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1 Introduction

In this report we shall give a survey of applications of the theory of graph
spectra to computer science.

Applications of graph spectra are so numerous that we cannot give a
comprehensive survey in limited space that we have at the disposal. We
shall rather limit ourselves to review representative examples of applications
so that the reader can get an impression on the situation but also to become
able to use the literature.

Several papers in computer science cite books on graph spectra such
as [Big], [Chu], [CvDSa], [CvRS1]. To document spectral techniques used
several books on matrices are cited as well.

In this introductory section we shall present some expository texts on
applications of graph spectra.

The books [CvDSa], [CvDGT] contain each a chapter on applications of
graph eigenvalues.

The book [CvRS4] also contains a chapter on applications. There are
sections on Physics, Chemistry, Computer Sciences and Mathematics itself.

According to its Preface, the purpose of the book [CvGu] is to draw
the attention of mathematical community to rapidly growing applications
of the theory of graph spectra. Besides classical and well documented ap-
plications to Chemistry and Physics, we are witnesses of the appearance
of graph eigenvalues in Computer Science in various investigations. There
are also applications in several other fields like Biology, Geography, Eco-
nomics and Social Sciences. A monograph with a comprehensive treatment
of applications of graphs spectra is missing at the present.

The book [CvGu] contains five chapters: an introductory chapter with a
survey of applications by representative examples and four case studies (one
in Computer Science and three in Chemistry).

The introductory text [Cve] provides an introduction to the theory of
graph spectra and a short survey of applications of graph spectra. There are
four sections: 1. Basic notions, 2. Some results, 3. A survey of applications,
4. Selected bibliographies on applications of the theory of graph spectra.
We have mentioned applications to Chemistry, Physics, Computer Sciences
and Mathematics itself. Graph spectra are used in many other branches of
science including Biology, Geography, Economics and Social Sciences and
the fifth subsection contains some information about that. In all fields we
were forced to give only examples of applications.
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2 A survey of applications

It was recognized in about last ten years that graph spectra have several im-
portant applications in computer science. Graph spectra appear in internet
technologies, pattern recognition, computer vision, data mining, multipro-
cessor systems, statistical databases and in many other areas as the titles of
the subsections show.

Note that the classification of numerous applications into subsections
does not reflect always the importance of the subjects. Also there is an
overlapping of the classified material.

We have not included numerous applications of graph spectra to combi-
natorial optimization although many of the problems of combinatorial op-
timization appear in computer science. We did so because here we have
applications of graph spectra to another branch of mathematics.

Spectral techniques appear in many papers in computer science, perhaps
there are several thousands of such papers. However, spectral techniques are
far from being exclusive or essential in most cases; they are interlaced with
other mathematical tools.

One should be noted that spectra of several graph matrices appear in
applications. The adjacency matrix and Laplacian appear most frequently
but also the signless Laplacian as well as normalized versions of these matri-
ces. Incidence, distance and other matrices can be found as well. Sometimes
the considerations move from graph matrices to general ones; equivalently,
weighted graphs appear instead of graphs. In some cases we encounter di-
graphs and hypergraphs as well.

Several models of random graphs together with the corresponding eigen-
value distributions appear in the treatment of complex networks (networks
with a huge number of vertices).

It can be noticed that not only the eigenvalues but also the eigenvectors
of relevant graph matrices appear in applications in most cases.

Here we mention some general references related to applications of graph
spectra in computer science.

Referring to the book [CvDSa] as “the current standard work on alge-
braic graph theory”, Van Mieghem gave in his book [Van] a twenty page
appendix on graph spectra, thus pointing out the importance of this subject
for communications networks and systems.

The paper [Spi] is a tutorial on the basic facts of the theory of graph
spectra and its applications in computer science delivered at the 48th Annual
IEEE Symposium on Foundations of Computer Science.
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2.1 Expanders

One of the oldest applications (from 1970’s) of graph eigenvalues in Com-
puter Science is related to graphs called expanders. Avoiding a formal def-
inition, we shall say that a graph has good expanding properties if each
subset of the vertex set of small cardinality has a set of neighbors of large
cardinality. Expanders and some related graphs (called enlargers, magni-
fiers, concentrators and superconcentrators, just to mention some specific
terms) appear in treatment of several problems in Computer Science (for
example, communication networks, error-correcting codes, optimizing mem-
ory space, computing functions, sorting algorithms, etc.). Expanders can be
constructed from graphs with a small second largest eigenvalue in modulus.
Such class of graphs includes the so called Ramanujan graphs. For an intro-
duction to this type of applications see [CvSi] and references cited therein.
Paper [LuPS] is one of the most important papers concerning Ramanujan
graphs.

2.2 Virus propagation in computer networks

The largest eigenvalue λ1 plays an important role in modelling virus propa-
gation in computer networks. The smaller the largest eigenvalue, the larger
the robustness of a network against the spread of viruses. In fact, it was
shown in [WaCWF] that the epidemic threshold in spreading viruses is pro-
portional to 1/λ1. Motivated by this fact, the authors of [DaKo] determine
graphs with minimal λ1 among graphs with given numbers of vertices and
edges, and having a given diameter. Another model of virus propagation in
computer networks has been developed in [VaOK] with the same conclusion
concerning 1/λ1.

2.3 Computer vision and pattern recognition

Spectral2 graph theory has been widely applied to solve problems in the
field of computer vision and pattern recognition. Examples include image
segmentation, routing, image classification, etc. These methods use the
spectrum, i.e. eigenvalues and eigenvectors, of the adjacency or Laplacian
matrix of a graph.

The basic idea is to represent an image by a weighted graph with a vertex
for each pixel and the edges between the neighbouring pixels with weight
depending on how similar the pixels are.

2written by Tatjana Aleksić
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A more sofisticated idea is to represent an image’s content by a graph with specially

selected points as vertices. First, a corner detection algorithm has to be used to detect the

interest points in the image which could be represented by graph nodes (Harris detector,

The Moravec corner detector, etc.). The interest points that these algorithms detect

are points in an image which have a well-defined position and can be robustly detected.

This means that an interest point can be a corner but it can also be, an isolated point

of local intensity maximum or minimum, line endings, or a point on a curve where the

curvature is locally maximal. The edges between the neighboring nodes are determined

using algorithms such as Delaunay triangulation or, in the case of weighted graphs, the

similarity between the nodes.

Several authors have explored the use of the Laplacian and related oper-
ators to map data to a manifold in a low dimensional space [1],[2]. Horaud
and Sossa [3] have applied the spectral graph theory to image database in-
dexing by comparing the coefficients of the polynomials of the Laplacian
matrix of the weighted graph extracted from the image. This representation
was used for indexing a large database of line drawings.

Luo, Wilson and Hancock [4] have explored how ideas from spectral
graph theory can be used to construct pattern spaces for sets of graphs. The
idea has been to extract features that are permutation invariants from the
adjacency matrices of the graphs under study, such as permutation invari-
ant polynomials from the eigenvectors of the Laplacian matrix [5]. Pattern
spaces may then be constructed from the feature vectors using techniques
such as principal components analysis.

Principal components analysis - (PCA) involves a mathematical procedure that trans-

forms a number of possibly correlated variables into a smaller number of uncorrelated

variables called principal components. Now it is mostly used as a tool in exploratory data

analysis and for making predictive models. PCA involves the calculation of the eigen-

value decomposition of a data covariance matrix usually after mean centering the data

for each attribute. PCA is mathematically defined as an orthogonal linear transformation

that transforms the data to a new coordinate system such that the greatest variance by

any projection of the data comes to lie on the first coordinate (called the first principal

component), the second greatest variance on the second coordinate, and so on. PCA is

theoretically the optimum transform for given data in least square terms. PCA essentially

rotates the set of points around their mean in order to align with the first few principal

components. This moves as much of the variance as possible (using a linear transforma-

tion) into the first few dimensions. The values in the remaining dimensions, therefore,

tend to be highly correlated and may be dropped with minimal loss of information. PCA

is often used in this manner for dimensionality reduction.

Techniques from spectral-graph theory have been used to develop a pow-
erful array of algorithms in computer vision and pattern recognition. For
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instance, Shi and Malik [6] have shown how the Fiedler vector (i.e. the eigen-
vector associated to the second smallest eigenvalue of the Laplacian matrix)
can be used to separate the foreground from the background structure in im-
ages so as to maximize the normalized graph cut. Sarkar and Boyer [7] have
shown how the eigenvector of the largest eigenvalue of the weighted proxim-
ity 3 matrix can be used to group line segments. Random-walk based graph
matching methods [8], [9] use the eigenvector of the largest eigenvalue of the
adjacency matrix to convert a graph into a string. The attractive feature of
eigenvector methods is that they rely on a simple matrix representation of
the problem at hand and result in algorithms that do not require complex
search procedures or control structures.

Graph clustering is an important issue in computer vision and pattern
recognition, since graphs can be used for the high-level abstraction of scene
and object structure. The idea of graph clustering is to divide graphs into
different groups based on the structural properties. Although graph struc-
tures have been proved useful in both low-level and high-level vision4, they
are computationally cumbersome because of the need to establish reliable
correspondence between nodes. Standard graph clustering methods need
to solve the correspondence problems between nodes (of two graphs) first.
Again this is a potentially NP-hard problem and the computational over-
heads can be large. Recently spectral graph theory has been applied to
graph clustering [3],[10]. Luo, Wilson and Hancock [4],[5] have proposed
spectral invariants for graph clustering. These methods do not need to solve
the node correspondence problem, instead they rely on using information
from the spectrum of the Laplacian matrix.

The normalized Laplacian spectrum is closely related to the heat kernel
of a graph. The heat kernel is the solution of the heat equation and is

3The global relationship among image features can be very effectively captured in the
form of a graph whose nodes represent the image features and whose links denote compat-
ibility between the features. Two image features are said to be compatible if they exhibit
pairwise organization, e.g., the two structures are of the same type, similar size, and have
similar orientation (generalized parallelism). We call this graph the relation graph. In
practice, the links in the graph are weighted according to the degree of compatibility be-
tween two nodes Our task is to formulate measures which capture global properties of this
relation graph. Eigenvalues and eigenvectors of the relation graph (the weighted matrix
joined to the relation graph) provide exciting possibilities as a basis for such measures.

Matrica je nazvana proximity matrix zbog rastojanja(proximities between edge seg-
ments) koja se u radu koriste za definisanje teina.

4Tasks such as edge detection, image segmentation, line detection, motion analysis, etc.
are considered to be low-level problems as they detect the constituent parts of objects.
These techniques, therefore, determine the features that will be used by high-level vision
techniques such as object recognition and scene analysis.
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formed by exponentiating the normalized Laplacian eigensystem over time
(ht = e−tL̂). The heat kernel matrix of the graph encapsulates the way in
which information flows through the edges of the graph over time. Methods
to extract useful and stable invariants from the heat kernel, as a means of
graph clustering, have been explored. They have been also used to map the
nodes of a graph to points in a vector space [11]. This is achieved by the
analysis of the heat kernel.

The trace of the heat kernel [12],[13] be used for the purpose of charac-
terizing graphs. The trace of the heat kernel is found by summing a series of
terms, each of which is the result of exponentiating a normalized Laplacian

eigenvalue with time (Tr[t] =
|V |∑
i=1

e−µit). As a result the heat kernel trace

is a function whose parameters are the normalized Laplacian eigenvalues
and whose argument is time. The shape of this function can be used to
characterize the corresponding graph [14].

The heat content is defined as the sum of the elements of the heat kernel
and can be expanded as a polynomial over time (Q(t) =

∑
u∈V

∑
v∈V

ht(u, v)) .

The coefficients of the polynomial are known to be invariants. It has been
demonstrated how the polynomial coefficients can be computed from the
normalized Laplacian eigensystem [15], [16]. Graph clustering is performed
by applying principal components analysis to vectors constructed from the
polynomial coefficients. It has been shown that manifold learning theory and
spectral methods can be combined to solve the image classification problem.

There has recently been an increasing interest in hypergraph-based meth-
ods for representing and processing visual information extracted from im-
ages. The main reason for this is that hypergraph representations allow
nodes to be multiply connected by edges, and can hence capture multiple
relationships between features. The idea has been to extend techniques
from spectral-graph theory to hypergraphs. A hypergraph model for char-
acterizing object structures has been established and the spectral method
to construct pattern vectors from the hypergraph’s Laplacian and charac-
teristic polynomials has been used [17], [18]. The authors apply feature
vectors to clustering hypergraphs extracted from images of different object
views and demonstrate their effectiveness in hypergraph characterization.
Hypergraph-based spectral methods, however are relatively new concepts
and there is more to be explored.
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2.4 Quantum computing

Quantum computation is a model of computation based on the principles
of quantum mechanics although the corresponding computers have not yet
been realized. In spite of the non-existence of actual machines, the theory
of quantum computing is very much developed. For a general overview
on Quantum Information Technology see, for example, special issue of the
journal NEC Research & Developments, 44(2003), No. 3.

It has been discovered recently [ChDEL] that integral graphs can play a
role in the so called perfect state transfer in quantum spin networks. Further
details on this topic can be found in [SaSS].

2.5 Load balancing in multiprocessor systems

The job which has to be executed by a multiprocessor system is divided into
parts that are given to particular processors to handle them. We can assume
that the whole job consists of a number of elementary jobs (items) so that
each processor gets a number of such elementary jobs to execute. Mathe-
matically, elementary jobs distribution among processors can be represented
by a vector x whose coordinates are non-negative integers. Coordinates are
associated to graph vertices and indicate how many elementary jobs are
given to corresponding processors.

Vector x is usually changed during the work of the system because some
elementary jobs are executed while new elementary jobs are permanently
generated during the execution process. Of course, it would be optimal
that the number of elementary jobs given to a processor is the same for
all processors, i.e., that the vector x is an integer multiple of the vector j
whose all coordinates are equal to 1. Since this is not always possible, it
is reasonable that processors with a great number of elementary jobs send
some of them to adjacent processors so that the job distribution becomes
uniform if possible. In this way the so called problem of load balancing is
important in managing multiprocessor systems. The load balancing problem
requires creation of algorithms for moving elementary jobs among processors
in order to achieve the uniform distribution.

We shall present an algorithm for the load balancing problem which is
based on the Laplacian matrix of a graph.

LetG be a connected graph on n vertices. Eigenvalues and corresponding
orthonormal eigenvectors of the Laplacian L = D − A of G are denoted by
ν1, ν2, . . . , νn = 0 and u1, u2, . . . , un, respectively. Any vector x from Rn

can be represented as a linear combination of the form x = α1u1 + α2u2 +
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· · · + αnun.
Suppose now that G has distinct Laplacian eigenvalues µ1, µ2, . . . , µm =

0 with multiplicities k1, k2, . . . , km = 1, respectively. Vector x can now be
represented in the form x = y1 + y2 + · · · + ym where yi belong to the
eigenspace of µi for i = 1, 2, . . . ,m. We also have ym = βj for some β.

Since Lx = L(y1 + y2 + · · · + ym) = µ1y1 + µ2y2 + · · · + µmym, we
have x(1) = x − 1

µ1
Lx =

(
I − 1

µ1
L
)
x =

(
1 − µ2

µ1

)
y2 + · · · + βj. We see

that the component of x in the eigenspace of µ1 has been cancelled by the
transformation by the matrix I− 1

µ1
L while the component in the eigenspace

of µm remains unchanged. The transformation I − 1
µ2
L will cause that

the component of x(2) =
(
I − 1

µ2
L
)
x(1) in the eigenspace of µ2 disappears.

Continuing in this way

x(k) =
(
I − 1

µk
L
)
x(k−1), k = 1, 2, . . . ,m− 1 (1)

we shall obtain x(m−1) = βj.
We have seen how a vector x can be transformed to a multiple of j

using the iteration process (1) which involves the Laplacian matrix of the
multiprocessor graph G. It remains to see what relations (1) mean in terms
of load moving.

Let vector x(k) have coordinates x(k)
1 , x

(k)
2 , . . . , x

(k)
n . Relations (1) can be

rewritten in the form

x
(k)
i = x

(k−1)
i − 1

µk

∑
i∗j

(
dix

(k−1)
i − x

(k−1)
j

)
(2)

where di is the degree of vertex i. This means that the current load at vertex
i is changed in such a way that vertex (processor) i sends 1

µk
-th part of its

load to each of its di neighbors and, because this holds for every vertex, also
receives 1

µk
-th part of the load from each of its di neighbors.

In this way we have defined a load flow on the edge set of G. First, par-
ticular amounts of load flow should be considered algebraically, i.e., having
in mind their sign. So, if x(k−1)

i is negative, then vertex i, in fact, receives
the corresponding amount. For each edge ij we have two parts of the flow:
the part which is sent (or received) by i and the part which is sent (or re-
ceived) by j. These two amounts should be added algebraically and in this
way we get final value of the flow through edge ij. This flow at the end has
a non-negative value which is sent either from i to j or vice versa.

The number of iterations in (1) is equal to the number of non-zero dis-
tinct Laplacian eigenvalues of the underlying graph. Hence we see that from
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the point of view of complexity of the load balancing algorithms graphs with
a small number of distinct Laplacian eigenvalues are suitable for modelling
multiprocessor interconnection networks. In addition, maximum vertex de-
gree ∆ of G also affects computation of the balancing flow. Therefore,
the complexity of the balancing flow calculations essentially depends on the
product m∆ and that is why this quantity was proposed in [ElKM] as a
parameter relevant for the choice and the design of multiprocessor intercon-
nection networks.

A graph is called integral if its spectrum consists entirely of integers.
Each eigenvalue has integral eigenvectors and each eigenspace has a basis
consisting of such eigenvectors.

In integral graphs load balancing algorithms, which use eigenvalues and
eigenvectors, can be executed in integer arithmetics as noted in [CvDa2].
The further study of integral graphs in connection to multiprocessor topolo-
gies seems to be a promising subject for future research.

See references [DeMP, DiFM, GhMS, HuBl, HuBE] for further informa-
tion on the load balancing problem.

2.6 Multiprocessor interconnection networks

As we have already pointed out in the previous subsection, the graph invari-
ant obtained as the product of the number of distinct eigenvalues m and the
maximum vertex degree ∆ of G has been investigated in [ElKM] related to
the design of multiprocessor topologies. The main conclusion of [ElKM] with
respect to the multiprocessor design and, in particular to the load balancing
within given multiprocessor systems was the following: if m∆ is small for a
given graph G, the corresponding multiprocessor topology was expected to
have good communication properties and has been called well-suited. The
graphs with large m∆ were called ill-suited and were not considered suitable
for design of multiprocessor interconnection networks.

The following definitions of four kinds of graph tightness have been in-
troduced and used in [CvDa1, CvDa2, CvDa3].

First type mixed tightness t1(G) of a graph G is defined as the product
of the number of distinct eigenvalues m and the maximum vertex degree ∆
of G, i.e., t1(G) = m∆.

Structural tightness stt(G) is the product (D+ 1)∆ where D is diameter
and ∆ is the maximum vertex degree of a graph G.

Spectral tightness spt(G) is the product of the number of distinct eigen-
values m and the largest eigenvalue λ1 of a graph G.
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Second type mixed tightness t2(G) is defined as a function of the diameter
D of G and the largest eigenvalue λ1, i.e., t2(G) = (D + 1)λ1.

Several arguments were given which support the claim that graphs with
small tightness t2 are well suited for multiprocessor interconnection net-
works.

It was proved that the number of connected graphs with a bounded tight-
ness is finite and graphs with tightness values not exceeding 9 are determined
explicitly. There are 69 such graphs and they contain up to 10 vertices. In
addition, graphs with minimal tightness values when the number of vertices
is n = 2, . . . , 10 are identified.

2.7 Complex networks

Complex networks is a common name for various real networks which are
presented by graphs with an enormously great number of vertices. Here
belong Internet graphs, phone graphs, e-mail graphs, social networks and
many other. In spite of their diversity such networks show some common
properties.

Several models of random graphs have been used to describe complex
networks including the classical Erdös-Rényi model where we have a constant
probability for the existence of each edge. There are models where given
degree distribution is realized.

Main characteristic of complex networks is the degree and eigenvalue
distribution. Both distributions obey a power low of the form x−β for a
positive β.

In particular, if nk denotes the number of vertices of degree k, then
asymptotically nk = ak−β for some constant a.

It was conjectured in [FaFF] that in networks with degree power law the
largest eigenvalues of the adjacency matrix have also a power law distribu-
tion. That was proved under some conditions in [MiPa].

The power law for eigenvalues can be formulated in the following way.
Let λ1, λ2, . . . be non-increasing sequence of eigenvalues of the adjacency
matrix, then asymptotically λi = ai−γ for some constant a and positive γ.

The book [ChLu] is devoted to complex networks. There are two chapters
which describe spectral properties of such networks.

Note that most of the papers on complex networks appear in scientific
journals in the area of Physics.
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2.8 Internet topology

Studying5 and modelling Internet topology (i.e. the structure) is necessary
for protocol performance evaluation and simulation of a variety of network
problems. Although real topology data are partially available (e.g. at the
level of the so called autonomous systems) it is also useful to have theoretical
models. Of course, theoretical models are checked on available real data.
The main theoretical models of the Internet use the concepts of complex
networks and, in particular, power laws for degrees and eigenvalues.

Analyzing the Internet topology using randomly generated graphs, where
routers are represented by vertices and transmission lines by edges, has been
widely replaced by mining data that capture information about Internet Au-
tonomous Systems and by exploring properties of associated graphs on the
AS-level. The Route Views data 6 and RIPE 7 datasets collected from Bor-
der Gateway Protocols (BGP) routing tables have been extensively used
by the research community [FaFF, SiFFF, ChCGJSW]. The discovery of
power-laws and spectral properties of the Internet topology indicates a com-
plex underlying network infrastructure.

Analysis of the collected datasets indicates that the Internet topology
is characterized by the presence of various power-laws observed when con-
sidering a node degree vs. node rank, a node degree frequency vs. de-
gree, and a number of nodes within a number of hops vs. number of
hops [FaFF, SiFFF]. Some of these early conclusions were subsequently
revised by considering a more complete AS-level representation of the In-
ternet topology [ChCGJSW, ChGJSW]. These extended maps have heavy
tailed or highly variable degree distributions and only the distribution tales
have the power-law property. It has been observed that the power-law ex-
ponents associated with Internet topology have not substantially changed
over the years in spite of the Internet exponential growth [GkMZ, NaST].
Power-laws also appear in the eigenvalues of the adjacency matrix and the
normalized Laplacian matrix vs. the order of the eigenvalues. They also
show invariance regardless of the exponential growth of the Internet.

While various power-law exponents associated with the Internet topol-
ogy have remained similar over the years, indicating that the power-laws
do not capture every property of a graph and are only one measure used

5written by Ljiljana Trajković
6(2010, February 10). BGP capture datasets [Online]. Available:

http://archive.routeviews.org.
7(2010, February 10). RÄ c©seaux IP EuropÄ c©ens [Online]. Available:

http://www.ripe.net/ris.
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to characterize the Internet, spectral analysis of both the adjacency ma-
trix and the normalized Laplacian matrix of the associated graphs reveals
new historical trends in the clustering of AS nodes and their connectivity.
The eigenvectors corresponding to the largest eigenvalues of the normalized
Laplacian matrix have been used to identify clusters of AS nodes with cer-
tain characteristics [GkMZ]. Spectral analysis was employed to analyze the
Route Views and RIPE datasets in order to find distinct clustering features
of the Internet AS nodes [ChTr]. For example, the connectivity graphs of
these datasets indicate visible changes in the clustering of AS nodes and the
AS connectivity over the period of five years [NaST]. Clusters of AS nodes
can be also identified based on the eigenvectors corresponding to the second
smallest and the largest eigenvalue of the adjacency matrix and the normal-
ized Laplacian matrix [SuTr]. The connectivity and clustering properties of
the Internet topology can be further analyzed by examining element values
of the corresponding eigenvectors.

2.9 Internet search

Web search engines are based on eigenvectors of the adjacency and some
related graph matrices. The most known systems are PageRank [BrPa]
(used in Google) and Hyperlinked Induced Topics Search (HITS) [Kle].

The structure of the Internet is represented by a digraph G where web
pages correspond to vertices and links to arcs.

HITS exploits eigenvectors belonging to the largest eigenvalues of the
matrixces AAT and ATA where A is the adjacency matrix of a subgraph of
G induced by the set of web pages obtained from search key words by some
heuristics. The obtained eigenvectors defines a certain ordering of selected
web pages.

PageRank uses similar ideas. Random walks are considered in this
model. In fact, the adjacency matrix of G is normalized so that the sum
of entries in each row is equal to 1. This matrix is a transition matrix of a
Markov chain and the normalized eigenvector of the largest eigenvalue of its
transpose defines the stationary state of the chain. Pages are ranked by the
coordinates of this eigenvector.

Expository paper [LaMe] contains a survey of both techniques.

2.10 Data mining

Data mining discovers interesting and unknown relationships and patterns
in huge data sets. Such hidden information could contribute very much to
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many domains such as image processing, web searching, computer security
and many others including those outside computer science.

Among many tools used in data mining, spectral techniques play an
important role [Saw], [Ski].

Spectral filtering is an important method in handling huge sets of data.
This method uses the eigenvectors of the adjacency and other graph matrices
to find some clusters in data sets represented by graphs. For example, in
[GkMZ] spectral filtering is applied in the study of Internet structure.

A description of spectral clustering methods is given in the tutorial [Lux].
The indexing structure of objects appearing in computer vision (and in a

wide range of other domains such as linguistics and computational biology)
may take the form of a tree. An indexing mechanism that maps the structure
of a tree into a low-dimensional vector space using graph eigenvalues is
developed in [ShDSZ].

2.11 Statistical databases

Statistical databases are those that allow only statistical access to their
records. Individual values are typically deemed confidential and are not
to be disclosed, either directly or indirectly. Thus, users of a statistical
database are restricted to statistical types of queries, such as looking for
the sum of values, minimum or maximum value of some parameters, etc.
Moreover, no sequence of answered queries should enable a user to obtain
any of the confidential individual values. However, if a user is able to re-
veal a confidential individual value, the database is said to be compromised.
Statistical databases that cannot be compromised are called secure.

One can consider a restricted case where the query collection can be de-
scribed as a graph. Surprisingly, the results from [Bra, BrMS] show an amaz-
ing connection between compromise-free query collections and graphs with
least eigenvalue -2. This connection was recognized in the paper [BraCv].

It is interesting to note that original Doob’s description [Doo] in 1973 of the
eigenspace of −2 in line graphs in terms of even cycles and odd dumbbells has been
extended to generalized line graphs by Cvetković, Doob and Simić [CvDS] in 1981
in terms of the chain groups, not explicitly dealing with cycles and dumbbells. The
independent discovery of Branković, Miller and Širáň [BrMS] in 1996 put implicitly
some light on the description of the eigenspace in generalized line graphs a bit
before Cvetković, Rowlinson and Simić in 2001 (the paper [CvRS2] was submitted
in 1998), using the star complement technique and without being aware of [BrMS],
gave the entire description of the eigenspace.
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2.12 Social networks

The problem of protecting the privacy appears also in social networks at
the Internet (for example, FaceBook) when studying general properties of
an existing network. A way to protect the privacy of personal data is to
randomize the network representing relations between individuals by delet-
ing some actual edges and by adding some false edges in such a way that
global characteristics of the network are unchanged. This is achieved using
eigenvalues of the adjacency matrix (in particular, the largest one) and of
the Laplacian (algebraic connectivity) [YiWu].
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