Discrete De Giorgi theory and the finite element approximation of chemically reacting fluids

Endre Süli

Mathematical Institute University of Oxford

Based on a series of papers with

Lars Diening, Alexei Gazca-Orozco, Seungchan Ko, Petra Pustějovská, and Toni Scharle

75 Godina Matematičkog Instituta SANU Beograd, 5 October 2021

The PDE system

The fundamental equations governing the velocity u and pressure p of a viscous incompressible Newtonian fluid (at steady state) are the Navier–Stokes equations:

$$\operatorname{div} \boldsymbol{u} = 0 \quad \text{in } \Omega,$$
$$\operatorname{div} (\boldsymbol{u} \otimes \boldsymbol{u}) - \operatorname{div} \mathbb{S}(\mathbb{D}(\boldsymbol{u})) + \nabla p = \boldsymbol{b} \quad \text{in } \Omega,$$

where $\boldsymbol{b}:\Omega\to\mathbb{R}^d$ is a given external force, $\mathbb{D}(\boldsymbol{u}):=\frac{1}{2}(\nabla\boldsymbol{u}+(\nabla\boldsymbol{u})^{\mathrm{T}})$ and

$$\mathbb{S}(\mathbb{D}(\boldsymbol{u})) = 2\mu\,\mathbb{D}(\boldsymbol{u})$$

is a linear *constitutive* relation between the deviatoric stress tensor S and the symmetric velocity gradient $\mathbb{D}(\boldsymbol{u})$, involving the viscosity $\mu > 0$ of the fluid.

Synovial fluid

The rheological response of the synovial fluid — a biological fluid found in the cavities of movable joints, which is composed of ultrafiltrated blood plasma and *hyaluronan* — is modelled by a more complicated constitutive relation.

Laboratory experiments have shown that the viscosity of the fluid depends on the concentration c of hyaluronan as well as on the shear-rate $|\mathbb{D}(\boldsymbol{u})|$:

Consistency and visual appearance of synovial fluid. From Rijswijk (1992).

$$\mathbb{S}(c, \mathbb{D}(\boldsymbol{u})) = 2\mu \left(\kappa_1 + \kappa_2 |\mathbb{D}(\boldsymbol{u})|^2\right)^{\frac{r(c)-2}{2}} \mathbb{D}(\boldsymbol{u}),$$

where μ, κ_1, κ_2 are positive constants,

$$r(c) = 2 + \frac{1}{2} \left(e^{-\alpha c} - 1 \right)$$
 or $r(c) = 2 + \beta \left(\frac{1}{\alpha c^2 + 1} - 1 \right)$,

with $\alpha, \beta > 0$, and

$$\operatorname{div} (c \boldsymbol{u}) - \operatorname{div}(\mathbb{A}(c, |\mathbb{D}(\boldsymbol{u})|) \nabla c) = 0 \quad \text{in } \Omega.$$

$$\mathbb{S}(c,\mathbb{D}(\boldsymbol{u})) = 2\mu \left(\kappa_1 + \kappa_2 |\mathbb{D}(\boldsymbol{u})|^2\right)^{\frac{r(c)-2}{2}} \mathbb{D}(\boldsymbol{u}),$$

where μ, κ_1, κ_2 are positive constants,

$$r(c) = 2 + \frac{1}{2} \left(e^{-\alpha c} - 1 \right)$$
 or $r(c) = 2 + \beta \left(\frac{1}{\alpha c^2 + 1} - 1 \right)$,

with $\alpha,\beta>0,$ and

$$\operatorname{div} (c \, \boldsymbol{u}) - \operatorname{div}(\mathbb{A}(c, |\mathbb{D}(\boldsymbol{u})|) \nabla c) = 0 \qquad \text{in } \Omega.$$

If $c(x) \equiv 0$ then $r(c(x)) \equiv 2$ and the model collapses to the Navier–Stokes model.

$$\mathbb{S}(c, \mathbb{D}(\boldsymbol{u})) = 2\mu \left(\kappa_1 + \kappa_2 |\mathbb{D}(\boldsymbol{u})|^2\right)^{\frac{r(c)-2}{2}} \mathbb{D}(\boldsymbol{u}),$$

where μ, κ_1, κ_2 are positive constants,

$$r(c) = 2 + \frac{1}{2} \left(e^{-\alpha c} - 1 \right)$$
 or $r(c) = 2 + \beta \left(\frac{1}{\alpha c^2 + 1} - 1 \right)$,

with $\alpha, \beta > 0$, and

$$\operatorname{div} (c \, \boldsymbol{u}) - \operatorname{div}(\mathbb{A}(c, |\mathbb{D}(\boldsymbol{u})|) \nabla c) = 0 \qquad \text{in } \Omega.$$

If $c(x) \equiv 0$ then $r(c(x)) \equiv 2$ and the model collapses to the Navier–Stokes model.

Generally, instead of the familiar Sobolev space $H^1(\Omega) = W^{1,2}(\Omega)$, the velocity field \boldsymbol{u} now needs to be sought in $W^{1,r(c(\cdot))}(\Omega)$, whose integrability exponent

$$x \in \Omega \mapsto r(c(x)) \in (1,2]$$

is spatially variable, and is required to be at least log-continuous.

$$\mathbb{S}(c, \mathbb{D}(\boldsymbol{u})) = 2\mu \left(\kappa_1 + \kappa_2 |\mathbb{D}(\boldsymbol{u})|^2\right)^{\frac{r(c)-2}{2}} \mathbb{D}(\boldsymbol{u}),$$

where μ, κ_1, κ_2 are positive constants,

$$r(c) = 2 + \frac{1}{2} \left(e^{-\alpha c} - 1 \right)$$
 or $r(c) = 2 + \beta \left(\frac{1}{\alpha c^2 + 1} - 1 \right)$,

with $\alpha, \beta > 0$, and

$$\operatorname{div} (c \, \boldsymbol{u}) - \operatorname{div}(\mathbb{A}(c, |\mathbb{D}(\boldsymbol{u})|) \nabla c) = 0 \qquad \text{in } \Omega.$$

If $c(x) \equiv 0$ then $r(c(x)) \equiv 2$ and the model collapses to the Navier–Stokes model.

Generally, instead of the familiar Sobolev space $H^1(\Omega) = W^{1,2}(\Omega)$, the velocity field u now needs to be sought in $W^{1,r(c(\cdot))}(\Omega)$, whose integrability exponent

$$x \in \Omega \mapsto r(c(x)) \in (1,2]$$

is spatially variable, and is required to be at least log-continuous.

Question: How to ensure that c is log-continuous?

Hilbert's 19th problem (ICM Paris 1900)

Are the solutions to regular problems in the calculus of variations always analytic?

Hilbert's 19th problem (ICM Paris 1900)

Are the solutions to regular problems in the calculus of variations always analytic?

$$\begin{split} &\iint_{\Omega} F(x,y,u,p,q) \, \mathrm{d}x \, \mathrm{d}y = \mathsf{Minimum} \quad \left[p := \frac{\partial u}{\partial x}, \quad q := \frac{\partial u}{\partial y} \right], \\ &\frac{\partial^2 F}{\partial^2 p} \cdot \frac{\partial^2 F}{\partial^2 q} - \left(\frac{\partial^2 F}{\partial p \, \partial q} \right)^2 > 0 \qquad \text{[ellipticity condition]}, \\ F \text{ is an analytic function of all of its arguments } x, y, u, p, q. \end{split}$$

Question: Is *u* then an analytic function?

• Bernstein (1904) showed that for C^3 solutions the answer was positive.

- Bernstein (1904) showed that for C^3 solutions the answer was positive.
- Hopf (1932) for $C^{2,\alpha}$ solutions, Stampacchia (1952) for $C^{1,\alpha}$ solutions and Morrey (1954) for C^1 solutions, showed that the answer was still positive.

- Bernstein (1904) showed that for C^3 solutions the answer was positive.
- Hopf (1932) for $C^{2,\alpha}$ solutions, Stampacchia (1952) for $C^{1,\alpha}$ solutions and Morrey (1954) for C^1 solutions, showed that the answer was still positive.
- However, the direct method in the calculus of variations guarantees the existence of a solution with weak (Sobolev) differentiability properties only.

- Bernstein (1904) showed that for C^3 solutions the answer was positive.
- Hopf (1932) for $C^{2,\alpha}$ solutions, Stampacchia (1952) for $C^{1,\alpha}$ solutions and Morrey (1954) for C^1 solutions, showed that the answer was still positive.
- However, the direct method in the calculus of variations guarantees the existence of a solution with weak (Sobolev) differentiability properties only.

This gap was filled independently by Ennio De Giorgi (1956/57) and John Nash (1957/58), and a different proof was later given by Jürgen Moser (1961/62).

They showed that variational solutions had first derivatives that were Hölder continuous, which, thanks to previous results, solved Hilbert's 19th problem.

De Giorgi–Nash–Moser Thm for $-\operatorname{div}(\mathbb{A}\nabla c) = \operatorname{div} F + g$

A. Bensoussan and J. Frehse:

Regularity Results for Nonlinear Elliptic Systems and Applications. Springer, Berlin, 2002.

Theorem

Let $\Omega \subset \mathbb{R}^d$ be a Lipschitz domain and s > d. Suppose that $\mathbb{A} \in L^{\infty}(\Omega)^{d \times d}$ is uniformly elliptic with ellipticity constant $\lambda > 0$. Then, there exists an $\alpha \in (0,1)$ such that, for any $\mathbf{F} \in L^s(\Omega)^d$, $g \in L^{\frac{ds}{d+s}}(\Omega)$ and any $c_b \in W^{1,s}(\Omega)$, there exists a unique $c \in W^{1,2}(\Omega)$ such that $c - c_b \in W_0^{1,2}(\Omega) \cap C^{0,\alpha}(\overline{\Omega})$ and

$$\int_{\Omega} \mathbb{A} \nabla c \cdot \nabla \varphi \, \mathrm{d}x = -\int_{\Omega} \boldsymbol{F} \cdot \nabla \varphi \, \mathrm{d}x + \int_{\Omega} g \varphi \, \mathrm{d}x \qquad \forall \, \varphi \in W^{1,2}_0(\Omega);$$

furthermore, the following uniform bound holds:

$$\|c\|_{W^{1,2}(\Omega)\cap C^{0,\alpha}(\overline{\Omega})} \leq C\left(\Omega,\lambda,s,\|\mathbb{A}\|_{\infty},\|\boldsymbol{F}\|_{s},\|\boldsymbol{g}\|_{\frac{ds}{d+s}},\|c_{b}\|_{1,s}\right).$$

De Giorgi–Nash–Moser Thm for $-\operatorname{div}(\mathbb{A}\nabla c) = \operatorname{div} F + g$

A. Bensoussan and J. Frehse:

Regularity Results for Nonlinear Elliptic Systems and Applications. Springer, Berlin, 2002.

Theorem

Let $\Omega \subset \mathbb{R}^d$ be a Lipschitz domain and s > d. Suppose that $\mathbb{A} \in L^{\infty}(\Omega)^{d \times d}$ is uniformly elliptic with ellipticity constant $\lambda > 0$. Then, there exists an $\alpha \in (0,1)$ such that, for any $\mathbf{F} \in L^s(\Omega)^d$, $g \in L^{\frac{ds}{d+s}}(\Omega)$ and any $c_b \in W^{1,s}(\Omega)$, there exists a unique $c \in W^{1,2}(\Omega)$ such that $c - c_b \in W_0^{1,2}(\Omega) \cap C^{0,\alpha}(\overline{\Omega})$ and

$$\int_{\Omega} \mathbb{A} \nabla c \cdot \nabla \varphi \, \mathrm{d}x = -\int_{\Omega} \boldsymbol{F} \cdot \nabla \varphi \, \mathrm{d}x + \int_{\Omega} g \varphi \, \mathrm{d}x \qquad \forall \, \varphi \in W^{1,2}_0(\Omega);$$

furthermore, the following uniform bound holds:

$$\|c\|_{W^{1,2}(\Omega)\cap C^{0,\alpha}(\overline{\Omega})} \leq C\left(\Omega,\lambda,s,\|\mathbb{A}\|_{\infty},\|\boldsymbol{F}\|_{s},\|\boldsymbol{g}\|_{\frac{ds}{d+s}},\|c_{b}\|_{1,s}\right).$$

Question: Does this result have a discrete counterpart, in the case of piecewise affine finite element approximation of the problem?

Discrete De Giorgi-Nash-Moser estimate

L. Diening, T. Scharle, and E. Süli:

Uniform Hölder-norm bounds for finite element approximations of second-order elliptic equations. IMA J. Numer. Anal. (2021). https://doi.org/10.1093/imanum/drab029.

Discrete De Giorgi-Nash-Moser estimate

L. Diening, T. Scharle, and E. Süli:

Uniform Hölder-norm bounds for finite element approximations of second-order elliptic equations. IMA J. Numer. Anal. (2021). https://doi.org/10.1093/imanum/drab029.

Previous work:

For continuous piecewise affine finite element approximations of Laplace's equation $\Delta c = 0$, using a De Giorgi type argument, an *h*-uniform $C^{\alpha}(\overline{\Omega})$ -bound, assuming a quasi-uniform, shape-regular and uniformly acute triangulation, was proved in

N.E. Aguilera and L. Caffarelli:

Regularity results for discrete solutions of second-order elliptic problems in the finite element method, Calcolo, 23, 327–353 (1986).

Discrete De Giorgi-Nash-Moser estimate

L. Diening, T. Scharle, and E. Süli:

Uniform Hölder-norm bounds for finite element approximations of second-order elliptic equations. IMA J. Numer. Anal. (2021). https://doi.org/10.1093/imanum/drab029.

Previous work:

For continuous piecewise affine finite element approximations of Laplace's equation $\Delta c = 0$, using a De Giorgi type argument, an *h*-uniform $C^{\alpha}(\overline{\Omega})$ -bound, assuming a quasi-uniform, shape-regular and uniformly acute triangulation, was proved in

N.E. Aguilera and L. Caffarelli:

Regularity results for discrete solutions of second-order elliptic problems in the finite element method, Calcolo, 23, 327–353 (1986).

New contributions:

- The theory in DSS (2021) applies to $-\operatorname{div}(\mathbb{A}\nabla c) = F + g$ and is extendable to continuous p.w. affine approximations of uniformly elliptic nonlinearities.
- We do **not** require uniform acuteness of the triangulation, we do **not** need quasi-uniformity of the triangulation, and admit highly graded triangulations.

We need the following technical assumption on F:

Definition

We shall say that $F \in L^p(\Omega; \mathbb{R}^d)$ satisfies assumption (*) if there exists a 'dominating function' $G \in L^p(\Omega; \mathbb{R}^d)$ such that

 $\operatorname{div}\left(\boldsymbol{G}\pm\boldsymbol{F}\right)\leq 0\qquad \text{in }W^{-1,p}(\Omega).$

Theorem

Let $\Omega \subset \mathbb{R}^d$ be a polyhedral domain. Furthermore, let p, q be defined via $p = \frac{d}{1-\delta}$ and $q = \frac{d}{2-\delta}$, let $\mathbf{F} \in L^p(\Omega; \mathbb{R}^d)$ satisfy assumption (*) with dominating function $\mathbf{G} \in L^p(\Omega; \mathbb{R}^d)$, let $g \in L^q(\Omega)$, and let $\mathbb{A} \in L^{\infty}(\Omega; \mathbb{R}^{d \times d})$ be a uniformly elliptic matrix-valued function. Let \mathcal{T}_h be an \mathbb{A} -nonobtuse, shape-regular triangulation of the polyhedral domain $\overline{\Omega}$ with respective continuous p.w. affine finite element space V_h . Let $c_h \in V_h$ be the finite element approximation to the solution of $-\operatorname{div}(\mathbb{A}\nabla c) = \operatorname{div} \mathbf{F} + g$. Assume further that $c_h|_{\partial\Omega} \in C^\beta(\partial\Omega)$, uniformly in h.

Then, there is an $\alpha \in (0,1)$ such that

$$c_h \in C^{\alpha}(\overline{\Omega})$$

and, uniformly in h,

$$\|c_h\|_{C^{\alpha}(\overline{\Omega})} \lesssim \|\boldsymbol{G}\|_{L^{p}(\Omega)} + \|g\|_{L^{q}(\Omega)} + D,$$

where D depends on $\|c_h\|_{C^{\beta}(\partial\Omega)}$, \mathbb{A} , δ , α and the shape-regularity parameter of \mathcal{T}_h .

L. Diening, T. Scharle, and E. Süli:

Uniform Hölder-norm bounds for finite element approximations of second-order elliptic equations. IMA J. Numer. Anal. (2021). https://doi.org/10.1093/imanum/drab029.

The PDE system

We consider the following system of PDEs:

$$\begin{aligned} &\operatorname{div} \boldsymbol{u} = 0 & \operatorname{in} \, \Omega, \\ &\operatorname{div} \left(\boldsymbol{u} \otimes \boldsymbol{u} \right) - \operatorname{div} \mathbb{S}(c, \mathbb{D}(\boldsymbol{u})) + \nabla p = \boldsymbol{b} & \operatorname{in} \, \Omega, \\ &\operatorname{div} \left(c \boldsymbol{u} \right) - \operatorname{div} \boldsymbol{q}_c(c, \nabla c, \mathbb{D}(\boldsymbol{u})) = 0 & \operatorname{in} \, \Omega, \end{aligned}$$

where $\Omega \subset \mathbb{R}^d$, $d \in \{2, 3\}$, is a bounded open Lipschitz domain,

$$\boldsymbol{u}:\overline{\Omega}\to\mathbb{R}^d,\qquad p:\Omega\to\mathbb{R},\qquad c:\overline{\Omega}\to\mathbb{R}_{\geq 0}$$

are the velocity, pressure and concentration fields, $\boldsymbol{b}: \Omega \to \mathbb{R}^d$ is a given external force, and $\mathbb{D}(\boldsymbol{u})$ is the symmetric velocity gradient: $\mathbb{D}(\boldsymbol{u}) = \frac{1}{2}(\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T)$.

The PDE system

We consider the following system of PDEs:

$$\begin{aligned} &\operatorname{div} \boldsymbol{u} = 0 & \operatorname{in} \, \Omega, \\ &\operatorname{div} \left(\boldsymbol{u} \otimes \boldsymbol{u} \right) - \operatorname{div} \mathbb{S}(c, \mathbb{D}(\boldsymbol{u})) + \nabla p = \boldsymbol{b} & \operatorname{in} \, \Omega, \\ &\operatorname{div} \left(c \boldsymbol{u} \right) - \operatorname{div} \boldsymbol{q}_c(c, \nabla c, \mathbb{D}(\boldsymbol{u})) = 0 & \operatorname{in} \, \Omega, \end{aligned}$$

where $\Omega \subset \mathbb{R}^d$, $d \in \{2, 3\}$, is a bounded open Lipschitz domain,

$$\boldsymbol{u}:\overline{\Omega}\to\mathbb{R}^d,\qquad p:\Omega\to\mathbb{R},\qquad c:\overline{\Omega}\to\mathbb{R}_{\geq 0}$$

are the velocity, pressure and concentration fields, $\boldsymbol{b}: \Omega \to \mathbb{R}^d$ is a given external force, and $\mathbb{D}(\boldsymbol{u})$ is the symmetric velocity gradient: $\mathbb{D}(\boldsymbol{u}) = \frac{1}{2}(\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T)$.

We impose the Dirichlet boundary conditions:

$$\boldsymbol{u} = \boldsymbol{0}, \qquad c = c_b \qquad \text{on } \partial\Omega,$$

where $c_b \in W^{1,s}(\Omega)$ for some s > d.

We assume that the stress tensor $\mathbb{S}: \mathbb{R}_{\geq 0} \times \mathbb{R}^{d \times d}_{sym} \to \mathbb{R}^{d \times d}_{sym}$ is a continuous mapping satisfying the following growth, strict monotonicity and coercivity conditions: there exist positive constants C_1 , C_2 and C_3 such that

$$\begin{split} |\mathbb{S}(\xi, \mathbb{B})| &\leq C_1(|\mathbb{B}|^{r(\xi)-1} + 1), \\ (\mathbb{S}(\xi, \mathbb{B}_1) - \mathbb{S}(\xi, \mathbb{B}_2)) : (\mathbb{B}_1 - \mathbb{B}_2) > 0 \quad \text{for} \quad \mathbb{B}_1 \neq \mathbb{B}_2, \\ \mathbb{S}(\xi, \mathbb{B}) : \mathbb{B} &\geq C_2(|\mathbb{B}|^{r(\xi)} + |\mathbb{S}|^{r'(\xi)}) - C_3, \end{split}$$

where $r:\mathbb{R}_{\geq 0}\rightarrow \mathbb{R}_{>1}$ is a continuous function satisfying

$$1 < r^- \le r(\xi) \le r^+ < \infty \tag{(**)}$$

and

$$r'(\xi) := \frac{r(\xi)}{r(\xi) - 1}$$

is its Hölder conjugate.

We further assume that the concentration flux vector

$$\boldsymbol{q}_c(\xi, \boldsymbol{g}, \mathbb{B}) \, : \, \mathbb{R}_{\geq 0} \times \mathbb{R}^d \times \mathbb{R}^{d \times d}_{\mathrm{sym}} \to \mathbb{R}^d$$

is a continuous mapping, which is linear with respect to g, and satisfies the growth and coercivity conditions: there exist positive constants C_4 and C_5 such that

 $|\boldsymbol{q}_c(\xi, \boldsymbol{g}, \mathbb{B})| \leq C_4 |\boldsymbol{g}| \qquad ext{and} \qquad \boldsymbol{q}_c(\xi, \boldsymbol{g}, \mathbb{B}) \cdot \boldsymbol{g} \geq C_5 |\boldsymbol{g}|^2.$

We further assume that the concentration flux vector

$$\boldsymbol{q}_c(\xi, \boldsymbol{g}, \mathbb{B}) \, : \, \mathbb{R}_{\geq 0} imes \mathbb{R}^d imes \mathbb{R}^{d imes d}_{ ext{sym}} o \mathbb{R}^d$$

is a continuous mapping, which is linear with respect to g, and satisfies the growth and coercivity conditions: there exist positive constants C_4 and C_5 such that

$$|oldsymbol{q}_c(\xi,oldsymbol{g},\mathbb{B})|\leq C_4|oldsymbol{g}|\qquad ext{and}\qquad oldsymbol{q}_c(\xi,oldsymbol{g},\mathbb{B})\cdotoldsymbol{g}\geq C_5|oldsymbol{g}|^2$$
 .

Example

The prototypical examples we have in mind are the following:

 $\mathbb{S}(c, \mathbb{D}(\boldsymbol{u})) = \mu(c, |\mathbb{D}(\boldsymbol{u})|)\mathbb{D}(\boldsymbol{u}), \qquad \boldsymbol{q}_c(c, \nabla c, \mathbb{D}(\boldsymbol{u})) = \mathbb{A}(c, |\mathbb{D}(\boldsymbol{u})|)\nabla c,$

where the viscosity $\mu(c, |\mathbb{D}(\boldsymbol{u})|)$ is of the form

$$\mu(c, |\mathbb{D}(\boldsymbol{u})|) \sim \mu_0(\kappa_1 + \kappa_2 |\mathbb{D}(\boldsymbol{u})|^2)^{\frac{r(c)-2}{2}},$$

and where $\mu_0, \kappa_1, \kappa_2$ are positive constants, and [Model 2a and Model 2b below]

$$r(c) = 2 + \frac{1}{2} \left(e^{-\alpha c} - 1 \right)$$
 or $r(c) = 2 + \beta \left(\frac{1}{\alpha c^2 + 1} - 1 \right)$.

Since we are considering a power-law index depending on the concentration, we need to work with Lebesgue and Sobolev spaces with variable exponents, equipped with the corresponding Luxembourg norms:

$$L^{r(\cdot)}(\Omega) := \left\{ u \in L^1_{\text{loc}}(\Omega) : \int_{\Omega} |u(x)|^{r(x)} \, \mathrm{d}x < \infty \right\},$$
$$\|u\|_{L^{r(\cdot)}(\Omega)} = \|u\|_{r(\cdot)} := \inf \left\{ \lambda > 0 : \int_{\Omega} \left| \frac{u(x)}{\lambda} \right|^{r(x)} \, \mathrm{d}x \le 1 \right\}.$$

Since we are considering a power-law index depending on the concentration, we need to work with Lebesgue and Sobolev spaces with variable exponents, equipped with the corresponding Luxembourg norms:

$$L^{r(\cdot)}(\Omega) := \left\{ u \in L^1_{\text{loc}}(\Omega) : \int_{\Omega} |u(x)|^{r(x)} \, \mathrm{d}x < \infty \right\},$$
$$\|u\|_{L^{r(\cdot)}(\Omega)} = \|u\|_{r(\cdot)} := \inf \left\{ \lambda > 0 : \int_{\Omega} \left| \frac{u(x)}{\lambda} \right|^{r(x)} \, \mathrm{d}x \le 1 \right\}.$$

Similarly, we introduce the following generalized Sobolev spaces:

$$W^{1,r(\cdot)}(\Omega) := \left\{ u \in W^{1,1}(\Omega) \cap L^{r(\cdot)}(\Omega) : |\nabla u| \in L^{r(\cdot)} \right\},$$
$$\|u\|_{W^{1,r(\cdot)}(\Omega)} = \|u\|_{1,r(\cdot)} := \inf \left\{ \lambda > 0 : \int_{\Omega} \left[\left| \frac{u(x)}{\lambda} \right|^{r(x)} + \left| \frac{\nabla u(x)}{\lambda} \right|^{r(x)} \right] \, \mathrm{d}x \le 1 \right\}.$$

Since we are considering a power-law index depending on the concentration, we need to work with Lebesgue and Sobolev spaces with variable exponents, equipped with the corresponding Luxembourg norms:

$$L^{r(\cdot)}(\Omega) := \left\{ u \in L^1_{\text{loc}}(\Omega) : \int_{\Omega} |u(x)|^{r(x)} \, \mathrm{d}x < \infty \right\},$$
$$\|u\|_{L^{r(\cdot)}(\Omega)} = \|u\|_{r(\cdot)} := \inf \left\{ \lambda > 0 : \int_{\Omega} \left| \frac{u(x)}{\lambda} \right|^{r(x)} \, \mathrm{d}x \le 1 \right\}.$$

Similarly, we introduce the following generalized Sobolev spaces:

$$W^{1,r(\cdot)}(\Omega) := \left\{ u \in W^{1,1}(\Omega) \cap L^{r(\cdot)}(\Omega) : |\nabla u| \in L^{r(\cdot)} \right\},$$
$$\|u\|_{W^{1,r(\cdot)}(\Omega)} = \|u\|_{1,r(\cdot)} := \inf \left\{ \lambda > 0 : \int_{\Omega} \left[\left| \frac{u(x)}{\lambda} \right|^{r(x)} + \left| \frac{\nabla u(x)}{\lambda} \right|^{r(x)} \right] \, \mathrm{d}x \le 1 \right\}.$$

These are Banach spaces and, because of (**) they are separable and reflexive.

We define the following spaces:

$$\begin{split} W_0^{1,r(\cdot)}(\Omega)^d &:= \left\{ \boldsymbol{v} \in W^{1,r(\cdot)}(\Omega)^d : \boldsymbol{v} = \boldsymbol{0} \text{ on } \partial\Omega \right\}, \\ W_{0,\mathrm{div}}^{1,r(\cdot)}(\Omega)^d &:= \left\{ \boldsymbol{v} \in W_0^{1,r(\cdot)}(\Omega)^d : \mathrm{div}\, \boldsymbol{v} = 0 \text{ in } \Omega \right\}, \\ L_0^{r(\cdot)}(\Omega) &:= \left\{ q \in L^{r(\cdot)}(\Omega) : \int_{\Omega} q(x) \, \mathrm{d}x = 0 \right\}. \end{split}$$

We define the following spaces:

$$\begin{split} W_0^{1,r(\cdot)}(\Omega)^d &:= \left\{ \boldsymbol{v} \in W^{1,r(\cdot)}(\Omega)^d : \boldsymbol{v} = \boldsymbol{0} \text{ on } \partial\Omega \right\}, \\ W_{0,\mathrm{div}}^{1,r(\cdot)}(\Omega)^d &:= \left\{ \boldsymbol{v} \in W_0^{1,r(\cdot)}(\Omega)^d : \mathrm{div}\, \boldsymbol{v} = 0 \text{ in } \Omega \right\}, \\ L_0^{r(\cdot)}(\Omega) &:= \left\{ q \in L^{r(\cdot)}(\Omega) : \int_\Omega q(x) \, \mathrm{d}x = 0 \right\}. \end{split}$$

Finally, let $\mathcal{P}^{\log}(\Omega)$ be the set of all continuous functions $r: x \in \Omega \mapsto r(x)$, with $1 < r_{-} \leq r(x) \leq r_{+} < \infty$, such that the following log-continuity condition holds:

$$|r(x) - r(y)| \le \frac{C_{\log}(r)}{-\log|x - y|} \qquad \forall x, y \in \Omega : 0 < |x - y| \le \frac{1}{2}$$

Hölder-continuous functions on $\overline{\Omega}$ automatically belong to this class.

L. Diening, P. Harjulehto, P. Hästö, M. Růžička:

Lebesgue and Sobolev Spaces with Variable Exponents. Springer, 2011.

Weak formulation of the problem

Problem (Q).

For $\boldsymbol{b} \in (W_0^{1,r^-}(\Omega)^d)^*$, $c_b \in W^{1,s}(\Omega)$, s > d, and a Hölder-continuous function r, with $1 < r^- \le r(c) \le r^+ < \infty$ for $c \in [c^-, c^+]$, find $(c - c_b) \in W_0^{1,2}(\Omega) \cap C^{0,\alpha}(\overline{\Omega})$, for some $\alpha \in (0,1)$, $\boldsymbol{u} \in W_0^{1,r(c)}(\Omega)^d$, $p \in L_0^{r'(c)}(\Omega)$ such that

$$\begin{split} \int_{\Omega} \mathbb{S}(c, \mathbb{D}(\boldsymbol{u})) &: \nabla \boldsymbol{\psi} - (\boldsymbol{u} \otimes \boldsymbol{u}) : \nabla \boldsymbol{\psi} \, \mathrm{d}x - \langle \operatorname{div} \boldsymbol{\psi}, p \rangle = \langle \boldsymbol{b}, \boldsymbol{\psi} \rangle \qquad \forall \boldsymbol{\psi} \in W_0^{1,\infty}(\Omega)^d, \\ \int_{\Omega} q \operatorname{div} \boldsymbol{u} \, \mathrm{d}x = 0 \qquad \qquad \forall q \in L_0^{r'(c)}(\Omega), \\ \int_{\Omega} q_c(c, \nabla c, \mathbb{D}(\boldsymbol{u})) \cdot \nabla \varphi - c \boldsymbol{u} \cdot \nabla \varphi \, \mathrm{d}x = 0 \qquad \qquad \forall \varphi \in W_0^{1,2}(\Omega). \end{split}$$

M. Bulíček and P. Pustějovská:

Existence analysis for a model describing flow of an incompressible chemically reacting non-Newtonian fluid. SIAM J. Math. Anal. 46(5):3223–3240 (2014).

S. Ko:

Analysis and Approximation of Incompressible Chemically Reacting non-Newtonian Fluids. DPhil Thesis. University of Oxford, 2018.

We are now able to state the finite element approximation of the problem under consideration. Note that we enforce the skew-symmetry of the convective terms because u_h is no longer pointwise divergence-free.

Definition

Given a sequence of triangulations \mathcal{T}_h with finite element spaces X_h , Q_h , V_h and $c_b \in W^{1,s}(\Omega)$ for s > d, find $(\boldsymbol{u}_h, p_h, c_h) \in X_{h,0} \times Q_h \times V_h$ such that

$$\begin{split} \int_{\Omega} \frac{1}{2} \left((\boldsymbol{u}_h \otimes \boldsymbol{v}_h) : \nabla \boldsymbol{u}_h - (\boldsymbol{u}_h \otimes \boldsymbol{u}_h) : \nabla \boldsymbol{v}_h \right) \, \mathrm{d}x \\ + \int_{\Omega} \mathbb{S}(c_h, \mathbb{D}(\boldsymbol{u}_h)) : \mathbb{D}(\boldsymbol{v}_h) \, \mathrm{d}x - \int_{\Omega} \left(\operatorname{div} \boldsymbol{v}_h \right) p_h \, \mathrm{d}x = \int_{\Omega} \boldsymbol{b} \cdot \boldsymbol{v}_h \, \mathrm{d}x \quad \forall \, \boldsymbol{v}_h \in X_{h,0}, \\ \int_{\Omega} \left(\operatorname{div} \boldsymbol{u}_h \right) q_h \, \mathrm{d}x = 0 \qquad \forall \, q_h \in Q_h, \\ \int_{\Omega} \boldsymbol{q}_c(c_h, \nabla c_h, \mathbb{D}\boldsymbol{u}_h) \cdot \nabla \phi_h - \frac{1}{2} (c_h \boldsymbol{u}_h \cdot \nabla \phi_h - \boldsymbol{u}_h \cdot \nabla c_h \phi_h) \, \mathrm{d}x = 0 \quad \forall \, \phi_h \in V_{h,0} \end{split}$$

with $c_h = \prod_{h,V} c_b$ on $\partial \Omega$.

$\mathbb{S} = 2(\kappa_1 + \kappa_2 |\mathbb{D}(\mathbf{u})|^2)^{n(c)} \mathbb{D}(\mathbf{u}), \text{ where } \kappa_1, \kappa_2 > 0 \text{ and } n(c) = \frac{1}{2}(\exp(c) - 1).$

Pe = 10⁶, SUPG stabilization, Scott–Vogelius $\mathbb{P}_2/\mathbb{P}_1^{\text{disc}}$ velocity/pressure pair on a barycentrically refined mesh, Kačanov iteration, augmented Lagrangian precond. 263979 dof. Boundary conditions: top c = 0.3, bottom c = 0.1, zero normal flux on vertical walls; $\boldsymbol{u} = [(x^2/625)(10-x)^2, 0]$ on top and **0** on all other walls.

By Alexei Gazca Orozco (Oxford/Erlangen)

$$\mathbb{S} = 2|\mathbb{D}(\mathbf{u})|^{r-2} \mathbb{D}(\mathbf{u})$$
, where $r = 1.6$.

Pe = 10⁶, SUPG stabilization, Scott–Vogelius $\mathbb{P}_2/\mathbb{P}_1^{\text{disc}}$ velocity/pressure pair on a barycentrically refined mesh, Kačanov iteration, augmented Lagrangian precond. 263979 dof. Boundary conditions: top c = 0.3, bottom c = 0.1, zero normal flux on vertical walls; $\boldsymbol{u} = [(x^2/625)(10-x)^2, 0]$ on top and **0** on all other walls.

By Alexei Gazca Orozco (Oxford/Erlangen)

Convergence of the numerical method

Lemma

Define
$$\mu = \max\{r^+, s\}$$
 where $1 < s < \frac{d}{d-2}$. Then,

$$\begin{split} &\int_{\Omega} |\nabla \boldsymbol{u}_h|^{r(c_h)} \, \mathrm{d}x + \int_{\Omega} |\mathbb{S}(c_h, \mathbb{D}(\boldsymbol{u}_h))|^{r'(c_h)} \, \mathrm{d}x \le C_1, \\ &\int_{\Omega} |\nabla c_h|^2 \, \mathrm{d}x + \int_{\Omega} |q_c(c_h, \nabla c_h, \mathbb{D}(\boldsymbol{u}_h))|^2 \, \mathrm{d}x \le C_2, \\ & \|p_h\|_{L^{\mu'}(\Omega)} \le C_3. \end{split}$$

Furthermore, there exists an $\alpha \in (0,1)$ such that

$$\|c_h\|_{C^{\alpha}(\overline{\Omega})} \le C_4.$$

The constants C_1 , C_2 , C_3 , C_4 are independent of h.

(A very brief) sketch of the proof

$$\begin{split} \boldsymbol{u}_h &\rightharpoonup \boldsymbol{u} \qquad \text{weakly in } W_0^{1,r^-}(\Omega;\mathbb{R}^d), \quad r^- > \frac{2d}{d+1}, \\ \boldsymbol{u}_h &\rightarrow \boldsymbol{u} \qquad \text{strongly in } L^{n+\epsilon}(\Omega;\mathbb{R}^d), \ \epsilon > 0, \\ \mathbb{S}(c_h,\mathbb{D}(\boldsymbol{u}_h)) &\rightharpoonup \tilde{\mathbb{S}} \qquad \text{weakly in } L^{(r^+)'}(\Omega;\mathbb{R}^{d\times d}), \\ p_h &\rightharpoonup p \qquad \text{weakly in } L^{\mu'}(\Omega) \end{split}$$

for $\mu = \max\{r^+,s\}$ where $1 < s < \frac{d}{d-2}.$

(A very brief) sketch of the proof

$$\begin{split} \boldsymbol{u}_h &\rightharpoonup \boldsymbol{u} & \text{weakly in } W_0^{1,r^-}(\Omega; \mathbb{R}^d), \quad r^- > \frac{2d}{d+1}, \\ \boldsymbol{u}_h &\rightarrow \boldsymbol{u} & \text{strongly in } L^{n+\epsilon}(\Omega; \mathbb{R}^d), \quad \epsilon > 0, \\ \mathbb{S}(c_h, \mathbb{D}(\boldsymbol{u}_h)) &\rightharpoonup \tilde{\mathbb{S}} & \text{weakly in } L^{(r^+)'}(\Omega; \mathbb{R}^{d \times d}), \\ p_h &\rightharpoonup p & \text{weakly in } L^{\mu'}(\Omega) \\ \end{split}$$
for $\mu = \max\{r^+, s\}$ where $1 < s < \frac{d}{d-2}$. Furthermore, $c_h \rightharpoonup c & \text{weakly in } W^{1,2}(\Omega), \\ \boldsymbol{q}_c(c_h, \nabla c_h, \mathbb{D}(\boldsymbol{u}_h)) \rightharpoonup \tilde{\boldsymbol{q}} & \text{weakly in } L^2(\Omega; \mathbb{R}^n). \end{split}$

(A very brief) sketch of the proof

$$\begin{split} \boldsymbol{u}_{h} &\rightharpoonup \boldsymbol{u} \qquad \text{weakly in } W_{0}^{1,r^{-}}(\Omega;\mathbb{R}^{d}), \quad r^{-} > \frac{2d}{d+1}, \\ \boldsymbol{u}_{h} &\rightarrow \boldsymbol{u} \qquad \text{strongly in } L^{n+\epsilon}(\Omega;\mathbb{R}^{d}), \quad \epsilon > 0, \\ \mathbb{S}(c_{h},\mathbb{D}(\boldsymbol{u}_{h})) &\rightharpoonup \tilde{\mathbb{S}} \qquad \text{weakly in } L^{\left(r^{+}\right)'}(\Omega;\mathbb{R}^{d\times d}), \\ p_{h} &\rightharpoonup p \qquad \text{weakly in } L^{\mu'}(\Omega) \\ \text{for } \mu &= \max\{r^{+},s\} \text{ where } 1 < s < \frac{d}{d-2}. \text{ Furthermore,} \\ c_{h} &\rightharpoonup c \qquad \text{weakly in } W^{1,2}(\Omega), \\ \boldsymbol{q}_{c}(c_{h}, \nabla c_{h}, \mathbb{D}(\boldsymbol{u}_{h})) &\rightharpoonup \tilde{\boldsymbol{q}} \qquad \text{weakly in } L^{2}(\Omega;\mathbb{R}^{n}). \\ \text{Finally, as } C^{\beta}(\overline{\Omega}) &\hookrightarrow C^{\alpha}(\overline{\Omega}) \text{ compactly for } \beta < \alpha, \text{ we have} \\ c_{h} &\rightarrow c \qquad \text{strongly in } C^{\beta}(\overline{\Omega}). \\ &\downarrow r(c), \qquad h \end{split}$$

We then show that $oldsymbol{u}\in W^{1,r(c)}_{0,\mathrm{div}}(\Omega;\mathbb{R}^d)$, and identify the weak limits

$$ilde{\mathbb{S}} = \mathbb{S}(c,\mathbb{D}(oldsymbol{u}))$$
 and $ilde{oldsymbol{q}} = oldsymbol{q}_c(c,
abla c,\mathbb{D}(oldsymbol{u})).$

The key technical tools

- Minty's method
- The extension of the discrete Bogovskiĭ operator and the finite element version of the Acerbi–Fusco Lipschitz truncation, developed in

L. Diening, Ch. Kreuzer and E. Süli:

Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. SIAM J. Numer. Anal. 51(2): 984–1015 (2014).

to variable-order Sobolev spaces; see,

T. Scharle:

A priori regularity results for discrete solutions to elliptic problems. D.Phil. Thesis. University of Oxford (2020).