nonlinear autonomous system given by (66) satisfying initial condition

(57) and (67) is finite time stable w.r.t. {9:€.te. 3.}, <& if the following condition
is satisfied:

u (t—t )a 4y (t1o)
1+ 0 e M@l <o/5 vied  (68)
F(a+1)

Hpoco =m0 t7aA tC0»
where (69)
OANA =OAL T 7AA Hp = Haoco T OAIA

4, CONCLUSION

Proposed synergy approach allows resolving redundancy control problem i.e. actuator
redundancy, in the framework of optimal control problem which it is solved by
Pontryagin's maximum principle. Also, modeling and resolving kinematic redundancy of
(bio)mechanical/robotically system in synergy like fashion, can be achieved using
optimization law with suitable kinematic and dynamic criteria which are the function of
generalized coordinates, velocities, accelerations and control vectors, respectively.
Besides that, model of (bio)mechanical system may be obtained using another biological
concept called distributed positioning (DP) which is based on the inertial properties and
actuation of joints of considered mechanical system. Also, they are presented other
biological principles such as: principle of minimum interaction which takes a main role in
hierarchical structure of control and self-adjusting principle (introduce local
positive/negative feedback on control with great amplifying), which allows efficiently
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realization of control based on iterative natural learning. In the second part of this paper,
newly, recently obtained results of author in fields of stability, electroviscoelasticity, and
control theory which are based on using fractional calculus are presented. First of them, it
is an example within a new theory of electroviscoelasticity, which describes the behavior
of electrified liquid-liquid interfaces in fine dispersed systems, and is based on a new
constitutive model of liquids: fractional order model -generalized the Van der Pol
equation. Also, a new algorithms for fractional iterative learning control (ILC),

aP14D” types are proposed for fractional time (delay) systems are also presented. At
last, new stability test procedure (finite time and practical stability) is shown for
(non)linear (non)homogeneous time-invariant fractional order time delay systems where
sufficient conditions of this kind of stability are derived.
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BUOJIOIIKN UHCITMPUCAHO YIIPAB/BAIBE U
MOJAEJUPABE (BU)POBOTCKUX CUCTEMA U HEKE
IMPUMEHE ®PAKIIMOHOI' PAYYHA Y MEXAHUIIU

MuxamnJo II. JIazapesuh

ANCTPAKT: ' g0y pady, npesenmosane cy npumene GUOTOWKU UHCRUPUCAHOZ
modenuparea u ynpasmarsa (buo)mexanuuxum (He)peoyHOAHMHUM MEXAHUSMUMA, KAO U
H080000UjeHu pe3yamamu aymopa y 001acmu npumersene Mexanuxe Koju ¢y 3aCHO8aHU
Ha npumenu padyHa Heyenoopojroe peda. Ilpeo, npednosicero je kopuwherve duonroukoe
AHANI020HA-CUHEpauje 3ax8amyjyhiu nocmojarwy HenpoOMeH/HUBUX OOTUKA Y UBPUIABAFLY
@ynuxyuonarnux nokpema. Jlpyeo, mooen (6uo)mexanuuxoz cucmema modxce ce 00oumu
NPUMEHOM Opy202 OUONOWKOZ KOHYenma NOZHAMUM HOO HA3UBOM OUCTHPUOYUPAHO
nosuyuonuparwe ([II), Koju je 3acHosan HA UHEPYUAIHUM CE0JCMEA U  NOKPEmarsy
32100064 pazmampanoz mexanuukoe cucmema. Taxohe,npeodnagice ce kopuuwiherse opyaux
OUONOWIKUX NPUHYUNA KAO WIMO CY. NPUHYUN MUHUMATHE UHmMepaxKyuje, Koju uma
2NABHY Y02y Y XUJEPapXUjCKOj CMpYKmMypu YRpaeasarsd U NpUHYyun camonooemasard
(v60ou noxanne nosumusnylnecamuerny nogpamuy cnpezy y YApAaemwauKkoj nemsmsu u mo
ca eenuKuUM nojauarnem), Koju omoeyhasa epuxacrho ocmeapusare ynpasmoarad Ha 6asu
umepamugnoz npupoonoe yuera. Taxohe, nosu, nedagno nyOIUKOSAHU pe3VImami
aymopa ¢y makohe npedcmagwenu Yy obracmu  cmadbUIHOCMU,  e1eKmpo-
BUCKOCTACIMUYHOCTNU U MeopUuju YNpasmsdrd a Koju Cy 3dCHOBAHU HA Kopuuithersy
PauyHa HeyenobpojHoe peod.

Kwyune puu: buonowku uHCnUpucanu cucmemu, ai2opummu ynpasoeared, Gpakyuonu
DPauyH, cmabuIHocm.

Submitted on April 2009, accepted on June 2012

DOI : 10.2298/TAM12S1163L Math.Subj.Class.: 93A10; 93C23; 92B15; 93C99;






THEORETICAL AND APPLIED MECHANICS
Series: Special Issue - Address to Mechanics, Vol. 40 (S1), pp. 189-202, Belgrade 2012.

VIBRATIONAL PROPERTIES CHARACTERIZATION OF
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Abstract To determine the vibration characteristics (natural frequencies and
mode shapes) of a mouse embryo during microinjection the modal analysis is
used. The spherical mouse embryo 60 um in diameter is modeled as elastic
finite elements biostructure consisting of 6um thick micromembrane and 38
pm in diameter nucleus. Embryo modeling and modal analysis were based on
the use of the finite elements method in the modal analysis system of ANSYS
software. The modal analysis was carried out for first six modes of embryo
natural frequencies. The numerical analysis of dependence of embryo own
frequencies on the boundary conditions and external loads are presented. The
relevant illustrations of the typical variations of the shape, deformation and
particle velocities of vibrating embryo are given.

Key words: modal analysis, vibration properties, mouse embryo, finite
elements method.

1. INTRODUCTION

Although papers on mechanical properties of the oocyte exist (Liu et al, 2010, [1] and on
structural parts of mouse embryo (Murayama et al, 2008 [2], 2006) [3], there are very
few papers that regard this structure as an oscillatory system Hedrih A. (2011) [4]).
Microinjection of the mouse embryo is usually used as an experimental setup for the
elastic properties of the biomembrane of the embryo (Murayama et al, 2008 [2], 2006)
[3], Sun et al, 2003, [5]). Embryo is placed in a liquid medium —eg HTF (human tubal
fluid), in dish. Dish is placed on a heating plate of a special microscope that maintains
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the body temperature of the mouse. These are typical conditions (adequate liquid
medium and temperature) to keep the embryo alive. Embryo is fixed with vacuum
micropipette on one side. On the opposite side is a fine glass micro-needle. See fig.1.
This experimental setup could be used for developing software for training embryologists
for the special procedure that is used in artificial insemination. This procedure is called
intracitoplasmatic sperm injection-1CSI (one sperm cell is injected into oocyte by using a
fine glass micro-needle.

Embryo vibrational characterization represents very important researching subject of
modern biomechanical engineering. (See ref Ladjaly et al, 2011 [6]). A modal analysis is
one of possible techniques used to determine the vibration properties (natural frequencies
and mode shapes) of a bio structure such as the embryo. Results of modal analysis can
also serve as a starting point for another, more detailed, dynamic analysis, such as a
transient dynamic analysis in different scenarios, e.g. artificial insemination of human
embryo. The natural frequencies and mode shapes are important parameters in the design
of a micro-robotic cell manipulation system for dynamic loading conditions [6].

Due to the nature of modal analyses any nonlinearity in material behavior are ignored.
Optionally, orthotropic and temperature-dependent material properties may be used. The
critical requirement is to define stiffness as well as mass in some form. Stiffness may be
specified using isotropic and orthotropic elastic material models (for example, Young's
modulus and Poisson's ratio), using hyper-elastic material models (they are linearized to
an equivalent combination of initial bulk and shear moduli), or using spring constants,
for example. Mass may derive from material density or from remote masses.

The goal activities of researching presented in this paper includes:

— Create robust finite elements model of mouse embryo and basic parts of micro-
robotic cell manipulation system (holding pipette, micropipette and liquid
environmental medium —human tubal fluid-HTF),

— Set the contacts and boundary conditions that affect the mouse embryo vibrations,

—Run step modal analysis to simulate vibrations of embryo alone and embryo as a
part assembly with other components together.

— Determine the vibrational characteristics of mouse embryo free oscillations and
embryo oscillations affected by boundary conditions.

Embryo modeling and modal analysis were based on the use of the finite elements
method in the modal analysis system of ANSYS WORKBENCH® products.[7].
Parameters for modal analysis were taken from the experimental data from ref [5].

2. THEORY OF MODAL ANALYSIS APPLIED IN FEM

The equations of elastic structural systems without external excitation can be written in
the following form:

[M]{u} +[Cl{u} +[K}{u} ={0] (1)

where is: [M] - structural mass matrix, [C] - structural damping matrix, [K] - structural
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stiffness matrix, { U } - nodal acceleration vector, { U} - nodal velocity vector, and {u } -
nodal displacement vector.

It has been recognized that performing computations in the modal subspace is more
efficient than in the full eigen space. The stiffness matrix [K] can be symmetrized by
rearranging the asymmetric contributions; that is, the original stiffness matrix [K] can be
divided into symmetric and asymmetric parts. By dropping the damping matrix [C] and
the asymmetric contributions of [K], the symmetric Block Lanczos eigen value problem
is first solved to find real eigen values and the corresponding eigen vectors. In the
present implementation, the asymmetric element stiffness matrix is zeroed out for Block
Lanczos eigen value extraction. Following is the coordinate transformation used to
transform the full eigen problem into modal subspace:

=[]ty )

where is: [®@] — eigen vector matrix normalized with respect to the mass matrix [M] and
{y} - vector of modal coordinates

By using equation (2) in equation (1), we can write the differential equations of motion in
the modal subspace as follows:

(149} +[] [C][@]{y}+([A%]+[0] [Kuym J[@])iv}={0} @
where is: [A?] - a diagonal matrix containing the first n eigen frequencies w;.

Classically damped systems understand the oscillatory motion of an un-forced N
degree of freedom elastic structure with viscous damping and given initial conditions.
The modal vectors of classically damped systems depend only on [M] and [K], and are
independent of [C], regardless of how heavily the system is damped. For classically
damped systems, the modal damping matrix [®]"[C][®] is a diagonal matrix with the
diagonal terms being 2&w;, where & is the damping ratio of the i-th mode. In general, the
damping is not classical, [®]"[C][®] is not a diagonal matrix, and the natural frequencies,
damping ratios, and modal vectors depend on the mass, stiffness, and damping matrices
of the structural system. For non-classically damped systems, the modal damping matrix
is either symmetric or asymmetric. Asymmetric stiffness contributions of the original
stiffness are projected onto the modal subspace to compute the reduced asymmetric
modal stiffness matrix [®]" [Kasym] [®]-

Introducing the 2n-dimensional state variable vector approach, equation (3) can
be written in reduced form as follows:

[11{z} =[P{z) 4)

)

where is:

and
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0 |

[D]= 2 T T
_[A ]_[q)] [Kasym][q)] _[(D] [C][(D]
The 2n eigen values of Equation (4) are calculated using the QR algorithm (Press et
al.,1993 [8]). The inverse iteration method (Wilkinson and Reinsch, 1971 [9]) is used to
calculate the complex modal subspace eigen vectors. The full complex eigen vectors,
{w}, of original system is recovered using the following equation:

{w}=[e){z} 0

(6)

3. FEM MODELING

In modal analysis the embryo model was considered as three-dimensional axis-symmetric
problem. The mouse embryo with basic parts of micro-robotic cell manipulation system
described in [9] and shown in Fig. 1 (left) is simplified according the model setup shown
in the same figure (right).

polar body

20pum

Figure 1. Photograph of cell (left) and simplified model setup of mouse embryo (right).

1- Ambient (Liquid
HTF)

2- Micropipette

3- Micromembrane
4- Cytoplasm

5 - Nucleus

6- Holding pipette

| D

1 2 3 4 5 6

7

Figure 2. Axial cross-section of 3D model setup for embryo modal analysis.
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3.1. Embryo model

The full model setup (Fig. 2) used in the work is consisted of embryo (micromembrane
with nucleus and cytoplasm) plunged into the control volume filled with liquid medium
HTF. One side of embryo is connected to the holding pipette and the second is in contact
with micropipette. For all time the vacuum inside the holding pipette takes the embryo
fixed independently on the way of gravity and facilitates embryo manipulation.

The review of model setup parts with used materials and basic physical characteristics is
presented in Table 1. The table contains statistic data related to the number of nodes and
elements for each component after medium quality meshing procedure (Fig. 3).

Figure 3. Details of finite elements mesh in the axial cross-section of model.

Table 1. Basic mechanical characteristics of model components with FE statistic data.

Name Assignment Volume Mass Nodes Elements

- - - m3 kg - -

1| Micromembrene Biomembrene 5.3732E-14 5.4000E-11 7409 4288
2 | Nucleus Nucleus 2.8731E-14 2.9880E-11 685 350
3| Cytoplasm Cytoplasm 3.0635E-14 3.1033E-11 1287 669
4 | Holding pipette Glass 1.0978E-13 2.7773E-10 3117 1776
5 | Micropipette Glass 1.4847E-15 3.7563E-12 3879 726
6 | Vacuum Air 2.8280E-14 3.4643E-14 1426 276
7 | Liquid ambient HTF 6.9430E-13 7.0333E-10 6953 3825

The initial contact regions and types

of supports determine the boundary conditions of

the model. All contacts regions of liquid medium HTF with micromembrane, vacuum
pipette and micropipette are considered as frictional. For this kind of so-called wet
friction the value 0.1 of frictional coefficient is accepted. The identical contact conditions
are assumed on the contact surfaces of cytoplasm with nucleus and micromembrane.

From point of view of support boundary conditions, illustrated in Fig. 4, two types: fixed
and frictionless supports, are used.



194 ANDJELKA HEDRIH, M.ARINKO UGRCIC

Figure 4. Details of support boundary conditions of model.

The dimensions of boundary box, represented as rectangle surface colored in dark blue in
Fig. 4, filled by liquid medium HTF are 1.6E-4x7.7E-5x7.7E-5 m, and affects
significantly the natural frequencies of embryo. All outer free faces of box are bonded by
frictionless supports (E). Free surface of vacuum inside the holding pipette is bounded by
frictionless support (D). Both the holding pipette and micropipette are constrained (fixed
supports A and B) from movement in axial directions (z-axis).

External loads of the embryo include conservative gravity force and surface force
produced by 733.1 Pa vacuum on the air-micromembrane contact region. But in the
modal analysis external loads make to be equal zero, so that the embryo is connected to
holding pipette along initial contact edge (C).

3.2. Material data

According to the requirements of modal analysis, all materials, including bio materials
(biomembrane, nucleus and cytoplasm), then medium materials (air and liquid medium
HTF) and, finally, mechanical equipments materials (special glass for medical
instruments) are considered as isotropic elasticity features materials.

Table 2. Mechanical characteristics of materials

. . Reference | Young's Poisson's Bulk Shear
Material Density .
temperature | modulus ratio modulus modulus
- kg /m* K Pa - Pa Pa

Biomembrane 1005 310 42400 0.499 7.067E+6 14143
Nucleus 1040 310 7200 0.250 4800 2880
Cytoplasm 1013 310 17200 0.490 2.867E+5 5771,8
Liquid HTF 1013 310 1.32E+8 0.490 2.20e+9 4.430E+7
Air (vacuum) 1.225 310 3.102E+6% |  0.490" 5.17E+7" | 1.041E+6"
Glass 2530 310 5.448E+7 0.300 4.54E+7 | 2.095E+7

2 Given mechanical parameters of air represents the fictive values, adapted to solver requirements.
It means, instead adiabatic law the linear pressure-volume dependence was assumed for small
variations of air pressure up to 2E+5 Pa.
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The accepted temperature of each part of the model is same and equal to the mice body
temperature of 37 °C. As was previously mention this temperature is necessary to keep
the embryo alive. Although the temperature is included in the modal analysis, it doesn’t
take any repercussions on the final results because of the absence of thermal loads or
variations of mechanical parameters that would affect the model vibrational behavior.

Mechanical characteristics of the above mentioned materials are given in Table 2.

4. RESULTS AND DISCUSSION
4.1. Natural frequences of embrio
The numerical integration of Eq. 4 facilitates the solutions for elements of diagonal
matrix [A] containing the first n eigen frequencies w;. Computed natural (own)

frequences of embryo are given in Table 7.

Table 3. Natural frequencies of free and bonded embryo for first six modes.

Natural frequences of embrio w;, Hz

S Free A Connection with | Connection with .
8| oscillations Free.osglllatlons holding pipette in| holding pipette in F_uII_cor_mecnon
2| invacuum in liquid HTF vacuum liquid HTF in liquid HTF
1 0 52733 2924.2 52778 52782

2 0.0282 52839 2945.7 52882 52886

3 0.0462 53321 5868.6 53486 53491

4 600.32 54242 11888 54315 54317

5 931.50 55083 19333 55113 55116

6 940.79 55112 19353 55177 55180

The modal distribution of natural frequencies of embryo vs. boundary conditions (Figs. 5
and 6) was designed based on tabular data.
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Figure 5. Modal distribution of natural frequencies of embryo vs. boundary conditions
(osillations in vacuum).
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Figure 6. Modal distribution of natural frequencies of embryo vs. boundary conditions
(osillations in liquid medium HTF).

Analysis of calculated results in Table 7 and represented in Figs. 5 and 6 confirms nature
of boundary conditions influence on the natural frequency of embryo. In other words, the
natural frequency of embryo increases continually by involving each further boundary
condition. So, in the case of contact of the embryo and liquid medium HTF the highest
jump of frequency (over 52 KHz) appears and the relevant curves of frequency
distribution are very close to each other (Fig. 6). Maximum frequency of 55180 Hz was
reached for the embryo plunged into liquid medium and connected to micropipette and
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vacuum, holding pipette. Besides the above mentioned, the computed results show that
oscillations of free embryo in first mode are not practically possible (w; =~ 0).

4.2. Typical variations of the vibrating embryo structural parameters

The appearance of scaled shape and fictive velocities distribution for first six modes of
natural embryo oscillations are shown in Figs. 7-12.

Figure 7. Shape and particle velocities distribution in extreme points of embryo vibrations in mode 1.

Figure 8. Shape and particle velocities distribution in extreme points of embryo vibrations in mode 2.

Figure 9. Shape and particle velocities distribution in extreme points of embryo vibrations in mode 3.

Based on Figs. 7 - 12 and performed 3D animations the embryo movement relative to the
corresponding mode can be describes as follows:
- Mode 1: perpendicular oscillations along y-axis. Due to initial connections it looks
lake rolling in yz-plane;
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- Mode 2 - perpendicular oscillations along x-axis. Due to initial connections it looks
lake rolling in xz-plane;

- Mode 3 - rotation, i.e. torsion (due to initial connections) about z-axis;

- Mode 4 - longitudinal oscillations along z-axis;

- Mode 5 - rotation in yz-plane; and

- Mode 6 - rotation in xz-plane.

Figure 10. Shape and particle velocities distribution in extreme points of embryo vibrations in mode 4.

Figure 11. Shape and particle velocities distribution in extreme points of embryo vibrations in mode 5.

Figure 12. Shape and particle velocities distribution in extreme points of embryo vibrations in mode 6.

Finally, the appearance of scaled shape and fictive deformations for first six modes of
natural embryo oscillations are illustrated in Figs. 13-18.
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Figure 13. Total deformations in extreme points of embryo oscillations for mode 1 (x 1.65E-11 m).
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Figure 14. Total deformations in extreme points of embryo oscillations for mode 2 (x 1.60E-11 m).
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Figure 15. Total deformations in extreme points of embryo oscillations for mode 3 (x 1.40E-11 m).
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Figure 16. Total deformations in extreme points of embryo oscillations for mode 4 (x 2.15E-11 m).
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Figure 17. Total deformations in extreme points of embryo oscillations for mode 5 (x 1.55E-11 m).
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Figure 18. Total deformations in extreme points of embryo oscillations for mode 6 (x 1.60E-11 m).

Real rate of total deformations are varying from zero up to maximum 3.348 pm (Max
1.5107E+5 x 2.15E-11 m = 3.348E-6 m) in mode 4.

Ladjaly et al, 2011[6], used the method of finite elements in modelling the Microrobotic
Simulator for Assisted Biological Cell Injection, but they regarded the cell as a unified
structure. Our model approximates the real phenomenon better as the cell is modelled as
a three layer structure (biomembrane, cytoplasm, nucleus). Parameters that were used
for the mouse embryo nucleus are approximative since a search of the literature yielded
no adeqaute data on the subject. Data that were available to us refer to nuclei of mouse
embryo fibroblasts (Rowat et al, 2008 [10]) or to the nucleus of amphibian egg cell
(Schadpe et al, 2009 [11]).

5. CONCLUSION

Based on the results of numerical analysis given in the paper it is shown that the robust
finite elements model of mouse embryo with basic parts of ICSI system (holding pipette
and micropipette) were correctly created. All necessary contacts and boundary conditions
were regularly involved facilitating the modal analysis and numerical simulation of all
situations of the embryo vibrations. The determinations of the vibrational characteristics
of mouse embryo free oscillations and embryo oscillations affected by boundary
conditions for first six modes were successfully carried out.

To summarize, the work presented in the paper confirms possibility to use the finite
elements method coupled with numerical modal analysis as powerful tool in the
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vibrational characterization of bio structures such as the mouse embryo. This method can
be used to analyze vibrational properties of embryos of both mice and humans, and not
only in physiological conditions, but also under pathological conditions, for example
when artifical insemination is unsucessful, or when the implantation of the embryo does
not occur. This opens new possibilities for developing an oscillation theory of
reproducation.
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Sazetak. Vibracione karakteristike —embriona mogu biti od znacaja za procenu
njegove vitalnosti. Da bi odredili sopstvene ucestalosti i oblike modova oscilovanja
embriona miSa tokom mikroinjekcije staklenom iglom koristili smo metod konacnih
elemenata u okviru modalne analize pomocéu ANSYS softvera. Embrion misa dijametra
60 um modelovan je kao elasticna biostruktura sa konacnim brojem elemenata koja se
sastoji od biomembrane debljine 6um I jedra dijametra 38 um. U radu je prikazano
prvih Sest modova sopstvenih ucestalosti embriona misa kao i zavisnost sopstveih
Ucestaosti embriona od konturnih uslova i spoljasnjeg opterecenja. Tipicne varijacije
oblika, deformacije i raspodele brzine oscilovanja embriona date su u vidu ilustracia
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Abstract. Several crucial phases of the overall approach to development and design of
smart structures are outlined in this paper. They are focused on control of lightweight
mechanical structures with respect to active vibration and noise attenuation using
piezoelectric actuators and sensors. The research experience and growing interest in
development of smart structures have motivated introduction of courses on smart
structures at universities, which are being studied extensively and with great interest by
young researchers and students. Some of the author’s experiences regarding education
in this field will be addressed as well.

Key words: active structural control, piezoelectric actuators and sensors, system
identification.

1. INTRODUCTION

Active structural control has been intensively investigated in the recent years. It is not
only a subject of the scientific and research activities, but due to its extensive application
possibilities active control of mechanical structures gains more and more attention in the
education and teaching processes. In that way the benefits of the further development and
application can be recognized in the early stages, awaking the interest among young
future experts to investigate and contribute more in this field.

In this paper a broad field of active structural control is considered within the focused
frame regarding control of lightweight mechanical structures with respect to active
vibration and noise attenuation using piezoelectric actuators and sensors. An overall
approach to active control of piezoelectric structures involves subsequent steps of
modeling, control, simulation, experimental verification and implementation. Each of
these steps is regarded in more details. Numerical modeling is regarded from the finite
element method (FEM) point of view [5-6, 11]. Parameter identification [13, 15, 19] is
considered as a complementary approach to obtain representative models for the use in
subsequent development steps, e.g. controller design. Active controller design involves
optimal [16] and adaptive methods [14], whereas the simulation and verification methods
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involve consideration of the real-time applications. Some application examples® showing
the feasibility of the active structural control are presented (vibration suppression of the
car roof, active noise control of the acoustic box).

Studying of active structural control is involved in education and teaching processes
at the high-school level as well. This topic addresses especially teaching experiences in
the field of adaptronics, mechatronics, mechanics of adaptive systems and control theory.

As an introduction an example of actively controlled vibrations of a clamped beam is
explained as a benchmark example presented at the courses on active structural control
and mechatronics for the students involved in higher education phases. Subsequently the
overall development of smart structures is summarized and illustrated by several
application examples.

2. ACTIVE VIBRATION CONTROL OF A CANTILEVER BEAM — AN EDUCATIONAL
AND RESEARCH BENCHMARK EXAMPLE

Many scientific and practical, but also educational experiences can be gained by
investigation of a clamped beam problem. In this section an overall approach to the
vibration suppression of a clamped beam excited at the tip will be described. This
example represents a valuable contribution to the educational process, since the vibration
control problem formulation and its solution defined in several subsequent logical steps
follow the overall approach to smart structures analysis and design procedure and
therefore apply as a standard procedure in investigation and control of much more
complex smart structures. On the other hand, the problem retains the scientific
complexity and opens possibilities for further studies and contributions to the
improvement of the problem solution.

The investigated clamped beam is considered as an active plate structure controlled
by four piezoelectric patch actuators attached to the beam, two on the top and two on the
bottom of the plate. Geometry of a standard beam including piezo patches as actuators
and/or sensor is represented in Fig.1. The material properties of the beam and piezo
electric material are listed in Table 1. In the first step the plant was represented in the
form of a finite element model with a mesh of 235 passive and 80 active Semiloof shell
elements [2, 5]. On the basis of this mesh the eigenfrequencies and eigenmodes are
calculated using a numerical procedure supported by some standard finite element
software. The eigenmodes can be determined experimentally as well, using the modal
analysis approach. The eigenfrequencies of interest for bending mode case studies are
considered in the subsequent investigations. Exciting forces F(t)=Asin(w;t) exerted on the
corner points at the tip of the beam are chosen with regard to the eigenfrequencies of
interest.

An experimental rig with the clamped cantilever beam and dSPACE system, which
can be used for the modal analysis and control purposes, is shown in Fig. 2.

® Experimental studies and application examples addressed in this paper were performed within the author’s
research activities at the Otto-von-Guericke University of Magdeburg, Germany, supported by Prof. Dr.-Ing.
habil. Ulrich Gabbert and the research group at the Institute of Mechanics. This support is greatly
acklnowledged.
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235 passive Semiloof shell elements
80 active Semiloof shell elements

4 x actuators

Fig. 1 Geometry and dimensions of the clamped beam with finite element mesh

Table 1. Material properties

Beam | E =2.00-10° N/mm? Piezo | Ej; = Epp = 3.77-10°N/mm?
v=0.3 Gy, = 1.3-10* N/mm?
p = 7.86-10 ° Ns¥mm* v=0.38
t = 2.0 mm (thickness) p = 7.85-10 ° Ns¥mm*

dg; =2.1-10" mm/V
K33 = 3.36-10° F/m
p = 7.85-10"° Ns¥mm*

Fig. 2 Experimental rig with the clamped cantilever beam and dSPACE system
Control problem can be formulated as schematically represented in the Fig. 3. For the
solution of the control task an appropriate controller is proposed (optimal LQ controller)
in the way that the vibration amplitudes due to periodic excitation forces with frequencies
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4 actuators

Controller algorithm

Fig. 3 Closed-loop control system for the vibration suppression of the clamped beam

corresponding to the eigenfrequencies of the clamped beam, are significantly suppressed
in comparison with uncontrolled case. The study of the control problem is enabled
through the simulations which are performed using the Matlab/Simulink software. As a
starting point for the controller design an appropriate state space model was developed,
based on the modal truncation of the finite element model of a much higher order, in such
a way that the modally reduced state space model contains important information on the
eigenmodes in the frequency range of interest, in this case: f;=18.8Hz, f,=113.1Hz,
f;=314.4Hz, f;=619.2Hz (the eigenmodes 4 and 5 are torsion modes, and they are not
relevant for the bending vibration suppression). The results of the bending modes
animation preceding the state space modal truncation are represented in Fig. 4.

Fig. 4 Bending modes of the clamped beam

Simulation of the controller behavior is performed in Simulink using a block diagram
with the optimal LQ controller and with an observer for unmeasurable state variables

(Fig. 5).
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Fig. 5 Simulink block diagram for the simulation of the controlled beam behavior

Controller design results and its effects are shown in the diagrams in Fig. 6
represented the uncontrolled and controlled (after 0.5 s) output — displacement at the tip
of the beam, as well as the control signals (actuating voltages on the piezo patches)
without and with control.

Presented example illustrates in a comprehensive way the most important phases of
system modeling, analysis, controller design, simulation and verification. Analytic and
detailed study of the system behavior is possible based on the developed system model.
In this way an overall view of the smart structures development can be gained using a
relatively simple and comprehensive benchmark example, which plays an important role
in educational process. On the other hand, the knowledge gained through the
investigation of such examples can be successfully used for studying of more complex
structures.

In subsequent sections an overall view of the most important phases in design and
control of lightweight smart structures with piezoelectric active materials will be
summarized and illustrated by several application examples.
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a) b)

Fig. 6 Signals without control (up to 0.5 s) and with control (after 0.5s).
a) Controlled output. b) Actuating inputs.

3. FINITE ELEMENT APPROACH TO MODELING OF SMART STRUCTURES

The finite element (FE) based modeling of piezoelectric adaptive smart systems and
structures represents a good basis for the overall simulation and design. This approach
enables both a suitable controller design [14, 16] and the appropriate actuator/sensor
placement [2, 8].

The FE analysis is based on the finite element semi-discrete form of the equations of
motion of a piezoelectric smart system describing its electro-mechanical behavior. These
equations can be derived using the established approximation method of displacements
and electric potential and the standard finite element procedure [7, 9]. Here the coupled
electro-mechanical behavior of smart structures will be considered. For investigations in
the field of active acoustic modeling and control, appropriate consideration of the
acoustic fluid is required. More on acoustic modeling can be found in [11].

Constitutive equations in the stress-charge form (1) are used for the development of
the equations of motion for a smart structure:

6=Cec-eE, D=e'e+kE (1)

with following notations: ¢" =[c,, ©, o5 o, 6, ©;] mechanical stress
vector, C.g Symmetric elasticity matrix, " =[e, ¢, &5 26, 2g, 2¢cy] strain
vector, E"=[E, E, E;] electric field vector, ee.s piezoelectric matrix,
D'=[D, D, D] vector of electrical displacement and k. symmetric dielectric

matrix. The system of equations which describe electromechanical behaviour consists of
the constitutive equations (1) together with the mechanical equilibrium and electric
equilibrium (charge equation of electrostatics resulting from the 4™ Maxwell equation):
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T T
D;6+P-pv=0, D;D=0 (2)

where P =[P P, P,] represents the body force vector, v' =[v, v, v,] is the vector

of mechanical displacements, p is the mass density and D, and D, are differentiation
matrices:

9 0 o 2 o 2
X, OX, 0%,
D]:Oioiio,Dl:iii, (3)
OX, ox,  OX, 0%, OX, OX,
o o 2 o 9
L OX, OX,  OX, |

Variational statement of the governing equations for the coupled electro-mechanical
problem derived from the Hamilton’s principle represents the basis for development of
the finite element model [1, 17-18]. It is obtained in the form:

~[(pdvTu—5e"Ce+ee E) dV + [(3ETes+ SETKE + VR, ) dV
\ \

T T (4)
+[ov'F, d2+8V'F, - [ 5pgd2-80Q =0
2 2

where Fq represents the surface applied forces (defined on surface Q;), Fp the point
loads, ¢ the electric potential, g the surface charge brought on surface Q, and Q the
applied concentrated electric charges. Applying the approximation of displacements and
electric potential with the shape functions over an element, representing the structure by
a finite number of elements and adding up all elements contributions, the finite element
semi-discrete form of the equations of motion is obtained:

Mg +D,q+Kq = Ef(t) + Bu(t) (5)

where vector q represents the vector of generalized displacements including mechanical
displacements and electric potential and contains all degrees of freedom. Matrices M, Dy
and K are the mass matrix, the damping matrix and the stiffness matrix, respectively. The
total load vector is divided into the vector of the external forces F. = Ef(t) and the

vector of the control forces F. =Buf(t), where the forces are generalized quantities

including also electric charges. Vector f(t) represents the vector of external disturbances,
and u(t) is the vector of the controller influence on the structure. Matrices E and B
describe the positions of the forces and the control parameters in the finite element
structure, respectively.

This approach has been used to develop a comprehensive library of multi-field finite
elements: 1D, 2D, 3D elements, thick and thin layered composite shell elements, etc.
which was implemented in the finite element package COSAR [3] for the simulation of
the static and dynamic structural behavior of smart structures. Besides, the tools which
take into account other physical effects are also available. For example, the temperature
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influence can also be considered, and using the developed acoustic elements the
influence of the acoustic fluid and its behavior can also be studied [10, 11].

The tools for modal reduction are also included, which enable development of
appropriate models with reduced orders for the controller design. Based on the modal
truncation, which was adopted as a suitable technique for the reduction of the number of
equations in the FE models, a state space model of an actively controlled structure can be
obtained in the form convenient for the controller design. A limited number of
eigenmodes of interest is taken into account, while the remaining modes are truncated.
Introducing the modal coordinates z

q(t) =@, z(t) (6)
into equation (5), where @ _ represents the modal matrix, and applying the ortho-

normalization with ® M® =1, ® K® =Q, A=® D,®, , where Q represents the

spectral matrix and A the modal damping matrix, the state space model of the modally
reduced system can be obtained in the form:

0 0
8 eldblddn o

where x(t):[z z]T represents a state-space vector. With the state and the output
equations, the state space model is represented in the form:

X(t) = AX(t) + Bu(t) + Ef(t), y=Cx(t)+Du(t)+Ff(t) (8)

which is convenient for the controller design.

4, SUBSPACE-BASED SYSTEM IDENTIFICATION

As an alternative modeling method, the subspace-based system identification can be
used. It is convenient for the comparison with the results of the state space FEA-based
modeling, since it results in a state space model representation as well. Based on the
measured input and output signal data, the model is identified in a discrete-time state-
space form, which represents a discrete-time equivalent of the state space model given by
(8). In a general case a deterministic-stochastic form of a discrete-time state-space model
has the following form:

X[k +1] = Ox[k]+ Tu[k]+w[k],  y[k]=Cx[k]+ Du[k]+Vv[K] 9)

with discrete-time state and control matrices @ and I', and the process and the
measurement noise w[k] and v[k], respectively. The process noise and the measurement
noise vector sequences w[k] and v[k] are white noise with zero mean and with covariance

matrix:
willr o Q S
E{V[j]}[wn] vm}HST R} (10)
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General deterministic-stochastic problem of the subspace identification is to
determine the order n of the unknown system and the system matrices ® e R™,
IFeR™, CeR™, DeR™™ as well as the covariance matrices Q e R™, SeR™!,
R eR™ of the noise sequences W[K] and v[k]. Subsequent derivations regard the pure
deterministic case considered in [4].

Measured input and output data are organized into block Hankel matrices defined in
the following form [13, 15, 19]:

U U U, U |
u U, Uy U
U dif U, Y U, - Uy, (11)
o2i-1 —
! U; i1 Ui, oo ui+j—1
Ui U Ugg o Ui,j
_u2i—1 Uy Uiy u2i+j—2j

The output block Hankel matrix YO is defined in a similar way. More details on

\Zi—l
definition of the Hankel matrices and the subspace-based identification method can be
found in [15]. The measurement data are organized in the form of the input-output
relation [19]:

Y[k] = I X[k]+®,U[k] (12)

where T, represents the observability matrix for the system (1), ®, is the Toeplitz

matrix [4] of impulse responses from u toy:
D 0 0
Ccr D 0
L (13)

Co“?’r ... Cr D

and o is a specified number greater than the state dimension but much smaller than the
data length. For a deterministic case [13] the problem is simplified to determining I", and
@, by computing the singular value decomposition (SVD) of U in the first step:

U=PEQ' =[P, P,]IZ, O]BH' (14)

If matrix U has dimension mxn and rank r, then the partition in (14) is performed as
follows:

P:[pl prlpr+1 pm]:[Pul Puz] (15)
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Q:[ql qr | qr+1 Qn]:[Qul QUZ] (16)

where p; are the left singular vectors of U [4]. It can be shown that they are eigenvectors
of UU". Vectors q; are the right singular vectors of U. It can be shown that they are
eigenvectors of UTU. Multiplying (12) by Q.,, matrix I, can be determined from a SVD
of YQ.. Then matrix C is obtained as the first row (in a sense of a block-row) of the

observability matrix ", and matrix @ is calculated from: I, =T, ® applying pseudo

inverse, where T, is obtained by dropping the last row of I",. Matrix T, represents the
matrix obtained by dropping the first row of T',. For the calculation of I" and D matrices,
(12) is multiplied by the pseudo inverse of U on the right and by PUT2 from (14) on the
left. Thus the equation is reduced to:

PLYU'=P.®,_. a7

After rearranging, (17) can be solved for I" and D using the least squares, see (13). In this
way the system parameters in the form of state-space matrices of the model (9) are
identified using the subspace-based identification method.

5. OPTIMAL LQ CONTROLLER DESIGN WITH ADDITIONAL DYNAMICS

An optimal LQ controller design with additional dynamics is suggested here as a control
technique which has resulted in a successful vibration and noise reduction in several
studies [12, 16].

Controller design includes available a priori knowledge about occurring disturbance type
contained in the additional dynamics. Such an a priori knowledge is available in terms of
the type of the disturbance function which has to be rejected or whose influence should
be suppressed by the controller. Periodic disturbances with frequencies corresponding to
the eigenfrequencies of the smart structure can cause resonance and their suppression is
therefore important. They are taken into account via the additional dynamics.
Discrete-time state space equivalent (18) of the state space model (8) developed through
the FEM procedure and modal reduction is used for the controller design.

X[k +1] = ®x[k]+ TCu[k]+ew[K], y[k] = Cx[k]+ Du[k]+ Fw[k] (18)

Using the a priori knowledge about the disturbance class, which has to be suppressed, the
model of the disturbance is represented in an appropriate state space form, where the
disturbance is assumed to be the output of the state space representation. The poles A; of
the disturbance transfer function are used to define the additional dynamics using the
coefficients of the polynomial:

8(2)=[J(z-e")" =2°+8,2 " +..+3, (19)

where m; represents the multiplicity of the pole A;. Additional dynamics is expressed in a
state space form:
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X, [k +1] = ®_x, [K]+T,e[k]; (20)

where X, is the vector of the state variables for the additional dynamics, e is the error
signal and:

=5, 1.0 - 0 -5,
=5, 01 -0 -3,

@ =| ¢ i r=| (21)
5., 0 0 - 1 -5,
| -5, 0 0 - 0] -5, |

For multiple-input multiple-output (MIMO) systems additional dynamics is replicated
g times (once per each output). Replicated additional dynamics is described by:

__ def __ def
® = diag(®,,...,®,), T =diag(T,,...,T,) (22)
qtimes qtimes

The discrete-time design model (®q4, I'y) is formed as a cascade combination of the
additional dynamics (®,, ;) or (®,I") and the discrete-time plant model (®, T'):

X [k +1] = @, x,[k]+ T ulk]; (23)
(Ddz{q*) 0*}'1—11:{1—1' Xdz{X[k]} (24)
I'C @ 0 X, [k]

where @ and T denote respectively @, and I, in the case of single-input single-

output systems or ® and T' for MIMO systems. For the design model (23) the feedback
gain matrix L of the optimal LQ regulator is calculated in such a way that the feedback
control law u[k]= —Lx4[k] minimizes the performance index (25) subject to the constraint
(23), where Q and R are symmetric, positive-definite matrices.

1 o0
J ZEZ(Xd [k]" Qx, [k]+ulk]" Rulk]) (25)
k=0
The feedback gain matrix L is afterwards partitioned into
L=[L, L,] (26)
so that L; corresponds to the state space model of the structure, and L, to the modelled
additional dynamics.
6. DIRECT ADAPTIVE CONTROL
As an alternative approach, the model reference adaptive control (MRAC) is

suggested. This control technique comprises several advantages for the large flexible
structures. In the case of piezoelectric smart structures the term large can regard high
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number of degrees of freedom of the finite element model used for the modeling of the
structure behavior. With the model truncation, which is a necessary step to adapt the
structure model to the controller design purpose, resulting state-space model does not
exactly reflect the real behavior of the structure. Inaccuracies introduced in this way can
be viewed as a source of the parameter variation with respect to the modeled case. The
presence of disturbances in real environment also introduces variation of the parameters
in comparison with the modeled case. This causes the need for the adaptive control
algorithm, which can successfully face the insufficient prior knowledge or the unknown
changes of the system parameters.

The advantage of a robust adaptive controller over a fixed-gain controller can be
viewed through the fact that in design of large flexible smart structures a large degree of
the model uncertainty is allowable in the sense of the possible parameter variation as well
as with respect to the order of the controlled structure. The robustness assumes stability
in the presence of disturbances and unmodeled dynamics.

The idea of the model reference adaptive control is based upon the existence of the
reference model, specified by the designer, which reflects the desired behavior of the
controlled structure. The output of the controlled structure should track the output of the
reference model (Fig. 7).

Reference model

Yo ol x, [k+1]=0,x, [k]+ T, u,[£]

Yulkl=Cpxylk]
_‘ .

Plant

x[k+1]=Ox[k]+Tu[k]+ [£]
ylk]=Cx[k]+ Du[k]+ fy k]

K |

e

Fig. 7 General form of a discrete-time MRAC system

A general form of a discrete-time model reference adaptive system is represented in
Fig. 7. Plant representation is a discrete-time state space realization, which corresponds
to the plant model (18), whereas the reference model is represented by equations in Fig.
7, where f, and f, represent bounded unmeasurable plant and output disturbances in a
general case and e=e, is the output error, i.e. the difference between the desired output of
the reference model and the real plant output.

Discrete-time direct model reference adaptive control law is expressed in the following
form:
u[k] = K, [KIr[k] = K, [K]e, [K]+ K, [K]x,[K]+ K, [K]u, [K] . 27)

The adaptive gain K, [k] in is determined as a sum of proportional and integral parts
K, and K, respectively:
K, [k]= K, [k]+K,[k] (28)
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According to the basic model reference adaptive algorithm the proportional and integral
gains are adapted in the following way:

Kp[k]=eer(t)'T', Kl[k+1]=eer[k]T, K, 0)=K, (29)

where T and T are n,xn, time-invariant weighting matrices and K, is the initial integral

gain, selected by the designer. In the robust model reference adaptive control approach
the integral gain is determined in the form (30). This modification of the integral gain in
(29) by adding a o-term is introduced to provide the convergence of the integral gain
[14] since in realistic environment due to disturbances the error e does not reach the zero
value and the integral gain would thus never stop increasing without its limiting by the -
term.

K,[k+1]=¢,[k] r'[k]T-oK, k] (30)

The control law for a general plant in Fig. 7 including disturbances or excitations is
globally stable with respect to boundness if the disturbances are bounded and the plant is
is almost strictly positive real. The proof of the condition is based on the selection of the
Lyapunov candidate positive definite function and on analyzing the sign of its derivative.
In order to guarantee robust stability, perfect tracking is not obtained in general, but the
adaptive controller maintains a small tracking error over large ranges of nonideal
conditions and uncertainties.

7. APPLICATION EXAMPLES

In order to illustrate some results of the application of active control as a part of the
overall design of active mechanical structures several examples are shown in this section.

7.1. Active vibration suppression of a car roof

Vibration suppression of a car roof
with attached piezoelectric patches
using the optimal LQ controller with
additional dynamics is demonstrated
through a numerical simulation for a
test structure. Piezoelectric patches
attached to the surface of the car roof
are used as actuators and sensors.
Excitation by shakers at prescribed
points is intended for the experimental
investigations (Fig. 8).

FEM model including the piezo-

electric effects of the actuator/sensor
groups was obtained using the FEM
software COSAR [3]. Based on the
generated FEM mesh, an optimization

Fig. 8 Passenger compartment and inner
surface of the car roof with attached
piezo-patches and exciting shakers
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of the actuator/sensor placement was per-formed under consideration of the eigen-modes
of interest and the controllability index. The actuator/sensor placement in Fig. 9 describes
one of the test cases, which was calculated based on the controllability index.
Comparison of the calculated an experimentally determined eigenfrequencies shows a
good agreement in the considered frequency range.

Excitation 2
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Discrete-time tracking system

l-v[kl

s[k+1=Dx [T ulk+ewk] L2
YIA=CxlA]
X[KI=XIKHL(y1k]-CXIk) | 314

X[+ 1]=DX[K]+Tulk]

Estimator

Fig. 9 FEM mesh of the car roof with actuator/sensor placement

For the controller design a modally reduced state space model was used, which takes
into account five selected eigenfrequencies: f;=48.45Hz, f,=51.12Hz, f;=63.23Hz,
f,=64.67Hz and fs=68.00Hz. Using the control concept with optimal LQ controller,
additional dynamics and Kalman estimator the simulation of the vibration suppression
was performed in order to show the potentials of the control strategy. The results are
represented in Fig. 10.

The comparison of the uncontrolled and controlled cases shows significant reduction
of the vibration magnitudes in the presence of the controller. The controller was also
compared with the standard optimal LQ controller without additional dynamics which
compensates for the presence of the periodic sinusoidal excitations with critical
frequencies. The comparison shows much better vibration suppression in the presence of
the controller with additional dynamics.
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Fig. 10 a) Controlled and uncontrolled responses of the sensor patches.
b) Zoomed portion of the controlled responses.

a) b)

/ L T o

Aluminium plate

Fig. 11 a) Scheme of the acoustic box
b) photo of the clamped plate with piezo-actuators

7.2. Noise Control of a Smart Acoustic Box

An actively controlled smart acoustic box consisting of the clamped plate with attached
piezoelectirc patches used as actuators and of the wooden box surrounding the clamped
plate is designed and investigated in order to reduce the plate vibrations and the air
pressure at selected points inside the box (Fig. 11).

The plate is excited by a shaker and the plate and the acoustic fluid vibrations are
measured by the laser scanning vibrometer (for the velocity and displacement
measurements at selected points on the plate surface) and the microphone (for the air
pressure measurement) respectively. The piezopatches and the microphone are located
inside the acoustic box.
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The aluminium plate of the acoustic box and the acoustic fluid inside it are modelled
using the FEM approach, taking into consideration the acoustic behaviour via the
appropriate acoustic finite elements. Based on the modally reduced state space model
obtained through the modal truncation, the simulation and subsequently the experimental
control of the plate vibration and of the fluid pressure were performed using the optimal
LQ controller with additional dynamics and the model reference adaptive control.
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Fig. 12 Experimental setup for system identification and control implementation

The experimental setup for the control implementation as well as for the model
identification using the subspace approach described in section 4 is represented in Fig.
12.

The optimal LQ controller was tested with different excitation signals. Some of the
results are represented in with Fig. 13. The results for the excitation obtained as a sum of
three periodic sinusoidal signals with the frequencies corresponding to the
eigenfrequencies of the plate (f,;=66.7Hz, f,,=106.2Hz, f,,=163.8Hz) are shown in Fig.
13 a). Fig. 13 b) shows the results with the random excitation signal. The pressure
amplitude reduction can be observed in both cases.
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Fig. 14 a) Comparison of the MRAC and optimal LQ controller; b) zoomed portion.

The results of the adaptive MRAC controller testing are shown in Fig. 14. The
adaptive controller is compared with the optimal LQ controller in the presence of the
periodic excitation with the frequency f.,. Uncontrolled and controlled signals are
represented in Fig. 14 a), and a zoomed portion of the signals in Fig. 14 b). Both
controllers perform the air pressure reduction at the microphone point. In this case the
optimal controller performs a slightly higher reduction degree.

8. CONCLUSION

Active structural design is addressed in this paper considering several phases in the
overall design approach, with the focus on structural control of lightweight mechanical
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structures which use piezoelectric materials as active elements. The main control
objective is vibration suppression and the noise attenuation. The feasibility of the
approaches is demonstrated by two application examples: vibration suppression of the car
roof and the noise reduction in a smart acoustic enclosure. Experience in the education is
addressed as well. A benchmark example of a clamped beam controlled by piezoelectric
patches used as actuators and/or sensors is explained to show the application possibilities
for education purposes.
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Abstract. This paper deals with the problem of delay dependent stability for
both ordinary and large-scale time-delay systems. Some necessary and
sufficient conditions for delay-dependent asymptotic stability of continuous
and discrete linear time-delay systems are derived. These results have been
extended to the large-scale time-delay systems covering the cases of two and
multiple existing subsystems. The delay-dependent criteria are derived by
Lyapunov's direct method and are exclusively based on the solvents of
particular matrix equation and Lyapunov equation for non-delay systems.
Obtained stability conditions do not possess conservatism. Numerical
examples have been worked out to show the applicability of results derived.

Key words (bold): continuous time-delay systems, discrete time-delay
systems, large-scale time-delay systems, delay-dependent stability, Lyapunov
stability, necessary and sufficient conditions

1. INTRODUCTION

The problem of investigation of time-delay systems has been exploited over many
years. Time-delay is very often encountered in various technical systems, such as
electric, pneumatic and hydraulic networks, chemical processes, long transmission lines,
etc. The existence of pure time lag, regardless if it is present in the control or/and the
state, may cause undesirable system transient response, or even instability.

During the last three decades, the problem of stability analysis of time-delay systems
has received considerable attention and many papers dealing with this problem have
appeared. In the literature, various stability analysis techniques have been utilized to
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derive stability criteria for asymptotic stability of the time-delay systems by many
researchers.

The developed stability criteria are classified often into two categories according to
their dependence on the size of the delay: delay-dependent and delay-independent
stability criteria. It has been shown that delay-dependent stability conditions that take
into account the size of delays, are generally less conservative than delay-independent
ones which do not include any information on the size of delays.

Further, the delay-dependent stability conditions can be classified into two classes:
frequency-domain (which are suitable for systems with a small number of heterogeneous
delays) and time-domain approaches (for systems with a many heterogeneous delays).

In the first approach, we can include the two or several variable polynomials [1], [2]
or the small gain theorem based approach.

In the second approach, we have the comparison principle based techniques for
functional differential equations [3], [4] and respectively the Lyapunov stability approach
with the Krasovskii and Razumikhin based methods [5], [6]. The stability problem is thus
reduced to one of finding solutions to Lyapunov [7] or Riccati equations [8], solving
linear matrix inequalities (LMIs) [9], [10], [11] [12] or analyzing eigenvalue distribution
of appropriate finite-dimensional matrices [13] or matrix pencils [14]. For further
remarks on the methods see also the guided tours proposed by [15], [16], [17], [18], [19],
[20].

It is well-known [21] that the choice of an appropriate Lyapunov—Krasovskii
functional is crucial for deriving stability conditions. The general form of this functional
leads to a complicated system of partial differential equations [22]. Special forms of
Lyapunov-Krasovskii functionals lead to simpler delay-independent (Boyd et al., 1994;
Verriest & Niculescu, 1998; Kolmanovskii & Richard, 1999) [9], [23], [21] and (less
conservative) delay-dependent conditions [24], [25], [21], [26], [27], [28]. Note that the
latter simpler conditions are appropriate in the case of unknown delay, either unbounded
(delay-independent conditions) or bounded by a known upper bound (delay-dependent
conditions).

In the delay-dependent stability case, special attention has been focused on the first
delay interval guaranteeing the stability property, under some appropriate assumptions on
the system free of delay. Thus, algorithms for computing optimal (or suboptimal) bounds
on the delay size are proposed in [14] (frequency-based approach), in [29] (integral
quadratic constraints interpretations), in [10], [11], [7] (Lyapunov-Razumikhin function
approach) or in [12] (discretization schemes for some Lyapunov- Krasovskii
functionals). For computing general delay intervals, see, for instance, the frequency
based approaches proposed in [30].

In the past few years, there have been various approaches to reduce the conservatism
of delay-dependent conditions by using new bounding for cross terms or choosing new
Lyapunov—Krasovskii functional and model transformation. The delay-dependent
stability criterion of [31], [26] is based on a so-called Park’s inequality for bounding
cross terms. However, major drawback in using the bounding of [31] and [26] is that
some matrix variables should be limited to a certain structure to obtain controller
synthesis conditions in terms of LMIs. This limitation introduces some conservatism. In
[32] a new inequality, which is more general than the Park’s inequality, was introduced
for bounding cross terms and controller synthesis conditions were presented in terms of
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nonlinear matrix inequalities in order to reduce the conservatism. It has been shown that
the bounding technique in [32] is less conservative than earlier ones. An iterative
algorithm was developed to solve the nonlinear matrix inequalities [32].

Further, in order to reduce the conservatism of these stability conditions, various
model transformations have been proposed. However, the model transformation may
introduce additional dynamics. In [33] the sources for the conservatism of the delay-
dependent methods under four model transformations, which transform a system with
discrete delays into one with distributed delays are analyzed. It has been demonstrated
that descriptor transformation, that has been proposed in [34], leads to a system which is
equivalent to the original one, does not depend on additional assumptions for stability of
the transformed system and requires bounding of fewer cross-terms. In order to reduce
the conservatism [35], [36] proposed some new methods to avoid using model
transformation and bounding technique for cross terms.

In [37] both the descriptor system approach and the bounding technique using by [32]
are utilized and the delay-dependent stability results are performed. The derived stability
criteria have been demonstrated to be less conservative than existing ones in the
literature.

Delay-dependent stability conditions in terms of linear matrix inequalities (LMIs)

have been obtained for retarded and neutral type systems. These conditions are based on
four main model transformations of the original system and application mentioned
inequalities.
The majority of stability conditions in the literature available, of both continual and
discrete time-delay systems, are sufficient conditions. Only a small number of works
provide both necessary and sufficient conditions [38], [39], [47], [49], [50], [53] which
are in their nature mainly dependent of time-delay. These conditions do not possess
conservatism but often require more complex numerical computations. In our paper we
represent some necessary and sufficient stability conditions.

Less attention has been drawn to the corresponding results for discrete-time delay
systems [40], [41], [42], [43], [44], [45], [54]. This is mainly due to the fact that such
systems can be transformed into augmented high dimensional systems (equivalent
systems) without delay [22], [46]. This augmentation of the systems is, however,
inappropriate for systems with unknown delays or systems with time varying delays.
Moreover, for systems with large known delay amounts, this augmentation leads to large-
dimensional systems. Therefore, in these cases the stability analysis of discrete time-
delay systems can not be to reduce on stability of discrete systems without delay.

In our paper we present delay-dependent stability criteria for particular classes of
time-delay systems: continuous and discrete time-delay systems and continuous and
discrete time-delay large-scale systems. Thereat, these stability criteria are express in
form necessary and sufficient conditions.

2. STABILITY OF TIME-DELAY SYSTEMS

Throughout this paper we use the following notation. R and C denote real (complex)
vector space or the set of real (complex) numbers, T+ denotes the set of all non-negative

integers, A" means conjugate of A €C and F*conjugate transpose of matrix F e C™" .
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Re(s) is the real part of seC . The superscript T denotes transposition. For real matrix
F the notation F >0 means that the matrix F is positive definite. A, (F) is the
eigenvalue of matrix F . Spectrum of matrix F is denoted with o(F) and spectral
radius with p(F).

2.1. Continuous time-delay systems

Considers class of continuous time-delay systems described by
X(t)= Ax(t)+Ax(t—1), x(t)=0(t), —t<t<0 @)

Theorem 1. [38] Let the system be described by (1). If for any given matrix Q =Q" >0
there exist matrix P =P" >0, such that

T
P(A+T(0))+(A,+T(0)) P=—Q (2)
where T (t) is continuous and differentiable matrix function which satisfies

T(t):{(A’ +g(0))T(t),t >OTStS’E, T(1)=A -

then the system (1) is asymptotically stable.
In paper [38] it is emphasized that the key to the success in the construction of a
Lyapunov function corresponding to the system (1) is the existence of at least one

solution T (t) of (3) with boundary conditionT (t)=A,. In other words, it is required
that the nonlinear algebraic matrix equation

e O (0)= A, @)

has at least one solution for T (0) It is asserted, there, that asymptotic stability of the

system (Theorem 1) can be determined based on the knowledge of only one or any
solution of the particular nonlinear matrix equation. However, [47] gives counterexample
which denies this maintenance.

2.1.1 Main results

If we introduce a new matrix,
ROA+T (O) 5)
then condition (2) reads

PR+R'P=-Q (6)
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which presents a well-known Lyapunov’s equation for the system without time-delay.
This condition will be fulfilled if and only if R is a stable matrix:

Rex (R)<0 (M

Let O, and Q. denote sets of all solutions of eq. (4) per T(0) and (6) per R,

respectively.
Equation (4) can be written in a different form as follows,

R-A,—e " A =0 (8)
and there follows
det(R—A,—e ™A )=0 9)

Substituting a matrix variable R by scalar variable s in (7), the characteristic equation of
the system (1) is obtained as

f(s)=det(sl -A —e**A)=0 (10)
Let us denote
20 {s| f(s)=0} (1)

a set of all characteristic roots of the system (1). The necessity for the correctness of
desired results, forced us to propose new formulations of Theorem 1.

Theorem 2. [47] Suppose that there exist(s) the solution(s) T (0) € Q; of (4). Then, the
system (1) is asymptotically stable if and only if for any matrix Q =Q" >0 there exists

matrix P, =P,” >0 such that (2) holds for all solutions T (0) € Q; of (4).

Conclusion 1. Statement Theorem 2 require that condition (2) is fulfilled for all
solutions T (O) € Q. of (4). In other words, it is requested that condition (7) holds for

all solution R of (8), especially for R=R_, , where the matrix R, € Q; is maximal
solvent of (8) that contains eigenvalue with a maximal real part
Ay €Z: Rek, =max Rgs . Therefore, from (7) follows condition Re’; (R,)<0.

Se.

On the basis of Conclusion 1, it is possible to reformulate Theorem 2 in the following
way.
Theorem 3. [47] Suppose that there exists maximal solvent R of (8). Then, the system

(1) is asymptotically stable if and only if for any matrix Q =Q” >0 there exists matrix
P, =P, >0 such that (6) holds for the solution R = R, of (8).

2.2 Continuous large scale time-delay systems

Consider a linear continuous large scale time-delay autonomous systems composed of
N interconnected subsystems. Each subsystem is described as:
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N
% (1) = Ax; () + D Ax (t-7;), 1<i<N (12)
j=1

with an associated function of initial state x, (6)=¢, (), ee[—rml, 0], 1<i<N.

X, (t)eR™ is state vector, A e R"™" denote the system matrix, A; e R™™ represents
the interconnection matrix between the i -th and the j -th subsystems, and t;; is constant

delay.

For the sake of brevity, we first observe system (12) made up of two subsystems
(N =2). For this system, we derive new necessary and sufficient delay-dependent
conditions for stability, by Lyapunov's direct method. The derived results are then
extended to the linear continuous large scale time-delay systems with multiple
subsystems.

2.2.1. Main results

Theorem 4. [49] Given the following system of matrix equations (SME)
R,—A -eRup —e S A =0 (13)
R,S, —S,A, —e A —e =g A =0 (14)
where A, A, A,, A, and A, are matrices of system (12) for N =2, n, subsystem

orders and t; time-delays of the system. If there exists solution of SME (13)-(14) upon

unknown matrices R, e R™™ and S, e C"™™, then the eigenvalues of matrix R, belong
to a set of roots of the characteristic equation of system (12) for N =2.

Proof. By introducing the time-delay operator e ™, the system (12) can be expressed in
the form

(- A A A - Ao

A8 A, + A (15)
x(1)=[x" (1) % (0]
Let us form the following matrix
_ _ . _ sl n A - Aneitus _A126412s
F(s)=[Fy(®)] =l ~ A (s) —[ pe st a4

Its determinant is
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2(5) F2(8)+S;Fz (5)}
(

e S)=ae (S) S
eF ) d{ a(s) o ()
) G

a7
_ de{ u(5:5;) Gas.S )}
G (s Gzz (s)
G11 (57 Sz) =sl nl = Ai - Aneitus - 82A21e7Tms (18)
Gy (57 Sz) =55, -S,A, - Aizeirus -3, Azz":rIZZS (19)
The characteristic polynomial of system (12) for N =2, defined by
f(s)=det(sl, —Ag(s))=detG(s,S,) (20)

is independent of the choice of matrix S,, because the determinant of matrix G(s,S,) is
invariant with respect to elementary row operation of type 3. Let us designate a set of
roots of the characteristic equation of system (12) by Zé{s| f(s):O}. Substituting

scalar variable s by matrix X in G(s,S,) we obtain

G(X,S,)= ng(l)((f;) ng(:((f;)} (21)

If there exist transformational matrix S, and matrix R, eC™"such
thatG, (R,,S,)=0and G, (R,,S,)=0 is satisfied, i.e. if (13)-(14) hold, then

f(R,)=detGy, (R,.S, )-detG,, (R,) =0 22)

So, the characteristic polynomial (20) of system (12) is annihilating polynomial [48] for
the square matrix R, defined by (13)-(14). In other words, o(R,)c= X .

Theorem 5. [49] Given the following SME
R,—A —e =S A, —e ™ =A, =0 (23)
R,S, —S,A —e S A —e A =0 (24)
where A, A, A,, A, and A, are matrices of system (12) for N =2, n, subsystem
orders and t; time-delays of the system. If there exists solution of SME (23)-(24) upon

unknown matrices R, e C™ and S, e C™™, then the eigenvalues of matrix R, belong

to a set of roots of the characteristic equation of system (12) for N =2.
Proof. Proof is similarly with the proof of Theorem 4.
Definition 1. The matrix R, (R,) is referred to as solvent of SME (13)-(14) ((23)-(24)

).
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Definition 2. Each root A, of the characteristic equation (20) of the system (12) which
satisfies the following condition: ReA, = maxRes, seX will be referred to as maximal

eigenvalue of system (12).
Definition 3. Each solvent R, (R,,) of SME (13)-(14) ((23)-(24)), whose spectrum
contains maximal eigenvalue A, of system (12), is referred to as maximal solvent of
SME (13)-(14) ((23)-(24)).
Theorem 6. [49] Suppose that there exists maximal solvent of SME (23)-(24) and let
R,, denote one of them. Then, system (12), for N =2, is asymptotically stable if and

only if for any matrix Q =Q" >0 there exists matrix P =P" >0 such that
Rin P+PR,=-Q (25)
Proof. Sufficient condition. Define the following vector continuous functions
Xg =X; (t+6), ee[—rml, 0]

Tii (26)
[ Ti(n)x (t=m)dn
0

2
Z(Xg: X2 ) = 2. S; )+
i=1 j=

M

N

where T, (t)eC™", j=12 are varying continuous matrix functions and S, =1,

S,eC"™,
The proof of the theorem follows immediately by defining Lyapunov functional for
system (12) as

V (X4, X5) =2 (X, X ) PZ(Xg, %), P=P >0 27)
Derivative of (27), along the solutions of system (12) is
v (thl XtZ) = z* (th’ XIZ) P Z(th’ XIZ) + Z* (XII’ XtZ) P z (th’ XIZ) (28)
2

2(x %,y ) = z{si (A +JZ:T“ (O)jxi (1)

i=1

. (29)
+;(S]AJ, ~ST, (rji))xi (t —rji)+§ ! STy (n)x (t —n)dn}
If we define new matrices
R=A +§2:Tji (0), i=12 (30)
j=L

and if one adopts

STi(t;)=S;A;, i,j=12 (31)

il ji
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ST (n)=R;ST;(n), SR=RS, ij=12 (32)
then
2(X %) = Riz(Xa, X )y V(X %) =2 (xtl,xtz)(Rl*P + PRl)z(xtl,xtz) (33)
It is obvious that if the following equation is satisfied
R, P+PR=-Q<0, (34)

then V (Xy,X,,) <0, VX, #0.

In the Lyapunov matrix equation (25), of all possible solvents R, only one of
maximal solvents R, is of importance, because it is containing maximal eigenvalue
A, € Z, which has dominant influence on the stability of the system.

Necessary condition. Let us assume that system (12) for N =2 is asymptotically stable,
ie. VseX, Res<0 hold. Since o(R,,) =X follows Rei(R,,)<0 and the positive

definite solution of Lyapunov matrix equation (25) exists.
From (31)-(32) follows

S;A; =e" ST (0), S, =1, =12 j=12 (35)

Using (30) and (35), for i =1, we obtain (13). Multiplying (30) (for i =2) from the left
by matrix S, and using (32) and (35) we obtain (14). Taking a solvent with eigenvalue
A, €Z (if it exists) as a solution of the system of equations (13)-(14), we arrive at a
maximal solvent R, .

Theorem 7. [49] Suppose that there exists maximal solvent of SME (23)-(24) and let
R,, denote one of them. Then, system (12), for N =2, is asymptotically stable if and

only if for any matrix Q =Q" >0 there exists matrix P = P" >0 such that
Ry, P+PR,.=—Q (36)

Proof. Proof is almost identical to that exposed for Theorem 6.
Theorem 8. [49] Given the following system of matrix equations

N
RS —SiA _ZeiRijiSini =0, §eC¥, § =1 1<i<N @37

n, ’
i

foragiven k, 1<k <N, where A and A;,

(12) and t; is time-delay in the system. If there is a solvent of (37) upon unknown

1<i<N, 1< j<N are matrices of system

matrices R, e C*™ and S;, 1<i <N, i=#k, then the eigenvalues of matrix R, belong
to a set of roots of the characteristic equation of system (12).

Proof. Proof of this theorem is a generalization of proof of Theorem 4 or Theorem 5.
Theorem 9 [49] Suppose that there exists maximal solvent of (37) for given k,
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1<k <N and let R, denote one of them. Then, linear discrete large scale time-delay
system (12) is asymptotically stable if and only if for any matrix Q =Q” >0 there exists

matrix P =P" >0 such that
R;m P+PR,=—-0Q (38)

Proof. Proof is based on generalization of proof for Theorem 6 or Theorem 7. It is
sufficient to take arbitrary N instead of N =2 .

Example 1. Consider following continuous large scale time-delay system with delay
interconnections

X (t) =AX (t) +A,X, (t - le)’ X, (t) =AX, (t) + A% (t - 1721) + AyX (t - 1723)
(39)
X3 (t) = AX, (t)"' AuXx (t - 731)"" AyX, (t - Taz)

6 2 0 320 187 491 10.30
A=/ 0 -7 0| A=|0 0 3|, A=|-223 -1651 -24.11
0 0 -10.9 2 12 187 -3.91 -10.30

10 -2 1 -1

A= 3 0 5[, A,=|3 2

10 2 11

B -185 -175 ~ 4 -2 1 B 1 2 -
A=l 13s aass ™72 0 1) ™73 2 of
Applying Theorem 8 to a given system, for k =1, the following SME is obtained
Rl -A- e_RﬂuSz Ay - eiRﬂalSe.Azl =0, Rlsz - SzAz —e A, - e fiw SsAaz =0
Rlsa - 53A3 _e7R1r2352A23 =0

If for pure time-delays we adopt the following values: 1, =5, 1,, =2, 1,,=4,
1, =5 and 1, =3, by applying the nonlinear least squares algorithms, we obtain a great
number of solutions upon R, . Among those solutions is a maximal solution:

-0.0484 -0.0996 0.0934
R, =| 0.2789 -0.3123 0.2104
1.1798 -1.1970 -0.3798

The  eigenvalues  of  matrix Rim amount  to: A, =-0.2517,

L,3=—0.2444 + j 0.3726.

Therefore, for a maximal eigenvalue 2., one of the values from the set {i,,A,} can be

adopted. Based on Theorem 9, it follows that the large scale time-delay system is
asymptotically stable.
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2.3 Discrete time-delay systems

A linear, discrete time-delay system can be represented by the difference equation

x(k+1)= Ax(k)+Ax(k—h) (40)
with an associated function of initial state
x(e):w(e), ee{—h,—h+1,...,0} (41)

The equation (40) is referred to as homogenous or the unforced state equation. Vector
x(k)e R" is a state vector and A,, A € R™ are constant matrices of appropriate

dimensions, and pure time-delay is expressed by integers heT".
System (40) can be expressed with the following representation without delay [22],
[46].
X, (k) =[x (k=h) X" (k=h+1) x"(k)|eR", N =2n(h+1)
0 Inp - 0
B I NxN
X, (k+1)=Ax,(k), A = 0 0 1 eR
N 0 - A

The system defined by (42) is called the augmented system, while matrix A,, the
matrix of augmented system. Characteristic polynomial of system (40) is given with:

(42)

n(h+1) )
f(A)2detM (1) = >’ ar!, a

jER M(A)=1AM™ —AL —A  (43)
j=0
Denote with

Q{1 f(r)=0}=2(A,) (44)

the set of all characteristic roots of system (40). The number of these roots amounts to
n(h+1).Aroot A, of Q with maximal module:

A, €Q: |xm|:max|x(Aa)| (45)
let us call maximal eigenvalue.

2.3.1. Main results

If scalar variable A4 in the characteristic polynomial is replaced by matrix
X e C™" the following monic matrix polynomial is obtained

M(X)=X""—X"A - A (46)

For the needs stability of system (40) only the maximal solvents of (46) are usable,
whose spectrums contain maximal eigenvalue &, . A special case of maximal solvent is



234 S. B. STOJANOVIC, D. LJ. DEBELJKOVIC

the so called dominant solvent [51], [52] which can be computed in a simple way by
Bernoulii or Traub algorithm.

Definition 4. Every solvent R of (46) whose spectrum o(R,) contains maximal
eigenvalue A, of Q is a maximal solvent.

Definition 5. [51], [52] Matrix A dominates matrix B if all the eigenvalues of A are
greater, in modulus, then those of B. In particular, if the solvent R, of (46) dominates the

solvents R,,..., R, we say it is a dominant solvent.

Theorem 10. [50] Suppose that there exists maximal solvent of (46) and let R, denote
one of them. Then, linear discrete time-delay system (40) is asymptotically stable if and
only if for any matrix Q =Q” > 0 there exists matrix P =P" >0 such that

R.PR,-P=-Q (47)
Proof. Sufficient condition. Define the following vector discrete functions
h
X =x(k+6), 0e{-h,—h+1..,0}, z(x)=x(k)+XT(j)x(k—]j) (48)
j=1
where, T(k)eC”Xn is, in general, some time varying discrete matrix function. The

conclusion of the theorem follows immediately by defining Lyapunov functional for the
system (40) as

V(x)=2(x)Pz(x,), P=P >0 (49)
It is obvious that z(x,)=0 if and only if x, =0, so it follows that V (x,)>0 for
VX, #0.
The forward difference of (49), along the solutions of system (40) is

AV () =Az" (%) Pz(k)+Z (X )PAZ(X, )+ AZ (X, ) PAZ(X,) (50)
A difference of Az(x, ) can be determined in the following manner
Az(x,)= Ax(k)+jzh£T(j)Ax(k —J). Ax(k)=(A—1,)x(k)+ Ax(k—h)
iT(j)Ax(k-j):T(l)x(k)-T(h)x(k-h)+(T(2)—T(1))x(k-1)+--. (51)
+(T(h)=T (h-1))x(k—h+1)
Define a new matrix R by

RO A+T(2) (52)

AT (h)=A-T(h) (53)
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then Az(x, ) has a form

Az(xk):(R_|n)x(k)+i[m(j).x(k_j)] (54)
If one adopts
AT(j)=(R=1)T(j), j=12 ..,h (55)
then (50) becomes
AV (%) =2"(x,)(RPR=P)z(x,) (56)
It is obvious that if the following equation is satisfied
RPR-P=-Q, Q=Q >0 (57)

then AV (x,)<0, x, #0.

In the Lyapunov matrix equation (57), of all possible solvents R of (46), only one of
maximal solvents R, is of importance, because it is containing maximal eigenvalue

A, € Q, which has dominant influence on the stability of the system. So, (47) represent

stability sufficient condition for system given by (40).
Necessary condition. If the system (40) is asymptotically stable then all roots A, € Q are

located within unit circle. Since o(R, )= Q, follows p(R,) <1, so the positive definite

solution of Lyapunov matrix equation (47) exists.
Matrix T (1) can be determined in the following way. From (55), follows

T(h+1)=R"T(1) (58)
and using (52)-(53) one can get (46).
Corollary 1. [50] Suppose that there exists maximal solvent of (46) and let R, denote

one of them. Then, system (40) is asymptotically stable if and only if p(R, ) <1.

Proof. Follows directly from Theorem 10.
Corollary 2. [50] Suppose that there exists dominant solvent R, of (46). Then, system

(40) is asymptotically stable if and only if p(R;)<1.

Proof. Follows directly from Corollary 1, since dominant solution is, at the same time,
maximal solvent.
Example 2. Let us consider linear discrete systems with delayed state (40) with

7/10 -1/2 1/75  1/3
A, = . A = (59)
1/2 17/10 ~1/3 —49/75

A. For h=1 there are two solvents of matrix polynomial equation (46)

(R*—RA,-A =0):
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_{19/30 —1/6} R _[1/15 —1/3}
| 1/6 29/30| * |1/3 11/15]
Since A(R,)={4/5,4/5}, L(R,)={2/5,2/5}, dominant solvent is R,. For getting the
dominant solvent Bernoulli or Traub’s algorithm may be used. After (4+3) iterations
for Traub’s algorithm [52] and 17 iterations for Bernoulli algorithm [52], dominant
solvent can be found with accuracy of 107*. Since p(Ri) =4/5<1, based on Corollary

2, it follows that the system under consideration is asymptotically stable.
B. For h=20 applying Bernoulli or Traub’s algorithm for computation the dominant

solvent R, of matrix polynomial equation (46) (R* —~R*A, — A =0), we obtain

_[0.6034 -0.5868
' 105868 1.7769

Based on Corollary 2, the system is not asymptotically stable because
p(R,)=1.1902>1.

2.4 Discrete large scale time-delay systems

Consider a large-scale linear discrete time-delay systems composed of N
interconnected S, . Each subsystem S;, 1<i <N is described as

N
S % (k+1)= Ax (k)+ X Ax; (k=hy) (60)
j=1
with an associated function of initial state
X (0)=w;(6), 0e{-h,,—h +1,.., 0 (61)

wherex; (k)eR™ is state vector, A eR"™™ denotes the system matrix,
A e R"™" represents the interconnection matrix between the i-th and the j-th

subsystems and the constant delay h; e T™.
Lemma 1. System (60) will be asymptotically stable if and only if

P (A)] <1 (62)
holds, where matrix
N
A =[A,JeR™™, N, = zl N, N;=n(h, +1), h, = maxh; (63)

is defined in the following way
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} h|1+1

A O - A -~ 010

I 0 - 0 - 0

Ai=| . . : R e RMM,

00 i 0 i1 0
1 hy+l (64)
T )
0 - A 0
0 .- 0 - 0

A= . . . e RN

0 .- 0 - 0

where A and A;, 1<i<N, 1< j<N,are matrices of system (60).

2.4.1. Main results

Theorem 11. [53] Given the following system of monic matrix polynomial equations

N
R™™S, -R™SA->R™™S A =0, SeC™, §=I (65)

n
)

foragiven I, 1<I<N,where A andA;, 1<i<N, 1< j<N are matrices of system

(60) and h;; is time-delay in the system, h, =maxh;, 1<i<N.
! ]

nxn

If there is a solution of (65) upon unknown matrices R, € C and S;, 1<i<N, i=l,
then A(R,) = A (A,) holds, where matrix A, is defined by (63)-(64).

Proof. By introducing time-delay operator z™", system (60) can be expressed in the
following form

x(k+1)= A, (2)x(k), x(k)=[x (k) %7 (k) -~ x,(K)]
A1 + Anz_hu AiN Zihm (66)
A (2)= z :
Aleith AN + ANN ZihNN

Let us form the following matrix.
F(z)=1l,, —Ae(z):[Fij(z)J (67)

If we add to the arbitrarily chosen | -th block row of this matrix the rest of its block
rows previously multiplied from the left by the matrices S; =0, 1<j<N, j=I
respectively and after multiplying i -th of the block column, 1<i < N , of the preceding
matrix by 2™ and after integrating the matrix S, =1, , we obtain
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zh”'lFu(z) z"m Fi (2)

inihm. h N h N
25 detF (z)=det| 2" X S;Fy(2) -+ 2™ X SFy(2)
[ =

i zh”‘lFNl(z) zh""NFNN(z)
_Gll.(z) GlN'(z)_

= det G,l(.z,S) G (.Z,S) (68)
Gu(d) - Gl ]

—detG(z,S), S={S,-, Sy}

The | -th block row of the N x N block matrix G(z,S) is defined by

A 1<i<N, s =1, (69)

N
G (2,8)=2""s,—2"s A= 2"""s A
j=1
The characteristic polynomial of system (60) [46]
Ng . N
9(z)2detG(z,8)=> a;z', N.=>n(h, +1)a eR0<j<N, (70)
j=0 i=1

does not depend on the choice of transformation matrices S,,---, S, ) [48].
Let us denote

>2{z|g(z)=0} (71)

a set of all characteristic roots of system (60). This set of roots equals the set X(Aay
Substituting a scalar variable z by matrix X e C"™ in G(z,S), a new block matrix is
obtained G(X,S). If there exist the transformation matrices S;, 1<i<N, i=| and
solvent R eC™" such that for the I-th block row of G(X,S) holds
G;(R,S)=0, 1<i<N i.e. holds (65), then

g(R)=0 (72)

Therefore, the characteristic polynomial of system (60) is annihilating polynomial for
the square matrix R and A(R)cX holds. The mentioned assertion holds

VI, 1<I<N.
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Definition 6. Each solvent R,, of (65), for the given I, 1<I <N, whose spectrum
contains maximal eigenvalue X, of system (60), is referred to as maximal solvent of (65)

Theorem 12 [53] Suppose that there exist at least one |, 1<1 <N, that there exists
maximal solvent of (65) and let R, denote one of them. Then, linear discrete large-scale

time-delay system (60) is asymptotically stable if and only if for any matrix Q =Q" >0
there exists matrix P =P" >0 such that

Rm PRy—P=-Q. (73)

Proof. Sufficient condition. Define the following vector discrete functions

hy

V(% X ) = 8 % () + 3 ZTJi(I)xi(k—l)},

= =1 1=t

(74)

Xq =% (k+6), ee{—hmi, ,O}

where T (k)e C"™™ 1< j<N, 1<i<N are, in general, some time-varying discrete

matrix functions and S, =1,, S eC"™ 1<i<N, i#l. The conclusion of the
theorem follows immediately by defining Lyapunov functional for system (60) as

V (Xkll"'vXkN): v ()pv() P=P" >0 (75)
It is obvious that V (-,--+,-) >0 for ¥x; #0, 1<i<N.
The forward difference of (75), along the solutions of system (60) is

DV(~,-~,')=DV* () P v(~,-~~,-)+v* () P Dv()

. (76)
+Dv (],) P DV(-,---,~)
A difference of v( : ) can be determined in the following manner
N N N
Dv()=25, (A —1 2T (1)jxi (k)+ 2 T (hyi)xi (k=hy)
i=1 j=1 j=1
(77)
N hji*l N
D) DTji(l)xi(k—l>+2A,»x,-(k—hu)}
=1 1=1 j=1
If we define new matrices
N
Ri=A+ZTji(l),1sisN (78)

then D v(----,-) has a form
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Dv(.,.--,-):_Nz1 S, (R - |n|)xi(|<)+i(sjAji =87, (hy))x (k=hy)

i j=1

- (79)
+ ZSiAT“(I)xi(k—I)}
j=1 1=
If
S;A; -8 T;(h;)=8DT;(h;), 1<i<N, 1<j<N (80)
S(R-1,)=(R-1,)8, 1<i<N (81)
SDT;(1)=(R=1,)8,T;(I), 1<i<N, 1<j<N (82)
then
Dv(-,---,~)=(R,—|n()v(~,- ) )
DV(~,---,-):V*(~,---,-)(R,*P R,—P)V(-,---,-)
It is obvious that if the following equation is satisfied
R,*P R -P=-Q, Q=Q">0 (84)

then DV (+,-++,-)<0, ¥x; #0, 1<i<N.

In the Lyapunov matrix equation (73), of all possible solvents R, of (65), only one of
maximal solvents R, is of importance, for it is the only one that contains maximal
eigenvalue %, € X, which has dominant influence on the stability of the system.
Necessary condition. If system (60) is asymptotically stable, then VA, eX, |xi|<1.
Since A(R,,) =X it follows that p(R,,)<1, therefore the positive definite solution of

Lyapunov matrix equation (60) exists.
If it exists, maximal solvent R, can be determined in the following way. From (80)

and (82) we obtain

S;A; =R™ST,(1), S =1, 1<i<N, 1<j<N (85)

Multiplying i -th equation of the system of matrix equations (78) from the left by matrix
R,h”' S, and using (81) and (85), we obtain equation (65). Taking solvent with eigenvalue
Ay €Z (if it exists) as a solution of the system of equations (65), we arrive at maximal
solvent R, , .

Corollary 3. Suppose that for the given |, 1<I<N, there exists matrix R, being
solution of (65). If system (60) is asymptotically stable, then matrix R, is discrete stable.
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Proof. If system (60) is asymptotically stable, then vV ze X |z|<1. Since A(R)cX,
it follows that VA eA(R), |A|<1,i.e matrix R is discrete stable.

Example 3. Consider a Iarge -scale linear discrete time-delay systems, consisting of three
subsystems

Sy X, (k+1) = )+ Byu, (k) + Ay (K =y, )+ Aygxy (k= hyy), (86)

St x (k+1) = Ax (k)+Bu, (k) + A%, (k—hy,),
A%, (K
Syt Xy (K +1) = Ax (K)+ By (k) + Ay (k= hy)

0.7 0 -05

{0.8 o.e]AZ: 01 6 o1 181{0.1}%{0.1 0 0.1}
04 09 0.1 01 0 0.1
~06 1 08
0 -0.1 01 -0.2] 01 0
B,=|01 02| A,=| 03 01|, A,=| 02 -02],
0 01 01 o02] 01 0

B 1 01 B - 0.1 O |01 0.2
A= 01 08 %] o 0.1_’A31_ 01 0.2
The overall system is stabilized by employing a local memory-less state feedback control
for each subsystem

u (k)= Kx, (K), K, =[-6 —7],K2:{—7 —45 10}K3{—5 —1}

4 -4 -4 1 -4

Substituting the inputs into this system, we obtain the equivalent closed loop system
representations

X (k+1)=A x (k) + ZA, j(k=h;) 1<i<3, A=A+BK,

For time-delay in the system, Iet us adopt: h, =5, h, =2, hy,=4 and h, =5.
Applying Theorem 11 to a given closed loop system, for | =1we obtain

- R15A1 - R1382A21 -SA; =0,
R1682 - Rlssz'&z -A,=0,
R1433A3 - SzAze. =0
Solving this SMPE by minimization methods, we obtain

n 0.6001 0.3381 s - 0.0922 1.3475 0.5264 s _ 0.6722 -0.3969
' 106106 0.3276| "2 |0.0032 1.3475 0.4374| ° |1.3716 -1.0963]|
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Eigenvalue with maximal module of matrix R, equals 0.9382. Since eigenvalue 2 of
A, e R*™ also has the same value, we conclude that solvent R, is maximal solvent.
Applying Theorem 12, we arrive at condition p(le)=0.9382<1 wherefrom we

conclude that the observed closed loop large-scale time-delay system is asymptotically
stable.

3. CONCLUSION

In this paper we have presented necessary and sufficient conditions for the asymptotic
stability of a particular class of linear continuous and discrete time-delay systems. These
results have been extended to the large scale continuous and discrete time-delay systems
covering the cases of two and multiple existing subsystems. The delay dependent criteria
are derived by Lyapunov's direct method and are exclusively based on the solvents of
particular matrix equation and Lyapunov equation for non delay systems. Obtained
stability conditions do not possess conservatism. For discrete time-delay systems the
dominant solvent of given polynomial matrix equation can be calculated using
generalized Traub’s or Bernoulli’s algorithm which possess significantly smaller number
of computation than the standard algorithm.
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REFERENCES

1. Kamen E.W., (1983), Linear systems with commensurate time-delays: Stability and
stabilization independent of delay, IEEE Transactions on Automatic Control, Vol.
27, 367-375; corrections in IEEE Transactions on Automatic Control, Vol. 28,
1983, pp. 248-249.

2. Hertz D., E. I. Jury, E. Zeheb, (1984), Stability independent and dependent of delay for delay
differential systems, Journal of Franklin Institute, 318, 1984, pp. 143-150.

3. Niculescu S.1., Souza de C. E., L.Dugard, Dion J.M., (1995), Robust exponential stability of
uncertain linear systems with time-varying delays, Proceedings of 3rd European Control
Conference, Rome, Italy, 1995, pp. 1802-1807.

4. Richard J.P., A., Goubet- Bartholomeus, Tchangani P. A., M. Dambrine, (1997), Nonlinear
delay systems: Tools for quantitative approach to stabilization, Stability and Control of Time-
Delay Systems, (Eds: Dugard L. and Verriest E.I.), Springer-Verlag, 1997, pp. 218-240.

5. Hale J.K., Lunel S.M., (1993), Introduction to Functional Differential Equations, Applied
Mathematics Sciences Series, 99, Springer-Verlag, 1993.

6. Kolmanovskii V.B., Nosov V.R., (1986), Stability of Functional Differential Equations, New
York: Academic Press, 1986.

7. Su J.H., (1994), Further results on the robust stability of linear systems with a single delay,
Systems and Control Letters, Vol. 23, 1994, pp. 375-379.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Delay dependent stability of linear time-delay systems 243

Niculescu S.l., de Souza C. E., Dion J.M., Dugard L., (1994), Robust stability and
stabilization for uncertain linear systems with state delay: Single delay case (I). Proceedings
of IFAC Workshop on Robust Control Design, Rio de Janeiro, Brazil, 1994, pp. 469-474.
Boyd S., El Ghaoui L., Feron E., Balakrishnan V., (1994), Linear matrix inequalities in
system and control theory, SIAM Studies in Applied Mathematics, 15., Philadelphia, USA,
1994.

Li X., de Souza C., (1995), LMI approach to delay dependent robust stability and
stabilization of uncertain linear delay systems, Proceedings of 34th IEEE Conference on
Decision and Control, New Orleans, Louisiana, USA, 1995, pp. 3614-3619.

Niculescu S.1., Trofino-Neto A., Dion J.M., and Dugard L., (1995), Delay-dependent stability
of linear systems with delayed state: An LMI approach, Proceedings of 34th IEEE
Conference on Decision and Control, New Orleans, Louisiana, USA, 1995, pp. 1495-1497.
Gu K., (1997), Discretized LMI set in the stability problem of linear uncertain time-delay
systems, International Journal of Control, VVol. 68, 1997, 923-934.

Su J.H., (1995), The asymptotic stability of linear autonomous systems with commensurate
delays, IEEE Transactions on Automatic Control, VVol. 40, 1995, pp. 1114-1118.

Chen J., Gu G., Nett C.N., (1994), A new method for computing delay margins for stability
of linear delay systems, Proceedings of 33rd IEEE Conference on Decision and Control,
Lake Buena Vista, Florida, USA, 1994, pp. 433-437.

Niculescu S.1., Dion J.M., Dugard L., Li H., (1997), Stability of linear systems with delayed
state: An LMI approach, JESA, special issue on “Analysis and control of time-delay
systems”, 31, 1997, pp. 955-970.

Niculescu S.I., Verriest E.I., Dugard L., Dion J.M., (1997), Stability and robust stability of
time-delay systems: A guided tour, Lecture notes in control and information sciences, Vol.
228, 1997, pp. 1-71, London, Springer.

Kharitonov V., (1998), Robust stability analysis of time delay systems: A survey,
Proceedings of 4th IFAC System Structure and Control Conference, Nantes, France, July,
1998.

Richard J.P., (1998), Some trends and tools for the study of time delay systems, Proceedings
of CESA98 IMACS/IEEE Multi conference, Hammamet, Tunisia, 1998, pp. 27-43.

Niculescu S.1., Richard J.P., (2002), Analysis and design of delay and propagation systems,
IMA Journal of Mathematical Control and Information, 19 (1-2), 2002, pp. 1-227.

Richard J.P., (2003), Time-delay systems: an overview of some recent advances and open
problems, Automatica, Vol. 39, 2003, pp. 1667-1694.

Kolmanovskii V., Richard J.P., (1999), Stability of some linear systems with delays, IEEE
Transactions on Automatic Control, Vil. 44, 1999, pp. 984-989.

Malek-Zavarei M., Jamshidi M., (1987), Time-Delay Systems, Analysis, Optimization and
Applications, Systems and Control Series, VVol. 9, 1987.

Verriest E., Niculescu S.1., (1998), Delay-independent stability of linear neutral systems: a
Riccati equation approach, Stability and Control of Time-Delay Systems (Eds: Dugard L. and
Verriest E.), Vol. 227 Springer-Verlag, 1998, pp. 92-100.

Li X., de Souza C., (1997), Criteria for robust stability and stabilization of uncertain linear
systems with state delay, Automatica, VVol. 33, 1997, pp. 1657-1662.

Kolmanovskii V., Niculescu S.I., Richard J.P., (1999), On the Lyapunov—Krasovskii
functionals for stability analysis of linear delay systems, International Journal of Control,
Vol. 72, 1999, pp. 374-384.

Park P., (1999), A delay-dependent stability criterion for systems with uncertain time-
invariant delays, IEEE Transactions on Automatic Control, Vol. 44, 1999, pp. 876-877.

Lien C.H., Yu K.W., Hsieh J.G., ( 2000), Stability conditions for a class of neutral systems
with multiple time delays, Journal of Mathematical Analysis and Applications, 245, 2000,
pp. 20-27.



244

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

S. B. STOJANOVIC, D. LJ. DEBELJKOVIC

Niculescu S.1., (2001), On delay-dependent stability under model transformations of some
neutral linear systems, International Journal of Control, Vol. 74, 2001, pp. 609-617.

Fu M., Li H., Niculescu S.1., (1997), Robust stability and stabilization of time-delay system
via integral quadratic constraint approach, Stability and Control of Time-Delay Systems (Eds:
Dugard L. and Verriest E.1.), Springer-Verlag, 1997, pp. 101-116.

Chen J., On computing the maximal delay intervals for stability of linear delay systems,
IEEE Transactions on Automatic Control, Vol. 40, 1995, pp. 1087-1093.

Park P., Moon Y.S., Kwon W.H., (1998), A delay-dependent robust stability criterion for
uncertain time-delay systems, Proceedings of the American control conference, USA, 1998,
pp. 1963-1964.

Moon Y.S., Park P.G., Kwon W.H., Lee Y.S,, (2001), Delay-dependent robust stabilization
of uncertain state-delayed systems, International Journal of Control, Vol. 74 (14), 2001, pp.
1447-1455.

Fridman E., Shaked U., (2003), Delay-dependent stability and Heo control: Constant and
time-varying delays, International Journal of Control, Vol. 76, 2003, pp. 48-60.

Fridman E., Shaked U., (2002), A descriptor system approach to Heo control of linear time-
delay systems, IEEE Transactions on Automatic Control, VVol. 47, 2002, pp. 253-270.

Han Q.L., (2005), On stability of linear neutral systems with mixed time-delays: A
discretized Lyapunov functional approach, Automatica, VVol. 41, 2005, pp. 1209-1218.

Han Q.L., (2005), A new delay-dependent stability criterion for linear neutral systems with
norm-bounded uncertainties in all system matrices, International Journal of Systems Science,
Vol. 36, 2005, pp. 469-475.

Fridman E., Shaked U., (2002), An improved stabilization method for linear time-delay
systems, IEEE Transactions on Automatic Control, \VVol. 47, 2002, pp. 1931-1937.

Lee T.N., Diant S., (1981), Stability of time-delay systems, IEEE Transactions on Automatic
Control, Vol. 26, No. 4, 1981, pp. 951-953.

Xu S., Lam J., Yang C., Hoo and positive real control for linear neutral delay systems, IEEE
Transactions on Automatic Control, VVol. 46, 2001, pp. 1321-1326.

Verriest E., lvanov A., (1995), Robust stability of delay difference equations, Proceedings
IEEEE Conf. on Dec. and Control, New Orleans, LA, 1995, pp. 386-391.

Kapila V., Haddad W., (1998), Memoryless Hoo controllers for discrete-time systems with
time delay, Automatica, Vol. 34, 1998, pp. 1141-1144.

Song S., Kim J., Yim C., Kim H., (1999), Hoo control of discrete-time linear systems with
time-varying delays in state, Automatica, Vol. 35, 1999, pp. 1587-1591.

Mahmoud M., (2000), Robust Heo control of discrete systems with uncertain parameters and
unknown delays, Automatica, Vol. 36, 2000, pp. 627-635.

Lee Y.S., Kwon W.H., (2002), Delay-dependent robust stabilization of uncertain discrete-
time state-delayed systems, Preprints of the 15th IFAC World Congress, Barcelona, Spain,
2002.

Shi P., Agarwal R.K., Boukas E.K., Shue S.P., (2000), Robust How state feedback control of
discrete time delay linear systems with norm-bounded uncertainty, International Journal of
Systems Science, Vol. 31, 2000, pp. 409- 415.

Gorecki H., Fuksa S., Grabovski P., Korytowski A., (1989), Analysis and synthesis of time
delay systems, John Wiley & Sons, 1989.

Debeljkovic D.Lj.,, Stojanovic S.B., (2008), Asymptotic Stability Analysis of Linear Time
Delay Systems: Delay Dependent Approach, Systems, Structure and Control (Eds: Petr
Husek), I-Tech, Vienna, 2008, pp. 29-60.

Lancaster P., Tismenetsky M., The theory of matrices, 2nd Edition, Academic press, New
York, 1985.



Delay dependent stability of linear time-delay systems 245

49. Stojanovic S.B., Debeljkovic D.Lj., (2005), Necessary and Sufficient Conditions for Delay-
Dependent Asymptotic Stability of Linear Continuous Large Scale Time Delay Autonomous
Systems, Asian Journal of Control, Vol. 7, No. 4, 2005, pp. 414-418.

50. Stojanovic S.B., Debeljkovic D.Lj., (2008), Necessary and Sufficient Conditions for Delay-
Dependent Asymptotic Stability of Linear Discrete Time Delay Autonomous Systems,
Proceedings of 17th IFAC World Congress, Seoul, Korea, July 06-10, 2008, pp. 2613-2618.

51. Dennis J.E., Traub J.F., Weber R.P., (1976), The algebraic theory of matrix polynomials,
SIAM J. Numer. Anal., VVol. 13 (6), 1976, pp. 831-845.

52. Dennis J.E., Traub J.F., Weber R.P., (1978), Algorithms for solvents of matrix polynomials,
SIAM J. Numer. Anal., VVol. 15 (3), 1978, pp. 523-533.

53. Stojanovic S.B., Debeljkovic D.Lj., (2008), Delay—-Dependent Stability of Linear Discrete
Large Scale Time Delay Systems: Necessary and Sufficient Conditions, International
Journal of Information & System Science, Vol. 4, No. 2, 2008, pp. 241-250.

54. Stojanovic S.B., Debeljkovic D.Lj., (2008), Quadratic stability and stabilization of uncertain
linear discrete-time systems with state delay: a LMI approach, Dynamics of Continuous,
Discrete and Impulsive Systems, Series B: Applications & Algorithms, Vol. 15, 2008, pp.
195-206.

STABILNOST LINEARNIH SISTEMA SA KASNJENJEM KOJA
ZAVISI OD VREMENSKOG KASNJENJA

Sreten B. Stojanovic, Dragutin Lj. Debeljkovic

Rad se bavi problemom stabilnosti linearnih obicnih i velikih sistema koja zavisi od
vremenskog kaSnjenja. lzvedeni su potrebni i dovoljni uslovi asimptotske stabilnosti kontinualnih i
diskretnih linearnih sistema sa kaSnjenjem. Ovi rezultati su proSireni na klasu velikih sistema sa
kaSnjenjem pri ¢emu je razmatran slucaj sa dva i vise podsistema. Kriterijumi stabilnosti su
izvedeni koristeéi Ljapunov direktni metod a zasnivaju se na reSenju posebnih klasa matricnih
jednacina i Ljapunove jednacine za sisteme bez kaSnjenja. lzvedeni uslovi stabilnosti ne poseduju
konzervativizam. Nekoliko numerickih primera je uradeno kako bi se pokazala primenljivost
izvedenih rezultata.
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Abstract. This work considers the numerical computation methods and procedures
for the fatigue crack growth predicting of cracked notched structural components.
Computation method is based on fatigue life prediction using the strain energy
density approach. Based on the strain energy density (SED) theory, a fatigue crack
growth model is developed to predict the lifetime of fatigue crack growth for single
or mixed mode cracks.

The model is based on an equation expressed in terms of low cycle fatigue
parameters. Attention is focused on crack growth analysis of structural components
under variable amplitude loads. Crack growth is largely influenced by the effect of
the plastic zone at the front of the crack. To obtain efficient computation model
plasticity-induced crack closure phenomenon is considered during fatigue crack
growth. The use of the strain energy density method is efficient for fatigue crack
growth prediction under cyclic loading in damaged structural components. Strain
energy density method is easy for engineering applications since it does not require
any additional determination of fatigue parameters (those would need to be
separately determined for fatigue crack propagation phase), and low cyclic fatigue
parameters are used instead.

Accurate determination of fatigue crack closure has been a complex task for years.
The influence of this phenomenon can be considered by means of experimental and
numerical methods. Both of these models are considered. Finite element analysis
(FEA) has been shown to be a powerful and useful tool*® to analyze crack growth
and crack closure effects. Computation results are compared with available
experimental results.
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LINTRODUCTION

Fatigue crack closure is a phenomenon that consists of the contact between fracture
surfaces during a portion of the load cycle. This contact affects the local stress and plastic
deformation fields near the crack tip, and thus the micro mechanisms responsible for
fatigue propagation (cyclic plastic deformation, oxidation, creep, etc.). Plasticity-induced
crack closure is an observed phenomenon during fatigue crack growth.

The constant search to improve aircraft safety has led, over recent years, to the
increasingly widespread application of ,,damage tolerance” concepts. Reliable fatigue life
prediction is very important for safe design and maintenance of structural components
subjected to cyclic loading®. In general, fatigue process consists of three stages: initiation
and early crack propagation, subsequent crack growth and final fracture. Due to the fact
that if occurs, failure leads to catastrophe, crack growth stage must be carefuly studied
and analyzed. Each crack growth model for life prediction must be based on a suitable
failure criterion. For crack growth analysis, as failure criteria could be used: plastic/total
strain ahead of crack®, the magnitude of crack tip opening®® and the energy criteria®’.
Since crack closure effect is included in fatigue crack growth analysis, the concept of
crack opening/closure was used in this paper.

The aim of this paper is to analyze the effect of plasticity-induced crack closure (PICC)
using finite element method and determination of new corrective factors for the effective
stress intensity factors. Moreover, with crack growth analysis desire was to assess how
new corrective factors can to improve crack growth life prediction to failure of structural
component.

Due to the fact that the formulated procedure for fatigue crack prediction includes
analysis level of external loading as well as the effect of plasticity-induced crack closure
we can say that it is adequate as an engineering application.

2. CRACK GROWTH PREDICTING

In this paper two numerical simulation approaches to crack propagation and, accordingly,
evaluation of residual life for structural elements with initial damages are presented. First
approach is based on conventional laws of crack propagation, such as Paris™ law of crack
propagation8. The other approach is based on the strain energy density method.

3. CONVENTIONAL CRACK PROPAGATION MODEL

When analyzing crack growth prediction, the usual starting point is relation in which the
fatigue crack growth rate is expressed as a function of the stress intensity factor, i.e., a
well known and widely used Paris law8 :

da m
— =C(AK)",
N (AK) (1)
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where: da/dN is crack growth rate, C and m — coefficient and exponent dependent upon
the materials, respectively. However, with this law, it is not possible to make allowance
for the interactions found in real-life spectra.
Equation defined by Paris, even though commonly used in engineering practice, still has
some deficiencies. Basic deficiency is the fact that it does not include alternating
load/stress and mean load/stress. During their service life structural components could be
subject to both of those loads. The mean load effect on fatigue crack growth rate is
commonly introduced through the stress ratio R. Since the mean load effect is not
included in Paris’s equation it was necessary to either modify Paris’ equation or develop
new concepts. The crack closure concept is one of those concepts where the stress ratio is
analyzed. In general, all crack closure concepts9,10 are based on the Elber's
observation10,11 which reveals the premature contact of the crack faces during the
unloading portion of the loading cycle while some tensile load is still applied. Elber was
the first researcher who introduced the effective stress intensity factor range instead of
stress intensity factor range AK i.e.:

da

Ty = Clake ] @)
where the effective stress intensity factor range is the function of stress ratio as well as
stress intensity factor:

AK g =(0.5+0.4R)AK . 3)

After Elber, Schjive8 analyzed the same relation (2) and he found that effective stress
intensity factor range could be expresed as:

AK g =(0.55+0.33R+0.12R2 JAK @

Previously mentioned Elber’s and Schjive's approaches could be improved or modified
by introducing the effect of plasticity-induced crack closure. As a consequence of
introduction of the effect of plasticity-induced crack closure, it is necessary to correct the
effective stress intensity factor.

To include the effects of the stress ratio R the conventional Forman's crack growth
model16 is used. In region Il rapid and unstable crack growth occurs, so Forman at al.
Proposed equation for region I11 as well as for region 1117:

da_ C(AK)
dN (1— R) K: —AK
where KC is the fracture toughness. Forman's equation has been developed to model of

unstable crack growth domain (I11). To include PICC effects AKeff need to use in
equation (5).

()

4. CRACK PROPAGATION MODEL BASED ON THE STRAIN ENERGY DENSITY METHOD

While predicting life of a structural element with initial damage it's necessary to
establish the functional dependency between the crack propagation gradient da/dN and
the stress intensity factor K.

The severest damage accumulation occurs in the process zone™<, therefore it's
necessary to define and calculate the energy which causes damage in the process zone.

18,20
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For the zone around the tip of the crack (process zone) it's possible to define the energy
generated through plastic strain o, in a cycle using length unit as a function of stress
intensity factor range AK;:

[1— n’] AK 2
@p = Y (6)

1+ n’ E In/

where: n’ - cyclic strain hardening exponent, E — Young's modulus of elasticity, I, v -
constants which depend on the cyclic strain hardening exponent n’. For most metals the
value of n’ usually varies between 0,10 and 0.25, with an average value close to 0.15.
Since the dependency for energy generated due to plastic strain o, as a function of AK;is
established, it’s necessary to establish the dependency between the crack propagation
gradient da/dN and o, While establishing the dependency a fact that the crack
propagates if energy which generates due to plastic strain during the cycle reaches the
energy absorbed during the same cycle W, must be taken into account:

da o,

dN W,
In equation (7) energy absorbed during the cycle W¢ can be defined if stress — strain
relation, or the material behaviour equation, is known. Adequte relation for material

behaviour which includes both elastic and plastic behaviour is known as Ramberg —
Osgood equation®:

s, (saj%’
e, =2 4|22 ®)

()

°E k'
where: e, — strain amplitude, S, — stress amplitude and k’- cyclic strength coefficient. If
the material behavior equation is presented by equation (8), energy absorbed during the
cycle W, represents the area below the curve in S-e coordinate system, or:
4
W, = — o} & ©)

1+n
where: of - fatigue strength exponent, g - fatigue ductility coefficient. Finally, if
equations (6) and (8) get placed in equation (7), functional dependency between crack
propagation gradient and stress intensity factor gets established. Subsequently, that
dependency can be integrated from initial crack length a; to final crack length a. in order
to obtain the relation which could be used for the prediction of life of structural elements
which contain initial damage:

l—n/ 2
- v I(AK, —AKy,) (10)
4E|n/0'f5f 3

a,

N

where AKy, is range of threshold stress intensity factor. AKy, is a material constant but it
is sensitive to stress ratio R=Spn/Smax- A relation between AKy and R is given below
based on experimental results [19]

AKi = AKipo(1 - R)y (11)



Improved Computation Method in Residual Life Estimation of Structural Components 251

where AKyy is the range of threshold stress intensity factor for the stress ratio R=0, and y
is a material constant which varies from 0 to 1 [12,13]. For most of materials y comes out
to be 0.71 [19]. Equation (10) presents the law of crack propagation based on strain
energy density method. It's obvious that in this dependency cyclic characteristics of
material from low-cycle fatigue domain are being used instead of dynamic parameters
from more conventional laws for crack propagation by Paris, Forman and others. Main
advantage of this Strain Energy Density (SED) approach, as shown in eq. (10), is the use
of same cyclic material characteristics being used for initial and residual fatigue life
predictions [19-21].

5. THE STRESS INTENSITY FACTOR

It is well known that stress intensity factors play a major role in crack growth analysis.
Actually, with stress intensity factors, geometry of structural component and the type of
loading are introduced. The stress intensity factor can be determined using analytical
and/or numerical approaches.

In analytical approach, the stress intensity factor range could be determined as a function:

AK = f(P,a,w,....) (12)

where: P is load/force, a — crack length and w — width of specimen. For example, when
dealing with CT specimen, relation for stress intensity factor range can be written as:

a
2+— 2 3 - (13)
AK= AP L w 0.886+4.64(ij—13.32(3] +14.72(3 —5.6(3
Bw [1 ajm w w w w
W

12w
0.55w
45°
A

Figure 1. Geometry of Compact Tension specimen

The symbol B in equation (13) denotes the thickness of compact specimen and w is the
distance between the applied force P and the left edge of the specimen (Fig.1). The
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symbol a in equation (13) is the crack length measured from the line of the application of
external load.

On the other hand, when using numerical approach, for determining the stress intensity
factor Finite element method (FEM) is used.

A representation of the finite element analysis for CT specimen made of Al Alloy 2024
T351 (w = 0.075 m, B = 0.010 m) are shown in Figure 2. Figure 2 presents stress
distribution at CT specimen for crack length a = 0.02625 m. From the same figure it can
be seen that for crack length a = 0.02625 m (as a result of finite element analysis), the
calculated maximum stress (for Ppa = 3300 N and R =0.1) is 10.39 daN/mm?.

Figure 2. Stress distribution at the CT specimen (Pna = 3300 N and R = 0.1) using finite
element analysis.

Additionally, in this paper, the finite element analysis was used to investigate the
plasticity-induced crack closure effects in the calculation of stress intensity factor range.
So for stress distribution shown in Figure 2, the calculated stress intensity factor was
Kimax = 21.93 daN mm™2. Furthermore, the same calculation of stress intensity factors
were made for different external forces
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6. THE EFFECTIVE STRESS INTENSITY FACTOR AND CRACK CLOSURE
EFFECT

For the phenomenon of crack closure is known that it has a strong influence on fatigue
crack growth*2, Elber called this phenomenon plasticity-induced crack closure.
Namely, if the crack has reached its current length through fatigue (cyclic loading), there
would be a localized plasticity region formed at the crack tip and the wake of the crack.
This localized plasticity in itself will generate residual stresses and play a role in crack
closure.

Due to the fact that plasticity-induced crack closure phenomenon is included in crack
growth analysis, it is necessary to correct relation for the effective stress intensity factor
AKg (EQ.(3) and Eqg.(4)), i.e. to find adequate corrective factors. Since finite element
analysis proved to be powerful tool*” for determination of stress intensity factors,
corrective factors were determined/introduced that include plasticity-induced crack
closure effect.

When determining the stress intensity factor range, the ranging of the external force was
from 3000 N to 14500 N. Namely, five different values from this range were used. For
such defined range of load, as well as geometry of CT specimen (a = 0.030 m,
w=0.075m, B=0.010 m) and type of material, after finite element analysis, it is possible
to determine corrective factors for stress intensity factor range with including the effect
of plasticity-induced crack closure. New corrective factors calculated on this way, for
different approaches are listed in Table 2.

Table 1 Corrective factors

For equation Corrective factor
AK ;. =(0.5+0.4R)AK 0.926
AK,; =(0.55+0.33R+0.12R? JAK 0.928

7. NUMERICAL RESULTS

With introduced plasticity-induced crack closure effect, the validity of presented
computation model for crack growth prediction could only be assessed through a
comparison with experimental data which is the focus of this section. The subject of this
work is improvement or modification of Elber’s and Schjive’s approaches and in
examples that follow it is presented how important defined and introduced modification
influences on the predicted fatigue crack life of structural components.
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7.1. Example la: Crack growth rate prediction of CT specimen subjected with
constant amplitude loading

This example considered crack growth rate and effective stress intensity factor
calculation. The material used in this example is 2024 T351 Al Alloy, whose mechanical
properties are: E = 74000 MPa; C = 1.51 10™, m = 4. The configuration of considered
CT specimen is shown in Figure 1. Needed geometry parameters are: w = 0.075 m;
B=0.010 m; and a=0.016 m. The external cyclic loading is with constant amplitude
(Load/force Ppna=3300 N and stress ratio R = 0.1). Before starting the crack growth rate
estimation it is necessary to determine the stress intensity factor and effective intensity
factor for different values of crack length. In this example, for determination of the stress
intensity factor range and effective stress intensity factor range were used equations (6),
(3) and (4). The effective stress intensity factor as a function of crack length a (for
different models: Elber, Schijve) are illustrated in Figure 3.

2024 T351 (P, = 3300 [N], R =0.1)
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Figure 3. A crack length a versus the effective stress intensity factor range AK, and
stress intensity factor range AK.
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Figure 4. Fatigue crack growth rate as a function of stress intensity factor
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Based on known characteristics of material, geometry and loading, calculated values of a
crack growth rate using different models (Elber, Modified Elber, Schijve and Modified
Schijve) are shown in Figure 4. At the same figures all predicted curves for crack growth
rate are compared with experimental data™.

As observed from Figure 4, the estimated fatigue crack growth rates are in a good
agreement with the experimental observations. Additionally, Figure 4 show that Paris’s
model is very conservative, while Elber’s and Schjive’s models are less conservative
when compared to experimental data. Defined improvements of Elber’s and Schjive’s
models presented in this paper, including crack closure effect, provide better predicted
values for fatigue crack growth rates. In addition, the best agreement between predicted
fatigue crack growth rate and experimental data is obtained when using Modified Elber
model.

7.2. Example 1b: Crack growth life estimation of CT specimen subjected with
constant amplitude loading

In this example fatigue life prediction up to failure was considered. Structural element,
material and the type of loading used here are the same as in example la. Using the
fatigue parameters, according to the geometry of structural component and different
fatigue growth models, enabled determination of the fatigue life to failure.

2024 T351 (P,,, = 3300 [N], R = 0.1)
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Figure 5. Crack growth analysis of CT specimen using different models.

Actually, by using equations (1) or (2) (with (6), (3) or (4)) which were first integrated,
the relations between crack length a and number of cycles to failure N were formulated.
Predicted results using different models (Elber, Schjive, Modified Elber and Modified
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Schjive) are shown in Figure 5 for external force Pn= 3300 N. As it can be seen from
Figure 5 improvements introduced for Elber’s as well as Schjive’s approaches have
significant impact on predicted number of cycles to failure.

7.3. Example 2: Crack growth estimation of CT specimen subjected load spectra

Since that the structural components are usually subjected to load spectra, in this example
fatigue crack growth prediction with including crack closure effect for CT specimen
subjected load spectrum was carried out. From crack growth analysis in example 1 it can
be concluded that Elber’s and Modified Elber’s approaches are more adequate for
prediction of fatigue crack growth. (related to experimental data). That is the reason why
they will be analyzed for crack growth prediction in this example, too.

Material used in this example is the same as previous. As a result of fatigue crack growth
estimation, number of blocks to failure were obtained using equations (2), (6) and (3).
For determination number of blocks to failure, equation (2) was first integrated. After
integration, function between number of blocks Ny, and crack length a was determined.

PNy A
10000 9900
20247351 (P, = 3300 [N],R =0.1)
0,07
6600
5000
3300
0 > 0
n 0 50 1000 1500 2000 2500
500 20 | 5 i Npi
Block —=— Elber —=— Modiified Elber

Figure 6. Load spectrum (R =0.1) Fig. 7. Crack growth analysis of CT specimen
subject to load spectra

Figure 7 shows a plote of the estimated number of blocks to failure versus a crack length
a, for Elber and Modified Elber approaches for load spectrum (Fig.6). Conclusion from
Figure 7 for fatigue crack growth prediction in the case of load spectrum (Fig.6), is that
the effect of plasticity-induced crack closure has significant effect on number of blocks
to failure. For load spectrum presented in Figure 6 calculated number of blocks to failure
are listed in Table 2.
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Table 2 Comparison of number of blocks to failure for CT specimen (Pmax = 3300 N,
R=0.1).
Ny A [%]
Elber 1704
Modified Elber 2372 28.16

Comparison of number of blocks to failure, presented in Table 2, shows that introduced
modification that include effect of plasticity-induced crack closure, has been increased
the value of predicted number of blocks to failure around 30% for considered load
spectrum (Fig. 6).

80

a) C

eometric properties b.) FEM with initial crack

Fig. 8 Structural component with hole and initial crack under load spectrum

7.4. Example 3: Crack growth analysis of plate with a hole under load spectrum

Here is considered specimen (aluminum 2024 T4) with central hole under load spectrum,
Fig 8a (w=60 mm, r=8.75 mm, t=6mm). Forman crack growth model (5) is used. Finite
element model, with initial crack a, is used to determine stress intensity factors K;. The
complete fatigue crack growth prediction, using in-house software, are shown in Table 3
and Fig. 9.

In Table 3: Cy, ns are Forman’s constants, a is critical crack growth length, N1 to N13 are
number of cycles at load levels within load spectrum.
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Table 3: Crack growth prediction of specimen with hole under load spectrum
Ulazni podaci Korak Finoca stampe  Izaberite zakon Sirenja: Brisi |
nf [345 f [0,0000000000434 10 [1800 [Forman ~| | lzracunaj
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» [0 0,002 0 100872305 56,3324 0
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sigmaMaxd [211245 Mind  [17 265 na [43 20000 0011952756 00000000 1416243002 563324 4
SigmaMaxs [3357  mins [ 10059 w15 0600 0011917320 00000000 1417625463 563324 4
_ 32400 0012604021 00000000 1454540134 56332 4
SigmaMax  [298559  ming  [-10.059 us |3 4200 0013677311 00000000 1456177778 56332 4
SigmaMax? [3igges  MinT  [41 g4 w [ /00 0013750998 00000000 1457037241 563324 5
1T s o FA00 0013025087 00000000 1453437344 563324 5

[2%8; Ming |10, (H 39600 0015534476 00000000 1490456379 56332 5
SigmaMaxd [7547  ming  |10.059 we [15 41400 0015619114 00000000 1500415049 56332 5

0 211265 w0 17266 wo [5 43200 0015704296 00000000 1502399450 563324 5

) ) 45000 0015079050 00000013 2969099725 111085 5

Si 1 [157.783  Min11 17266 nit 189 45300 0017639345 00000000 1547798344 56332 &

sigmaMax12 [122321  mint2 [11.286 me [200 48500 0017738705 00000000 1550155750 56332 &

St ) M3 [z0a0 50400 0017838828 00000000 1552543744 563324 7

d 61651 min13 [25.389 52200 DO18531384 00000021 43598B5386 156523 7
*

Fig. 9 Crack growth prediction of cracked plate with central hole
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8. CONCLUSIONS

In this paper improvement of Elber’s and Schjive’s models for prediction of fatigue crack
growth life are recommended. Improvement i.e. modification of Elber’s as well as
Schjive’s model was result of plasticity-induced crack closure effect in fatigue crack
growth analysis.

Based on the results of the finite element simulations and the direct comparisons with
experimental results, the following conclusions are presented:

Calculated fatigue crack growth rates which were obtained using Paris law are very
conservative related to experimental data. So strict conservative result are obtain due to
the fact that in Paris equation stress ratio was not included. Much less conservative data
were shown in predictions obtained using Elber’s and Schjive’s approaches;

To include the stress ratio effect Forman's crack growth model is used here, together
with Elber’s crack closure model;

Finite element method is powerful and useful tool for analysis of plasticity-induced crack
closure effect;

Comparison of closure levels between the FE model and experimental results revealed
excellent agreement for all tests

By introducing the plasticity-induced crack closure effect in crack growth analysis, the
predicted fatigue life can be significantly modified as well as number of blocks to failure,
and with it, the high quality of crack growth estimation of cracked structural component
could be improved.

Presented computation results are shown that crack growth method based on strain
energy density approach is in a good agreement with conventional Forman’s approach.
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POBOLJSAN PRORACUNSKI METOD PROCENE PREOSTALOG VEKA
ELEMENATA KONSTRUKCIJA

Stevan M. Maksimovi¢”, Katarina S. Maksimovié¢ ™

U radu se razmatraju numeri¢ke metode i procedure za analizu Sirenja prskotina
kod strukturalnih elemenata sa inicijalnim oSte¢enjima u vidu prskotina.
Proracunski metod bazira na proceni preostalog veka koriste¢i metod gustine
energije deformacije (GED). Bazirano na teoriji gustine energije deformacije
razvijen je model za za analizu Sirenja prskotine i procene preostalog veka
strukturalnih elemenata za prskotine tipa moda I. Model je zasnovan na zakonu
Sirenja prskotine koji bazira na koris¢enju malociklusnih zamornih karakteristika
materijala. Paznja je usmerena na analize Sirenja prskotina pri opStem spektru
optere¢enja. Znacajan uticaj plastifikacije oko vrha prskotine ima na Sirenje
prskotine. Da bi se dobio efikasan i pouzdam prorac¢unski model u radu je
razmatran uticaj plasifikacije oko vrha prskotine na zatvaranje prskotine.
KoriS¢enje gustine energije deformacije predstavlja sa svoje strane efikasan
metod za analizu Sirenja prskotine kod strukturalnih elemenata sa inicijalnim
oStecenjima u vidu prskotine. Metod gustine energije deformacije je pogodan sa
aspekta inzinjerske primene jer ne zahteva dodatne dinamicke karakteristike
materijala (za ¢ije bi odredivanje bila potrebna dodatna ispitivanja) ve¢ Koristi
samo malociklusne zamorne karakteristike materijala kakve se koriste i za
problem procene veka do pojave inicijalnog oSte¢enja. Precizno odredivanje
zatvaranja prskotine zbog plastifikacije oko njenog vrha predstavljao je
kompleksan problem istrazivanja tokom poslednjih godina. Ovaj fenomen je
istrazivan preko numeri¢kih i eksperimentalnih metoda. Metod konacnih
elemenata (FEM) se pokazao kao pouzdan alat *® za analizu $irenja prskotine gde
su bili ukljuceni i efekti zatvaranja vrha prskotine. Proracunski rezultati su
uporedeni sa raspolozivim eksperimentalnim rezultatima.
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Abstract. Several methods for a calculation of derivatives of eigenvectors with
respect to design parameters are described here. These are the finite-difference
method, the modal method, a modified modal method, Nelson's method, an
improved first-order approximation of eigenvalues and eigenvectors and an
iterative method. By combining the other structural reanalysis techniques and one
of these sensitivity methods, it is possible to enhance the efficiency and the accuracy
of structural optimization techniques for determining the optimum condition of
mechanical structure specified by an analyst. The sensitivity approach is based on
the prior selection of updating parameters (design variables) in the initial FE
model.

Key words: eigenvalue and eigenvector sensitivity

1. INTRODUCTION

A good finite element (FE) or analytical model of a mechanical structure is important for
structural integrity analysis. In practice, a high degree of confidence can be placed on
such a FE/analytical model when the dynamic response of that model closely resembles
experimental data. However, updating the FE model or inetifying the analytical model
directly is usually not the main objective of structural vibration analysis because there are
many situations when the dynamic response of the mechanical structure does not satisfy
the requirement set by the structural analyst (designer). In such situations, the dynamic
response of the mechanical structure has to be altered either (i) by controlling the forcing
inputs to the structure, or (ii) by changing the dynamic characteristics of the structure.
The forcing inputs often results from interaction with the structure's environment and so
cannot easily be controlled at will. When this is the case, it is important to be able to alter
the structural response by redesigning the dynamic characteristics of the structure. The
use of structural reanalysis techniques to obtain the optimum condition of an FE model of
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a mechanical structure has grown considerably in recent years. The optimal design of
structures with frequency constraints is extremely useful in manipulating the dynamic
characteristics in a variety of ways. For example, in most low-frequency vibration
problems, the response of the structure to dynamic excitation is primarily a function of its
fundamental frequency and mode shape. In such cases, the ability to manipulate the
selected frequency can significantly improve the performanse of the structure. Similarly,
the aeroelastic characteristics of an aircraft wing the governed primarily by its torsional
and bending properties, which can best be studied by the lower torsional and bending
modes. A number of techniques exist that can be applied to the dynamic reanalysis of
mechanical structures. One of the most popular of these is sensitivity analysis which has
been developed and applied by several workers to the general eigenvalue problem [1-7]
and, more specifically, to applications of structural dynamic modification analysis in
references [8-9]. Some of the areas where sensitivity analysis has been applied include (i)
system identification, (ii) development of insensitive control systems, (iii) use in
gradient-based mathematical programming methods, (iv) approximation of system
response to a change in a system parameter, and (v) assessment of design changes on
system performance [19]. In this area, both first- and higher-order eigenvalue and
eigenvector sensitivities have been investigated with a view to predicting the response of
a modified structure from knowledge of its spatial and modal properties in the original,
or unmodified, state. The sensitivity analysis of a mechanical structure is based on a
Taylor expansion of eigenvalues and eigenvectors of the unmodified structure.
Traditionally, a truncated Taylor or matrix power series evaluated at a hominal design
point is used to approximate the eigen parameters of modified structures [21,22]. Earlier
studies [20] indicated that the computation of the higher-order terms of this series is
difficult and time consuming, the effectiveness of this method is limited to small
modifications. Even the use of higher-order terms in the local approximation series
cannot guarantee convergence for moderate to large perturbations in the structural
parameters. The implication of this observation in the context of structural optimization
is that severe move limits have to be imposed in line searches to ensure convergence to a
feasible design. Very few studies in the literature have addressed the structural dynamic
reanalysis problem for moderate to large modifications in the structural parameters. The
approach currently in use can be broadly classified into direct and iterative approaches.
The objective of most direct approaches is to increase the range of validity of local
approximation techniques. Inamura [25] proposed an approximation procedure in which
the eigenpair perturbation equations are interpreted as differential equations in terms of
the perturbation parameters. A procedure using the eigensensitivity equations was
developed by Pritchard and Adelman [26] based on a similar line of approach. The
sensitivity method [24] is a prime representative of the updating approach which allows
selection of updating parameters but does not require full experimental mode shapes and
as such this method seems to be suitable for updating of large models. Also, it is worth
noting that model updating methods based on control methods, such as eigenstructure
assignment method proposed by Minas and Inman [22,23] are quite promising sinse they
can be defined in such a way that they do not require full experimental mode shape
matrix. The general perturbation procedure followed in major papers is diagrammatically
shown in Fig. 1.
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Fig. 1 Flowchart of General Perturbation

2. MODAL SENSITIVITY ANALYSIS. DESIGN SENSITIVITIES.
THEORETICAL BACKGROUND. SURVEY

It is becoming widely accepted that sensitivity analysis can be a valuable tool in
structural reanalysis where (enough of) the modal properties are known, either through
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theoretical or experimental analysis. Modal sensitivities are the derivatives of the modal
properties of a dynamic system with respect to chosen structural variables. In the modal
analysis literature there have been two primary applications. In the first case sensitivity
data are used solely as a qualitative indicator of the location and approximate scale of
design changes to achieve a desired change in structural properties. The consequences of
candidate design changes would then be evaluated using exact methods. The second
strategy uses the design sensitivities directly to predict the effect of proposed structural
changes. The use of sensitivities in this fashion relies on the Matrix Taylor Series
expansion, with the usual implications of convergence and truncation errors. Use only of
first order design sensitivities assumes implicitly that the second (and higher) order
derivatives are negligible. The use of these second order sensitivities as suitable criteria
for the acceptability of first order sensitivities for predictive analysis can be interested in
some detail. Sensitivity analysis may be applied to candidate design modifications
distributed across a number of degrees of freedom of the structure but is limited in scale.
Modal design sensitivities are the derivatives of the eigensystem of a dynamic system
with respect to those variables which are available for modification by the designer. A
typical modification would be the change in diameter of a circular section. This would
affect both the mass of the section, proportional to the square of the diameter, and its
stiffness, which depends on the second moment of area of the section. A change in length
would have a mass effect directly proportional to length, but a stiffness change
depending on the cube of length. Changing material would similarly affect mass,
stiffness and damping. Shape sensitivity analysis of physical systems under dynamic
loads may be important from different points of view (i) to understand and model the
system's behavior better with respect to shape, (ii) to optimize the physical shapes of the
desired systems responses in a prescribed time interval, or (iii) to identify shapes by
utilizing the system's measured response in time.

2.1. Problem Statement. Derivation

The matrix form of the equation of undamped motion of an FE model is:
[M]- {2} +[K]-{x®)} = {0} ()

The free-vibration natural frequencies and mode shapes of a linear structural system can
be computed by solving the above eigenvalue problem

[KHQi} = AIMNQ} @

where [K],[M] are the structural stiffness and mass matrix, respectively. The system
matrices are considered to be a general function of the design variables denoted by
{V3={vi, VoV, v}, and 4 and {Q;} are the eigenvalue and the eigenvector of
mode i, respectively. Consider the case wherein the design variables are perturbed by
{AV}. Let [AK] and [AM] be the corresponding perturbation in the stiffness and mass
matrices. The perturbed eigenvalue problem can be written as

([KI+[AKD(Qi f+{AQi }) = (4 + A% )M T+ [AM])({Qi |+ 1AQ; ) ®3)
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where A4; and {AQ}i are the eigenvalue and eigenvector perturbations, respectively.
Equation (2) can be written in a compact form as

[K'HQi}=A4[M'HQ} 4)

Often it is found that, even for small to moderate perturbations in the stiffness and mass
matrices, significant alterations in the modal characteristics of the structure may occur.
Hence, an exact reanalysis becomes necessary to compute the perturbed eigenparameters
with sufficient accuracy. The objective of approximate reanalysis procedures is the
computation of the perturbed eigenparameters using the results of exact analysis for the
baseline system without recourse to solving Eqg. (3) in its exact form. Typically, the
perturbations in the eigenparameters are calculated using first-order sensitivity
information as

A% = i(%} Av; and {AQ}= i(%] AV (5)

=1 J j=1 i

where 04 /ov;  and o] i}/avj are the sensitivities of the eigenvalues and

eigenvectors with respect to the structural parameters, respectively. The eigenvalue and
eigenvector derivatives can be calculated by performing partial differentiation of the
equation (2) to an updating structural parameter v;:

([K]—&[M])aévi}{ﬂqa[“"] %4 1M1 a[K]J{ 3 ©)

j vy 0v; v

This is an equation for the eigenvector sensitivity. It can seen from Eq. (5) that the
computation of the eigenvalue sensitivities involves a simple and straightforward
calculation. Left-multiplying with the transpose of the eigenvector gives

_ﬁ'{Qi}T '[M]'{Qi}+{Qi}T '[%_i‘ '%}{QH

i i

secasse (0, M -0} =1 ane {07 -[K]-4 -1} -],
%o [a““ “Mlj{ | o

" Y

This is the formula for the eigenvalue sensitivity of the i mode to the j" design
parameter. From this formula, it can be seen that the sensitivity of an eigenvalue to an
design parameter can be calculated from the eigenvalue, the corresponding eigenvector,
and the sensitivities of the stiffness and mass matrices to the design parameter (variable).
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Equations (2-7) have been derived under the assumption that the baseline eigenvectors
have been mass normalized.
2.2. Description of the Sensitivity Methods

There mainly exist three categories in the literature: the modal method, the direct method,
and the iterative method. Several methods for calculating eigenvector derivatives,

a{Qi}/ ovj, are described. Every method, exept the finite-difference method, requires

the mass matrix and stiffness matrix derivatives, o[M]/ov; and  O[K]/dv,
respectively.

2.2.1 Finite-Difference Method

The most straightforward approach for calculating the derivatives is the finite-difference
method. In the finite-difference method, Eq. (2) is solved for {Q;}={Qi}oq . the j"

design variable is perturbed by Avj, and a new eigenvector {Qi'}:{Qi}neW is obtained
by solving Eqg. (2) again, where Vi new =Vjold +Avj . The derivative is approximated
by the expression

a{Q,} _ {QI }neW _ {Q' }0|d ®)
an AVJ

To reduce numerical errors associated with Eq. (8), attention should be paid to the step
size Avj . An algotithm for determining the optimum step size has been developed to

further reduce numerical errors and is described in Ref. [28].

2.2.2 Modal Method

The modal method expresses the derivative of an eigenvector as a series expansion of the
system eigenvectors. Because this method is based on the series expansion of the
eigenvalues and eigenvectors of the modified (perturbed) system, the efficiency of this
method is limited. The approximate derivative is expressed as [34]:

N
—aés_i} = > ApdQu ), ©)
i k=

where the coefficients Ajj are calculated using

0 (a[KJ a[M]J o
. aJ5 A e
a A — A

. k=i, (10)
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Considering the orthogonality property of the eigenvector, {Q;}, { i}T [M ]{Qi}:l, and

partial-differentiating this equation with respect to the updating parameter, vj, for k =1,
it can be obtained that:

2 )72 o ljo)-c a

The expression for 6{ i}/avj from Eq. (9) is substituted into Eq. (11), and using the

orthogonality condition {Q; }T [MJ{Qi}=1, the coefficients Ajj are obtained:

1w aM] _
Ajk = Z{Q'} o, Q) k=i. (12)

2.2.3 Modified Modal Method

The modified modal method uses a pseudostatic solution of Eq (6) as an initial
approximation to the mode shape derivative. This is similar in principle to the mode-
acceleration method used in transient structural analysis [29]. Equation (6) is solved by

neglecting the quantity Zi[M](a{Qi}/avj) and obtaining the pseudostatic solution for
(01} 7av; ). , which is

[MJ —[K]—l[ M, Py - G[K]J{ SRCE)

avi i aVJ 8"1

This pseudostatic solution is added to Eq. (9) to obtain
ol _(alQi}] g
= + o , 14
v | oy )t Al (14)
s k=
where K,-jk are coefficients for the modified modal method. To obtain the coefficients

Kijk, Eq. (14) is substituted into Eq. (6), and the result is premultiplied by {Qk }T . When
simplified, this result becomes

ARl [8[K] 6[M]J{ i
k

Ajk = iad il , k=i, (15)
, Ac-n =)
A =5l Do), k=i, as)

]
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The relative convergence of the modified modal method vs the modal method for a given
number of eigenvectors can be anticipated by dividing Eq. (15) by Eqg. (10):

Ak A

Assuming that to calculate 8{ i}/@vj accurately i modes or more are needed; then for

(17)

k>i, Kijk is smaller than Ay, and Eq. (14) will converge faster than Eq. (9).

2.2.4 Nelson's Method

Nelson's method (the direct method) obtains an exact solution to Eq. (6). This method
expresses the eigenvector derivative in terms of a particular solution {fij} and a

complementary solution { i}~cij where ¢;; is an undetermined coefficient. In this case,
any solution for equation (6) can be written in the form of [27]:

{'} =g+ (18)

The particular solution is found by identifying the component of the eigenvector {Q;}
with the largest absolute value and constraining the derivative of that component to zero.
Combining equations (18) and (11), it is shown that

2 Ml +abo)+ o T ft=0. a9

Vi

The coefficient c;; can be obtained by the following formula:

o~ Il 5l L)) @)

J

2.2.5 Improved First-Order Approximation of Eigenvalues and Eigenvectors

A method based on reduced basis approximation concepts is presented for improved
first-order approximation of eigenvalues and eigenvectors of modified structural dynamic
systems [33]. The approximation procedure involves the use of the baseline eigenvector
and the first-order approximation term as basic vector for Ritz analysis of the perturbed
eigenvalue problem. An assumption is made that the eigenvector of the perturbed system
can be approximated in the subspace spanned by { i} and {AQi}, which is computed

using Egs. (5-7), i.e., an approximation for the perturbed eigenvector can be written as

{éi}: 4{Qi}+&iag ) (21)
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where {; and {, are undetermined scalar quantities in the approximate representation of
the perturbed eigenvector. The assumption implicit in this proposition is that, even for
moderate to large perturbations in the structural parameters, the first-order approximation

yields a {AQi} vector, which usually gives a reasonable indication of the likely change

of a baseline eigenvector, although the magnitude or even direction of change may be
erroneous. Eq. (21) can be expressed in matrix form as

G j=miz) (22)

where [T]=[Q, AQ]e R™? and {Z}" = {5}, & }e R¥2.
Substituting equation (22) in to equation (4) and premultiplying by [T]", the resulting set
of equations can be expressed as

[Ky {Z}=2[M; KZ} (23)
where

[Kr]=[TT' [K'][T]e R¥? (24)
and

[M1=[TT' [M'][T]e R¥2. (25)

After matematical transformation, the mass normalized perturbed eigenvector can be
written as [33]:

3 1 ke — Ay
a1 Kl e e K B

The following inequality relationship can be estabilished as criteria for selection of the
best approximation

AN < jra0 o gmax 7)

where A% is the zero order Rayleigh quotient approximation which is defined below
as

R0 _ @ [kl . (28)

Q" Ml
Hence, criteria for selection of the best approximation are (i) maximum value of
|61/&5|. (i) minimum distance from the zero-order Rayleigh quotient A0 i)
minimum distance from /4;, (iv) minimum magnitude, (v) minimum distance from the
root selected for the previous mode. This approximation procedure could also be
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interpreted as an improved Rayleigh quotient approximation procedure with one free
parameter, i.e., |¢5 /3|,

2.2.6 Iterative Method for Calculating Eigenvectors Derivatives

The calculation of the eigenvector derivatives involves extensive computational effort.
The direct method is one of the most efficient methods that produces exact solutions and
does not need eigenvectors more than those whose derivatives are to be computed. But
because its amount of computational effort is proportional to the number of eigenvector
derivatives required, the application of the method becomes expensive when many
eigenvector derivatives are demanded. On the other hand, the truncated modal method
has an insuperable efficiency but suffers a serious accuracy problem. To improve the
accuracy of the modal method, Wang [35] proposed a modified modal method, which
was extended by Liu et al. [36] and Zhang and Zerva [37] to an iterative algorithm that
can be used as an exact method as well as an approximate method and, just like the direct
method, does not require additional eigenvalues and eigenvectors. The method assumes
that the inverse stiffness matrix exists. Recently, Lin and Lim [38] and Zeng [39]
presented an approach to deal with singular stiffness matrices. The convergence rate of
the iterative method depends mainly on the ratio of the specified eigenvalue to the lowest
unavailable one, and when the ratio approaches 1, the convergence rate of the
corresponding eigenvector derivative will reduce quickly and the method becomes more
expensive than the direct method. The iterative method used here was derived originally
in Ref. [37]. The basic iterative equation after p(p=>1) iterations is

T(atm_ﬁ[wj{q}

! QS | A
Vat, =i§1[1_[%) } avj@, . 2 ) o
+i—Z:;1(%J {Qk }T [M]{Vk“ }0 {Qi}'
k<g, p=12.. (29)

where
M} = component of 6{Qk}/8vj in the range of unavailable eigenvectors

Jqu+1}""*{ n}:

Vi |, = pth iterative solution for {V,, |,

{\/ku }0 = stands for the initial value.

The term (ﬂk 1 2 )p represents the error because of the ith unknown eigenvector. When
p tends to infinity, (4, / ;)" vanishes because 4, /4 <1, and {\/ku}p converges to the

exact solution with any initial value. Equation (29) also suggests that {V,<u }o can be set
equal to zero. Note that in each iteration, the roundoff error in the subspace spanned by
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the lower available eigenvectors {Ql},...,{Qq} will be automatically wiped out, which

results in a very stable iterative process.

3. CONCLUDING REMARKS

This paper reviewed several methods for eigensensitivity analysis with respect to design
variables. These were the finite-difference method, the modal method, a modified modal
method, Nelson's method, an improved first-order approximation of eigenvalues and
eigenvectors and an iterative method. Nelson's method was the least computationally
intensive, and since it is an exact method, it is the method recommended. When the
original mode shapes were used as initial approximations to the subspace eigensolution
of the perturbed problem, the finite-difference method was competitive with Nelson's
method. The modified modal method always converged faster than the modal method
when at least as many modes were used in the approximation as the number of the mode
shape being differentiated. The modified modal method can compete with Nelson's
method for the first mode shape derivative when the number of modes needed in the
summation was known before the eigensolution was performed. Detailed comparasion an
improved first-order approximation [33] with other approximation techniques indicate
that significant improvements are achieved with a relatively small extra computational
effort. An iterative method is simple, systematic, efficient and numerically stable.
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PROCESS PARAMETERS EFFECT ON MATERIAL REMOVAL
MECHANISM AND CUT QUALITY OF ABRASIVE WATER JET
MACHINING
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Abstract. The process of the abrasive water jet cutting of materials, supported by the
theories of fluid mechanics, abrasive wear and damage mechanics, is a high-tech
technologies that provides unique capabilities compared to conventional machining
processes. This paper, along the theoretical derivations, provides original
contributions in the form of mathematical models of the quantity of the cut surface
damage, expressed by the values of cut surface roughness. The particular part of this
paper deal with the results of the original experimental research.

The research aim was connected with the demands of industry, i.e. the end user.
Having in mind that the conventional machining processes are not only lagging behind
in terms of quality of cut, or even some requests are not able to meet, but with the
advent of composite materials were not able to machine them, because they occurred
unacceptable damage (mechanical damage or delamination, fiber pull-out, burning,
frayed edges).

Key words: Abrasive water jet cutting, Damage mechanics, aluminium specimens test,
mathematical modeling

1. INTRODUCTION

Abrasive water jet (AWJ) cutting is a non-conventional machining process that uses
high velocity water with abrasives for cutting a variety of materials. Using the damages
mechanics, as the basis of the machining process, the material damage is very small and
can be controlled. It is a non-contact process which produces narrow kerf on the material,
without heat affected zone. Abrasive water jet cutting has become a highly developed
industry technology. It is most suitable process for very thick, highly reflective or highly
thermal-conductive materials, as well as hard materials. Abrasive water jets can cut a
wide range of thickness. Typical thickness are 100 mm for stainless steel, 120 mm for
aluminium, 140 mm for stone, 100 mm for glass, but not limited. AWJ makes it possible
to cut random contours, very fine tabs and filigree structures. Abrasive water jet cutting
is capable of produce parts which do not require further processing with tolerances of +
0.1 mm. Toxic fumes, recast layers, slag and thermal stress are totally eliminated.
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Abrasive water jet cutting belongs among complicated dynamical and stochastic
processes with incomplete information about mechanism and side effects character. In
AW]J cutting, the final cut surface roughness and the dimensional accuracy depend on the
process parameters including the water pressure, the abrasive mesh number, the abrasive
mass flow rate, the feed rate, and the orifice and abrasive nozzle diameters [1], [2].

2. ABRASIVE WATER JET CUTTING

Abrasive water jet is the cutting tool. The cutting process is most similar to the
grinding. The difference is that the abrasive particles are moved through the material by
water rather than by a solid wheel. Abrasive water jet cutting process can be divided into
subsequent steps:

e Transformation of the potential energy of water under high pressure into kinetic
energy of a water jet.

e Transfer of a part of the kinetic energy of the high-speed water jet to abrasive
particles by accelerating them and focusing the resulting abrasive water jet.

e Use of the kinetic energy of the abrasive particles to remove small chips of the
work material.

In the process of abrasive water jet cutting the high pressure pump produces the
required pressure up to 400 MPa. A high pressure supply line directs the pressurized
water from the pump to the cutting head (Figure 1).

Fig. 1 Abrasive water jet cutting head

When the pressurized water comes out from the orifice, a water jet is created. The
result is a very thin, extremely high velocity (approx. 900 m/s) water jet. Then, solid
abrasive particles are added and mixed with the water jet. Resulting abrasive water jet is
focused to the material through abrasive nozzle.

Bernoulli's equation is the law of conservation of energy applied to an ideal fluid as
follows:
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PwVw

p+ +p,,gh = const @
where: p - water pressure

vy, - velocity of water

pw - density of water

g - acceleration due to gravity and

h - height of the observed points above the reference plane

By observing the leakage of high pressure water jets in the air and using
equation (1), one can determine the leakage velocity of water jet from a nozzle based on
water pressure.

. P
High pressure v
water

Py
; 4 pwvvzv WV\i’i
p+ 5 +p,0h, =p, + +p,gh, or
! ~pu =2yl Vi) p,0(h, 1)
1 p pat _Epw ij Vw +pwg 2 1
for py <<p;vy >V, ;h =h,
: 1,
- . C p_Epwij
Water jet v h,
wj 2
p“' y Y

Fig. 2. Bernoulli's equation applied to the leakage of water jets in the air

If we ignore the difference in altitude (several millimeters) and assuming that the
speed of the water on nozzle entrance is negligible compared to the speed of the jet at the
nozzle exit (several hundred times), and the atmospheric pressure (1 bar) is much smaller
than the water pressure at the entrance to the nozzle (4000 bar), we get the equation for
calculating the velocity of the water jet after exiting the water nozzle:

2
vy = [ @
Pw

A schematic diagram of a high-seed water jet in air is shown in Figure 3. The jet
consists of three regions, namely, the initial region, the main region, and the final region.
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Leakage velocity of water jet from a nozzle is crucial because its role is to accelerate
the abrasive particles. Due to the extra weight, abrasive particles, however, cannot

achieve velocity of water jet but only a part of that velocity.
The volume flow rate of water may be expressed as:

q w = Aorificeij

2p i
for v = [— and Ay :ng

Pw
where dq is water orifice diameter,

9, =24z [P
4 Pw

Total power of the water jet can be given as:

ij =pq,

2 3
P :%dg <P
Pw

®)

(4)

®)

(6)

As the high velocity water jet streams through orifice into the mixing chamber, low
pressure (vacuum) is created within the mixing chamber. Metered abrasive particles are
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introduced into the mixing chamber through a port (Figure 4). During mixing process,
the abrasive particles are gradually accelerated due to transfer of momentum from the
water phase to abrasive phase and when the jet finally leaves the abrasive nozzle, phases,
water and abrasive, are assumed to be at same velocity.

where:
q - abrasive particle flow rate

Vv, - initial velocity of abrasive paritcles

Fig. 4 Mixing process

The law of conservation of momentum says that the total momentum of any closed
system, i.e., the vector sum of the momentum vectors of all the things in the system, is a
constant. The momentum of air before and after mixing will be neglected due to very low
density. Further, it is assumed that after mixing both water and abrasive phases attain the
same velocity of abrasive water jet. Moreover, when the abrasive particles are fed into
the water jet through the port of the mixing chamber, their velocity is also very low and
their momentum can be neglected.

Qu Vi AV, =(qw +q)vawj (7
q,
Vpy =2 ©®)
awj =
1+i
Qw

As during mixing process momentum loss occurs as the abrasives collide with the
water jet and at the inner wall of the abrasive nozzle multiple times before being
entrained, velocity of abrasive water jet is given as,

ij
Vawj = T] (9)

1+i

Qw

where n- momentum loss factor, whose values lies arond 0.65-0.85 [4].
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The abrasive flow rate determines the number of impacting abrasive particles as well
as their kinetic energies. The energy of the abrasives can then be expressed as:

V2

1 1 w
anj =Eqvawj =Eqn2—12 (10)
1+i
qwj

Combination of equations (2) and (10) gives abrasive particles kinetic energy (power)
needed to overcome the fracture energy of the material in order to damage (cut)
workpiece material.

L2 2P

an' =-0an (11)
b2 Py (qwj +q)2

3. MATERIAL REMOVAL MECHANISM OF ABRASIVE WATER JET MACHINING

High-velocity-water jets used in water jet processes can be categorized according to the
fluid medium as either pure water jets or abrasive water jets.

The most common water jets used in water jetting processes are continuous pure water
jets in air issued from a nozzle having a circular cross section. This type of water jet is
widely used in water jetting industries for cleaning, surface preparation, and cutting of
soft materials.

The material removal capability of abrasive water jets, in which abrasive particles are
added to the water stream, is much larger than the material removal capability of the pure
water jets. In an abrasive water jet, the stream of the water jet accelerates abrasive
particles, which erode the worpiece material.

3.1. Micro-mechanism of material removal in abrasive water jet cutting

Impact of solid particles is the main mechanism in the process of removing material
by abrasive water jet [5]. Meng and Ludema [6] have defined a sub-mechanism for
separating solid particles from the surface of the workpiece material, such as cutting and
brittle fracture. These mechanisms do not operate separately but simultaneously.
Presence of individual mechanisms of separation depends on many factors, such as stroke
angle, the kinetic energy of abrasive grains, abrasive particle shape, material properties of
the workpiece and ambient conditions.

Considering the mechanical properties and behavior on impact, the material of the
workpiece can be classified into two groups. Some belong to the group of ductile
materials, which are characterized by deformation properties, while others are brittle.

For ductile (deformable) material, the process of separating the material is divided
into two mechanisms: micro-cutting and separating by material plastic deformation
(Figure 5) [7].
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Fig. 5. The process of separating the ductile material

When observing the cutting process of brittle materials, a series of researches led to
the identification of the mechanism of separation of materials, consisting of the
phenomenon of brittle fracture (Figure 6) and plastic deformation. At low angles of
attack are visible scratches, but it occurs to some extent and intercrystalline fracture [8],
[9]. In contrast, intercrystalline fracture is the predominant method of removing material
at the corner of the administrative impact. Traces of plastic deformation are present, but
to a much lesser extent than at low angles of attack.

Abrasive particle 5

Zone of plastic
ldcfnrmminn

Fig. 6. Impact of abrasive particle in the surface of brittle materials

3.2. Macro-mechanism of material removal in abrasive water jet cutting

Hashish [10] proposed a general model, in which a stable cutting process takes place
to a certain depth of penetration of abrasive water jet, followed by the formation of steps
on the surface of the cut. Below the critical depth, the processing is unstable resulting in
the creation of striated or wavy surface of the cut.

With increasing depth and creating steps, the removal mechanism is changing from
cutting to the separating material by plastic deformation. The above-described
mechanism, cyclic repeating, resulting in different types of material damage, which is the
subject of study of damage mechanic.

The biggest problem with abrasive water jet machining, was reflected in disparity of
the machined surface quality. This disparity is manifested by different parameters of cut
quality as follow: surface roughness, machined surfaces deviation from the vertical
plane-taper of the cut and the appearance of curved lines on machined surface-striate
formation [11], as shown in Figure 7. All these phenomena significantly affect the
restrictions of using abrasive water jet machining.
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Fig. 7. Cut surface generated in abrasive water jet cutting of aluminium alloy

The cut surfaces produced by abrasive water jet cutting typically exhibit a smooth
upper zone followed by a lower striated zone. These phenomena can be related to the jet
loss of energy during the cutting process, e.g. deformation of the sharp edges of the
abrasive particles as illustrated in Figure 8 [12].

- Cuthng wrear

sh [[EENEA

Stmated surtace | 1

De forrration wear

Fig. 8. Formation of different regions in abrasive water jet cutting

4. EXPERIMENTAL WORK

4.1. Cut quality

In the abrasive water jet cutting "cut quality" is a term that describes the combination
of characteristics such as geometry of cut (kerf width - w, kerf taper - o) and cut surface
quality (cut surface roughness - Ra). Standards for describing the cut quality, resulting in
abrasive water jet cutting, are not yet established [13]. Parameters that define the cut
quality (geometric characteristics of cut quality and cut surface quality) in abrasive water
jet cutting are shown in Figure 9.
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w

Fig. 9. Characteristics of cut quality in AWJ

The surface roughness is used to describe the cutting surface and gives an indication
of whether the subsequent machining required. It is defined using the value of roughness
average Ra. Cut surface can never be ideally smooth. It consists of small, finely spaced
surface irregularities (micro irregularities - roughness) formed in the course of treatment.
Additionally, there are surface irregularities of grater spacing (macro irregularities -
waviness), which may be periodically repeatable.

4.2. Experimental set-up

A series of water jet cutting experiments were conducted using a Byjet 4022 abrasive
water jet cutting machine (Bystronic AG, Switzerland). As workpiece material,
aluminium alloy AA-ASTM 6060 (EN: AW-6060; 1SO: Al MgSi) was used. Alloy 6060
is one of the most popular of the 6XXX series alloys. Typical uses include architectural
sections, sections fit for forming processes and automotive parts. The aluminium alloy
was chosen as a worpiece material because the material is very attractive, possess
resistance to corrosion and can provide significant value for the end user. Also,
aluminum and its alloys are characterized by high reflectivity and thermal conductivity.
This makes them relatively difficult to cut with lasers. Abrasive water jet cutting, which
does not create an observable heat affected zone, is much more useful for cutting
aluminum for modern applications.

Although AWJ cutting involves a large number of variables and virtually all these
variables affect the cutting results (kerf width, taper and surface roughness), only few
major and easy-to-adjust dynamic variables were considered in the present study. Thouse
are: feed rate (the speed at which the cutting head moves along workpiece during cutting
operation), material thickness and abrasive flow rate. The other process parameters were
kept constant using the standard machine configuration (dy = 0.3 mm; da = 1.02 mm; p =
400 MPa).

4.3. Results and discussion

In the present study, surface roughness as assessed by the centre-line average
roughness Ra (according to standard 1SO 4287:1997) was used in evaluating the cut
quality. Surface roughness was measured at upper and lower region of the cut surface,
and at the middle of the cut. These measurements were taken for each cut away from the
ends of the slots to eliminate any effect of the cutting process at the jet entry and exit.
The surface roughness was measured perpendicularly to the jet penetration axis, and
parallel to the cutting head feed direction.
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The cut surface has better quality at upper region (entrance area) of the jet. From the
middle of the thickness downwards, the surface quality deterioration is observed. As the
penetration depth of abrasive water jet increases, the jet loses its energy due to the jet—
material interaction, mutual particle impacts, etc. This situation results in rougher surface
characteristics at the lower region of the cut surface. Figure 10 shows dependence of
roughness average (Ra) at upper, middle and lower region of the cut surface of different
feed rate values for material thickness of 10 mm.

Roughness average Ra (um)
.
w
.

13
11 4 —— Ralow
9 —a— Earmud

7 —— Faupp
5 T T T T T T T

100 200 300 400 500 BOO TOO 300 900

Feedrate v (mm/min)

Fig. 10. Roughness average Ra in dependence of feed rate when material thickness is 10
mm at upper, middle and lower zone of the cut

The results of determining surface roughness at lower region of the cut surface with
respect to the material thickness, feed rate and abrasive flow rate are graphically
represented on Figure 11.
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Fig. 11. Roughness average Ra in dependence of material thickness, feed rate and
abrasive flow rate

It can be noticed that the surface roughness significantly increases as the feed rate
increase. This may be anticipated as increasing the feed rate allows less overlap
machining action and fewer abrasive particles to impinge the surface, deteriorating
surface quality [14].

The influence of abrasive flow rate is found to be less significant on surface
roughness. The increase in the number of impacting particles contributes to the improved
surface finish. A high number of abrasive particles involved in mixing increases the
probability of particle collision that decreases the average diameter of the impacting
particles, so the roughness decreases with an increase of the abrasive flow rate. These
results are in accordance with the literature [15].

The quantitative description of the process parameters effect on cut surface roughness
was performed. Full factorial design for input factors (material thickness, feed rate and
abrasive flow rate) at two levels, and output factor (roughness average Ra) with four
centre point replications was adopted. Among the many process parameters that
influence the cutting quality, three are selected and considered as factors in the
experimental phase (Tab. 1).

Tab. 1. Process parameters and their levels

Factor level
Factors
-1 0 +1
Material thickness s (mm) 6 8 10
Feed rate v (mm/min) 200 400 800
Abrasive flow rate g (g/min) 300 350 400
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To identify the process parameters that are statistically significant in the process, the
analysis of variance is performed. The significance of independent variables is
interpreted in the Pareto chart. Pareto chart (Fig. 12) shows that feed rate, material
thickness and abrasive flow rate have fond to bee the most sufficient factors that affects
the cut surface roughness at abrasive water jet cutting in the experiment.
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Figure 12. Pareto chart of level of significance for independent factors and their
interactions at a 95% confidence interval

For the purposes of regression analysis were selected dimensions chosen factors
(variables) as: s (mm), v (mm/min), q (g/min). To get the solution that best fits the
experimental results, for the mathematical model of roughness average a power function
is chosen (Eq.12):

R, =Cs™vPqP (12)

where Ra is an output variable, s, v and q are input (independent) variables, and C,
pl, p2 and p3 are regression coefficients.

A logarithmic transformation of the (Eq. 12) in form of power function into a linear
function

InR, =InC+ p,Ins+p,Inv+p;ing (13)

allows us to perform linear regression technique.

The STATISTICA software package is used to determine regression equation
coefficients, which give the level of roughness average Ra as a function of independent
variables. The fit of the model is expressed by the coefficient of determination R? =
0.9862.

Within the regression analysis, the empirical model for roughness average could be
expressed as:
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0.694, ,0.642
S \Y

0.212
q

R, =0.2913 (14)

for the chosen dimensions: Ra (um) - roughness average, v (mm/min) — feed rate, s (mm)
— material thickness, g (g/min) — abrasive flow rate

The regression analysis is applied in order to develop the response surfaces.
Roughness average as a function of feed rate, and material thickness, for constant value
of abrasive flow rate of 300 g/min is given in Fig. 13. These three-dimensional surface
plot show predicted cut surface roughness as a function of independent variable - factors.

Fig, 13. Predicted average roughness as a function of feed rate v (mm/min) and material
thickness s (mm) under given conditions

Proposed mathematical model allows us to choose a quantitative level of quality,
which has not been the case in the theoretical and practical solution to this problem.

5. CONCLUSION

The flexibility and cool cutting characteristics of the abrasive water jet technique
make it an important tool for cutting applications of new materials such as composites
and sandwiched materials that are difficult to machine with traditional machining
processes.

In abrasive water jet cutting the final cut surface roughness and the dimensional
accuracy depend on the many process parameters. Summarizing the main features of the
experimental results, the following conclusions may be drawn:
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- As the feed rate increases, the AWJ cuts narrower kerf. This is because the feed rate

of abrasive water jet allows fewer abrasives to strike on the jet target and hence generates
a narrower slot.

e Higher abrasive flow rate produce greater kerf width, especially lower kerf
width because the larger number of abrasive particles share in machining
process which has positive effect on kerf geometry.

e The surface has better characteristics in the region that starts from the upper
point where abrasive water jet begins to cut to the middle of the thickness. From
the middle of the thickness downwards, the surface quality deterioration is
observed.

e With an increase in the abrasive flow rate, the roughness is reduced. For high
abrasive mass flow rates, the roughness is less sensitive to changes in the feed
rate.

Experimental study shows that, among others, the most important factors influencing

the cut surface roughness of aluminium alloy are nozzle feed rate and abrasive mass flow

rate.
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UTICAJ PARAMETARA PROCESA SECENJA ABRAZIVNIM
VODENIM MLAZOM NA MEHANIZAM ODNOSENJA
MATERIJALA | KVALIET REZA

P. Jankovi¢, T. Igi¢, D. Nikodijevi¢

Proces secenja materijala abrazivnim vodenim mlazom, podrzan teorijom mehanike fluida,
abrazivnog habanja i mehanikom ostecenja, je visoko tehnoloski postupak koji nudi jedinstvene
mogucnosti u poredenju sa konvencionalnim postupcima obrade. U radu se, poret teorijskih
izvodenja, daje originalni doprinos u obliku matematickog modela velicine ostec¢enja povrsine
reza, izraZene vrednoséu hrapavosti.

Cilj istraZivanja, prikazanih u radu, povezan je sa zahtevima industrije, odnosno krajnjeg
korisnika. Imajuci u vidu da konvencionalni postupci obrade ne samo da su u zaostatku u sto se
tice kvaliteta reza, veé¢ i da izvesne zahteve nisu mogli da ispune, sa pojavom kompozitnih
materijala nisu uopste bili u stanju da ih obraduju, jer su se javljala nedozvoljena ostecenja, kao
Sto su reslojavanje, izvlacenje vlakana, sagorevanje krajeva).

Kljuéne reéi: Secenje abrazivim vodenim mlazom, mehanika osteéenja, eksperimentalno
ispitivanje uzoraka od aluminijuma, matematicko modeliranje
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Abstract. A review, in subjective choice, of author’s scientific results in area of:
classical mechanics, analytical mechanics of discrete hereditary systems, analytical
mechanics of discrete fractional order system vibrations, elastodynamics, nonlinear
dynamics and hybrid system dynamics is presented. Main original author’s results
were presented through the mathematical methods of mechanics with examples of
applications for solving problems of mechanical real system dynamics abstracted to
the theoretical models of mechanical discrete or continuum systems, as well as hybrid
systems. Paper, also, presents serries of methods and scientific results authored by
professors Mitropolyski, Andjeli¢ and Raskovi¢, as well as author’s of this paper
original scientific research results obtained by methods of her professors. Vector
method based on mass inertia moment vectors and corresponding deviational vector
components for pole and oriented axis, defined in 1991 by K. Hedrih, is presented.
Results in construction of analytical dynamics of hereditary discrete system obtained
in collaboration with O. A. Gorosho are presented. Also, some selections of results
author’s postgraduate students and doctorantes in area of nonlinear dynamics are
presented. A list of scientific projects headed by author of this paper is presented with
a list of doctoral dissertation and magister of sciences thesis which contain scientific
research results obtained under the supervision by author of this paper or their fist
doctoral candidates.

Keywords: Review, vector method, mass moment vectors, deviational mass moment
vector, rotator, coupled rotations, no intersecting axes, basic vectors of position
vector tangent space, angular velocity of the tangent space basic vectors, rheonomic
constraint, rheonomic coordinate, mobility, angular velocity of basic vector rotation,
velocity of basic vector extension, asymptotic approximation of solution, Krilov-
Bogolyubov-Mitropolyski asymptotic averaged method, method of variation of
constants, hereditary system, rheological and relaxational kernels, standard
hereditary element, integro-differential equation, fractional order derivative,
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covariant coordinate, contravariant coordinate, Physical coordinate, discrete
continuum method, space fractional order structure, chains, eigen main plane nets,
eigen main chains, fractional order oscillator, fractional order properties
characteristic number, transfer of signals, multi-frequency, material particles, rigid
body, gyrorotor, deformable body, multi bdy system, transversal, longitudinal, multi-
plate system, multi-belt system, stochastic stability.

1. INTRODUCTION
Main author’s research results, presented in this paper, are:

* Advances in classical mechanics.

Mass moment vectors connected to pole and axis, allowed the author to give a new
perspective onto rotation of bodies around stationary axis and a stationary point, and on
dynamics of rotors and coupled rotors in general. By introducing definitions of mass
moment vectors connected to pole and axis, and by proving their properties, and also by
introducing purely kinematical rotator vectors, which he used to represent short and
elegant expressions for kinetic pressures and kinetic impacts on the rotor shaft bearings,
the author made a contribution to classical mechanics, as well as a contribution to the
methodology of university teaching of rotor kinematics. In a monographic paper
published in 1998, and a monograph published in Serbia in 2001, as well as in a series of
published papers in the period 1992-2010, beginning with a paper at ICTAM in Israel
(1992), and later in a series of papers published in Japan, Germany, China, Ukraing,
Russia and Greece, the author shows definitions and properties, as well as applications of
mass moment vectors connected to pole and axis for analyzing mass moment states and
properties of kinetic parameters of rotor dynamics, dynamics of rigid body coupled
rotation around no intersecting axes and dynamics of coupled rotors. (see References |
[1-20]).

Angular velocity of the basic vectors rotation of a tangent space of the vector
positions of material particles of mechanical system dynamics with geometrical,
stationary and rheonomic constraints are obtained. Extensions of dimensions of tangent
space of the vector positions of material particles of mechanical system dynamics from
three dimensional real spaces to configuration space of independent generalized
curvilinear coordinate systems is identified. Reductions of numbers of coordinates and
extensions of tangent space of vector passions are analyzed (see References Il [21-34]).

* Advances in Analytical Mechanics.

- Analytical Mechanics of Discrete Hereditary Systems.

Foundation and construction of analytical mechanics of discrete hereditary
systems was the work of two authors — Oleg Aleksandrovich Goroshko and Katica R.
(Stevanovi¢) Hedrih. Their original contribution to modern analytical mechanics, the
authors published in their monograph of the same name, which came into existence in the
period of their cooperation between 1996-1999, and was published in 2001. The contents
of this monograph represents the first, in the world published integral theory of analytical
mechanics of discrete hereditary systems. Through a short review of the contents of the
monograph published in Serbia, as well as a series of presented results and/or published
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papers in the period 1995-2009 in Serbia, Ukraine, Russia, China and US, we shall point
out the main contributions of these two authors in this area. (see References I11 [35-54])

- Analytical mechanics of discrete fractional order systems

Through a series of papers published or presented in the period 2005-2009 in
France, Portugal, Turkey, Germany, Ukraine, China and Romania, as well as in
monograph publications and international journals, the author contributed to the
development of analytical mechanics of discrete systems, of fractional order with special
focus of the results on oscillatory systems of fractional order. Prominent among these
contributions are the results relating to homogenous chain systems of fractional order and
homogenous couples chain systems of fractional order. The author introduced new terms,
such as eigen main chains, main coordinates of eigen chain systems of homogenous
coupled chains into hybrid systems of fractional order, as well as main partial oscillators
of fractional order with corresponding main coordinates and corresponding oscillatory
modes of fractional order with creep properties. (see References |11 [35-54])

*Advances in Elastodynamics, Nonlinear Dynamics and Hybrid System
Dynamics

Among the contents of a series of papers published in international journals
(2003-2010) or journals of prestigious scientific institutes in the world (1970-2009), as
well as in monographs published by Kluwer and Springer, contributions of author to
linear and nonlinear dynamics of deformable bodies (rods, plates, moving strips),
systems of coupled deformable bodies, especially stand out and can be classifies as a
single scientific area of Elastodynamics and the newly established area of hybrid system
dynamics. A number of results are on the energy analysis of complex hybrid system
dynamics. Five theorems on characteristic equations of complex systems, obtained by
coupling deformable bodies and discrete systems with finite number of degrees of
freedom, static or dynamic or combined couples have been defined and proven.

A number of original results are about nonlinear properties of systems with
coupled rotation motions. A number of theorems on coupled singularities and homoclinic
orbits in the form of number eight has also been defined and proven. (see References IV.
[35-68], V [69-88])

2. ADVANCES IN CLASSICAL MECHANICS.

2.1* Vector method and applications

Vector method [4], based on mass moment vectors and vector rotators coupled
for pole and oriented axes, is used for obtaining vector expressions for kinetic pressures
on the shaft bearings of a rigid body dynamics with coupled rotations around no
intersecting axes [16-19]. This method is very effective and suitable in applications.
Mass inertia moment vectors and corresponding deviational vector components for pole
and oriented axis are defined by K. Hedrih in 1991 [1]. A complete analysis of obtained
vector expressions for derivatives of linear momentum and angular momentum give us a
series of the kinematical vectors rotators around both directions determined by axes of
the rigid body coupled rotations around no intersecting axes[16-19]. These kinematical
vectors rotators are defined for a system with two degrees of freedom as well as for
rheonomic system with two degrees of mobility and one degree of freedom and coupled
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rotations around two coupled no intersecting axes as well as their angular velocities and
intensity.

As an example of defined dynamics [16-19], we take into consideration a heavy
gyrorotor-disk with one degree of freedom and coupled rotations when one component of
rotation is programmed by constant angular velocity. For this system with nonlinear
dynamics, series of graphical presentation of three parameter transformations in relations
with changes of eccentricity and angle of inclination (skew position) of heavy rigid body
in relation to self rotation axis are presented, as well as in relation with changing
orthogonal distance between no intersecting axes of coupled rotations. Some graphical
visualization of vector rotators properties are presented, too.

Using K. Hedrih’s (See Refs. [1-9]) mass moment vectors and vector rotators,
some characteristics members of the vector expressions of derivatives of linear
momentum and angular momentum for the gyro rotor coupled rotations around two no
intersecting axes obtain physical and dynamical visible properties of the complex system
dynamics [16-18].

Between them there are vector terms that present deviational couple effect
containing vector rotators which directions are same as kinetic pressure components on
corresponding gyro rotor shaft bearings [10-15] and [18-20].

2.1.1. Mass moment vectors for the axis to the pole

The monograph [4], IUTAM extended abstract [1] and monograph paper [5]
contain definitions of three mass moment vectors coupled to a axis passing through a
certain point as a reference pole. Now, we start with necessary definitions of mass
momentum vectors.

Definitions of selected mass moment vectors for the axis and the pole, which are
used in this paper are:

1* Vector ééo) of the body mass linear moment for the axis, oriented by the unit

vector fi , through the point — pole O , in the form:
(0) def o o
e = IH[n,p]dm =[f,pc M | dm=odV . (1)
\Y

where p is the position vector of the elementary body mass particle dm in point N,
between pole O and mass particle position N .
2* Vector J{? of the body mass inertia moment for the axis, oriented by the

unit vector fi, through the point — pole O , in the form:
def

3P = [[[l7.[n. Al @

For special cases, the details can be seen in [1-9]. In the previously cited
references, the spherical and deviational parts of the mass inertia moment vector and the
inertia tensor are analyzed. In monograph [4] knowledge about the change (rate) in time
and, the derivatives of the mass moment vectors of the body mass linear moment, the
body mass inertia moment for the pole and a corresponding axis for different properties
of the body, is shown, on the basis of results from the first author’s References [6-9].
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The relation

30 =30+ [fo, & [+ [92 [ 56 |+ [0, 7. o IM @
is the vector form of the theorem for the relation of material body mass inertia moment
vectors, \9(0) and 3%01), for two parallel axes through two corresponding points, pole
O and pole O, (for details detail Refs. [ ] by K. Hedrih). We can see that all the
members in the last expression-relation (3) have the similar structure. These structures
are: [p,.[f. i M, [ [f. 5, M and [5,,[f, p, M -

In the case when the pole O, is the centre C of the body mass, the vector r.
(the position vector of the mass centre with respect to the poleO,) is equal to zero,
whereas the vector p, turns into p. so that the last expression (3) can be written in the
following form:

I =317 +[pc [ A IM (4)

This expression (4) represents the vector form of the theorem of the rate change
of the mass inertia moment vector for the axis and the pole, when the axis is translated
from the pole at the mass centre C to the arbitrary point, pole O .

The Huygens-Steiner theorems (see Refs. [4] and [5]) for the body mass axial
inertia moments, as well as for the mass deviational moments, emerged from this theorem

(4) on the change of the vector %éo) of the body mass inertia moment at point O for the

axis oriented by the unit vector f passing trough the mass center C , and when the axis
is moved by translate to the other point O .

Mass inertia moment vector 375.10) for the axis to the pole is possible to

decompose in two parts: first ﬁ(ﬁ,§r§°)) collinear with axis and second 5%0) normal to
the axis. So we can write:
3O - ﬁ(ﬁ’%%o)) +BO = 1O + 3O (5)

Collinear component n(*, srﬁo)) to the axis corresponds to the axial mass inertia

moment Jéo) of the body. Second component, 5%0) , orthogonal to the axis, we denote
by the ﬁ(ﬁ) and it is possible to obtain by both side double vector products by unit

vector fi with mass moment vector J(°) in the following form:
3O =[f[3©.n]= 3O(.5)-Alr, 3O )= 3O - 335 (6)
In case when rigid body is balanced with respect to the axis the mass inertia moment
vector \5;%0) is collinear to the axis and there is no deviational part. In this case axis of
rotation is main axis of body inertia. When axis of rotation is not main axis then mass
inertial moment vector for the axis contains deviation part §§O) . That is case of rotation
unbalanced rotor according to axis and bodies skew positioned to the axis of rotation.
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2.1.2. Model of a rigid body coupled multi-rotation around multi-axes
without intersections
Let us consider rigid body coupled multi-rotations around axes without
intersections, first oriented by unit vector i, with fixed position and second and next
oriented by unit vectorsfi;, j=23,..., K, which are rotating around fixed axis as well as
around series of previous axes and with  corresponding angular
velocities @; _a)lnJ ,j=123,..,K. See Figure 1. Axes of rotations are without
intersections. Rigid body is positioned on the moving rotating axis oriented by unit
vector iy . Rigid body rotates around rotating self rotation axis with angular velocity

@y = wy i, and around series of the previous axes in order and in whole around fixed axis
oriented by unit vector f; with angular veIocitye?;l =, . The shortest orthogonal

distances between axes are defined by length 00 (J+1 , J=123,...,K and each of these

is perpendicular to both close axes that each is to the direction of component angular
velocities wj = w;N; and @;,; = @; 4N, . These vectors are fy;y .1 =O(jO(j.)

P foiXis)_[5

_ A(j)s s _
To(i)i+0) = NG ”(m)]—rol ﬁle @

Fo( 1Y +0)0o( 1Y i
sin oy i) ) o(i)(i+1)"0(iXi+1)

and it can be seen on Fig.1.
In the considered rigid body coupled rotations around no intersecting numerous
axes, an elementary mass around point N is denoted as dm, with position vector p , and

with origin in the point Oy on the movable self rotation axis, and with r vector
positions of the same body elementary mass with origin in the point O, , where point O,

is fixed on the axis oriented by unit i, . Both points are on the ends of the corresponding
shortest orthogonal distance between two in the neighborhood axes of body coupled
multi-rotations. Position vector of elementary mass with origin in pole O, and its
velocity are in the following forms:

K-1 K-
fc = (Fo(k)v(k+1)+F0(k+1)y(k+1) Z Zw o), (k+1) * To(k+1) k+1:1 [zﬂﬁ P] (8)

k=1 =1| j=1

For the case of three coupled rotations around three axes without intersections

position vector of elementary mass with origin in pole O, and its velocity are in the

following forms (see Fig.1):
T =Tong + Tog + Togs + 5 AN V =[@y, Ty + oo |+ [@1 + @y, Togs |+ [@1 + @y + 33, ).
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X

Figure 1. Arbitrary position of rigid body multi-coupled rotations around finite
numbers of axes without intersections.

2.1.3. Linear momentum of a rigid body coupled multi-rotations around
axes without intersections

By using basic definition of linear momentum and expression for velocity of
elementary body mass (9), we can write linear momentum in the following vector form:

K-1 k -
ZZ“’ [n To(),(k+2) T Fo(k+1), k+1}V| Zw @,(1 . (10)
k=1 j=1

where & J‘J‘j[njyp}jm ,j=123,.,K,are correspondmg body mass linear moments of

the rigid body for the axes oriented by direction of component angular velocities of
coupled multi-rotations through the movable pole Oy on self rotating axis. First terms in
the form of the first sum in expression (10) presents translation part of linear
momentum. This part is equal to zero in case when axes intersect in one point. Second
sum in expression (10) for linear momentum present linear momentum of pure rotation,
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as relative motion around all axes with intersection in the pole Oy on self rotation axis.
These K terms are different from zero in all cases.

Example 1: Expression of linear momentum of a rigid body coupled rotations
around two no intersecting axes, we can write in the following form:

®= ﬁé?l’Z) + ﬁé?Z) + ﬁé(z)?) [y, Fyp M + a)l@(OZ) +w, w(OZ) (11)

Example 2: Expression of linear momentum of a rigid body coupled rotations
around three axes without intersections, we can write in the following form:

& = o[, gz + Togp + Tops M + @, [y, Typs M + aﬁéé%) + wzég?3) + %ér(%) (12)

2.1.3. Angular momentum of a rigid body coupled multi-rotations around
axes without intersections

By using basic definition of angular momentum and expression for velocity of
rotation of elementary body mass and its position vector (9), we can write vector
expression for angular momentum.

Example 1: Expression of angular momentum of a rigid body coupled rotations
around two axes without intersection, we can write in the following form:

&o = oM + o[, [, ) M +w1["o: ]+ wz[ro ]+ 6013(02 +o, }(02) (13)

Example 2: Expresion of angular momentum of a r|g|d body coupled rotations
around three axes without intersections, we can write in the following form:
§01 wl[r03 (01 2 z)]Jr 0)1[ ngoz 3)]+w [rO V(AOZ 3 ]+ wl[ﬂc 01 2~ z)]+ 501} (03) + w. t} (03) +(1)33 + (14)

+a)1[ 3( )]+a)2[pc @’(_823)]4’0)1 10,1 é(o )]+ a’z[ro ( )]+a)3[ (03)]

2.1.4. Derivative of linear momentum and angular momentum of rigid
body coupled rotations around two axes without intersection

Example 1. By using expressions for linear momentum (13), the derivative of linear
momentum of rigid body coupled rotations around two axes without intersection, we can
write the following vector expression:

o mM ol IM 080 + o 80 ] (15)

+ 0, C +a) [n C ]+ Za)la)z[ﬁl,ééSQ)]

After anaIyS|s structure of linear momentum derivative terms, we can see that
there is possibility to introduce pure kinematic vectors, depending on component angular
velocities and component angular accelerations of component coupled rotations, that are
useful to express derivatives of linear moment in following form

d®
T_ﬁ01‘[n1v ro]M +§ﬁ011

We can see that in previous vector expression (16), for derivative of linear
momentum, are introduced the following three vector rotators:

i Iy n . 25
Rgy = dyligy + &fVyy mm = |:n11 . }'a’l {nb{ny . ﬂ Ry, = ol + O Vs
0 0

)+ 20,0, [nl,c( )]' (16)

|+ ‘nozz
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501 0. 17
~ (N A
Mo =5 +of ﬁl,%f(]gz) ’ n
S ‘ @ﬁl
A e 2. = é(_oz) égoz)
R, = Aylioy, + OV, Ry = 0, A?é ) + @3 iy, A?é )
2 S\2
@ﬁz <5,

Also, we can see that in vector expression for derivative of angular momentum
appear the following vector rotators: %, = &0, + 0V, and M, = @0, + @}V, expressed by
following expressions:

< D) ) 502 3(02)
. — . — ~ D2 D2 18)
9!1 =y m + a)12 0 M =@l + a)lzvl "R —a n, 2| = n, L 2e (
(02) ) 2= G2 RCARLR = WUy + 0V
O NN g%’z)‘ 30

Example 2. By using expressions for linear momentum the derivative of linear
momentum of rigid body coupled rotations around three axes without intersections, not
difficult to obtain corresponding expression. Also, as in previous example, after analysis
structure of linear momentum derivative terms, we can see that there is possibility to
introduce pure kinematic vectors, depending on component angular velocities and
component angular accelerations of component coupled three rotations. We can see that
in vector expression for derivative of linear momentum series of the vector rotators
appear. Some of these vector rotators are listed here:

= e 2. é{os) égoz)
Ny = olpy, + @V Ryyy = a‘,l%ﬂof ﬁly% ,
sﬁl 3 ‘ @ﬁi 3
. o -
Rz, = Dyligy + @5Vg; »
z( 0
35*022 =, 7@%3) +0)22 i, 'é;) ' (19)
@'(ﬁ?s)‘ @5‘33)
~ =(0s) =(0,)
- o 2o - e S
Moza = Oalloas + 0 Vs Rogs = d‘s%“‘ﬁ ﬁz'%
@ﬁ33 ‘ @ﬁsa

Also, we can see that in vector expression for derivative of angular momentum

of rigid body coupled rotations around three axes without intersections appear the
following vector rotators: R, = @0, + 0V, R, = ayli, + w2V, and R, = @yl; + 0V,
expressed by following expressions:
B0 Bs)
et | Ty | = oyl + 0V

(©s S009)

Ny
209 209

N 2| = n . 2

A nz,?&) = wyliy + W5V,

o

RN.=a N + 2 3
3= W3 5&03)‘ 3 5@3)‘
N3 N3

(20)

B (05 (05
s, : = ayllz + 503%‘73
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2.1.5. Concluding remarks

By using theorems of changes of linear momentum and angular momentum with
respect to time, one may write two vector equations of dynamic equilibrium of rigid

body coupled multi-rotations about axes without intersection as the follows:
S <
E=G+FAN+FBN+FAm+§Fi (21)

d€,,
dt

i=P
[Fo + ﬁc,G]Jr [Fo +parFan ]Jr [Fo + pg.Fey ]Jr [Fo +ppFam ]+ Z [Fo + Pis Fi](22)

i=1
where F,i=123,.,p are external active forces, G is weight of a rotor, ¢, and g are

forces of bearing reactions at fixed axis. From previous analysis, we can conclude that
vector rotators appear into expressions of the kinetic reactions of the shaft bearings of the
structures of the rigid body multi-coupled rotations and that is very important to analyze
their intensity as well as their relative angular velocity and angular acceleration around
axes of coupled multi-rotations.

Recommendation foe next research and for solving three main mathematical
tasks: a* Generalization of the expressions for derivatives of linear momentum and
angular momentum for rigid body coupled multi-rotations around finite numbers axes
without intersections; b* expressions for kinetic pressures on bearing to series of the axes
of coupled rotations and corresponding numbers of coupled nonlinear differential
equations depending of number of system degree of freedom with corresponding
solutions and c* build a algorithm for using obtained results as a standard software
program for analysis nonlinear dynamic phenomena in rigid body coupled rotation
around finite number axes without intersections. These defined tasks need a team
interdisciplinary research, and will be very useful for engineering practice in analysis and
simulation numerous engineering system dynamics with coupled rotation and for vibro-
diagnostic.

2.2. Tangent spaces of position vectors and angular velocities of their basic
vectors in different coordinate systems

Angular velocities of the basic vectors of tangent spaces of the position vectors of
mass particles of the discrete rheonomic mechanical system are obtained in different
coordinate systems [22]. Starting from real three dimensional coordinate systems of
Descartes orthogonal three dimensional system type with fixed coordinates axis as a
reference, by different coordinate transformations for each position vector of
corresponding mass particle in discrete rheonomic mechanical system, basic vectors of
position vector tangent three dimensional spaces are obtained in different curvilinear
coordinate systems suitable to the corresponding geometrical scleronomic or rheonomic
constraints applied to the considered rheonomic system. For each basic vector of the
basic triedar of position vector tangent space of each mass particle of the discrete
rheonomic mechanical system, angular velocity vectors of basic vector rotations are
determined.

Then, after consideration and analysis of the number and properties of the
geometrical scleronomic and rheonomic constraints applied to the mass particles of the



Advances in classical and analytical mechanics: A review of author’s results 303

considered discrete rheonomic mechanical system, number of system degree of mobility
as well as number of system degree of freedom are determined. Corresponding number of
independent coordinates are chosen and corresponding rheonomic coordinates are
introduced. By use extended set of the generalized coordinates contained corresponding
number of independent coordinates and corresponding number of rheonomic coordinates,
position vectors of the mass particles of the discrete rheonomic mechanical system, are
separated into two subsets.

First subset contain position vectors of the mass particle, keep their three
dimensional tangent space each with three basic vectors.

Second subset contain position vectors of the mass particle, each depending, in
general case, of the all generalized coordinates, independent and rheonomic. Then, each
of the position vectors are with n+R -dimensional tangent spaces and with basic
vectors.

2.2.1. Introduction

Let us consider a discrete system with N mass particles with mass m,, and
with corresponding position in real three dimensional space determined by geometrical
points Ny a=123..,N (see Figure 2). For beginning we take that positions of the

material points, as well as corresponding geometrical points coordinates are determined
by coordinates in fixed orthogonal Descartes coordinate system with three coordinates as

denoted by N(a)(x(a), y(a),z(a)).a =12,3,..,N, where O is fixed coordinate origin, and
Ox, Oy and Oz fixed oriented coordinate strain lines-coordinate axes. Coordinates

of the position vector of each material point are equal to coordinate of the geometrical
point which determine mass particle position in the space. For Descartes coordinate
system  for position of the each mass particle we can write:

ﬁ(a)(X(a), Y(a): Z(a))z X(a)r+ y(a)]+ Z(a)k ,a=123,..,N.
Let us, now, consider previous discrete system with N mass particles wirh
mass m,, and with corresponding position in real three dimensional space determined

by same geometrical points N, a=123..,N in generalized coordinate system of

curvilinear coordinates (q(a)l,q(a)z,q(a)s) a=123,..,N corresponding to mass particle
positions. For same geometrical points coordinates in considered three coordinate

. 1 2 3
systems are: N(a)(X(a),y(a),Z(a)).a =123,...,N and N(a)(Q(a) 1Y) () ),
a =123,...,N .. Formulae of coordinate transformation from previous coordinate system
with fixed axes and new curvilinear coordinate system are:

X = X e U
Ve = Yieo O U P U (1)

1 2 3

a)= z(w)(q(oc) 'U(a) 1Y) )
Position vectors of each mass particle and corresponding geometrical points are
invariant geometrical objects in both coordinate systems, but their coordinates in
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considered coordinate systems are not equal to coordinates of the corresponding
geometrical point. In generalized coordinate system geometrical
points N(,), & =123,.,N  have  following  coordinates: (q(a)l,q(a)z,q(af’),
a=123,..,Nand coordinate of position vectors of these geometrical points are

(p(a)l,p(a)z,p(a)3), a =123,...,N . For position vectors we can write:

~ _. def =inv.vektor

PelKe) Yior Ze) = Kl Vi + 2K = Pl e ) @)

POl 8 0=
= 1o e O i+ 210 0 90
o =123, N @A)

Figure 2. Discrete material system with N mass particles and geometrical
rheonomic constraints

For first example in polar-cylindrical coordinate system geometrical points have
the following coordinates: N(a)(r(a),qo(a), z(a)) a=123..,N and position vectors

,B(a)(r(a),w(a), z(a)) of corresponding geometrical point are: r(,),0, z(,) and we can write:
Pleollle P01 2))= Tiote) +0-Coe) + 2 K = Vo) + 2o K (4)
a=123,..,N

where  Ty(), Co(y)and k,a=123..,N are basic unit vectors of tangent space of

corresponding position vector in polar-cylindrical coordinate system.
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For second example in spherical coordinate system geometrical points have the
following coordinates: N(a)(p(a),(p(a),g(a)) a=123,..,N and position vectors

ﬁ(a)(p(a),(p(a),g(a)) of corresponding geometrical point are: Pa)0,0 and we can write:

Bla)\ Pl Pla) Hr) )= Pl Pot) *+ 0 o) + O Vo) = Pl (%)
a=123,..,N
where  po(,), Co(e)and vo(y), @ =123,....,N are basic unit vectors of tangent space of
corresponding position vector in polar-cylindrical coordinate system.

2.2.2. Basic vectors of the position vector three-dimensional tangent space
in generalized curvilinear coordinate systems

In real two-dimensional coordinate systems, position vector tangent spaces are
three-dimensional and the basic vectors of the tangent spaces of each position vector of

each mass particle we denote with gy, @ =123,..,N, i =1,2,3 (see Figure 3). These

vectors are in tangent directions to the corresponding curvilinear coordinate line and in
general are not unit vectors. Basic vectors it is possible to obtain by following way (for
detail see Refs. [22], [23], [24], [25], [26], [27], [28], [33] and [34]):
gaiza”—(“:, a=123..N, i=12,3 ©)
(q)
or by formula coordinate transformation and by following expressions:

OBy _ e e ) W(a)(%)llq(af’q(af)j 20 U )

g all — r + |Z
o) ) ) )
) el Yo ) ) Vol U )+ 2O 0 ) %
Yk 2 2 I+ 3 i+ . k
e 0(c) e e
G = ) Ot e U ) W<a>(%)1ﬂ<a>2'%>3)i . 0200 80 )
) o0’ o0’ 0o’

Contravariant coordinates of the position vectors it is possible to obtain by
following formulas:

1 ¥t 90”9 ) 200”0’ 31000 00r*) 200 0 90 o)
A o) ) a0, )

Plo e 0 0=

2

1 000" 9 ) 20 0 0 8 P 0 ) 200 0 0 ) Yoo e )-
A ()’ ey’ ()’ ()’
1
) Yl )

)
1{%)(‘1(@1’%)Z%f)f‘wa)(‘k 4 f%f)_5X<a)(Q<a>1’M-‘I(af)a/(a)(ma1"1<a)2-‘1(a>3)}

2

)

: 04’ ()’ oy

20
0 e ol 8 900)°)
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_ 1 P(a)(qmﬁqu»qu)@z(a)(q(afv% ’,

a0, (e 00(s) )

»
(NS
)

w|’

L1 P(a)(%)lvq(af’q(af)5Z(a)(q(a)1~q<a)2’%)3), O R R R e R A }y(g)(q(uf Pl

A B o a()° o)
A ( 12 3) ( 12 3) A ( 12 3) ( 12 3)
_ 1] X)) 1) 1Y) ) Vo)) +Ue) Ya) ) X)) )"+ ) ) () )+ Her) + ) 2 )(q( bt )3)
A a0, ()’ )’ 0y

2

0o 8 o) 240 00 e 0] Ve U ) 2 O )
5%)2 ()

,q(af) ﬁZ(Q)(q(aﬁ, Yo+ Ue) )} y(a)(q(a)l’ Gl %)3)+

2

}X@)(q(aqu(a) o)

A s ) ) o)
1 [ 060 U ) W 00 0r®) DX 0?0 )  e) L2 s
+ A{ EQ(,,,)l 6q(g)z 6q(g)z EQ(,,,)l Z(a)(q(a) A(a) Ya) )
where
1
5X<a)(Q<a> Ya) +Ua) ) ay(a>(%> Ua) Ya) ) 5Z<a>(Q<a> U(a) +Ya) )
ot ot ot
1 2 1 2 1 2 3
A 2|2 Ya) - Yer) Yo U ) e e '%))io
(@) oq° o9° o’
1 2 3 1 2 3 1 2 3
%)(%) Ya) Ya) ) ay(a>(%> ) +Ya) ) 5Z<a>(Q<a> ) Ya) )
o0 o0 o

2.2.3. Change of the basic vectors of the position vector three-dimensional
tangent space in generalized curvilinear coordinate systems

Without losing generality, we consider change of basic vectors of a position
vector of one mass particle during mass particle motion through real space and described
in three-dimensional space. Also, we focused our attention to the orthogonal curvilinear
coordinate system. For that case change (first derivative with respect to time) with time
of the basic vectors of tangent space of a position vector are (see Figure 3.):

9, =0+

dt
= gl(rlllql +F112q2 +F113q3)+ g2<F121q1 +F122q2 +F123q3)+ gs(rlslql +F132q2 +F133q3)

dg, =~ 1. .

d—t2=gz+[0’p2vgz]: (8)
= (rélgl + r221@2 + 1"2315413 )ql + (rzlzgl + l"222 g, + 1"232g3)q2 + (@3@1 + 1"223@2 + 1?3@3)13

dg. - 1. -

%293+[wp3'g3]:

1= 2= 3= Vel [l = 2 = 3= V2, [l = 2 = 3= |43
= (1"3191 +15:0, +r3193>1 + (rszgl +135,0; +r3293):1 + (r3391 +1330, +r3393)1
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N (@t @) a? @)’ () Alat.a?,6%)

(ql(t)n qZ(t)’ qs(t))= Plg1 + PZGZ +P3gs

5
q dsgjq?e. .
_ op 1§ 93 ql\\ U 03
q--k L8 e gl
q Z 7 .. .
- > 092
= _0p .
92=aq—2 8 q g 9’
2
G 28_[73 G\ /N0 .0?)
0 L =
q k P 9, . y
i O~J

oy =0, 0" 1). 0 (1), o) ¢(0.620.6°)

Figure 3. A position vectors and its three-dimensional space with corresponding
curvilinear coordinate system and tangent space with corresponding three basic vectors
of the position vector tangent spaces along mass particle motion through time

After analysis of the obtained derivatives of the basic vectors of position vector
tangent spaces in three-dimensional orthogonal curvilinear coordinate systems we can
separate two sets of the terms in obtained expressions (8). First set correspond to the
relative derivative of the corresponding basic vectors in the following forms:

*

g, = gl(rlllql + rllzqz + r113‘3'13)
2 =0, (Fzzlql + lﬂzzzqz + F223q3) )

0s = gs(rglql + Fs?’zqz + Fssaqa)

These vectors present vector forms of extensions of the corresponding basic
vectors and in scalar form it is possible to express relative change of the intensity —
dilatation of the basic vectors in direction of its previous kinetic state. In differential form
is possible to write:

dla
de; = M =T1;dq* +T1,dg? + Tdg®
[
dg,|
R

(o]

*

dgz = = rgzldql + r322dq2 + r323dq3 (10)
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d|ga|
[H

From analysis of the obtained derivatives of the basic vectors of position vector

tangent spaces in three-dimensional orthogonal curvilinear coordinate systems we can

separate second set of the terms in obtained expressions (8). Second set correspond to
the rotation change of the corresponding basic vectors in the following forms:

[@ply gl]: gZ(Flzlql + 1"122‘512 + F123q3)+ gs(rl?’lql + F132q2 + Fl%qg)
— _ — . o2 <3 = 3 3 42 3 43
(@50, G,]= 6.(T36" + TH07 + T0° )+ G, (T + TH07 +T50°)  (a1)
(6o 651 6Tt + 1507 + 1?1 6, [ + 567 + T°)
where we introduce notation @, @,, and @, for vectors of the angular velocities of

deg = = r331dql + rssquz + F333dq3

the corresponding basic vectors of the position vector tangent space. When curvilinear
coordinate system is not orthogonal and angles between three basic vectors are
changeable with time these angular velocities are different for each basic vector. When
basic vectors are orthogonal and without change orthogonal relation, all three angular
velocity are same.

For the case of the discrete mechanical system N mass particles for
each vector position of each mass particle is necessary, by analogous way as presented in
previous part, is possible to determine change of the basic vectors of tangent space of
position vectors.

After analysis of the obtained derivatives of the basic vectors of position vector
tangent spaces for each mass particle, in three-dimensional orthogonal curvilinear
coordinate systems, we can separate two sets of the terms in obtained expression and
corresponding for other two sets of the basic vectors. First set correspond to the relative
derivative of the corresponding basic vectors. These vectors present vector forms of
extensions of the corresponding basic vectors and in scalar form it is possible to express
relative changes of the intensities — dilatations of the basic vectors in direction of their
previous Kinetic state.

From analysis of the obtained derivatives of the basic vectors of position vector tangent
spaces for each mass particle in three-dimensional orthogonal curvilinear coordinate
systems, we can separate second sets of the terms in obtained expressions. Second set
correspond to the rotation change of the corresponding basic vectors. We introduce

notation  &(,)p1, @u)p2 aNd  @(,)ps for vectors of the angular velocities of the

corresponding basic vectors of the position vector tangent spaces. When basic vectors
are orthogonal and without change orthogonal relation, all three angular velocity are
same, for each vector position.

For example 1*: in polar-cylindrical curvilinear coordinate system by
expressions (8), (9), (10) and (11) we can write (see Figure 4.a*):

dg, dg, . -. - A
e g(-Tsingp+ jcosp) o= %0 =08, =[Ger. 6]
— d" = *

99, _ e =1Cy+r o =fCo—ron =g¢+[@P¢'g¢]

dt dt dt
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dt dt dt

iy dig dr _ .

g, =0, de, = |_.(p|:_' @py = K
g, r

B - . iy -

g¢:rCO:?g¢l a)P(p=¢k1 gz=01 CUPZ=O

Angular velocities of the basic vectors of each position vector tangent space of
mass particle motion in polar-cylindrical curvilinear coordinate systems are:
E)(a)P :(p(a)k ,a=123,.., N.

N(r(t)et)z)  Alre.z) N(pt).olthyt)  Aloow)

L RS L
. @p =Y +¢=—y Gy +¢k

S ydg @p =y Sy + Py Siny + v, cosy)

b-k
Figure 4. A position vectors and its three-dimensional spaces with corresponding
curvilinear coordinate system and tangent space with corresponding three basic vectors
of the position vector tangent spaces along mass particle motion through time
a* polar-cylindrical curvilinear coordinate system; b* spherical curvilinear coordinate
system

For example 2*: in spherical curvilinear coordinate system by expressions (8),
(9), (10) and (11), we can write (see Figure 4.b*):

dg, dg, 11

I A e A AN IR LT

dg, dg, . . = .o
%=d—:’=co(pcosw—pt//smw)—(ﬂ(poCOS!//—VoSIm//)pcosw
dgs _ 49, i

— = pvy + pl— gLy Siny —yp
el pl= g siny —yp,)

ﬁp=0, [@Pp:ﬁpJ:‘/}‘jo"'@oCOS‘//

- ca I 1.
copp:y/c0+(pk:—pcoswg¢+¢(gpsmz//+;gwcost
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(ocosy — pyrsiny)g,,

L . 1
=C COoSy — Sin =
§, =Colpcosy — pyrsiny) oSy

|3p,. G, | =[S + (g siny + 7 cosy ), Sy pcosy | = (5, cosy — iy sinw )pcosy

Gy =+ =Gy ok =——V G +4| g, siny +-2g, cos
Py W §0 l// 0 pCOSl// 1) ¢) P l// p 73 l//
dg, dg, .. . -
2B _ W _ 5+ p(— @Gy siny —

=g =P p(= gty siny —yip, )

. s

g =p O:_g ’

v P4

[QPV/’QW =-g0,l9y —yg, = [_'//60 +¢(f"05in‘//+‘70 COS'%/):PVO]

- = e .« = O — . - - 1 —
Wp, =—V+QP=wCy+gk=— + siny +—@,, cos
py =W +@=yCH+gK pcoswgw w(gp v pg.,, t//j
Angular velocities of the basic vectors of each position vector tangent space of
mass particle motion in spherical curvilinear coordinate systems are:
D)o =V (a) * Pla) =V¥(a) Cola) + P K
)P = W(a)Co(a) + (b(a)(ﬁo(a)Sin Y(a) +Vo(a) COSl//(a))
a=123,...,

2.2.4. Dimensional extension of the position vector tangent spaces of the
reheonomic mechanical system in generalized curvilinear coordinate systems

Considered discrete mechanical system is constrained by G geometrical
stationary constraints in the form:
fpla0) 06 0 0 O e G G )0, A <1236 (12)

and by R geometrical rheonomic constraints in the form (see Ref. [23]):
1 2 3 1 2 3

f 007 0" 007 0 G v G G, 0) =0,

7=123..R (13)
Considered system is rheonomic system with p=3N —G degree of the system mobility,
and with n=3N -G —R degrees of the freedom. For the n generalized independent
coordinates we take qi , 1=123,.....,n. Also, we introduce additional subsystem of the
R rheonomic coordinates q” =q"*” =¢,(t), » =1,2,3....R which correspond to number
of rheonomic constraints. Then we have extended system of the generalized curvilinear
coordinates qi , 1=123,....,n,...,n+7,...,n+R. Then we know that subsystem of R
rheonomic coordinates q” =q""7 =4,(t), »=123...Rcontain known rheonomic

coordinates as functions of the time. But, force of the rheonomic constraints change are
unknown (see Ref. [21]).
Let us now take into account that first n coordinates of the position vectors of

the mass particles are independent generalized coordinates. Extended system of the
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generalized coordinates containing independent coordinates qi, i=123,..,n and

rheonomic coordinates q” =q"” =4, (t),» =123...R , then it is possible to list in the
form:

q'= %)1, """" '

¢ = gy, A" =)

o° =qq), q"" = 4o

a*=qp), 0" =gy

0° =0y, " =gy

q° = Q(z)ay- q"t= Q(n)z,

........ q" = Q(n)3

q” =q"" =¢,(t), 7 =123..R (14)

On the basic of the listed system (14), we can conclude that in considered case, we use

coordinates of the positions vectors of the first K s%:%@N —~G-R) mass particle as

generalized independent coordinates.

Then on the basis of previous for the coordinates of the geometrical point which
correspond to the mass particle positions at arbitrary moment of the motion, we can
write:

Nz(q4 =0p).0° =R = Q(z)s) (15)

i=123..,(N-K)

/51( Y=g, 0° =qq)’ 0 = Q(l)a)
5 2 6

Bolo = U 0° =0p).0° = q(zf)

e (an—z _ q(K)l’q3K—l _ q(K)z’qu _ q(K)s)

Bras (0107 0 G 0™ =123, (N—K)

(16)

2.2.5. Concluding remarks

We can see that in extended system of generalized coordinates, we can
identified two sets of the position vectors of the mass particles: one set (15) contain K,

ngzé(SN—G—R) position vectors of the mass particles depending of three
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generalized coordinates, and second set (16) contain theN-K > G ; R :

Ks%:%(BN—G—R) position vectors of the mass particles depending of all

p=3N -G generalized coordinates in general case, or more then of three generalized
coordinates.

Also we can conclude that in extended system of generalized coordinates, we
can identified two sets of the position vectors of the mass particles, one set (15) contain

theK, K s%:%@N ~G-R) position vectors of the mass particles with three-

dimensional tangent space and each with three basic vectors of this tangent spaces, and

G+R 1

second set (16) contain the N — K > , K< % = §(3N ~G—R) position vectors of

the mass particles with extended dimension of the tangent space and to each tangent
space correspond p=3N —G basic vectors in general case, or more than three basic

vectors of the tangent space.

Open directions for next research and applications. As a possible open
directions for next research and application are: an analysis of expressions for
generalized Corilis forces introduced by changing position of motion observer from
fixed coordinate system to rotate curvilinear coordinate system correspond to vector
position tangent space; applications of the previous results for solving problems of the
numerous coordinate system properties used in astro-dynamics; extension and proof of
extension Lagrange differential equations to the description of the rheonomic system
dynamics and necessary generalizations.

3. ADVANCES IN ANALYTICAL MECHANICS.

3.1. Analytical mechanics of hereditary discrete system vibrations
3.1.1. Introduction

Integro-differential equations and their applications in development of analytical
mechanics of discrete hereditary systems are used by Gorosko and Hedrih (Stevanovic)
(see References 111 [35-54])

Research results in area of mechanics of hereditary discrete systems, obtained
by Gorosko and Hedrih (Stevanovi¢) (see References IV [35-54]) are generalized and
presented in the monograph [35] which contains first completed presentation of the
analytical dynamics of hereditary discrete systems. Two classes of dynamically defined
and undefined hereditary systems are defined and considered by introducing
corresponding restrictions. Main results of mechanics of hereditary discrete systems are
presented with new applications important to engineering.

Approximation of expressions for the coefficients of damping and corresponding
decrements as well as for circular frequency of oscillations of hereditary oscillatory
systems are obtained with high accuracy in the first and second approximations.
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Analogy between hereditary interactions and reactive forces in systems of
automatic control is identified and a possibility to extend theory of analytical dynamics
of hereditary systems to mechanical systems with automatic control is pointed out (see
References [36] and [37] by Gorosko and Hedrih (Stevanovic)).

The Lagrange’s mechanics of hereditary systems are extended and generalized to
thermo-rheological [35,52] and piezo-rheological [35] discrete mechanical systems as
well as to discrete mechanical systems with standard light creep elements. .

Analytical dynamics as general science of mechanical system motions was
founded by Lagrange (Joseph Luis Lagrange (1735-1813)) in the period of his work at
Berlin Academy. The Lagrange’s book “Mécanique Analytique” contains basic analytical
methods of mechanics and was published in France in 1788. Introduced analytical
methods in Mechanics by Lagrange are main and first base of analytical mechanics in
general. Lagrange’s equations of second kind and Lagrange’s equations of first kind
with unwoven Lagrange’s multipliplicators of constraints are main fundament of
Analytical Dynamics.

Analytical dynamics is largely applied and used in engineering system dynamics
and in natural sciences as well as for investigation of mechanical system dynamics and in
physics of the microworld.

Mechanics of hereditary continuum is presented by series of fundamental
publications and monographs. In current literature term “hereditary” and “rheological”
systems are equivalent. Mechanics of discrete hereditary systems up to a ten years before
was presented only by separate single papers and containing only solutions of partial
problems.

Research results in area of mechanics of hereditary discrete systems, obtained
by authors of this paper, are generalized and presented in the monograph [35], published
in 2001 by Gorosko and Hedrih (Stevanovi¢)), which contains first presentation of
analytical dynamics of hereditary discrete systems. We can conclude that this monograph
contains complete foundation of analytical dynamics theory of discrete hereditary
systems and by using these results, numerous examples are obtained and solved (see
Refs. [35-54]). In this analytical mechanics of hereditary discrete systems, modified
Lagrange’s differential equations second kind in the form differential and integro-
differential forms with kernels of relaxation or rhelogy are derived.

3.1.2. Models of hereditary elements in analytical dynamics of hereditary
discrete systems.

Hereditary system is each system which contains mutual hereditary interaction
between material particles in the form of one or more coupling constraints with
hereditary properties.

Simple visco-elastic element is Voight’s type element (Woldemar Voigt, 1859-
1919). In the state of extension resultant force appears by two components, one by visco
and one by elastic properties in the deformation of visco-elastic element and constitutive
stress-strain relation given as relation between force and extension of element in the
following form:

P(t)=cy(t)+ w(t) (1)
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In Mechanics of hereditary continuum in the case of axial (in one direction)
stressed and deformed Voight’s type body stress strain constitutive relation is expressed
by following relation: & (t)= Ee(t)+ &(t). More acceptable and precise and better

compatible with experimental data with real hereditary body properties is model of the
standard visco-elastic body (Kelvin and Poyting-Thompson’s body). Constitutive stress
strain relation given as relation between force and extension of element in the following
form:
nP(t)+ P(t)= ncy(t)+ Cy(t) )

In mechanics of hereditary system constants N, C and C obtain special names: time of
relaxation, rigidity coefficients, one momenteneous and prologues one.

For generalized hereditary element model relation between force and
deformation is possible to describe by differential equation high order derivative in the
following form:

m k m k
Zakd—P+P(t)=b0x+Zbkd—i( (3)
r=1 dtk k=1 dt

For more complex viscose elements (represented by the Jeffreys’ bidy (J-body)
and Lethersich’s body) stress-strain state is described by differential equation in the
form:

nP(t)+ P(t)=b,y(t)+nb,J(t) @

Equivalency and analogy of hereditary interactions and reactive forces in
systems of automatic control gives possibility to extend theory of analytical dynamics of
hereditary systems to mechanical systems with automatic control. For example,
automaton with transfer function presented in the following form (see References [36]
and [37] by Gorosko and Hedrih (Stevanovic)):

by +bip+..+b,p"
W(p)= 0 blp npn
1+ p+...+a,p

presents a hereditary interaction (3) between material particles of the discrete mechanical
system with one degree of freedom.

Parameters of the automaton of arbitrary structures are defined in an experimental
way and it is possible to obtain amplitude-phase characteristic. In our opinion there are
real possibilities and perspective to use method of amplitude-phase characteristic for
experimental obtaining of mechanical characteristic of the hereditary discrete mechanical
systems. It is possible to solve some difficulties with identification coefficient of the
momenteneous rigidity which appear in the mechanical investigation of the hereditary
forms and shortened longtime experiments.

()

3.1. 3. Integral models of the stress-strain state of the hereditary elements.

There are three mathematical forms for description of constitutive relations of
hereditary properties of hereditary interaction [35], in the building of hereditary system’s
mechanics. These forms are(see References [36] amd [37] by Gorosko and Hedrih
(Stevanovic)):
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1* Differential equation, expressed in the form of dependence reaction force P of
the rheological coordinate X, usually presented as deformation or relative displacement
of the hereditary constraint in the form (3).

2* Integral equation, expressed in the form of dependence reaction force P of the
rheological coordinate Yy , usually presented as deformation or relative displacement of

the hereditary constraint:
t

P(t)=c| y(t)- j.%(t -7)y(z)d z’} (6)
0

c-C -3 . : 1 .
where J(t-7)=-—¢e " is relaxation kernel, and 5 _1Lis coefficient of the
nc n

element relaxation.

This integral relation (6) can be obtained by solving equation (2) with respect to the force
P . By this integral equation, the relaxation of the reaction force P depending on the

rheological coordinate Y , is presented and expressed.
For the case of the generalized standard hereditary element (3) integral equation
is possible to obtain in the form (6) in which relaxation kernel ﬂ(t —z')presents sum

by sum of exponents.
3* Integral equation, expressed in the form of dependence rheological coordinate
Y, usually presented deformation or relative displacement of the hereditary constraint

and reaction force P :

t
y(t):% P(t)+ [$(t-r)P(c)dr (7)
0
c-¢ Lo . g . .
where S‘i(t - T): — g is kernel of rheology and B =—18 the coefficient
nc nc

of the  creep or retardation or rheology.
3.1. 4. Three forms of equations of motions of a hereditary oscillator.

Simple model of a hereditary discrete system is hereditary oscillator with one
degree of freedom which contains one material particle with mass M and one standard

hereditary element P with material visco-elastic properties defined by following
coefficients: N, cand C constitutive stress-strain relation expressed by relation (2)
between force P(t)and generalized and rheological coordinate y(t). Then by using

principle of dynamical equilibrium of the oscillator it is possible to obtain equation of the
oscillator motion in the following form:

my(t)+ P(t)= F(t) )
where P(t) is resistive reaction of the rheological element, F(t)external forced

excitation. Using constitutive relation (2) or (10) for stressed and deformed standard
hereditary (rheological) element for eliminating resistive reaction of the rheological
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element P(t) from last equation (8) we obtain three corresponding forms of the

equation of motion of the rheological — hereditary oscillator with one degree of freedom
listed as follow: one in differential form:

nmy/(t)+ myi(t)+ ncy(t)+ Cy(t) = nF (t)+ F(t) ©)
and two in integro-differential forms:

my(t)+ c[y(t) [n(t- T)y(f)dr} R (@) (10)

)+ c{y(m _jﬁ(t - omyl(c)d } CF()+ c_j.@(t F()de (11)

For the case of the weak singular hereditary oscillator equation of the dynamic
equilibrium (oscillator motion) in the differential form is not possible to obtain, but in the
integro-differential forms is possible.

3.1. 5. Thermo-rheological pendulum
3.1.5.1. Light standard thermo-rheological hereditary element

When standard hereditary element is modified by two temperatures T, (t) and
Tw (t) which are introduced by thermo-modification of visco-elastic properties by
temperature T, (t) and by thermo-modification of elasto-viscosic  properties by
temperature T,,(t), than constitutive relation between stress and strain state of the
thermo-rheological hereditary element (see Ref. [35]) is:

nP(t)+ P(t)+ nFy (t)+ Fy (t) = nca(t)+ E[o(t) - o (12)
in which

Fu (t) =CyayTy (t)’ Fe (t): Cra Ty (t) (13)
are thermo-elastic forces, and p(t) is rheological coordinate, c,,,c, are coefficients of
thermo-elastic rigidity, «,,,a, are coefficients of thermo-elastic dilatations, N is time of

relaxation, and ¢, ¢ an instantaneous rigidity and a prolonged one of an element.

Constitutive relation (12) of the thermo-rhelogical hereditary element from
differential form, we can rewrite in two integro-differential forms.

3.1. 5. 2. Light standard piezo-and thermo-rheological hereditary element

When standard hereditary element is modified by two polarization voltages U (t)
and UM(t), which are introduced by piezo-modification of visco-elastic properties of
subelement of piezoceramics, by UK(t) and by piezo-modification of elasto-viscosic
properties by U,, (t), and thermo-modified by two temperatures T, (t) and T, (t), than

constitutive relation between stress and strain state of the piezo-rheological hereditary
hybrid element is in the form (12) in which

FM (t) =Cum aUMU M (t)+ Crm aTMTM (t)
Fy (t) = Cu @Y (t)+ Crx o T (t) (14)
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are thermoelastic and piezo-elastic forces, and p(t) is rheological coordinate, ¢, ¢, are
coefficients of thermo-elastic rigidity, o, ,a, are coefficients of thermo-elastic
dilatations, c,,,Cy are coefficients of piezo-elastic rigidity, o, are coefficients
of piezo-elastic dilatations N is time of relaxation, and ¢, ¢ an instantaneous rigidity and
a prolonged one of an hybrid element.

3.1. 5.3. Pendulum with standard thermo-rheological hereditary element

The thermo-rheological hereditary pendulum has two degrees of freedom, one
degree of motion freedom defined by angular coordinate 3 and one degree of

deformations freedom defined by changeable length of thread as a coordinate p(t).

Let us compose the equations of the thermo-rheological pendulum dynamics
with thread in which the standard thermo-rheological hereditary element with
constitutive stress-strain relation (12) is incorporated. Now, by introducing force P(t) of
the extension of the thermorheological hereditary thread from constitutive relation (12)

presented into integral form, the equations of the pendulum maotion are in the forms (for
detail see Reference [52] by Hedrih (Stevanovié))'

P +gcose+[ iRt -
(15)
~ P j [Fo 7)- Fi (IR (- 2)d=P ()
(oo + p()) 6 +2(pp + p(t))G(t)+ g(pg + p(t))sin @ = M(t) (16)

This system is a system with one integro-differential and one differential equation
of the thermo-rheological hereditary pendulum with motion in vertical plane.

If the thermo-rheological pendulum is in the horizontal plane, from second
differential equation of the previous system, we can obtain the relation between the
length of the pendulum thread and of the angular velocity in the following form:

2
o(t)= g(O{LP(O)} (17)

Pot P(t)

By introducing this previous expression (17) in the first equation of the system

(16) (for the case of horizontal plane) the following integro-differential equation for the
pendulum Iength thread is obtained'

[po + ,D C b

-l o0 !p (8

J[FM ()R (t-7)dzP(t)
0

1,
m
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3.1..6. Concluding remarks

Solution of obtained integrdo-differential equation (18) is mathematical problem
in analytical mechanics of hereditary discrete system dynamics.

Also, solutions of the similar integro-differential equations are tasks for
mathematics in the function of applications in mechanics and engineering system
dynamics with hereditary properties.

In the basis of the construction of Lagrange’s mechanics of hereditary discrete
systems, the classical mechanics principles are used [35]. These principles are: Principle
of the work of forces along corresponding possible system displacements, as well as
Principle of dynamical equilibrium.

Initial conditions of hereditary system dynamics are very important, containing the
history of rheological interactions of the system. Then, it is important to take into account
stress-strain history of viscoelastic elements — interactions between hereditary system
material particles.

Analogy between hereditary interactions and reactive forces in the systems of
automatic control gives possibility to extend theory of analytical dynamics of hereditary
systems to mechanical systems with automatic control.

For description of properties of dynamics of a hereditary system by using
relaxational or rheological kernel (resolvent), these kernels are expressed by exponential
or fractional-exponential forms [35] . Descriptions of hereditary properties of the system
by using differential forms (2) and integral form (6) and (7) with exponential kernels are
equivalent. For the case of fractional-exponential forms of the kernel (6) and (7) in the
integral form corresponding equivalent differential forms not exist.

The Lagrange’s mechanics of hereditary systems is extended and generalized to
the thermo-rheological [35, 52] and piezo-rheological [35] mechanical systems.

Open directions for next research and applications. Directions for next research
in area of mechanics of hereditary discrete system must be focused to find analytical
forms of solutions or approximations of solutions of integro-differential equations and to
build mathematical theory of the material memory of the history of previous stress and
strains in the material before starting system motion and its observation. Mathematical
theory for slowing problems with determinations of the initial conditions of the
hereditary system is second main task in this area. Present in science, there are numerous
numerical approach and numerical experiments over the integro-differential equations
and numerical procedure expressed by software tools but for advances in area of
analytical dynamics of hereditary systems it is necessary analytical approach, solutions
and qualitative methods for evaluations of the system solution stability.

For practical applications in mechanics and engineering system dynamics
analytical forms of the approximations of solutions of intgro-differential equations are
necessary for easier quantitative estimation larger class of the dynamic phenomena
hereditary system behavior. All real constructions and engineering structures are with
hereditary properties.
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3.2. Analytical mechanics of fractional order discrete system vibrations
3. 2.1. Introduction

Differential fractional order equations and theirs applications in development of
analytical dynamics of discrete and continuous fractional order systems with like single
and multi-frequency modes, or fractional order modes are important results for
applications in different area of science and practice (see References (see References Il
[39-46] ).

Discrete continuum method is based on the continuum discretization and
coupling by standard light hereditary, or fractional order elements (see References [49]
and [50]). Main nets, main chains and mail fractional order oscillators with main
fractional order modes of plane as well as space coupled mechanical chains (cases with
ideal elastic, hereditary and fractional order). Fractional order standard light elements
have applications in mechanics of continuum (models of longitudinal and transversal
oscillations of beams), in biomechanics (mechanical models of double helix DNA chains
[45]), to systems with coupled pendulums, as well is in signals transfer (see
Referenceslll.).

3.2.2. Standard light fractional order element

Standard light coupling element of negligible mass is in the form of axially
stressed rod without bending, and which has the ability to resist deformation under static
and dynamic conditions. Standard light fractional order creep element for which the
constitutive stress-strain relation for the restitution force as the function of element
elongation is given by fractional order derivatives in the form (see References [40] and
[41] by Hedrih (Stevanovi¢)):

P(t)=—eox(t)+ ¢, 2 [x(0)] (1)

where @¢[s] is operator of the a™ derivative with respect to time tin the following
form:

et [ @

where c,c, are rigidity coefficients — momentary and prolonged one, and o a rational
number between 0 and 1, 0<a <1.

3.2.3. Governing equations of the fractional order multi-chain plane system
model

Coupled governing fractional order differential equations of the multi chain
fractional order plane system vibrations, according notation in Figures 5.a* and b*, and
determined standard light fractional elements by constitutive relation (1) and (2) , used
for coupling of the mass particles, are in the following form:
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. a
my Xk, j = _Ck—l,j(xk,j _Xk—l,j)+ Ck,j(xk+1,j - Xk,j)_ca,k—l,th [Xk,j - Xk—l,j]+
" - -
+Cork, i D [Xk+1,j —Xk,j]—ck,(j—l,j)(xk,j —Xk,j—1)+ ck,(,-,m)(xk,m—xk,j)— ®)
~ o ~ (24
—Cok(j-1 i) [Xk,j _Xk,j—l]+ Cak,(j,j+1) [Xk,j+l_xk,j]

k=1234,...,N, j=1234,..,M.
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Figure 5. Discrete continuum fractional order model in a plane - Hybrid
multi chain fractional order plane system. (a*) Hybrid multi-chain system, in one plane
and in the form of coupled chains by standard light fractional order elements and in the
cantilever form of boundary conditions;  (b*). Three coupled chains (j—1)-th, j-th
and (j+1)-th chains, j=12,34,...,M, as part — subsystem of the hybrid multi chain
system with coupling elements and kinetic parameters: masses, stiffnesses and fractional
order parameter of the fractional order element and generalized coordinates of the
system. Attached a separate ] -th chain of the hybrid chain system with notation of the
generalized coordinates X k=1234,.,N, j=1234,..,M.

j—th chain

Ceatii)  Cjni) Coa(jag)

Cerivike Sfjaij Cet(jtile  Citja Cja Sotja

For the homogeneous plane system corresponding to the system (3) of
fractional order differential equations let us introduce the coordinate transformation, in
accordance with trigonometric method (see References [54] by Raskovi¢ and [43], [44]
and [40] by Hedrih (Stevanovic)) in the following form: :

s=M
Xe i = D Ees)SiN @, k=1234..N s j=1234...M - (4)
)

where é‘k(s) are normal coordinates of the main chains of the hybrid plane system as

well as generalized coordinates of the s-th main chain from the sets and for the
corresponding linear system are in the form: &) =Cy)cos(@st + ) and
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s
2
system obtained by using the trigonometric method (see Refs. [54] by RaSkovi¢ (1965)
and [40], [43], [44], [45], [46] and [48] by Hedrih (Stevanovi¢) (2002, (2004), (2007),
(2009) and (2010)) depending of boundary conditions of the transversal chains in the
form of the longitudinal chain connections.

0. and ¢, are eigen characteristic numbers of the hybrid

~2 _~ KC_KC . o -
Oils) = Ufs) = AT SINT 5 T =0

%fk(s) —Cks) T (2 +Kﬁk(s))§k(s) —Gea(s) + [— Skafs) + (ZKa +’?aﬁk(5))§k(s) —§k+1(s)]= 0

k=1234,..,N,s=123,..,M (5)

Let us introduce the following coordinate transformation:
r=N r=N

Stk(s) _ Z‘fk(s)(r) _ Z”(s)(r)Sin kS, * S= 1,2,3,...., M (6)
r=1 r=1

Taking into account that sinkd, is different them zero in arbitrary cases from
(3), we can obtain the transformed system of the governing fractional order differential
equations (5) of the eigen main chains as well as the transformed basic governing system
of fractional order differential equations (3), with respect to the new introduced
coordinates 75, containing m«n independent subsystems for each pair of the (s)r)

from the sets s—123...m and r=1,2,3,4,...., N in the following forms:

2 2 a
i) * @y ooy + @ik X i ]= 0. (7)
s=123,.,M:r=1234,..,N
where
a)j(s)(r) = %<2(1«a -1+ Us)r) +(z?a-;c)a‘k(s)> v 5=123,...M,r=1234,... N (8)
This last system of fractional order differential equations (7) represents m xn
independent partial fractional order differential equations describing independent
fractional order oscillators each with one degree of freedom and eigen normal coordinate
NGs)r) + $=123..,M:r=1234,..,N of the considered fractional order hybrid system

and containing Nsets of the M eigen main chains normal coordinates
N(s)r)rs=123...M » F=1234,..,N. Then, we can conclude that simultaneously with

determination of the normal coordinates of the eigen main chains, we determine as well
as normal coordinates of the considered hybrid fractional order plane system vibrations
with mxn degrees of freedom. Also, we can conclude that normal coordinates for the
linear system, correspond to the normal coordinates of the corresponding fractional order
system and expressions for generalized coordinate transformation to the eigen normal
coordinates of the basic linear system vibrations, we can use for the corresponding
coordinate transformation of the corresponding fractional order hybrid system vibrations
to the eigen normal coordinates.

3.2.4. Eigen factional order signals and eigen main chain signals in the
fractional order multi-chain plane system model

Type of the obtained fractional order differential equations in the system (7) is
same as in numerous author’s papers, but with different coefficients. These coefficients
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are sets of eigen circular frequencies w(zs)(,) and fractional order material properties

characteristic numbers wj(s)(,) in the form:

oty = asin? 24 21-cosg,)| + =123 M T =1234, N ©)
o = > :

D) = %<2(xa ~1)+ 2(1—cossr)+4,?asin2%>, s=123...M,F=1234,..,N (10)
which depend of boundary multi-chain system conditions determining characteristic

numbers: ¢, and 9, (see Refs. [54] by RaSkovi¢ (1965) and [40], [43], [44], [45], [46]

and [48] by Hedrih (Stevanovi¢)).

Now, taking into account solutions of the fractional order differential equation
(see Reference [38] by Bacli¢ and Atanackovi¢ (2000)), for the system of the fractional
order differential equations (7), we can write corresponding solutions of N(s)r) -

s=123..M,r=1234,..,N, in the form of fractional order like one frequency time
functions which are eigen main modes and normal coordinate 7),) of the fractional
order plane system in the following expansion:

© k k (?l)l a)i -5 g t_aj
ﬂ(s)(r)(t) = ﬂ(s)(r)(O)Z(—l)k wﬁ?s)(r)tZKZ( ]23)()+

o= =) o rek+1-a) (11)
- SONG 5( -
-~ (O) (_1)k zkS r,[2k+1 [j a(s)r)

s=123..,M,r=1234,.., N
This last expressions (11) determines eigen normal fraction order like one frequency
modes of the hybrid fractional order system corresponding to one eigen circular
frequency and corresponding eigen fractional order properties characteristic number (10)
of material fractional order properties of standard light elements. Also, we can conclude
that the expressions (11) are mathematical descriptions of the main normal fractional
order like one frequency signals.

Now, taking into account coordinate transformation:

& ):ri'ffk( Zn ysinkd, (12)
sz sin jog = %%q )sinkd, sin jog (13)

s=1 r=1
and solutions (ll), we obtain expressions for the like multi-frequency fractional order
generalized coordinate in the following form:
1* eigen normal coordinates for obtaining eigen main chains and generalized
coordinate of the eigen main chains,

r=N 0
= 2 s 0)sin p 8, Y (-1 s ZkZ[ j
r=1 k=0 (s r
r=N (1 )Jw 5
. ] 9 o s r 2k+1 -
+§77(s>( ) )sin p Z Z[J%k )1“(2k+2 aj)

j=0

[

(2k+1 aj)

1J2 -dj
s

(14)
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p=123..,N,s=123,..,M

2* generalized coordinate of the hybrid fractional order system:

s=Mr=N -
¢= .Y sinpd, SIrlqgosZU 0)sin ps Z iyt ZkZ( j2|<+1)04)+

s=1 r=l

s=Mr=N K (k (+1) @ 1) -aj
+ Sin P, sindes > _7i(sr)(0)sin p g, D oZyot™ [J“(S(r)

;; Sz z S r ; ] a)(zsi(r)l“(anLZ—aj)

p=123...N ,Q=123...M (15)

3.2.5. Eigen factional order signals and eigen main chain signals in the
fractional order multi-chain space system model

For the homogeneous fractional order multi-chain space system dynamics,
presented in Figure 6, by the similar way as in previous chapter I11.2.4. is possible to
write system of coverning fractional order differential equations by use coordinate
notation from Figure 6, and corresponding material system coordinates.  Then let
introduce the following coordinate transformation:

s=K . —
X0 = 2 & sinkey 1 =E23 4 N -1234 k=123...K. (16)

s=1

where g((isf(j), i=1234,...,N, j_1234,..m fOreach s=123...,K,are normal coordinates

of the main plane subsystems R(S), s=12,3,....,K in the form of the independent K
plane nets each consisting of the coupled M chains each with N degrees of freedom.
os,5=123,....,K are eigen characteristic numbers of the hybrid system and
according trigonometric method (see Refs. [54] by RaSkovi¢ (1965) and [40], [43], [44],
[45], [46] and [48] by Hedrih (Stevanovic)) depending on boundary conditions of the
transversal coupled chains in the form of the normal direction of chain connections
between parallel plane nets, determined by direction of increasing indices
k=123,.. . Each of these K main and independent plane nets are with N xM

degree of freedom with N x M normal coordinates § 1i1=1234,.,N s j_1234,..m TOF
each s=1,23,....,K and are like multi frequency fractlonal order time functions form K

independent subsets of circular frequencies a)éf))( i) and corresponding fractional order

characteristic numbers “’S}i),(j) i=1234,....,N, j_1234,..m fOreach s=123,...,K
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Jk—th chains
—th chains
n ST Fr {754} (k—1)-th chains
P "“ X
Ers=t (327} (k-2)—th chains
Mil1,j-1k-2 i Aj-1k-2
4
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b*

Figure 6. Discrete continuum fractional order space model - Hybrid multi chain
fractional order space system. (a*) Hybrid multi-chain system, in space and in the form
of coupled chains by standard light fractional order elements and in the cantilever form
of boundary conditions;  (b*). The coupled chains (j-1)k-th, jk-thand (j+1)k-th
chains, and (j-1)k-th , (j-1,(k-1-th , and (j-1)(k-2)-th, j=1234,..,M,
k=123,...,K as part — subsystem of the hybrid multi chain system with coupling

elements and kinetic parameters: masses, stiffnesses and fractional order parameter of the
fractional order element and generalized coordinates of the system, with notation of the
generalized coordinates x,, , k=1234,..,N, j=1234,...M, k=123...K.

Taking into account that sinke; is different them zero in arbitrary cases from

system of governing fractional order differential equations, we can obtain the
transformed basic governing system of fractional order differential equations with respect

to the coordinates é((is)?(j), i=1234,..,N, j_1234...m Containing K independent
subsystems of coupled fractional order differential equations of like multi-frequency
N x M -frequency main plane nets for each S from the set of s=123..k in the
following forms:

9 4(6) ) () (s)

i) f(m),(n*’f[ 0N *256)) 5<i>,<j+1>]+

+ 8 ey )+ @+ T8 K - el a2+ 2680 - Bl
i=1234,..,N, j=1234,..M1 §=123,...,K (17)

M) (o) 7(s
< 200) &+ ),
)

Previous obtained K subsets of fractional order differential equations describing
dynamics of the main subsystems is expressed by new coordinates 5((3,)( j)r 1=1234.N

j—1234..m containing K independent subsystems for each S from the set of

$s=123..,K .

These subsystems present K mathematical descriptions of dynamics of independent
eigen main plane (or surface) nets containing coupled chains with corresponding subset
of the eigen circular frequencies and corresponding fractional order characteristic
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numbers of main plane (surface) nets. Through these eigen main plane nets is possible to
transfer subset of the signals with frequencies from the corresponding subset of the eigen
circular frequencies. These signals are fractional order like N x M frequency signals.
Next approach is similar as in the previous chapter I11.2.4. for system containing coupled
chains in one plane. Then, due to the limited length of the paper, we will not to present
all derivatives and suppose writer to follow previpus chapter to obtain independent
subsystems of the fractional order differential equations describing main independent
fractional order oscillators each with one degree of freedom, in the form:

FENe) 4 wé)(,)(p)§(s)(')(p) + 0oy o BE [g(s)(r)(p)J: 0, (18)

$=123,...K, r=1123...M ,p=123...N

where
5((?’)“) _ r:Mn((is))(r)sin g i=12,34,..N, i=1234,..M15=123,..,K (19)
r=1
p=N
q((is’))(r): g(s)(r)(p)néi“’))(r)sinir,z/p L i=1234.,N . 52123, K ,
p=1
r=123...,M (20)

Previous system (18) contains N xM xK independent fractional order
differential equations each only along one coordinate ;(S)(r)(p),s:1,2,3,....,|<,

r=123...M,p=123...N. . These coordinates ¢\ NP} (155 i
r=123..,M,p=123..,N, are normal coordinates of the hybrid discrete fractional

order space system containing parallel coupled chains in the parallel planes and in the
parallel lines in these planes.

Number of fractional order partial oscillators is equal to the product N x M x K
and equal to the number of the system degrees of freedom.

3.2.6. Concluding remarks

Then we can conclude that through eigen main plane (surface) nets R(s),
§=123,....,K, it is possible to transfer like N xM -eigen frequency fractional order

signals as independent on other subsets of plane like N xM eigen frequency fractional
order signals in other eigen main plane nets R(S), s=123,...,K.

Each eigen main fractional order plane nets R(S), $=1,23,....,K is possible to
decompose into M independent eigen chains, in total there are M xK main
independent chains of all space system, with normal coordinates n((is))(r)
i=1234,..,N,s=123,...K,r=123,....,M of these independent eigen chains . Then we
can conclude that through each independent eigen main chain is possible to transfer like
N - frequency fractional order signal, as well as that coordinate 77((5)(') are N -

frequency fractional order time functions with corresponding main chains sub set of N -
frequencies and corresponding characteristic fractional order properties numbers.
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From the last obtained system (18) containing N xM x K independent
fractional order differential equations each along one normal coordinate

NP ¢ 103 Kk, r=123..,M  p=123..N We can conclude that each of these
normal coordinates of the system is like one frequency fractional order time function

with  eigen circular frequency from the set wé)(r)(p), $=123,....K,
r=123..,M,p=123..,N and fractional order characteristic numbers a)i(s)(,)(p),
s=123,...K, r=123,...,M ,p=123..,N describing fractional order properties of the
system eigen vibrations. Number of fractional order partial oscillators is equal to the
product N xM x K and equal to the number of the system’s degrees of freedom. Then
we obtain normal coordinates for the transfer of one frequency fractional order signals
through space fractional order vibration structure.

Then, we can conclude that simultaneously with determination of the normal
coordinates of the eigen main nets and eigen main chains we determine as well as normal
coordinates of the considered hybrid fractional order system with nxmxk degree of
freedom. Also, we can conclude that normal coordinates for the linear system,
corresponding to normal coordinates of the corresponding fractional order space system
and expressions for generalized coordinate transformations to the eigen normal
coordinates of the basic linear system we can use for the corresponding coordinate
transformation of the corresponding fractional order space hybrid system to the eigen
normal coordinates for the considered hybrid system.

Open directions for next research and applications. Directions for next
research in area of mechanics of fractional order discrete system must be focused to find
analytical forms of solutions or approximations of solutions of fractional order
differential equations different types and integrals.

Also, applications of the fractional derivatives and fractional integrals for
describing constitutive relations of different types and sources of material . Research in
this area nust be focused also to the experimental investigation of the material constants
and parameters defined by fractional order derivatives and operators.

For practical applications in mechanics and engineering system dynamics
analytical forms of the approximations of solutions of fractional order differential
equations are necessary for easier quantitative estimation larger class of the dynamic
phenomena fractional order system behavior. All real constructions and engineering
structures are with plastic properties.

4. Advances in elastodynamics, nonlinear dynamics and hybrid system
dynamics

4.1. Krilov-Bogolyubov-Mitropolyski asymptotic method of nonlinear
mechanics, method of constant variation and averaging method

The different first approximations of solutions of nonlinear differential
equations have very large applications in engineering practice for fast evaluations of the
kinetic parameters of engineering dynamics (see Reference [55-57] by Hedrih
(Stevanovi¢) and [58-60] by by Hedrih (Stevanovi¢) and Simonovi¢). Some time these



Advances in classical and analytical mechanics: A review of author’s results 327

first approximation are used for engineering practice with enough precisions and not
necessary to use second and higher approximation. One of the main reason that in this
part we take into consideration a comparison between first approximation obtained by
different method, as well as used different starting known solution for obtaining first
approximation.

Let compare three first approximations of the solution of a nonlinear differential
equation with small nonlinearity, describing dynamics of nonlinear oscillator with one
degree of freedom (see Figure 5.a*) , in the form (see Reference [55-57] by Hedrih
(Stevanovic)):

% (t)+26,% (t)+ i (t) = —@5%2(t), for 6,20, £ 20, of > 67 (1)

inwhich &, = &6, and @3, = eof,, and & and & are small parameters.

We use three different approach and three methods for obtaining first
approximation of the previous nonlinear differential equation (1). First is starting known
analytical solution of a corresponding linearized differential equation which correspond
to nonlinear differential equation (1).

IV.1.1* In first case, for starting known solution, we can take solution of the
linear differential equation in the following form:

% (t)+26,% (t)+ 0% (t) =0, for 5,20, £ =0, of > 6} ()
with known analytical solution in the form:
x,(t) = Ryse " cos(pit + gy ), for 8, 20, £ =0, &f > 57 ?3)

in which circular frequency of damped vibration is in the form p, = wla;f —512 and, Ry,

and  « are integral constant depending of initial conditions. Amplitude of this

oscillation is in the form Rye ™" and decreasing with time.

4.1.2* For finding first approximation of the nonlinear differential equation (1),
we take starting known analytical solution (3) of linearized differential equation in the
form (2) and as a possible firs approximation of the solution we take into consideration
the following

x,(t)=Ry(t)e " cosd,(t) , for &, #0, %0, wf > &6 (4)
in which a(t) = R, (t)le~** amplitude and full phase @, (t)= p,t+¢,(t) contain unknown

functions of time Rl(t) and ¢1(t) which need to determine. For this fist approach, we

applied Lagrange method of variation of constants to the known solution (3) of the
linearized differential equation corresponding to nonlinear differential equation (see
Reference [55-56] by Hedrih (Stevanovi¢)). After obtaining system of differential

equation along unknown functions of time Rl(t) and ¢1(t) we applied average to the

obtained members along one period of the T, = 2% = 2z damping vibrations.

p ./ a)lz _ 512

Then, after differentiation along time of the proposed approximation of the
solution (4) we obtain:
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% (t) = —6,R, (t)e ™" cos @, (t)— Ry (t)e ™ p, sin @, (t)+ (5)
+Ry(t) e cosdy () Ry (t)e 4 (t)sin @y (t)
to which we introduce condition that this first derivative (5) of the proposed first
approximation of the solution (4) have same form as solution (3) of the corresponding

linearized differential equation (2), by other words, this condition express the following:
that this first derivative (5) of the proposed first approximation of the solution (4) have

same form as in the case that unknown function of time Rl(t) and ¢1(t) are constant.

After applying introduced previous condition we obtain first derivative of the
proposed first approximation (4) of the solution in the following form:

%, (t) = —8,R, (t)e ™" cos @, (t) - Ry (t)e ™ p, sin @, () (6)
and the following condition
Ry(t)cos @, (t) - Ry(t) i (t)sin @, (t) =0 (7)

that unknown functions of time Rl(t) and ¢1(t) must to satisfy.

Second derivative of the proposed first approximation (4) of the solution is in
the following form:

5(t) = (52R, (1)~ Ry(t)p2 — 5,R. (1) R (t) pudh " cos @y (1) + @

+(8R.(t)s + 26,R, (1) pr - Ry (t) py Je* sin oy (1)
Alter introducing first (6) and second (8) derivatives of the proposed first
approximation (4) of the solution into nonlinear differential equation (1) and taking into
account condition (7) we obtain the system of differential equations along unknown

functions of time Rl(t) and ¢1(t) in following form:
Ry (t)cos @, (t)— Ry (t) e (t)sin @, (t)= 0

Ry(t)pygh cos s (t) + Ry(t) pysin @4 (t) = @z [Ry(t) F cos® @y (t) (9)
Previous obtained system of differential equations along unknown functions of

time Rl(t) and (ﬁl(t) present a non homogeneous algebra system along derivatives of

unknown function of time R(t) and ¢1(t) with determinate in the form:

- nost 0.0+, 0 10

with following solutions:

~2
Rl(t)=%=%e25ﬂ[Rl(t)]3 cos® @, (t)sin @, t)
1

~2
(/ﬁl(t):% :%e‘w1t [Rit)Fecos* @y(t), for 6,20, 20, w?>82 (11)
1

Then, after obtaining previous system of differential equation (11) along

unknown functions of time, Rl(t) and ¢1(t) we applied average to the obtained
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members along full phase @, (t) = p,t + ¢,(t) in interval ® [-,27] correspond to one

period of the T, = 2z 2—”damping vibrations:

21 ~o

rel(o:% e 2[R ()P oos” @ t)sin @t 1)
o ™

27 ~9

=5 Ile e 2% [Ry(t) [ cos* @, (t)dd,(t), for &, =0, (12)
T

£=0, of > 57
Then, we obtain a system of differential equations along unknown functions of
time Rl(t) and ¢1(t) in first averaged approximation:

R.1(t) =0
~2
ht)= g % e 2% [R,(t)f for 8,20, 20, of > (13)
1
After integration of the previous system of differential equations along unknown

functions of time Rl(t) and ¢1(t) in first averaged approximation for known initial
3

values in first approximation t=0, R;(0)=Ry 1 ¢(0)= ¢y, = ———— @R + g We
1651 Py

obtain:

Ry (t)= Ry = const

)=~ — R 2 1) oy = - haREe (14)

166,p, 166,p,

for 6,20, 620, w? > 67

where g, = @y +L5)§1R§1, and full phase is in the form:
166, p,
Dy (t)= pit+h(t)= pot - 3 leRgl(efwlt —1)“‘ o1 = Pyt —Lg)r%|1|:zc§1972§1t + Qo>
165,p, 166,p
for 8,20, 20, w?> 57 (15)

Then first averaged approximation of the solution of the nonlinear differential
equation with hard cubic small nonlinearity (1)

3
t)= Rye %" cos| pjt ————
)R o 1o
for 6,20, £=0, of > 57 (16)

In the case that, we have a nonlinear differential equation with sogt cubic small
nonlinearity in the following form:

leRme L+ 0501J )
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% 1)+ 26, % (1) + 0% (t) =+ 32 () for 6,20, %20, of > 67 (17)
on the basis of the previous obtained firs averaged approximation of the solution we can
write:

X (t) = Rope™ COS( pit + % paRGe 2 + 0501) :

1M
for 5,20, %0, of > 6F (18)
where for known initial values in first approximation t=0, Rl(O)z R, mand
3 ~2 2 -
0)= @y, = ————o{1Ry1 + @1 We obtain:
$(0)= gy 165,p; N1Ro1 T o1
3 oo
ap = P ——prlRm . (19)
For the case that for 6, =0 we can use the system of differential equations

along unknown functions of time Rl(t) and ¢1(t) in first averaged approximation (13)
and before integration put &, =0, and after that applied integration, or find limes of the
26t
solutions (16) and 18) for 6, — 0, and taking into account that is (%imoﬁeg—l):—Zt,
- 1

obtain first averaged approximation of the solution of nonlinear differential equations (1)
as well as (17)

% (t)+ 25,% (t) + @f % (t) = Fag 6 (t) (20)
in the following form:

X (t)= Rye ™" cos{ pt¥ % i REe ™t + amj

101
for 5,20, €20, w? > 6¢ (21)
3 ~2 2
where oy, = ¢y = ——— w5 R
01 ¢01 1651[31 N1'*01

X, (t)= Ry COS<(@1 i%@iﬁé}‘ + ¢01> :
(2]
for 5,=0,5=0 ¢#0, & > 67 (22)

4.1. 2.1* In second case, for taking starting known solution for obtaining
approximation of solution of the nonlinear differential equation (1), we can take solution
of the linear differential equation in the following form:

X(t)+ p?X(t)=0 (23)
with known analytical solution in the form:

X(t) = acos(pyt +ap) (24)
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in which circular frequency of harmonic vibration is in the form p = ,/a)f —512 and, a
and ag are integral constant depending of initial conditions. Amplitude of this
oscillation is in the form a and is constant and no depending of time.

A
@,(t)= p, = const - linear; system with linear damping

- soft nonlineait! (1) w%u")ﬁl[a(t)]z' hard nonlinearity
H )

P a(alt))

a* b*
Figure 7. a* Nonlinear system with one degree of freedom. b* Amplitude-frequency
characteristic for free vibrations of the system damped nonlinear dynamics with of soft
and hard nonlinearity

4.1. 2.2* For that case, we must transform nonlinear differential equation (1)
taking into account the following generalized coordinate transformation:

X =xe or x=Xe ™, (25)

After generalized coordinate transformation an transformation of differential
nonlinear equation (1), we obtain:

d’X 25t

Gzt = ot (26)
where

& (x e—51t)e 52 ~3(t)e—251t 27)

Let start with general form of the nonlinear differential equation in the form:

ﬂ+25d +atx = | x & (28)

dt? dt dt

For small parameter £ =0 we obtain linear differential equation

d X dx 2

g 25d +0°x=0 (29)
with solution:

x =ae *cosy =e X (30)
with amplitude ae™® with phase y = pt+a , where p =,/o* -5° and also:

da _ 0 dv = p = const (31)

dt dt
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In which aand « are determined by their initial values. By generalized coordinate
transformation (25) nonlinear differential equation (28) take the following form:

2~ - —~
[‘ZT;‘ + <a)2 - 52>i] = o (ieé‘ ,z—:e*f" jeé‘ (32)
or
25 - = = =
(ZT;(+ pzizef[ie‘&,i—:e‘&je& :d(i'i_)t(’rj (33)

In beginning, we supposed that 5:515 , and that & is same order of small value as

gand that 7 =&t is slow changing time and that for one period T, =2—” change of the
p

system dynamics is small, and that function J[ie&,i—:eﬂ = J[i(;—):rj satisfy all

necessary conditions for application of the asymptotic method Ktilov-Bogolyubov-
Mitropolyski  for application f the method with slow changing system dynamics
parameters and with slow changing time (see Reference [61-68] by Yu. A.
Mitropolyskiy).

Then, the n-the asymptotic approximation of the two parametric family of a
one frequency solution of differential equation (33) we suppose in the form:

xe® =X =acosy + &U,(a,w,7)+ U, (a,p,7)+... (34)
where U,(a,,7),U,(a,w,7), .... periodic functions of y = pt+¢(t), with period 27,

and no containing first harmonic of ¥, and where amplitude and phase A and Y are
unknown functions which are determined by system of differential equations
corresponding order n-th asymptotic approximation along amplitude and phase in the
form:

z—?zgﬁﬁ(a,r)+82A2(a,r)+...
dd—‘;/: p+eB(a,7)+&%B,(a,v)+... (35)
where A(a,z), Ay(a,z), ..., and Bi(a,z),B,(a,V),.... Are unknown functions of

amplitude and slow changing time.
Introducing, on the basis of previous formulated condition we can write:

27
IUj(a,w,r)einW:O i=12,..m (36)
0

Then, we calculate first and second derivatives of the n -th supposed asymptotic

approximation ot the solution in the following forms:

%); — _apsiny + S{Al(a,r)cosy/ —aB,(a,7)siny + g% + p%} + (36)

+ gZ{Al(a,r)cosv/ —aB,(a,z)siny + Ai(a,r)%+ Bl(a,r)%+ pau—2+gau—2}+s3...
oa oy oy or



Advances in classical and analytical mechanics: A review of author’s results 333

d2x
— —ap cosy +
dt?

siny +
dz dt P |// ('7‘[2 1'7‘[?’

dA(a,7)dr cosy —a
dr dt

+c{—2p/\sinw—2paBlcosq/+ dBl(a’T)dT i 22 Ul 6ZU1 AZU } (37)

+e {(AldAi aB? - 2paszcosw (2pA2+2AiBl+Aia— squ}

A2 2 2y
('au1+2pl31(3u1 2 0%, U, &, gAiau %

2
+&°92
¢ { PA Zaoyw P o T TPy T ova

+6‘34u

After introducing previous asysmptotic aproximation of the solution (34) and
their first and second derivatives into nonlinear differential equation (33) and applying
method of equal coefficient of the small parameters un left and right side of
transformation of nonlinear differential equation, we obtain series of the relation between
unknown functions U,(a,y,7),U,(a,w.7), ... . Alarz), Alaz), ..., and
B,(a,7), B,(a,v),..... For the reason that we need only first asymptotic approximation of
the solution, we take into account the following relation obtained from coefficients with
first step of the small parameter &

—2pA(ar)sin®y = f(e"*{acosw},e"*{f apsiny }p* siny

~2paB,(ar)cos’y = f (e {acosy },e*{-apsiny | * cosy (38)
Taking into account development of the previous expressions along full phase
w = pt+g(t) we obtain relations — equations for obtaining unknown functions A (a,7)

and Bl(a z’) in the following form (see Reference [61-68] by Yu. A. Mitropolyskiy).:

Alar) ——I( {acosy}e {—apsinw})e‘;fsinyxdy/

27

B,(azr)=- 27z1pa !?(e “{acosy e ’5’{—apsiny/})egr cosydy (39)

Then taking into account that &f (xe‘at ((jj)t( e“i) ef(iz—:rj and differential

equation in the form (33) and introducing (27) in previous obtained expression (33) for
obtaining functions A (a,z) and By(a,z) we can write:

Ay(at)=0
1 3 3 .
sBl(ar)=%wf,1aze 26 1" 87zp wha%e ™t (40)

where &, (8, =506, and @F, = i, for & and &, same order small values.

Then, system of differential equation (35) along a and v in the first
asymptotic approximation is possible to write in the following form:
da
o

dV/ 3 2,-265t
=p+—owya‘e 41
m =p 8 a)Nl (41)
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and first asymptotic approximation of the solution in the form
xe* =X =acosy orinthe form: x=Xe ® =ae * cosy (42)
In the previous first asymptotic approximation full phase is in the form:

3 _ s
l//(t): pt—@mﬁlel(e 2 —1)""//01 =pt-

for 6,20, e #£0, 0?>82, p=yaf -7 .

We can see and conclude that first approximation of the solution of considered nonlinear
differential equation (1) obtained by application different methods, first method of
variation constant with average along full phase, and asymptotic method by Krilov —
Bogolyubov-Mitropolyski (see Reference [61-68] by Yu. A. Mitropolyskiy) give us same
results, but with different methods and proof.

3~y L2 25t
— o Rye T + gy s (43)
166, N101 o1

4.1.3.1* In third case, for taking starting known solution for obtaining
approximation of solution of the nonlinear differential equation (1), we can take solution
of the linear differential equation in the following form:

X+ wix=0 (44)
with known analytical solution in the form;
X(t) = a cos(awt + ag). (45)

in which circular frequency of harmonic vibration is in the form @, and, a and «,are
integral constant depending of initial conditions. Amplitude of this oscillation is in the
form a and is constant and no depending of time.

4.1.3.2* For that case, for finding first approximation of the nonlinear
differential equation (1), we take starting known analytical solution (45) of linearized
differential equation in the form (44) and as a possible firs approximation of the solution
we take into consideration the following

X(t) = a(t) cosd(t)., for 5, 0, £ 0, w? > & (46)
in which a(t) amplitude and full phase ®,(t)=et+¢(t) contain unknown functions of

time a(t) and ¢1(t) which must to determine. For this third approach, we applied
known Krilov-Bogolyubov-Mitropolyski asymptotic method of average to find first
asymptotic approximation of the solution of nonlinear differential equation (1).

Then we start with nonlinear differential equation

X+ w] X = &f (X, X), (47)
and suppose first asymptotic approximation in the form:
X(t) = a(t) cos d(t). (48)

where unknown functions a(t) and ®(t) are determined from the system of differential

equations of first asymptotic approximation (see Reference [61-68] by Yu. A.
Mitropolyskiy) in the following form:
da(t
dt
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OO _ 0 +280a) (48)
where
1 27
A(a) = By I f (acoscb, —aa sin d))sin O doD,
ﬂ'C()_L 0
2
B(a)=— If(acosd),—aa)lsin ®)cos ® do. (49)
2ram 0

For our nonlinear differential equation (1)
f(x, %) :—(25>'(+a)§l x3), (50)
where je &, =6, @i, = cwd.
Taking into  account initial values in  first  approximation
t=0:a(0)=a,, ®(0)= @, we obtain that

a(ty=ae " =ae™,

o) = oyt - 022l 1)+ o, (51)

; 3
2 o2 ( 26t
wnagle -1+ D, =yt -
160w, N 0( ) o= 1660

and first asymptotic approximation of the solution of a nonlinear differential equation (1)
around harmonic starting known analytical solution, we can write in the following form:

X(t) = a,e " cos{wlt - wia2 (e’z‘slt —1)+ (DO} (52)

160 0,

From this obtained first asymptotic approximation (52) of the solutions of
nonlinear differential equation (1) with starting known analytical harmonic solution (45)
in the case for damping coefficient tends to zero &, — 0, and taking into account that is

_ letog L ) - .

b[lino 5 =-2t, we obtain first asymptotic approximation of the solution for
1 1
conservative nonlinear system vibrations in the form as in the previous two case obtained
first approximation of solution of same nonlinear differential equation (1) by use
different method and different starting known analytical solution.

4.1.4. Concluding remarks

Let we made a general review of the obtained results for approximately solving
of the nonlinear differential equation with small cubic nonlinearity in the form: :

-- - 2 =2 3

%, (t)+ 265 (t) + o %, (t) = Faoge (t) (53)
in which hard or soft, refers to + sign approximately, &, = 5151 and &g, = gy, and
e and g are small parameters (see Figure 7)..

By use first two methods, starting known analytical solutions in the form (3) and
we obtained same first approximation of the solution in the following form:
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- 3 ~2 L2 st
% (t)= R, " cos| p,tF w2 REe?M 4 o
1() 01 (pl 165, p, N1Mo1 01|,
for 5,20, 620, o > &7 (54)

where oy =¢o1i%0~)ﬁlR§1- For the case that damping coefficient tends to zero,
1Py

from this first approximation (54), we obtain first approximation of the solution for
conservative nonlinear system dynamics in the following form:

3 -
%, (t)=Rg; COS (0)1 is—wrilelJt + P01
(]

for ,=0,5=0 ¢#0, of >5’ (55)

We can see that circular frequency of nonlinear dynamic of conservative system
is not isochroous and depends of initial conditions — initial amplitude.

For the case that coefficient of the cubic nonlinearity tends to zero, from this
first approximation (54), we obtain known analytical solution of the linear no
conservative system dynamics in the following form:

X (t) = Rose ™ cos(pyt +axgy ),
for 6,#0,6=0,0? > 82 @, =0 (56)
From the third case we start by harmonic known analytical solution in the form

(45), we obtain the following first asymptotic approximation of the solution of same
nonlinear differential equation:

_s 3 _
X(t) = a,e " cos| iyt F———wiale ™ —1)+ @, |
V) =a, |:w1 1650, 2\ o( ) 0

for 6,20, £#0, of > 67 (57)

This asymptotical approximation is different them in previous case (54) and this
is normally because we take different starting analytical known solution if different basic
linear differential equations as a two different linearizations of the considered same
nonlinear differential equation.

For the case that damping coefficient tends to zero, from this first approximation
(57), we obtain first approximation of the solution for conservative nonlinear system
dynamics in the following form:

_ 3
X(t) = a,e " coy| | o £ ——— i@ [t+ D, |,
() 0 |:(wl 1651(01 N1%o o}

for 6,=0,5=0 20, & > 65’ (58)
same as in the previous cases (55).

For the case that coefficient of the cubic nonlinearity tends to zero, from this
first approximation (57), we cannot obtain known analytical solution of the linear no
conservative system dynamics in the form (56) but we obtain:
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Xl(t) = Rme_&lt COS(a)lt + 0‘01),

for 6,20, £=0, o? >6f @j;=0 (59)
not acceptable, because in this case starting solution was harmonic. In this case if we
need harmonic solution we must annulled parameters of cubic nonlinearity and of
dumping in the same time.

Then we can conclude that first two approach (54) for obtaining first
approximation are more general and more suitable for use in the considered
approximation of the solution them (59).

Open directions for next research and applications. Directions for next
research in area of approximation must be focused to find analytical forms of
approximations of solutions of nonlinear differential equations. Present in science, there
are numerous numerical approach and numerical experiments over the nonlinear
differential equations for numerical slowing nonlinear one, or coupled system of
nonlinear differential equations, but these are only particular solutions without proof that
these solutions are right, and general.

For practical applications in mechanics and engineering system dynamics
analytical forms of the approximations of solutions are necessary for easier quantitative
estimation larger class of the nonlinear dynamic phenomena and nonlinear dynamics of
the stem behavior.

4.2. Hybrid system dynamics with complex structures and transfer energy

4.2. 1. Governing coupled partial differential equations of transversal
vibrations of coupled axially moving double belt system

The sandwich belt system contain two belts coupled by distributed discrete light,
neglected mass, ideally elastic belts with stiffness C m as a elastic layer. The both belts

are represented by area of the constant cross sections A along length l between
rolling and fixed bearings A and B, and by p the density of the belt material. Let

suppose that sandwich double belt system is moving in the axial directions X with an
axial velocity v(t). The transversal vibrations of the sandwich double belts are

represented by the transverse displacements Wl(x,t) of upper belt and WZ(X,t) of

lower belt. b is damping coefficient of the damping force distributed along belts. Also,
let suppose that displacements are small, and that cross sections during the transverse
vibration haven’t deplanations. Also, it is supposed that both belts are loaded by active
axial force, due to the belts’ tension, and external distributed excitations

q(i)(x,t), I =1,2 perpendicular to the x-axis, than in stressed state in the belt’s cross
section appear normal stresses with intensity o, almost sure constant intensity during

the time vibrations and along the length of belt between bearings. Than we can conclude
that normal stress o in belts of sandwich double belt system for a cross section during
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vibrations change only direction. For both belts in this double belt system, let’s accept a
string (wave)-like type model between two rolling bearings.

In Figure 8. a* the kinetic parameters of the transversal forced vibrations of the
axially moving sandwich belts are presented, and in 8.b* the elementary segment, with
length dx , of the axially moving sandwich belt system excited by external transversal

distributed forces and notations of the kinetics parameters are pointed out. ql(X,t) and

a, (X,t) are external transversal excitations distributed along upper and lower belts

between rolling bearings and are function of the coordinate X directed in the direction of
the axially moving belt system.

Using d’Alambert principle of dynamical equilibrium and applying to the
transversal forced dynamics of the elementary segment of the axially moving sandwich
belt with length dx and notations of the kinetics parameters pointed out in Figure 8.b*
for both component belts in double belt system, similar as in the paper [75], we can write
the following system of the transversal forced vibrations of the component belts in the
axially moving double belt system:

pAdx—Dzvélt(ZX’t) =—oAsina, +oAsin(e; +day )-
_bMdx+c[w2(x,t)—w1(x,t)]dx— y (x, t)dx
pAdXDZLEX’t):—GASinaz +oAsin(a, +da,)- )
_pDwe(t) g cfw, (x,t)—wy (x,t)Jdx + g, (x, t)dx

Dt

X

=const
onst
| o
(%, )+ aV\%():('t)dx
X

4)(-] X+ dx X"

iV
Ay

Figure 8. Transversal forced vibrations of the axially moving sandwich belts
a* Kinetics parameters of the transversal forced vibrations of the axially moving
sandwich belts
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b* Elementary segment of the axially moving sandwich belts with length dx and
notations of the kinetics parameters for the case of the forced regime

Having in mind that the transversal belts’ displacements are small it is right to
take into account the approximations as in Refs. [72] and [75], and also, introducing the
following denotation

_ | _|C _b = _Qi(x’t)
Co—\/:, K_\/;’ za—pA, Gi(x.t)= A )

and the following partial differential operator: vat [0]

Lx,t[-]:st—zz-(cg_vg);;;mo%u&/o%ua%wz (3)
and for the case V=V, =CONSt, previous partial differential equations (1) it is easy to
rewrite in the following forms:

L e[ (x, )] = s w (x,t)+ Gy (x,t)= 0

Lyt [Wz(xvt)]—Kle(th)—az(Xat):0 4)

These partial differential equations are coupled by last terms.

4.2. 2. Solution of the basic decoupled partial differential equations

By using new independent coordinates in the following form:

£=x
Vo
= X+t 5
22 (®)
the partial differential operator (3) obtain the following
2
_~ C -~ o~
I O P R A R Wy (6)
Co —Vo
and corresponding decomposition into two independent operators in the following forms:
~ o d
L [el=]| —+256— 7
] an + 68,7} Y]
~ * 2%y, @ K2
L o|=—F-— 0 —_— (8)
el [552 (cg—vg)ag‘ (cg—vgﬂ

then coupled partial differential equations (4) of the moving sandwich belts obtain the
following form:
2
C ~ ~ ~
S0 T 6] (63 VI (6] 2wy (6.m) + (6 = O
Co —Vo
2

2 Ly w65 8 D6 )] () - By (6m) =0 ©)
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Basic decoupled partial differential equations are:

Cepbem]= 5 0 ()] (6 - e lw(em)=0, =12 (10)

0~ 0
Solution of the partial differential equation type from previous system (10) can be
looked for Bernoulli’s method of particular integrals in the form of multiplication of two
functions (see book [53] by Raskovi¢ or Refs. [72] and [75]), from which the first
X(i)(cf), i=12 depends only on space coordinate £ and the second Y(i)(n), i=12 is

function of 7:

W(i)(é:’n):X(i)(é:)Y(i)(n)’ i=12 (11)
For beginning, the assumed solution (11) is introduced in previous system

equation (10) and we obtain two decoupled ordinary differential equations in the
following forms:

L, [v,( ]+|<ZCC oY, (7)=0 (12)
~ k2
L:[X(i>(§)]+mx(i)(§)zo (13)
and after denotations:
- _kzcj—vj 5_ N, T k? —x? 14)
¢ icj—vji' ic - )
we obtain:
d Y“>2('7 )25 dY“)(”)mZY(i)(n):o (15)
dn dn
d°X(6) 5 dx(i)(§)+zzx(i)(§):0 (16)
dé? d¢

Particular solution of the transversal displacement of the decoupled belts on the
elastic Vincler type foundation, described by the partial differential equation (10) is in
the form (11) must to satisfy the boundary conditions: displacements in the rolling
bearings must be equal to zero:

w, (x,t) =0, w(i)(g,n)k:? =0, X,(0)=0, C,=0, i=12,
n=

w (x,t) =0, w,(&n) = =0,X,(¢)=0,C,e”sinp/=00)

v,
n=l———rtt

.. . . S
and then characteristic equation have the following roots: P, =7 ,$5=1234,.......

Than, we obtain series of particular solutions for each of the characteristic eigen
numbers. Eigen amplitude functions are particular solutions of the ordinary differential
equation (15) in the following forms (see Refs. [72] and [75]):
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SE - 5e . ST
X(i)s(éz): e’ sinp& =e 55”175

for  Pug, =TA —6° = 57” A>5 (18)

=12 s=1234,.....

where
2 -
Y k —K = &/0 2 _ 92 2 2 2
M= 2>5:( > ks_/ls(co—vo)+1<
2,2 2
v,
@ 5% +K2+(—”] - §=1234,......
cs—V, 14
0 0
(19)
2
S22 o —Vo _5%Vs ) ¢~ V5 J{s_”] M>52
1 c? s ¢ cs

Corresponding space - time 77 -functions are particular solutions of the ordinary
differential equation (16) in the following forms (for detail see Ref. [75]):
Y.(7)=e""(AChdn+B,Shd.n)

fOf a(l,z)s 21\'52 —(5: 0'35 < 5

Y(i)s (77): ei(y’](As Cosqsn +B s Sln qsn)

fOI’ q(l,Z)S = iﬂﬁﬁ)‘s - 52 035 > 5
2 2 2( 2 2f
_ Cy —V S Cy —V,
U2 =+\/(K2—52 oo — +(—”j 00 (20)

¢ ¢ c

4.2.3. Approximation of the solution of the governing coupled partial
differential equations

For solving coupled partial differential equations of transversal forced
vibrations of the sandwich double belt system in the form (4) or (9) we take into calculus

same eigen amplitude functions X(i)s (é) for both belts in the form (18) and different
unknown functions: Y, (77) and Y, (77) Than the solution suppose in the following
expansions:

S=00 S=00

Wiy (&)= D" Xy s (€05 (7) = D" e? Xy 5 (£)Ys(n)

s=1 s=1
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2)(Em)= Zx Ze“x (2)s(7) (21)

These expansion we put into the equations of the system (9), taking into account (15) and
(16) previous system of the equations obtain the simplest form, and after multiplying first

differential equation by e'zgéx(i)r(f)d(f and second by e'z"T’fx(i)S (£)d&  and
integrating along belt’s length ¢ between double belt system bearings and taking into
account modified conditions of the orthogonality of eigen amplitude functions X (5)
for both belts in the form (18), as well as that some terms of the sum disappeared for
different: ZS #* Zr for S# 1, and in the corresponding result, we obtain s-th family

system of the two coupled ordinary differential equations with respect to the unknown
functions Y(;)s(77) and Y(z)5(»7) in the following form:

{E,,[va)s(n)]dﬁ@%ﬁv@s £—VO)[Y ]} 0
{EU[Y(Z)S(U)]"'ZSZKC&;—ZVSXY(Z)S £;VO)[Y ]} QZs() (22)

where

6(2)5 (77) 7 (23)

E j RMOICE

The solution of the system of second order no homogeneous ordinary
differential equations (22) for the S-mode in the form of the expansion along eigen

amplitude functions X (x)= X s (&)= X(2)s (&), in the form (18), can be looked in

the form: of the solutions for basic homogeneous system (see Ref. [75]) and we will
apply the Lagrange's method of the variations of the constants of the eigen unknown

function Y, (77) and Y, (77) in the form (20), introducing for integral constant the
following unknown functions C(l)s(n), D(l)s(n),M(l)S(n),N(l)s(n)of n for a s-
mode, S =1,2,3,4,....00. We propose that C(l)s(n), D () M 1 () N(l)s(n) are

functions of 77 and we can write:
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=e™" {[C(l)s (17)cos gr + D) (17)sin 5s'7]+ [M (1) (7)cos Pery + Niw)s (7)sin 5577]} (24)

=e %" {[C(l)s (7])COS 5577 + D(l)s (ﬂ)Sin 55’7]_ [M (@)s (77)005 5577 + N(l)s (U)Sin 5577]} (25)
where (for detail see Refs. [[72] and [75])

g V2 sz Y
P=. "0 °{(c§—v§(7j —62} , $=1234,.... (26)
2 ,
= [cg-vg sz
P = 003 0 {(c0 ITJ —52+2K2}, s=1234,... (26%)

In order to obtain first and second derivative with respect to 77 of the proposed

forms of functions Y(l)s(n) and Y(Z)S(n), we suppose that first derivatives of the
functions Y(i)s(n), i=12, $=12,3,4,...00 with respect to the 77 are equal to the

corresponding when coefficients Cy, (77), Days (77), M) (77), N s (77) are constant and
then we obtain the two equations-conditions. After introducing first and second
derivatives of the proposed functions Y(i)S (77) i=12, $=1,2,3,4,....00 with respect to
1 into the system of no homogeneous second order ordinary differential equations (22)

for the S-mode in the following form (18) and together with previous conditions for
first derivatives, we obtain the system of the no homogeneous algebra equations along
unknown first derivative of the unknown coefficients Cpy)s(17), Diyys (17) M g)s (7). Ngjs (17)

with respect to 77. After solving previous obtained system of the equations we obtain the
first derivative of the unknown coefficients  Cy),(17), Dy (7). M p)s (17) Nipys (17) - with
respect to 7 and after integrating for unknown coefficients-functions
Cw)s (7), Dy (7). M p)s (1), Niays (7) we have the following expressions:

1t 5= ~ o
C(l)s( = —Ej.e‘s”[Q (77)]5'” psndn
So
1 n
Doy (7)= J e [Qe (7)+ Qpags () Jc0s Berln
So
1 n
My (7)= “”“EIGM 4 (07) - Qpags () in By (27)

1 sl ~ =
Nws (7)= Nayos + EJ‘G"” [Q(l)s (7)-Qu)s (77)]005 psndn
S0
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v
C—°V2X+t. Now, previous unknown eigen functionsY(i)s(n), i=12,
0~ Yo

s=1,2,3,4,....0 depending on 7 for S - forced mode and eigen amplitude functions

where 77 =

X (€)= X (25 (&) = e%¢ sin%[gE are in the following form:

n
= [ Quu ()4 Qe )in Bl )

Y(0s(7)= € 7[Clups €05 Ber7 + Diays sin By |+ 23
S0

-5 = - 1 F ) [= = -
+€ bﬂ<[M (1)os COS Ps77 + N(l)Os sin psn]"’ 25 je 20r-v) [Q(l)s (7)_Q(2)s (T)]Sln Ps (77_ z')d T>
50

(28)

Y(z)s(ﬂ) =™ [C(I)OS €0s P77 + Dig)os Sin 5577]_ e IM (1)0s €OS P77 + N(1)os Sin 557]‘

+

1 F soal= < 1 soal= - .=
25 [e Q)+ Qo e)fsin Bl — oo - 2 [eotr Qs ()~ Qo () bin By - )z

So S0
where constants Cp;jo, D5, Mp)os and Nig),, are unknown constant defined by
four initial conditions: belts’ point elongations and velocities at the initial moment.
.The s-family of the particular solutions are in the following forms:
Wiijs (X, 1) = X35 () Yigs (1) (29)

Wiy (€,77) = X5 (€)Ya)s (7) = e’ sin 57”5 [C(l)OS €08 Pg77 + D5 SIN Bon]+

Se_sn - ST = inb
+e%¢71 sm7§[M (t)os COS P77 + Nizyos Sin pSU]Jr

(30)
1 Se s . S 1 o g ~ o~
+Eea5 n sm%f!e" [Q(l)S(T)+Q(2)S(T)]S|n p.(7—7)edr

-~ n _~ —~ ~
e =eT 7 sin ¢ o7 (G (0)- Qs ()in B - e
0

S
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Wiags (£,17) = X0 (€)Y (2)s () = €757 sin 57”5[(3(1)03 c0s P77 + Do, Sin Py~

_edEon sin%é[M (1jos COS 5577+ N(1)os SN :F:)s']]—
31)
1 5oy toslx ~ - (
gm0 e Q. () + Qs e i By o) -
s 0

1 Sesn . T [ = .=
e i e Qs o) (i B ekie
s 0

The s-family of the particular solutions for pure forced vibrations of a double

belt system excited by external excitation distributed function depending only of time,
are in the following forms:

W(l;;arced (X,t) _ Z

+

=y 22 2

i) )
(o L

St ST

e sin—x
4

5 ~ 2 -vE (2 oYsm 2 (32)
I e’[Q(ls(r)+Q(2)s(r)]sm ch 5 (Co—Vo{Tj -8%t (p—rHe-
0 ) N
o etsin " x
+Zl 2 .2
5= ZJCO —2V0 {(Cg SISlj 52+2K2}
Co
n= ZVO X+t
s sz [ y | =ve (2 oY s7 2 2 2
j e’ [Q(ns(f)— (z)s(r)]sm °C2 (co —VOI Zj —82+ 2k M -7)de
° 0
© e %tsin 2= x
W(l;grced (X,t) — z
s=1 _v2 2
F et
7]—Cgfvgx+l . VZ : (33)
T - T
[ e [o(l)s<r)+o<z)s<r)]st R IR
0 0 ( .
i e""sins7”x

cf-vg e ~ 2 _\2 2
[ e [Bu.()-Gp e )bin J - {(cg ) - +2K2}(n_r)dr
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1V.2. 4. Appendix

Previous solutions are obtained on the basis previously obtained solutions of
the coupled partial differential equations describing free transversal vibrations of the
axially moving double belt system.

The s-family of the particular solutions for decoupled belts and for free
transversal vibrations are:

Wijs (X, 1) = X35 () Yigs (1) (A1)
-5 2V°2x+t +5 X
W(I)S(X’t):e (007\/0 ]
2(2 2 2 .2
¢ ¢ Co Co \C—Vo

The generalized solution for decoupled belts transversal free vibrations is
expressed by expansion

W)= 3 Wi (60 = 3 X 0X)¥jys(x,1) (A2)
s=1 s=1

—é‘[ 2 x+tJ+gx
wx)=e 5%

= 2(2_\2 2_\2
St [ TEAT o (v

Cg Co Co —Vo

Solution of the coupled ordinary differential equations for free oscillations

d?Y, s\77 dYu)sln)  ~ ~
), 200 )-8 -0 3
d?Y, s\77 dYp)sln)  ~ ~
X0 2p D0, G -
(A.4)
suppose in the following form:
Yo (7)=Dye*", i=+-1, =12 (A4)

Characteristic equation of the formalized dynamical system have the following four sets
of the characteristic eigen numbers:

/1(1,2,3,4)3 =—0+F m i=+-1
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2 2 2
P =_5¢i\/COC2V° {(cg _vgi%”j —52} = 5Fip, ,
0

S=1234,..... (A5)
2 2 2 _
Aol :—5$i\/co b {(cg _vg{slj 52 +2K2} =57 P,
, 7 ;
§=12,34,...... (A.6)

The ratio between amplitudes of the own space-time 77 - functions Y(l)s(n) and

Yo.(1).  Y..(7)=De*" is not difficult to obtain in the form

D
Ws) —31,5=123,4,....... r=1234.. Then, we can conclude that

D(z)s(r)
considered system of the coupled ordinary differential equations have four different and
complex sets of roots and eigen characteristic numbers for defining unknown own space-

time 77- functions Y(l)s(n) and Y, (77): having four sets of characteristic numbers
we can conclude that corresponding four sets of the particular solutions for compaosing
the functions Y/, (77) and Y, (77) exists in the following form:

e cos gy

,5}7 - ~
e °"sin pgn
Y = = A7
s PO (A7)
e~°7sin pgy
Vv
where is 77 =— 0 ~X+t,and s=1234,....... ., or in developed form:
C, —Vo

—é‘[ Yo x+t] 2 2 2
e \B% Jeog ZVO S X+t % 2V° (cgfv(f(s—”j -5?
CH Vo (o L
—5[ Vo x+t] 2 2 2
e (9% Jgin ZVO X+t % ZVO (CS—VSIS—EJ -5°
c§ - Vo C ! (A.8)
Y(1)s(1,2,3,4)(77) = [
e

5 2V°2x+tJ V. 02 _y2 s 2
@7 Jeog 2o x+t | 220 (cé—vé(—j — 5% +2k?
Co —Vo o l
V,
—5[72 0 2><+t] 2 2 2
- Y Co -V, sz
e O Jsinl 0 x+t |22 (cé—vé(—] —5% 422
Cy—Vo (o !

Finally the unknown space-time 77 - functions Y(1)s(’7) and Y, (77) for free
double belt system transversal vibrations we obtain in the following forms:
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Yoy (n)=e" [C(l)s c0s Pg77 + Dpg)s Sin 5577 +e“5’7 [M cos Py + N x)s Sin Esﬂ] (A.9)

Y(o)s(7) =77 [C(l)S c0s P77 + Dy sin psry [M coS P77 + N 1)s Sin psry] (A.10)
The s-family of the particular solutions for free vibrations are in the following

forms:
(A.11)

Wi)s (X,t): X(i)s (X)Y(i)s (X,t), s=1234,.......

2,2 2
W (X t)=e" 3tgin > xJ R, cos [ 2V° x+tj % ZVO (cé—vé{s—”j —S2 4+ B )
L (o5 —v0 [ L (A12)
s v cd-v¢ sz
+e7sin==xqU cos( | 2 X+t - (cg—vg{—) —82+2K% b 4y,
! o -vg Co ¢
sz v ci-v¢ sz’
W(o)s(x,t) =" sin==xq Ry cos ( 0 2x+t] e (cg—vg(—j 52+ B -
14 Cy —Vo [ 14 (A13)
St ST Vo Vs (2 AT 2
—e %' sin—x<U; cos X+t Co—Vo | — | —0°+2k° +
o [cg—vg J & | OI ¢ j T

where R, , U, B and y, are unknown constants defined by initial conditions.
Then, finally, the generalized solutions of the based coupled partial differential
equations are expressed by expansion in the following forms (free vibrations):

t) (A.14)

wi(x,t)= ZW(i)s(X,t) = zx(i)s(X)Y St
s=1 s=1

for coupled

2.2 2

, v ci-v sz

Wiy (x,t) = étZsz{R cos<(c§ _ng x+t]\/ ch 0 {(cé—vé{gj —52}+ﬁ5>}+
(A.15)
+e S in ST u, cos{ | Y0yt %~V (czfv2 ST 2752+2 2h

Z ] S C2—V2 CZ 0 0 / K Vs

s=1 0 0 0

StND . ST Vo e -v? (2 s\ o
wy(x.t)=e 25m7x R, COS( | 52— X+t e LG R B A

=1 Co —Vo Co
v cZ-v¢ sz
"”ZS'” xjU cos [ — 2X+t] 00 (cg—vg{—j —52 421 4y
! Co —Vo Co 4

where R, U, B, and y, are unknown constants defined by initial conditions, two by

initial transversal displacements of component belts and by two transversal velocities of
the component belts ( for detail see References [72] and [75]).
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1V.2.5. Concluding Remarks

Subject of mathematical description and analytical study, presented in this part
of the paper, is a theoretical, pure classical model of hybrid elastodynamic model very
useful for university teaching of elastodynamics as a fundamental part of the engineering
science (mechanical, civil and physics), as well as, a good introduction of the students
and engineers of the multifrequency wave phenomena in real mechanical systems with
moving material.

If we compare the expressions for coupled and uncoupled belts, we can
conclude that for uncoupled belts’ transverse free vibrations contain one frequency
damped vibrations in one eigen amplitude shape, and for coupled vibrations contain two
frequency damped vibrations in each one amplitude shape, and that these two-frequency
dumped vibrations are uncoupled with relation of the other shape own vibrations. This is
visible directly from corresponding expressions (A.12), (A.13) or (A.14) and (A.16)
presented in Appendix.

For analysis forced regimes, we can use terms expressed by (30), (31) and (32)
from which, we can conclude that forced vibrations in each mode should be contain three
frequencies which are thwo frequencies of the free own double belt system vibrations,

~ o V5 |( sz 2(2 2) 2| and 3 co—Vo|(s7 2(2 2) 2_ g2 and one
P = = |7 Co—Vg -6 ps = 2 |\ Co—Vo J+ 2K =57 |
0 N 0

frequency of external forced excitation, frequencies ;. Free vibrations regimes are two

frequency, and forced are three, or multifrequency, depending of number of frequencies
of applied external transverse excitations.

From last expressions for particular or generalized solutions (30), (31) and (32)
as expressions of transverse displacements of double belt system, we can conclude that

we can separate eigen amplitude functions X(i)s(cf) along the space & -length-time

77(X,t) coordinate system as well two eigen phase functions ﬁs(x) and ES(X)
expressed by:

2

2 2 2

~ \" Cy —V, S

B ()= 525 x |22 (—”J (CS—VS)—52], §=1234,..... (33)
¢y — Vo (o L

2

~ 2 2 2

= v c2-v2|(s

B (x)= 0 x [0 (_”j (cg—v§)+2/<2—52} $=1234,....(34)
Ch — Vo c5 14
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Figure 9. Sixth cases pf the possible vibrations firms of the double belt system with

elastic layer for different eigen amplitude functions X (&)= e% sin 57”(5 for the

Vo
Cg —V02

solutioninthe &, n=

X+t coordinates system,

If we compare the expressions for solutions with respect to the other way analysis, of
the solutions for coupled and uncoupled belts, we can conclude that for uncoupled belts’
transverse displacements of forced vibrations contain one frequency damped vibrations
and corresponding frequency forced regime in one eigen amplitude shape, with one eigen

phase functions ,ES (X) (see expression from Ref. [75]) and for coupled double belt
system vibrations contain two frequency damped free vibrations and corresponding
frequency forced regime, as well as corresponding combinations in each one amplitude
shape with two eigen phase functions ,ES (X) and Es (X) expressed by (33) and (34).

Also, in other way, we can compare amplitude forms of the dynamics of coupled and
uncoupled belts and conclude that dynamics of the uncoupled belts containing two types

of eigen amplitude functions: XE,C)Q (X) sin SIN. AND ng))s(x) sin cos corresponding
to one frequency free vibration mode and that double belt system dynamics contains
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also two types eigen amplitude functions, but each of the both two frequencies:

;(E,C)z(x) sin cos and >~<§.S)Z (X) sin sin for first frequency of the mode and ;(%82 (X) sin

~

cos and 5-(%,8)2 (X) sin sin for second of the same mode, contained in expressions (30),

(31), (32) and (A.12), (A.13), (A.14) (A.15).
In Figure 9. sixth cases of the possible vibrations firms of the double belt system

5¢ . ST
with elastic layer for different eigen amplitude functions X(i)S (§)= e’ sin 7§for

Vo

cg —Vo’
We haven’t information if this theoretical model of a sandwich double belt

system was applied in real systems, but in our opinion it is possible to use this hybrid
model of sandwich belt system in the different kind of conveyer in which is necessary
that upper (or lower) belt haven’t vibrations under transversal periodic excitation. It is
possible in the condition of the dynamic absorption, when only lower (or upper) belt is in
the forced regime of vibrations. This sandwich double belt system can be project as a
dynamical absorber, when upper belt in the system is excited by external periodic
excitation no vibrations, and only lower belt have forced vibrations.

Series of the papers [69-92] contain results of analysis based on analytical expressions
describing dynamics of hybrid systems with complex structure. These system contains
coupled plates, beams or belts.

the solution inthe &, 7=

X+t coordinates system are presented.

4.3. A review of the study of the transfer energy between sub-systems in the
complex structure systems.

4.3.1. Transfer energy in spring pendulum system

For introducing to the problem of the energy transfer or transient in the hybrid
non-linear systems, it is useful to take, for simple analysis, into consideration the change

energy between parts of the energy carrying on the generalized coordinates ¢ and p in
the very known system, known under name spring pendulum system, with two degree of

freedom. For the analysis of the energy in the spring pendulum we can write the kinetic
and potential energies in the forms (see Refs. [72], [44], [56] and [83] by Hedrih
(Stevanovic)):
1 7. ;
E = Em[pz + (P + 5)2¢2]
and
E, =%Cp2+mg(p+f)(1—cos¢) (1)

where: M is mass of the pendulum, ¢ length of pendulum string-neglected mass spring
in the static equilibrium state of the pendulum, and C spring axial rigidity and ¢ and
p are respectfully, angle and extension part of length of the string-spring of the
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pendulum with comparison of the sprig length in static equilibrium state of the
pendulum, taken as the generalized coordinates of the system. For the linearized case for
kinetic energy, after neglecting small member - part of kinetic energy on the generalized

coordinate ¢, we can taking into account following expression:

* Expression E,, = %m(p + Y $* changes into approximation

o= m(egf @

Only for small oscillations — perturbations from equilibrium position it is
possible to use approximation of the expression for kinetic and potential energy in the
form:

E, z%m[pz +(£¢ﬂ and  E, z%sz +%mg£¢2 (3)

For that linerized case the generalized coordinates are normal coordinates of the
small oscillations of the spring pendulum around equilibrium position p=0,¢=0 and

coordinates are decoupled. In this linearized case of the spring pendulum model, the
energy carried on the these normal coordinates are uncoupled and transfer or transient of
the total energy don’t appeared between proper parts of the separate normal coordinate
and on the separate processes defined by normal coordinates are conservative systems
each with one degree of the freedom. In this case each of the coordinate there are
conversion of the energies from kinetic to potential, but sum of the both of one normal
coordinates is constant.

1 . 1
= :Emp2 and Epp zEsz 4)

1 ; 1
Ees = Em(€¢)2 and Epp =5 Mgl° ®)
This is visible from system of the differential equations in the linearized form:

. c
p+wsp=0 where ? =

¢ +wfp=0 where a;f:% (6)
but for the non-linear case the interaction between coordinates is present and then energy
transient appears.

E, =%m[p2+€2¢2+p2¢2 +2p€¢2] and
1
E,= ECpZ +mg/(1-cos @)+ mgp(l—cos¢) )
We can separate the following parts:
I* Kinetic and potential energies carrying on the coordinate p are:

2

1 . 1
Ekpzzmp and Epp=ECp2+mg,0 8
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By analysing these previous expressions, we can see that with these expressions
for decoupled oscillator with coordinate o, we have pure linear oscillator or harmonic

. . . c .
oscillator with coordinate o and frequency a)22=—, and separated process is
m

isochronous.
I1* Kinetic and potential energies carrying on the coordinate ¢ are
1 .
Ey = §m€2¢2 and E,; =mg/(1-cosg) 9)

By analysing these previous expressions we can see that with these expression
for decoupled oscillator with coordinate ¢, we have pure non-linear oscillator with

coordinate ¢, and separated process is no isochronous. For linearized case this oscillator

have eigen frequency ? =% .

I11I* Then formally, we can conclude that in the spring pendulum, we have
coupled two oscillators, one pure linear with one degree of freedom, and second non-
linear, also with one degree of freedom. In the hybrid system these oscillators are
coupled and mechanical energy of the coupling contain two parts: one kinetic energy and
second potential energy. Then, in the coupling, hybrid connections with static and
dynamic kinetic properties are introduced.

Kinetic and potential energies of the coordinate and p interaction in the non-linear

hybrid model are:

Ex(s.p) = %m[p +20]pg*  and

Ep(m}) =-mgpCos¢ (10)
For non-linear case ordinary differential equations are in the following form:
p+@)p=-g(l-cosg) (1)
.. . 2 . 1 ..
b+oip=af(g-sing)-—phlp+)-—zplp+20) (12)

or in non-linear approximation forms for small oscillations around zero coordinates
p=0,¢4=0 oraround stable equilibrium position of the spring pendulum are

2 4 6 8
. A A A
+ - ———t———+..... 13
pr@p g(z 24" 6 8l ] (13)
3 5 7
PRI 2 .. 1 ;
¢+w1¢~—601{5—5+?—----J—£—2P¢(P+€)_E—2p(p+2€)¢ (14)
If we introduce phase coordinate, then we can write:
V=p

V=—0?p-g(l-cosg)
u=g (15)
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i =—wf¢+wf(¢—sin¢)—£%p¢(p+€)—£%p(p+26)«'5

or in the approximation

vV=p
2 4 6 8
Vz—a)zzp—g(%—%+%—%+ ..... J
u=g
. 2 2 ¢3 ¢5 ¢7 2 .. 1 i
U~-wd—o R TR —£—2P¢(P+£)—f—gp(/3+2€)u (16)

From system equations (11)-(12), as well from their approximations (13)-(14), we can
see that their right hand parts are non-linear and are functions of generalized coordinates,
as well as of the generalized coordinates first and second derivatives. Also we can see
that generalized coordinates ¢ and p are around their zero values, when p=0,4 =0 at

the stable equilibrium position of the spring pendulum, and that also are main coordinates
of the linearized model. It is reason that the asymptotic averaged method is applicable for
obtaining first asymptotic approximation of the particular solutions and it is possible to
use for energy analysis of the transfer energy between energies carried by generalized
coordinates ¢ and p in this non-linear system with two degree of freedom, but

formally, we can take into account that we have two oscillators, one non linear and one
linear each with one degree of freedom as two sub-systems coupled in the hybrid system
with two degree of freedom, by hybrid connection realized by statically and dynamical
connections. This interconnection have two parts of energy interaction between sub-
systems expressed by kinetic and potential energies in the forms expressed by (10).
Taking into consideration some conclusion from considered system of the spring
pendulum, we can conclude also that it is important to consider more simple case of the
coupling between linear and non-linear systems with one degree of freedom with
different types of the coupling realized by simple static or dynamic elements, for to
investigate hybrid phenomena in the coupled sub-systems.

4. 3.2. Forced vibratos of spring pendulum

Let consider the energy transfer between parts of the energy carrying on the
generalized coordinates ¢ and p in the spring pendulum system with two degrees of

freedom excited by external excitations. For that analysis of the energy in the spring
pendulum in the forced regime excited by external one frequency excitation -
generalized forces M ,(t)= Mg cos(Q t+9;) and F,(t)= Fycos(Q,t+9, ), we can write

the kinetic and potential energies in the forms (1). By taking into account all comments
and asymptotic approximation as in the introductory part of this paper, as well as
corresponding expressions (2) — (5), system of the differential equations of the linearized
system is in the following form (see Refs. [72], [44], [56] and [83] by Hedrih
(Stevanovic)):
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p+awlp=hy,cosQt+9,) (17)
c F
where @) =—, hy, =—>
2 m 0p m
b+ wlp=no,cos(Qt+9,) (18)

M
where 2_9 p =0
2] ) h0¢ fz

Solutions of the linearized equations (17) an (18) are:

h
p(t)= R, cos(m,t + a02)+%cos(§2 S+ Sp) (19)
W) —Qp
#(t)= R, cos(mt + gy ) LT (Qt+9,) 20
=k a)_|.+a01+ Z_QZCOS ¢+ ¢ ( )
@22

For that linearized case both chosen coordinates are main coordinates of the
linearized model, and from solutions (19) — (20), we can see that free and also, forced
vibrations are uncoupled, and not interaction between free, and also forced modes of the
vibrations. Then, we have two uncoupled oscillators with different eigen circular

. c . - .
frequencies =% and w3 =—and different forced external excitation frequencies
m

Q, and Q, and with possibilities of appearance two main uncoupled resonant regimes,

2 2_9 2 2_C
when Q¢,resonant =0 = 7 and Qp,resonant =0, = E

In this case for linearized models and in the resonant cases, expressions for
solutions are in the following forms:

; h
p(t), . =Pocosmyt +22in wt +ﬂ[w2tsin<a)2t + Sp)—sin w,tsin 3p] (21)
p,resonant — @2 a)z 2 a)Z
¢£0 H h0¢ - . .
¢(t)|9¢,resmm o, = o0t +asm A +£[a)ltsm(a)lt + ,9¢)—sm aytsin 3¢] (22)

But, for the non-linear case the interaction between coordinates is present and
then energy transient appears.

Expressions for kinetic and potential energies are in the same forma as presented
and analyzed in first part V.1.1 for free vibrations and named by (1)-(5) and (7)-(10).
Then, the expressions for coordinates are different and must be taken in the forms (19)-
(20) and (21)-(22).

By analyze corresponding expressions, we can see that with these expression for
decoupled oscillator with coordinate o, we have pure linear oscillator or harmonic

2

. . . c .
oscillator with coordinate p and frequency w; =—, and separated process is
m

isochronous. By analyzed these corresponding expressions, we can see that with these
expressions for decoupled oscillators with coordinate ¢, we have pure non-linear
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oscillator with coordinate ¢, and separated process is no isochronous. For linearyzed
case this oscillator have eigen frequency a)f :% :

For forced non-linear case differential equations of the system non-linear
oscillation are in the following form:

p+wip=—g(l-cosg)+ hopcos(Q t+9 ) (23)

$+afe =l (p-sing)- p¢(p 0)- /1 plp+20)f +hg,cos(Qut+8,)  (24)

or in non-linear approximation forms for small oscillations around zero coordinates
p =0,¢=0 oraround stable equilibrium position of the spring pendulum

¢ ¢ ¢ 4
p+a)2p~—g( 24 o 8I+ ..... +hopcos(th+3p) (25)
# ¢ ¢ 2 . 1 .
¢+a)l¢ a)l[a—g T —€—2p¢(p+€)—(—2p(p+2€)¢+hO¢COS<Q¢t+19¢)
(26)
If we introduce phase coordinate, then we can write:
Vv=p
V=—wlp-g(L-cosg)+h,cos(@,t +9,)
u=4g

U = -0l + o2 (p—sing)- p¢(p l)- gl p(p+2€))+h0¢cos(Q¢t+9¢) (25)

or in the approximation

v=p

Vz—wfp—g[§—§+%j—¢8—j+ ..... J+hopcos(9pt+9p)

u=g (26)
U~-—wig— azl(z' ¢5! gz; ....J—%qu(p+€)—ﬁi2p(p+2€)u+h0¢COS(Q¢t+L9¢)

From system of the differential equations (23)-(24), as well as from their
approximations (25)-(26), we can see that their right hand parts are non-linear and are
functions of generalized coordinates, as well as of the generalized coordinates first and
second derivatives with respect to time and function of time. Also, we can see that
generalized coordinates ¢ and p around their zero values, when p=0,4=0 at the

stable equilibrium position of the spring pendulum are also main coordinates of the
linearized model. It is reason that the asymptotic averaged method is applicable for
obtaining first asymptotic approximation of the solutions
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Then, it is possible that first asymptotic approximations of the solutions of the
system of non-linear differential equations (23)-(24), take into account in the following
asymptotic approximations for the small spring pendulum forced elongations in the
form:

p=a,(t)coslot +¢,(t))
¢ =a,(t)cos(@,t + ¢, (t)) @27)
where amplitudes a,(t) and a,(t)and phases ¢, (t) and ¢, (t) are defined by system of

first order non-linear differential equations in first asymptotic approximation in the
following form:

ap(t)ja;%)sm(%(t)_gp)
. hO
()=, -Q, —WCOS(%(‘)— ‘9p)

h _ h 2(t)
a¢(t)z—msm(%(t)—%ﬁm%95|n(¢¢(t)—8¢)
. o[, a5t hoy
¢¢(t)Na)l_Q¢+E 1- 2pfz }_2a¢(t)(col+Q¢)COS(¢¢(t)_'9¢)+ o8
hy  a(t)

+ cos(p,(t)- ;)
3a,(t)w +Q,) 2 AR
where Q,~@ and Q,~w, are external excitation frequencies in the resonant rages

corresponding eigen frequencies of corresponding linearized system. Previous system of
four non-linear and first order differential equation in the first asymptotic approximation
are obtained by asymptotic Krilov-Bogoliyubov-Mitropolyskiy method and for small
amplitudes of external excitations and in the resonant rages of the both frequencies.

4. 3.3. Concluding remarks

Taking into consideration some conclusion from considered system of the spring
pendulum, we can conclude, also, that it is important to consider more simple case of the
coupling between linear and non-linear systems each with one degree of freedom with
different types of the coupling realized by simple static or dynamic elements (see Refs.
[72], [44], [56] and [83] by Hedrih (Stevanovic)) for to investigate hybrid phenomena in
the non-linear system forced dynamics.

Also, it is possible to use for energy analysis of the transfer energy between
energies carried by generalized coordinates ¢ and p in this non-linear system forced

dynamics with two degrees of freedom, but formally, we can take into account that, we
have two oscillators, one non-linear and one linear each with one degree of freedom as
two sub-systems coupled in the hybrid system with two degree of freedom, by hybrid
connection realized by static and dynamic coupling. This interconnection have two part
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of energy interaction between sub-systems expressed by Kinetic and potential energy in
the form (10).

Taking into consideration some conclusion for considered system of the spring
pendulum forced oscillations, we can conclude also that it is important to consider more
simple case of the coupling between linear and non-linear systems each with one degree
of freedom with different types of the coupling realized by simple static or dynamic
elements, for to investigate hybrid phenomena in the system forced dynamics.

4.4. Analysis of the trigger of coupled singularities in nonlinear dynamic of no
ideal system

4.4.1. Free vibrations of the heavy mass particle along rotate rough curvilinear
line with Coulomb friction

For beginning let to consider free vibrations of the heavy mass particle along rotate
rough curvilinear line with Coulomb’s type friction, see Figure 8.a*. For the case that

curvilinear line is in the vertical rotate plane OXz around vertical Oz axis, we can take
that equation of the curve-linear line is: z = f(x), or f,(x,z)=2z— f(x)=0 and
with the following properties f(— X): f(X) and that coordinate pole is in the zero
point f(O)zO in which line have minimum (see Figure 8.a*). Also we take that

curvilinear line rotate around vertical Oz axis with constant angular velocity Q=0k
(see Ref. [103] by Hedrih (Stevanovic)).

Heavy mass particle, mass M, moving along rough curvilinear line with Coulomb’s
type sliding friction coefficient 4, is loaded by proper weight Mg, as a active
conservative force and by four no ideal constraint reactions, one Fy - normal ideal
constrain reaction, second Fgy in binormal direction and two additional, F, first
tangential component of the no ideal constraint reaction induced by friction and
proportional to the normal component reaction Fy, F,=—uFysignv., and F,,
second tangential component of the no ideal constraint reaction induced by friction
caused by pressures in the binormal direction and proportional to the binormal

component of the inertia force Fgy, F,, =—uFgy Sign Vi, caused by curvilinear line

rotation around vertical Oz axis with constant angular velocity Q = Qk
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~

a*
Figure 8. Heavy material particle motion along rough curvilinear line with Coulomb
friction

Force of the inertia of mass particle realtive motion along the curvilinear line which
rotate around vertical Oz axis with constant angular velocity Q@ =Qk, have two
components. One component is force of the inertia of the circle rotation around vertical
axis in the form Ifjp =mQ?x{ , and second is Coriolis inertia force of the system and we

can  write: Fyg =—Fjc = Zm[ﬁ,vre|]= 2mQv,, cosaB.  Corresponding  force  of
Coulomb’s type friction is in the

form: Fﬂ2 = ﬂ‘FNBh —21MQV c03a| || =-2umQV,, COSc .
re
By use principle of dynamical equilibrium we obtain expression for the intensity

of normal and binormal components of curvilinear constraint reactions corresponding
differential double non-linear equation of the heavy mass particle motion along rotate
arbitrary curvilinear rough line, with angular velocity of rotation Q, and defined by
function z = f(X), for the case that the coefficient of the Coulomb’s type sliding

friction is 4, s in the following form:
i(x\/u z'z)iyxz L 0P X (1Fu)+
dt NI V1422
for v, >0 @

9 _(2'+p)+2u0%=0
+,/1+212 (2 )+ 2400 for v <0

For the case of heavy mass particle motion along no ideal arbitrary rough
curvilinear line without rotation, differential equation is in the form:::

' for v >0
i()‘(\/1+ z’z)+g Ay 1 (xzz”+ g) 0 { rel )
dt V14722 \1+2? for v, <0

Let consider special case of the rough curvilinear line with friction along normal
surface contact (without last term +2.4Qx in (1)) and let introduce new variable in the

rel|
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following form: U = X*, then previous differential double equation (1) of the mass
particle motion along rough line is possible to transform in the following form:

du 2"('+ X _ 2 for v >0

—+2u ( Zﬂ):—ZQ2 ~(1F ') - g2 (' + 1) rel

dx [+ 22) L+ 22) L+ 22) for v, <0
®)

Previous differential double equation (3) of the material particle motion along rough

curvilinear line according new helping coordinate U is ordinary double differential

equation first order with changeable coefficients and type in following form:

j—ui P(X)u = Q(X) with following solution:
X
[x()F =
PYRACETIN 2(24p) g 4
—e ’J b22) —ZI{QZ X (17 2')+ J 2 (Z’i/z)}eZj 2] Wk s c )

L+27?) 1+7'

From the previous first integral, the following equation of the phase trajectories
in the phase plane (X, X) we obtain:

Vrzel (X)=

PYLACET)IY Z(Zxp) (5)
22k P ~2f| Q2 0T ) (7t ) 2 B s

(l+ 7' ) (l+ 7' )

where C integral constant depending of initial conditions, angular coordinate and angular
velocity at initial moment, or starting terminate mass particle positions for next phase
trajectory branch.

For reason to compare properties of kinetic parameters of main considered
system dynamics and corresponding fictive (neglecting terms with acquire of velocity

x?) for comparison we transform corresponding differential double equations in the
form of the system of first order differential double equations and for obtaining
singularities for main system and fictive systems use conditions that right hand side all
equations must be equal to zero (null). Then we obtain the following conditions:

*For main system dynamics:

dx

—=v=0
dt

dv ., 27" _ ., 1 o X1F 2') g(z'+u)
—=— -Q - =0
a (1+z’2)+ﬂx (1+z’2) (1+z’2) (1+z’2)
*For corresponding fictive systems

dx
o
oo xiFs) gletu) o
dt (1+z ) (1+z )

(6)
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and

%:v:O

dv_ (@°+g7)_

dat 1+22) ®

We can see that for listed main system and for fictive system, conditions for
obtaining singularities are same. Depending of the curvilinear line form zZ = f(X), we
obtained two nonlinear algebra equations in the following forms:

i) w0 @)
(1+z'2) (1+z'2)

1+ 7'
from which we can obtain, one or more roots.
If corresponding algebra double equation (9) have one root for =0 then

words are about one equilibrium position with ,,one side left“ and ,,one side right*
bifurcation of the equilibrium position and one fictive trigger of coupled singularities
caused by Coulomb’s type friction between mass particle and rough curvilinear line.

If corresponding algebra double equation (9) have odd number of roots for
1 =0 then words are about trigger of coupled singularities in a dynamics of a basic

non-linear system correspond to the system with friction. In this case corresponding
algebra double equation (9) for « =0 have corresponding odd number of roots for each

of the sets of the sign + , but all these roots are selected in two subsets, first one an ”one
side right* singularities and other "one side left* singularities correspond to the ,,one
side left“ and ,,one side right* relative equilibrium positions. Then, each roots of the
corresponding algebra double equation (9) for =0 , have two corresponding roots
obtained from corresponding algebra double equation (9) for 4 =0 and then there are
present new fictive triggers of coupled one side singularities. Then we have trigger of the
coupled triggers of coupled one side left, one central and one side right singularities,
which are present in the system with Coulomb’s type friction and with a corresponding
nonlinear system with ideal constraints and with minimum a trigger of coupled
singularities in its nonlinear dynamics.

Example 1. For the case that line is a circle shaped by (z—R) +x?=R?,

©)

z=R-yR*=x% for u=0 and u=0, from (9) there are two corresponding algebra
equations, one of which for g 0 is algebra double equations:

QX4 g =0 and
R? —x?

KX X B
92x[l+\/R2_X2J+g[\/R2_X2 i,uJ_O (10)

From first algebra equation for x =0 of previous system (10) is visible that x=0 is a
root correspond to the equilibrium position, but there are also pair of the roots:
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2
o2 g g
%= Rz_? for RO?

trigger of coupled three singularities exists. Also, we can conclude that second algebra
equation for z =0 have minimum two roots. First approximation of the minimum vales

9

o’

<1. In this case for 4 =0 in system dynamics minimum a

of first two roots are x, 3 ~+2u—-, which correspond to the “one side right” and “one

side left” equilibrium positions and with x =0 build a trigger of coupled two one side
singularities appeared as a result of bifurcation by introducing Coulomb’s type friction.
By qualitative analyzing of the second algebra double equation from system (10) in the
form:
2 2 2p2
4 2)_ 2| p2 2\9 oR 2 9°R
X (1+/1 )—x (R —(1+4,u )EJ—X(iZ,u o7 J—4,u o =0,

we conclude that, also, one trigger of coupled three triggers of coupled one side
singularities appear.

Example 2. For the case that line is an ellipse shaped by (ﬂj +X—:1,
a

2
z=R+ awfl—:)(—2 ,for =0 and u =0, from (9) there are two corresponding algebra

equations, one of which for x =0 is algebra double equations (see Figure 8.b*):

QO?x+ag

X x x
2 2 2
b"_ _pand 0% 1—yab—2 +g| +a—2L —+ (=0 (11)

2
X X X
From first algebra equation for x=0 of previous system (11) is visible that
x=0 1is a root correspond to the equilibrium position, but there are also pair of two

2
roots: x1’3=ib‘/1—(b?gzj for b?gz <1. In this case for x=0 in system

dynamics, minimum a trigger of coupled three singularities exists. Also, we can conclude
that second algebra equation for 4 =0 have minimum two roots. First approximation of

the minimum vales of first two roots are X, 3~ izy%, which correspond to the “one

side right” and “one side left” equilibrium positions and with x =0 build a trigger of
coupled two one side singularities appeared as a result of bifurcation by introducing
Coulomb’s type friction. By qualitative analyzing of the second algebra double equation

2 2
from system (11) in the form: (xiyé] (R2 —xz): xz(%$ yxj , we conclude that

appear also one trigger of coupled three triggers of coupled one side singularities.
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4.4. 2. Theorem of trigger of coupled singularities

Previous considered differential double equations of the heavy mass particle
along rough curvilinear line with Coulomb’s type friction is possible to express in the
following generalized form of differential double equation with double signs (see Ref.
[103] by Hedrih (Stevanovic)).:

X.J_rbﬂ)-(z+g[k’|:(x,$xﬂ)]f(x,ixﬂ)=0 for XZO (12)

where b, coefficient depending of Coulombs type coefficient of friction, and X,

parameter in coordinate dimension depending of Coulombs type coefficient of friction
and with a corresponding governing differential equation for ideal system dynamics for
x,, =0 in the following form:

$+glk, F(x)]f(x)=0 (13)

4.4. 3. Theorem on the existence of a trigger of the coupled singularities and
the separatrix in the form of number eight in the conservative system.

By using nonlinear dynamic analysis of systems with described nonlinear
phenomenon of the trigger of coupled singularities and corresponding families of phase
portraits and potential energies (see References [84-103]) as well as the corresponding
experimental investigations of such non-linear dynamics in mechanical engineering
systems with coupled rotation motions (see Refs. [96] and [87]) it was easy to define and
to prove a series of the theorem of the existence of a trigger of coupled singularities in
non-linear dynamical conservative and no conservative systems with periodical structure.

Theorem: In the system whose dynamics can be described with the use of non-
linear differential equation in the form (see Refs. [88] and [89]):

s+glk, F(x)]f(x)=0 (14)
and whose potential energy is in the form:

E= mj glk, F(x)]f (x)dx = G[k, F(x)] (15)

in which the functions f(x) and g(x) are:

F(x):Jf(x)dx and G(k,x):jg(k,x)dx (16)

and satisfy the following conditions:
f(=x)=—1(x) g(k,x-+nT,)=g(k, x)
f(x+nT, )= f (x) g(k,—x)=g(k, x)
f(0)=0 gk, F(x,)]=0, for k e (k. k, ) (ky, kg )-.. 17
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f(x)=0, x, =sT,, s=1234,.. X, =%, £IT,,
r=01234,.. | T
2

gk, F(x)]= 0, for k & (k;, k, )L (ky, K )....
and both functions f(x) and g
between two zero roots:

a* for parameters values ke (k,,k,)U(k,,k,)..., outside of the intervals
(k. ,k, ) (ky, ks )... , the trigger of singularities in the local area does not exist.

b* for parameters values ke(k,,k,)U(k, k;)..., inside of the intervals
(k... k, ) (ky, ky ). , the series of triggers of coupled singularities in the local domains

exist.
We can see that for the case a* the second derivative of the potential energy can be
positive or negative: :

x) have one maximum or minimum in the interval

for %E(Oko Epmin %o

stable equilibrium p.

for M>0 E
dx

pmin Xs
d%E (18)
72" =Js=2p, p=1234,. stableequilibrium p.
dx yex,
for dfd(:((S)<0 Epmax X% S$=2p-1
p=1234,.

unstable equilibrium p.

and equilibrium positions can be stable and unstable with corresponding singular points
alternatively change, periodically, with period T, .from stable center to unstable saddle
point, and corresponding phase portrait is without trigger of coupled singularities and
without separatrix in the form of number eight.

Also we can see that for the case b* the second derivative of the potential
energy can be positive or negative

d’E df (x)
P =m{glk, F(x —} 0 E
o] Ml FIY <0
Xs .unstable equilibrium position
d’E dglk, F
dxzp ) _m{g(EF(X()X)][f(x)]Z}X_X >0 Epmin (19)

X, .stable equilibrium positions
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and equilibrium positions can be stable and unstable with corresponding singular points
alternatively change, periodically, with period T, .from stable center to unstable saddle

points, and corresponding phase portrait is with triggers of coupled singularities and with
series of the separatrix in the form of numbers eights. Then, the triggers of coupled
singularities exist in the phase portrait in the intervals defined by:

Xe [7%"+ST,%"+ sTj s=01234,...

Integral energy of the system is in the form:
%% +2G[k, F(x)]= 2 + 2G][k, F(x(t, )] = const (20)
Equation of homoclinic orbit in the form number "eight" trough homoclinic
point (0,0) is:
? +2G[k, F(x)]= 2G[k, F(0)] = hy,, = const (21)

for glk. F(x )]=0, for ke (k. ko) (ky ko). in which the functions F() and G(k.%)
are in the form (16) and satisfy the conditions (17).

In Figure 9 B* and B* equivalent of potential energy E () graph of basic
ideal mechanical system, which corresponds to no ideal Coulomb’s type friction, is
presented. In Figures 9 B*b*, B*c* and B*d* the sets of the homoclinic phase

trajectory layering, for ;=0 and different values of the kzlz‘% <1 and axis
YAR/o)

eccentricity are presented. Homoclinic orbits in the form of number eight appear and

disappear with changing parameter :1:‘1 <,. Two sets of the of the singular points:
A 0?1z

9

<1 Eexists
0?2

@s=S7m,5=1234,.. and —arccos—2_+2s7, $=1234,.fort (_1_
10?2 A

together with homoclinic orbits — separatrix in the form of number eight.

In Figure 9. A*a* equivalent of potential energy E ,(¢) graph of basic ideal

mechanical system, which corresponds to no ideal Coulomb’s type friction, is presented
as a function of coordinate the ¢ . In Figures 9. (A*b*), (A*c*) and (A*d*) series of the

<
<, and

phase trajectory portraits, for o, =0, and different values of the | _1 ‘L
>

2 |in?

A
eccentricity of axis of circle rotation are presented. Two sets (A*b*) and (A*c*) of the of
the singular points in phase portraits are visible: ¢, =s7,s=1234,. and

(ps:arccosmiziz”, s=1234,. for  _1 ‘L <1-One set (A*d*) of singular points in

a1 |2

A

9

phase trajectory portrait is visible: ¢, =sz,s=12,34,... for | _1 _
(Q?

A
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Figure 9. A* Equivalent of potential energy Ep((o) graph of basic ideal

mechanical system (A*a*) corresponding to no ideal Coulomb’s type friction and phase
trajectory portrait (A*b*), (A*c*) and (A*d*) for oy =0 and different values of the

k:%:‘miz il and axis eccentricity. Two sets (A*b*) and (A*c*) of the of the singular
points: ¢, =sz ,$=12,34,... and o, :arccosiiZSﬂ, §=1234,.. fort k:l: 9 |<1.
102 A |?
One set (A*d*) of singular points ¢, =sz,s=12,34,... for k:l:‘% >1-
yRRIZe)

Figure 9. B* Equivalent of potential energy E,(p) graph of basic ideal

mechanical system (B* a*) correspond to no ideal wich Coulomb’s type friction and

homoclinic phase trajectory layering (B* b*), (B* c¢*) and (B* d*) for oy =0 and
different values of the | ziz‘iz <1 and axis eccentricity.
Al
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4.4. 4. Triggers of coupled singularities in non-linear dynamics of coupled
double rotor systems with Coulomb’s type friction

In this part, we start with a new model of the non-linear dynamics of two coupled
rigid rotors with mass particle debalances and no ideal surfaces between rotor shafts and
cylindrical bearing where appear Coulomb’s type friction (for detail see Reference [87]).

In Figure 10. a* the structure of the coupled double rotor system with Coulomb’s
type friction into contact surfaces between rotor shafts and cylindrical bearings is
presented. In Figure 10. b* decomposition of this system with plan of the Coulomb’s
type friction forces is presented.

Figure 10. Coupled double rotor system (a*)with Coulomb’s type friction into
contact surfaces between discs and shafts; Decomposition (b*) of the system with plan
of the Coulombs type friction forces

Governing nonlinear differential double equation of the coupled double rotor system
dynamics with Coulomb’s type friction into contact surfaces between rotor shafts and
cylindrical bearings take the following form:

mRS{%+/ip2}biyer2[cos kp—kap? COS¢]rﬁ+ mgRsin q[)(%iyr cos kgo]—

— 2pmgR, sinkg(R F ur cos )T (22)
T urmg[cowwggbz}(%i MY COS kgoji u/lrmg[cos kgo+%Rk2(/')2}(R F prcos ¢))= 0

For k =2 and for ideal constraints (by neglecting friction) previous differential
equation obtain the following form:

9

D)+ 1-44ipcosg)sing =0 23
7 W( pcosg)sing (23)

Obtained differential equations (23) is in the class (13) and then on the basis of
the listed theorem of trigger of coupled singularities in chapter VI1.2.1.. we can conclude

that non-linear dynamics in basic system when condition b <1 is satisfied appear a
p

trigged of coupled singularities and in the phase trajectory portrait appear a homoclinic
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orbit in the form of number eight. Sets of singularities are: first ¢, =sz and second

Qs = arccosﬁ for 44p >1, presented in Figure 9..
p

4.4. 5. Concluding remarks

Systems with coupled multi-step rotors are important for engineering applications,
then it is important to investigate ideal as well as no ideal system nonlinear dynamics.
Also, no stability in the working processes of like that system dynamics caused higher
level of noise and vibrations. Present Coulomb’s type frictions in these kind of system
dynamics caused new instability and more higher level of noise and vibrations. This is
reason that is important to investigate non-linear phenomena in dynamics of other
corresponding ideal as well as no ideal system dynamics. Also, system with vibro-
impacts are important for engineering practice. Vibro-impacts are strong non-linearity
with discontinuities in the system kinetic parameters and alternations of the forced and
velocities directions in comparison before and after impacts (see Reference [102] an
[104] by Hedrih (Stevanovi¢), Raicevi¢ and Jovic).

4.5. A review of the study of non-linear and stochastic vibrations through
scientific research projects and doctoral dissertation and magistar thesis defended
at Mechanical engineering faculty University of NiS in period 1972-2011 in area of
Mechanics

IV.5.1. The study of the transfer of energy between sub-systems coupled in hybrid
system (see Refs. [106-109], [55-56] by Heedrih (Stevanovi¢) (1975, 1995a,b, 1887a,b,
2007a,b, 2008a,b), [57-60] by Hedrih (Stevanovi¢) and Simonovi¢ (2009a,b,c) and [45]
and [69]Hedrih (Stevanovi¢) and Hedrih A. (2009a,b)) is very important for different
applications. Two papers by author (see Refs. [72] and [76] by Heedrih (Stevanovic)
(2005, 2006 and 2008) presents analytical analysis of the transfer of energy between
plates for free and forced transversal vibrations of an elastically connected double-plate
system. Energy analysis of vibro-impact system dynamics with curvilinear trajectories
and no ideal constraints was done by Jovi¢ in 2009 and in 2011 in his two theses (see
References [128] and [12]), for Magister of science as well for doctor’s of sciences
degrees. Potential energy and stress state in material with crack was study by Jovanovi¢
and presented in his Doctor’s Degree Thesis in 2009 (see Ref. [126]). Energy analysis of
the non-linear oscillatory motions of elastic and deformable bodies was done by Hedrih
(Stevanovi¢) her doctor’s degree thesis in 1975 (see Ref. [109]). Energy analysis
longitudinal oscillations of rods with changeable cross sections was original research
results in 1995 presented by Filipovski in his magister of sciences degree thesis (see Ref.
[119]). For all previous results see References from list in Appendix | — References VII -
[105-130] and Appendix Il — References VIII — [131-140] .

4.5.2. When, at an international conference ICNO in Kiev in 1969, my professor
of mechanics and mathematics, D. P. RaSkovi¢ (1910-1985) (see Refs. [32], [33], [34],
[53] and [54] Raskovi¢ (1965,1985) presented me to academician Yuri Alekseevich
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Mitropolskiy (1917-2008) (see Refs. [61-68] by Mitropolskiy (1955, 1964, 1968, 1976
and 2003) and when | started really to understand the differences between linear and
non-linear phenomena in dynamics of mechanical real systems, | knew | was on the right
path of research which enchanted me ever more by understanding new phenomena and
their variety in non-linear dynamics of realistic engineering and other dynamical systems.
(First my knowledge about properties of non-linearity and the non-linear function |
obtained in gymnasium from my excellent professor of mathematics Draginja Nikoli¢
and during my research Matura work on the subject of Non-linear elementary functions
and their graphics as a final high school examination.)

For beginning of this chapter, a review survey of original results of the author
and of researchers from Faculty of Mechanical Engineering University of Ni$ (see
References from lists in Appendix | — References VII — [105-130] and Appendix Il -
References VIII — [131-140]), inspired and/or obtained by the asymptotic method of
Krilov-Bogolyubov-Mitropolyskiy, and as a direct influence of professor RaSkovi¢
scientific instruction and also by published Mitropolskiy's papers and monographs, as
well as publications by Kiev Mathematical institute scientists in area of non-linear and
stochastic dynamics . These results have been published in scientific journals, and were
presented on the scientific conferences and in the bachelor degree works (see [107] by
Stevanovi¢, (1967)), Magister of sciences theses (see [108] by Stevanovi¢ (1972), [110]
by Kozi¢ (1982), [112] by Pavlovi¢ (1982), [114] by Miti¢ (1985), [118] by Pavlov
(993), [119] by Filipovski (1995), [121] by Janevski* (2004), [122] by Simonovié¢
(2008)) and doctoral dissertations (see [109] by (Stevanovi¢) Hedrih (1975), [111] by
Kozi¢ (1990), [113] by Pavloi¢ (1990), [115] by Miti¢ (1994), [127] by Knezevi¢ (2000),
[124] by Peri¢ (2005), [126] by Jovanovi¢ (2009), [127] by Janevski* (2010), [128] by
Jovié** (2011), [129] by Simonovi¢ (2011) and [130] by Veljovi¢ (2011)) supervised by
Mitropolskiy (in period from 1972 to 1975) or by RaSkovi¢ (in period from 1964 to
1974) and by Hedrih in period from 1976 to 2011 year as well. For all previous results
see References from list in Appendix | — References VII — [105-130] and Appendix Il —
References VIII - [131-140].

In area of stochastic stability a scientific supports by series of consultation to
researchers was given by Kiev stochastic research group at Institute of Matmematics
NANU , S.T. Ariaratnam (Canada) and A. Tylikowski (Polad) and also by their papers.

The original results contain asymptotic analysis of the non-linear oscillatory
motions of elastic bodies: beams, plates, shells and shafts (see References by
(Stevanovi¢) Hedrih (1972, 1981, 1978, 1983, 1984, 1985, 1995); Hedrih and Raskovi¢
(1974); Hedrih, Kozi¢, Pavlovi¢, Miti¢ and Filipovski (1983, 1984, 1985, 1986, 1993,
1996, 1995)). Also, late a series of new research results are obtained by Janevski in 2003
[121] and by Simonovic in 2008 [122, 129] an in 2011 and also by Veljovic in 2011
[130] . The multi-frequency oscillatory motion of elastic bodies was studied.
Corresponding system of partial differential equations of system dynamics, as well as
system of first approximation of ordinary differential equations for corresponding
numbers of amplitudes and phases of multi-frequency regimes of elastic bodies non-
linear oscillations were composed. The characteristic properties of non-linear systems
passing through coupled multi-frequency resonant state and mutual influences between
excited modes were discovered.
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In the same cited papers amplitude-frequency and phase frequency curves for
stationary and no stationary coupled multi-frequency resonant kinetic states, based on the
numerical experiment on the system of ordinary differential equations in first
approximation are presented. Resonant jumps are pointed out in the both series of
graphical presentation: amplitude-frequency and phase frequency curves for the case of
the resonant interactions between modes in the same frequency resonant intervals.

Using ideas of averaging and asymptotic methods Krilov-Bogoliyubov-
Mitropolyskiy in the Doctoral dissertation [109] and in References (see Refs. Hedrih
(Stevanovi¢) (1975, 1972, 1981, 1978, 1983, 1984, 1985, 1995)) author gives the first
asymptotic approximations of the solutions for one-, two- , three- and four-frequency
vibrations of non-linear elastic beams, shaft and thin elastic plates, as well as of the thin
elastic shells with positive constant Gauss's curvatures and finite deformations, and
system of the ordinary differential equations in first asymptotic approximation for
corresponding numbers of amplitudes and phases for stationary and no stationary
vibration regimes.

Some results of an investigation of multi-frequency vibrations in single-
frequency regime in non-linear systems with many degrees of freedom and with slow-
changing parameters are presented by Stevanovi¢ and Raskovi¢ article (1974).
Application of the Krilov-Bogolyubov-Mitropolskiy asymptotic method for study of
elastic bodies non-linear oscillations and energetic analysis of the elastic bodies
oscillatory motions give new results in theses [108] by Stevanovi¢ in 1975. One-
frequency transversal oscillations of thin rectangular plate with non-linear constitutive
material stress-strain relations and non-linear transversal vibrations of a plate with special
analysis of influence of weak non-linear boundary conditions are contents of the articles
by Hedrih (1979, 1981).

First approximation of an asymptotic particular solution of the non-linear
equations of a thin elastic shell with positive Gauss’ curvature in two-frequency regime is
pointed out in the article by Hedrih (1983). Two-frequency oscillations of the thin elastic
shells with finite deformations and interactions between harmonics have been studied by
Hedrih and Miti¢ (1983) and multi frequency forced vibrations of thin elastic shells with
a positive Gauss's curvature and finite displacements by Hedrih (1984). Also, on the
mutual influence between modes in non-linear systems with small parameter applied to
the multi-frequencies plate oscillations are studied by Hedrih, Kozi¢, Pavlovi¢ and Miti¢
(1984).

Multi-frequency forced vibrations of thin elastic shells with a positive Gauss'
curvature and finite deformations and initial deformations influence of the shell middle
surface to the phase-frequency characteristics of the non-linear stationary forced shell's
vibrations and numerical analysis of the four-frequency vibrations of thin elastic shells
with Gauss' positive curvature and finite deformations are content of reference by Hedrih
and Miti¢ (1985). Also, initial displacement deformation influence of the thin elastic shell
middle surface to the resonant jumps appearance was investigated by same authors
Hedrih and Miti¢ (1987). By means of the graphical presentations from the cited
References, analysis was made and some conclusions about non-linear phenomenon in
multi-frequency vibrations regimes were pointed out. Some of these conclusions we
quote here: Non-linearities are the reason for the appearance of interaction between
modes in multi-frequency regimes; In the coupled resonant state one or several resonant
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jumps appear on the amplitude-frequency and phase frequency curves; these resonant
jumps are from smaller to greater amplitudes and vice versa.

Unique trigger of coupled singularities (Hedrih (2003)) with one unstable
homaoclinic saddle type point, and with two singular stable center type points appear in
one frequency stationary resonant kinetic state. It is visible on the phase-frequency as
well as on the amplitude-frequency graphs for stationary resonant state.

In the case of the multi-frequency coupled resonant state and in the appearance
of the more resonant coupled modes in resonant range of corresponding frequencies,
unique trigger of coupled singularities, and multiplied triggers of coupled singularities
(see Refs. by Hedrih, 2004, 2005) appear. Maximum number of triggers of coupled
singularities is adequate to number of coupled modes and resonant frequencies of
external excitations. Multiplied triggers contain multiple unstable saddle homoclinic
points in the mapped phase plane as the number of resonant frequencies of external
excitations. For example, if a four-frequency coupled resonant process in u-v plane is in
question, four homoclinic saddle type points appear. The appearance of these unstable
homaclinic saddle points requires further study, since it induces instability in a stationary
non-linear multi-frequency Kinetic process.

By use a double circular plate system, presented in the References by Hedrih
(Stevanovi¢) and Simonovi¢ (2005,2006 and 2007), the multi-frequency analysis of the
non-linear dynamics with different approaches and by use different kinetic parameters of
multi-frequency regimes is pointed out. Series of the amplitude-frequency and phase-
frequency graphs as well as eigen-time functions—frequency graphs are obtained for
stationary resonant states and analysed according present singularities and triggers of
coupled singularities, as well as resonant jumps.

An analogy between non-linear phenomena in particular multi-frequency
stationary resonant regimes of multi circular plate system non-linear dynamics, multi-
beam system non-linear dynamics and corresponding regimes in chain system non-linear
dynamics is identified (see References by Hedrih (Stevanovic) listed in the reference list
from period 1972-2010).

Using differential equations systems of the first approximation of multi-
frequency regime of stationary and no stationary resonant kinetic states, we analysed the
energy of excited modes and transfer of energy from one to other modes. On the basis of
this analysis, the question of excitation of lower frequency modes by higher frequency
mode in the non-linear multi-frequency vibration regimes was opened.

45.3. In the Reference by Hedrih (Stevanovi¢) and Hedrih (2009), the
expressions for the kinetic and potential energy as well as energy interaction between
chains in the double DNA chain helix are obtained and analyzed for a linearized model.
Corresponding expressions of the kinetic and potential energies of these uncoupled
main chains are also defined for the eigen main chains of the double DNA chain helix.
By obtained expressions, we concluded that there is no energy interaction between
eigen main chains of the double DNA chain helix system. Time expressions of the main
coordinates of the two eigen main chains are expressed by time, and eigen circular
frequencies are obtained. Also, generalized coordinates of the double DNA chain helix
are expressed by time correspond to the sets of the eigen circular frequencies. These
data contribute to better understanding of biomechanical events of DNA transcription
that occur parallel with biochemical processes. Considered as a linear mechanical
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system, DNA molecule as a double chain helix has its eigen circular frequencies and
that is its characteristic. Mathematically it is possible to decouple it into two chains
with their set with corresponding eigen circular frequencies which are different. This
may correspond to different chemical structure (the order of base pairs) of the
complementary chains of DNA. We are free to propose that every specific set of base
pair order has its eigen circular frequencies and its corresponding oscillatory energy
and it changes when DNA chains are coupled in the system of double chain helix.
Oscillations of base pairs and corresponding oscillatory energy for specific set of base
pairs may contribute to conformational chances of DNA double helix, and its unzipping
and folding.

4.5.4. General concluding remarks

For limited length of paper, now we made only some comments concerning the
following

* Lissajous’ curves, orthogonal asynchronous and synchronous oscillations,
asynchronization and synchronization of subsystem in hybrid system dynamics.

Series of Lissajous curves as well as new series of the generalized Lissajous
curves obtained by software MathCad as a results of the coupled orthogonal multi-
frequency  oscillations are  suitable for to build a method of
asynchronization/synchronization for applications to the discrete continuum for
synchronization some parts of discrete continuum. By this method based on attractors of
asynchronization/synchronization of the component oscillations of the subsystems of
hybrid system is possible and suitable for to obtain conditions of the integrity of the
dynamical system. Generalized Lissajous curves can be used as attractors of
asynchronization/synchronization of the component subsystem oscillations which are
coupled as that these oscillations are orthogonal. By changing some parameters of the
coupled oscillators synchronization and by use current software tools as it is MathCad (or
MathLab or Mathematica), the visualization of the transformation of the generalized
Lissajous curve, up to its degeneration into part of straight line, can be obtain as results
of the orthogonal coupling of oscillatory multi-frequency signals. If this degeneration is
not possible, then these oscillators it is not possible to synchronized and corresponding
parameter is not parameter of synchronization. If as results of the change of some
parameters of the coupled oscillators synchronization is transformation of the generalized
Lissajous curve into one unique line then it is possible to obtain system parameters of
the attractor of partially synchronization or asynchronization of the coupled oscillators.

Also, there are some models of the discrete continuum in plane or in the space,
which mass particles moves oscillatory as result of coupled two in plane, or three in
space, orthogonal multi-frequency oscillations Trajectories of this mass particles are
generalized Lissajous curves. Applications of the knowledge about generalized
Lissajous curves is important for constructions of some processing machines with
working processes based on the motion of the coupled orthogonal multi frequency
vibrations.



Advances in classical and analytical mechanics: A review of author’s results 373

Ito’s stochastic differential equations and applications to stochastic oscillations
of mechanical systems with hereditary properties are also actual mathematical task for
open possibilities in engineering practice, as well as in other area of science.

Mathematical analogy and phenomenological mapping by use mathematical
models in applications to disparate physical models dynamics open very large
interactions between different area of science and easier transfer knowledge from one
area of science to other.

Also, one of main education task of Serbian mathematicians and other
university professor to fined minimum volume of the classical and new current
mathematical knowledge necessary to be in the programs of Ph.D. study enough for
mathematical background of new Ph.D. specialist for their next two decade research and
possibility to accept new and future mathematical discovery and be competent to applied
these new mathematical knowledge in research and practice, as well as to define new
mathematical tasks appear from his research and to directed to mathematicians for future
research.
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DOPRINOSI KLASICNOJ | ANALITICKOJ MEHANICI:
PREGLED AUTOROVIH REZULTATA

Katica R. (Stevanovi¢) Hedrih
Matematicki institut SANU, Beograd, Srbija
i Masinski fakultet Univerziteta u Nisu
Tel: 381 18 2 41 663;
e-mail: katica@masfak.ni.ac.yu,khedrih@eunet.yu,khedrih@sbb.co.yu

Apstrakt. Dat je pregled, u subjektivnom izboru, autorovih nau¢nih rezultata u
oblasti klasi¢ne mehanike, analiticke mehanike diskretnih naslednih sistema, analiticke
mehanike diskretnih frakcionog reda oscilatornih sistema, elastodinamike, nelinearne
dinamike, kao i dinamike hibridnih sistema. Glavni originalni autorovi rezultati su
predstavljrni kroz matematicke modele mehanike sa primerima primene na reSavanje
zadataka dinamike realnih mehani¢kih sistema apstrahovanih do teorijskih modela
mehanickih diskretnih ili kontinualnih sistema, kao i hibridnih sistema. Rad prikazuje i
metode i nau¢ne rezultate autorovih profesora Mitropoljskog, Andjeli¢a i RaSkovica, kao
i originalne naucne rezultate autora og rada dobijene primenom metoda njenih profesora.
Vektorska metoda je zasnovana na vektorima momenata masa i odgovaraju¢im
devijacionim vektorskim komponentama za pol i orjentisanu osu, koje je K. Hedrih ,
1991 godine, definisala i prikazala. Ovde su, takodje prikazani i rezultati u konsrukciji
analiticke dinamike diskretnih naslednih sistema dobijeni u saradnji sa O.A. Goroshkom.
Takodje je ukazano i na neke izabrane rezultate autorovih poslediplomaca i doktoranata u
oblasti nelinearne dinamike. Spisak naucnih projekata kojima je rukovodio autor je
prikazan, kao i spisak doktorskih disertacija i magistarskih teza koje sadrze naucne
rezultate uradjene pod mentorstvom autora ovog rada ili njenih prvih doktoranata.

Kljuéne reéi: Pregledni, vektorska metoda, vector momenta mase, vector
devijacionog momenta mase, rotator, spregnute rotacije, mimoilazne ose, bazni vektori
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tangentnog prostora vektora polozaja, ugaona brzina baznih vektora tangentnog prostora,
brzina ekstenzije baznog vektora, reonomne veze, reonomne coordinate, pokretljivost,
asimptotska aproksimacija reSenja, asimptotska metoda usrednjenja Krilov-Bogoljubov-
Mitropolzski, metoda varijacije konstanata, nasledni sistem, reolosko i relaksaciono
jezgro, standardni nasledni element, integrod-diferencijalna jednacina, izvod necelog
reda, kovarijantne koordinate, kontravarijantne koordinate, fizicke koordinate, metoda
diskretnog kontinuuma, prostorna frakcionog reda struktura, glavne sopstvene povrsinske
mreze, glavni sopstveni lanci, oscilator frakcionog reda, karakteristi¢ni brojevi sistema
frakcionog reda, prenos signala, visefrekventni, materijalne tacke, kruto telo, reduktor,
deformabilno telo, sistem viSe tela, transverzalni, longitudinalni, spregnute ploce,
spregnute trake, spregnute grede, stohasti¢ka stabilnost.
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