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The beginnings of cospectral graphs

Günthard and Primas in 1956 first expressed the belief that the
multiset of eigenvalues of adjacency matrix characterizes graphs.

The first counterexample of cospectral graphs was constructed by
Collatz and Sinogowitz in their seminal paper in 1957.

In 1966, Kac modeled the shape of a drum in a continuous fashion,
while Fischer modeled it in a discrete manner by a graph, and then
posed the famous question:

Can one hear the shape of a drum?,

or can a graph be characterized by the multiset of its eigenvalues?
Fischer then found additional examples of cospectral graphs. . .
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The 1970s and the 1980s

Development of theoretical methods for constructing
arbitrary numbers of new pairs of cospectral graphs.

Herndon and Ellzey (1975, 1986) used isospectral vertices:
G − u and G − v are cospectral, but not isomorphic.



Brief history of cospectral graphs Hosoya’s coalescences Computational results

Coalescences at isospectral vertices

Cospectral graphs are then obtained by identifying isospectral
vertices with the root of an arbitrary rooted graph H:

Schwenk’s celebrated 1973 result that almost every tree is
cospectral to another tree relies on the fact that the proportion of
trees with either of these forms tends to 1 as n→∞.
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Removal-cospectral sets

Schwenk further generalized this approach in 1979:
for a graph G with a subset of vertices S = {s1, . . . , sk}
and a graph H with a subset of vertices T = {t1, . . . , tk},
S and T are removal-cospectral if G − A and H − θ(A) are
cospectral for each A ⊂ S , where θ(si ) = ti .
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Removal-cospectral sets

Schwenk further generalized this approach in 1979:
for a graph G with a subset of vertices S = {s1, . . . , sk}
and a graph H with a subset of vertices T = {t1, . . . , tk},
S and T are removal-cospectral if G − A and H − θ(A) are
cospectral for each A ⊂ S , where θ(si ) = ti .

Then the coalescences of G and H with arbitrary J are cospectral.
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Godsil-McKay switching

A celebrated 1982 approach for constructing cospectral graphs.

Let π = (C1, . . . ,Ck ,D) be a partition of the vertex set of G s.t.:
a) any two vertices in Ci have equally many neighbours in Cj ,

b) any v ∈ D has either 0, |Ci |
2 or |Ci | neighbours in Ci .

Construct G (π) in the following way:
for each v ∈ D which has |Ci |

2 neighbours in Ci ,
delete the existing edges between v and Ci , and
add the edges between v and the remaining vertices in Ci .

Then G and G (π) are cospectral, with cospectral complements.
(Actually, D is a removal-cospectral set in both G and G (π).)
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Godsil-McKay switching, example 2
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Enumerations of cospectral graphs

Godsil-McKay, 1976: connected graphs up to 9 vertices

Lepović, 1998: connected graphs on 10 vertices

Haemers-Spence, 2004: connected graphs on 11 vertices

Brouwer-Spence, 2009: connected graphs on 12 vertices

Findings:

21.3% of cospectral graphs on 10 vertices

21.1% of cospectral graphs on 11 vertices

18.8% of cospectral graphs on 12 vertices

van Dam and Haemers conjectured that (unlike the case for trees)
almost all graphs ought to be determined by their spectrum.

This revived the interest for cospectrality of graphs:
the paper of van Dam and Haemers is already cited > 400 times. . .
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Hosoya’s coalescences

Hosoya drew attention more recently (2016–2019) that
cospectral graphs may be constructed in another way using
coalescences with a number of copies of the same rooted graph:

The underlying vertex sets are not removal-cospectral;

Different number of copies are attached at different vertices.

Our goal: explain theoretical background for this cospectrality.



Brief history of cospectral graphs Hosoya’s coalescences Computational results

Notation for coalescences

Let T and G1, . . . ,Gk be vertex-disjoint graphs. Let u1, . . . , uk be
distinct vertices of T , and let vi be a vertex of Gi for i = 1, . . . , k .

T (u1 = v1)G1(u2 = v2)G2 · · · (uk = vk)Gk

denotes the multiple coalescence obtained from T ∪ G1 ∪ · · · ∪ Gk

by identifying the vertices ui and vi for i = 1, . . . , k.

For a rooted graph G with the root r and a ≥ 1, G (a) is short for

G (r = r)G (r = r) · · · (r = r)G ,

in which the roots of a copies of G are mutually identified.
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Denoting Hosoya’s coalescences

T is the underlying tree with vertices {a, b, c , d , e, f }.
The left coalescence:

T (a = r)G (2)(b = r)G (2)(c = r)G (2)(e = r)G (2)(d = r)G .

The right coalescence:

T (a = r)G (2)(b = r)G (2)(d = r)G (2)(f = r)G (2)(e = r)G .

The sequence of “exponents” (2, 2, 2, 2, 1) is the signature.
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Characteristic polynomial of multiple coalescences

Main theorem

Let T be a graph with distinct vertices u1, . . . , uk for some k ≥ 1.
For i = 1, . . . , k , let Gi be a rooted graph with the root ri and let

Qi = PGi − xP(Gi−ri ) and Ri = P(Gi−ri ).

Then for any signature (a1, . . . , ak), we have

PT (u1 = r1)G
(a1)
1 · · · (uk = rk)G

(ak )
k =∑

J⊆{1,...,k}

P(T−
∑
i∈J

ui )
∏
j∈J

aj
∏
l∈J

Ql

k∏
m=1

R
am−|{m}∩J|
m .

Proof by induction on k , relying on the Schwenk’s formula

PG (u=v)H = PGP(H−v) + P(G−u)PH − xP(G−u)P(H−v).



Brief history of cospectral graphs Hosoya’s coalescences Computational results

Corollaries of the main theorem

When all rooted graphs G1, . . . ,Gk are the same:

Corollary

Let T be a graph with distinct vertices u1, . . . , uk for some k ≥ 1.
For a rooted graph G with the root r let

Q = PG − xP(G−r) and R = P(G−r).

Then for any signature (a1, . . . , ak), we have

PT (u1 = r)G (a1) · · · (uk = r)G (ak ) =∑
J⊆{1,...,k}

P(T−
∑
i∈J

ui )
∏
j∈J

aj Q
|J|R

∑k
m=1 am−|J|.
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Example

PT (a= r)G (2)(b= r)G (2)(c= r)G (2)(e= r)G (2)(d= r)G (1)

= PTR9

+ [2P(T−a)+2P(T−b)+2P(T−c)+2P(T−e)+P(T−d)]QR8

+ [4P(T−a−b)+4P(T−a−c)+4P(T−a−e)+2P(T−a−d)+4P(T−b−c)

+4P(T−b−e)+2P(T−b−d)+4P(T−c−e)+2P(T−c−d)+2P(T−e−d)]Q2R7

+ [8P(T−a−b−c)+8P(T−a−b−e)+4P(T−a−b−d)+8P(T−a−c−e)
+4P(T−a−c−d)+4P(T−a−e−d)+8P(T−b−c−e)+4P(T−b−c−d)

+4P(T−b−e−d)+4P(T−c−e−d)]Q3R6

+ [16P(T−a−b−c−e)+8P(T−a−b−c−d)+8P(T−a−b−e−d)

+8P(T−a−c−e−d)+8P(T−b−c−e−d)]Q4R5

+ 16P(T−a−b−c−e−d)Q5R4

= PTR9+(9x5−29x3 + 14x)QR8+(32x4−58x2+8)Q2R7

+(56x3−44x)Q3R6+(48x2−8)Q4R5+16xQ5R4.
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Example

PT (a= r)G (2)(b= r)G (2)(d= r)G (2)(f = r)G (2)(e= r)G (1)

= PTR9

+ [2P(T−a)+2P(T−b)+2P(T−d)+2P(T−f )+P(T−e)]QR8

+ [4P(T−a−b)+4P(T−a−d)+4P(T−a−f )+2P(T−a−e)+4P(T−b−d)

+4P(T−b−f )+2P(T−b−e)+4P(T−d−f )+2P(T−d−e)+2P(T−f −e)]Q2R7

+ [8P(T−a−b−d)+8P(T−a−b−f )+4P(T−a−b−e)+8P(T−a−d−f )
+4P(T−a−d−e)+4P(T−a−f −e)+8P(T−b−d−f )+4P(T−b−d−e)

+4P(T−b−f −e)+4P(T−d−f −e)]Q3R6

+ [16P(T−a−b−d−f )+8P(T−a−b−d−e)+8P(T−a−b−f −e)

+8P(T−a−d−f −e)+8P(T−b−d−f −e)]Q4R5

+ 16P(T−a−b−d−f −e)Q5R4

= PTR9+(9x5−29x3+14x)QR8+(32x4−58x2+8)Q2R7

+(56x3−44x)Q3R6+(48x2−8)Q4R5+16xQ5R4.
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Corollaries of the main theorem (2)

Corollary

Let T1 be a graph with distinct vertices u1, . . . , uk ,
and T2 a graph with distinct vertices v1, . . . , vk for some k ≥ 1.
For a fixed signature (a1, . . . , ak), the coalescences

T1(u1 = r1)G
(a1)
1 · · · (uk = rk)G

(ak )
k

and
T2(v1 = r1)G

(a1)
1 · · · (vk = rk)G

(ak )
k

are cospectral for all choices of G1, . . . ,Gk and their roots
r1, . . . , rk if and only if T1 and T2 are cospectral graphs
with the removal-cospectral sets {u1, . . . , uk} and {v1, . . . , vk}.
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Corollaries of the main theorem (3)

Corollary

Let T1 be a graph with distinct vertices u1, . . . , uk , and T2 a graph
with distinct vertices v1, . . . , vk for some k ≥ 1.
For fixed signatures (a1, . . . , ak) and (b1, . . . , bk) with
a1 ≥ · · · ≥ ak and b1 ≥ · · · ≥ bk , the coalescences

T1(u1 = r)G (a1) · · · (uk = r)G (ak )

and
T2(v1 = r)G (b1) · · · (vk = r)G (bk )

are cospectral for all choices of G and its root r if and only if
(a1, . . . , ak) = (b1, . . . , bk) and for each 0 ≤ l ≤ k

(∗)
∑

J⊆{1,...,k},|J|=l

P(T1−
∑
i∈J

ui )
∏
j∈J

aj =
∑

J⊆{1,...,k},|J|=l

P(T2−
∑
i∈J

vi )
∏
j∈J

aj .



Brief history of cospectral graphs Hosoya’s coalescences Computational results

Software for the Hosoya-type coalescences

The Java code, available at zenodo.org/record/4896776,
was written to find examples of Hosoya-type coalescences.

For a given set of underlying graphs,
sorted by the characteristic polynomials,
it processes all groups of cospectral graphs,
all signatures with entries between 1 and a given max value,
and all variations of vertices from each cospectral graph
to identify the examples that satisfy conditions (*).
(the removal-cospectral sets are skipped).

It succumbs to combinatorial explosion
when underlying graphs have more than 10–12 vertices.

zenodo.org/record/4896776
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Computational results

Set of graphs MSE # Pairs # Triplets # Quadruplets
of CMC of CMC of CMC

Connected graphs, 5 vertices 4 20
Connected graphs, 6 vertices 4 277
Connected graphs, 7 vertices 2 1215 3
Path, 8 vertices 10 2788
Path, 11 vertices 1 4
Path, 14 vertices 1 10
Path, 15 vertices 1 3
Path, 17 vertices 1 11
Path, 19 vertices 1 10
Path, 20 vertices 1 9
Trees with perfect matchings, 6 vertices 3 14
Trees with perfect matchings, 8 vertices 2 89
Trees with perfect matchings, 10 vertices 1 105
Unicyclic graphs, girth 6, 6 vertices 2 1
Unicyclic graphs, girth 6, 7 vertices 2 2
Unicyclic graphs, girth 6, 8 vertices 2 52
Unicyclic graphs, girth 6, 9 vertices 2 745 4
Unicyclic graphs, girth 6, 10 vertices 1 429 6 2
Benzenoid, 2 hexagons 2 4
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Triplets with underlying graphs on 7 vertices
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Quadruplets with underlying unicyclic graphs on 10 vertices
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Pairs with underlying benzenoids with 2 hexagons



Brief history of cospectral graphs Hosoya’s coalescences Computational results

Pairs with paths as underlying graphs

These were deemed rare by Hosoya. . .
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Pairs with paths as underlying graphs

These were deemed rare by Hosoya. . .
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General structure of these pairs

Here A is some subset of initial path vertices,
that then gets translated by multiples of d along the path,
while v and w are symmetrically placed between copies of A.
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An infinite family with paths as underlying graphs

Theorem

For arbitrary integers k ≥ 3, m < k/2, d ≥ 2, and
the integers (a1, . . . , ap) such that 0 ≤ a1 < · · · < ap ≤ d − 2,
let n = kd − 1, v = md − 1, w = (k −m)d − 1, and
let u(i ,j) = (i − 1)d + aj for i ∈ {1, . . . , k}, j ∈ {1, . . . , p}.
Then for any rooted graph G with the root r the coalescences

Pn(v = r)G (u(1,1) = r)G (u(1,2) = r)G · · · (u(k,p) = r)G

and

Pn(w = r)G (u(1,1) = r)G (u(1,2) = r)G · · · (u(k,p) = r)G

are cospectral.
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Instead of a conclusion

From: hosoya.haruo@ocha.ac.jp
To: dragance106@yahoo.com
Date: Sat, Sep 4 at 6:32 AM
Subject: Re: On construction of cospectral graphs using multiple coalescences

Dear Dragon Stevanovic:
This is an astonishing information which you could send me. Congratulation
and a lot of thanks to your effort in realizing my wish and dream. As I am not
good at programming, it is rather difficult to follow your algorithm precisely.
However, I am convinced of its correctness, because some parts of the results in
your paper support my results. To say the truth I was astonished at the results
in Table 1 showing Path, 8 vertices, MSE=10, # Pairs of CMC=2788. Could
you please, show me only some part of it other than for (1, 1, 1, 1)? At this
moment I cannot write more, but I am deeply expressing my thanks and
astonishment to your group.

Best regards,

Haruo Hosoya
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Thanks!

Preprint:
S. Al-Yakoob, A. Kanso, D. Stevanović,
On Hosoya’s dormants and sprouts,
arxiv.org/abs/2109.09369

arxiv.org/abs/2109.09369
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