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The PDE system

The fundamental equations governing the velocity u and pressure p of a viscous
incompressible Newtonian fluid (at steady state) are the Navier–Stokes equations:

divu = 0 in Ω,

div (u⊗ u)− div S(D(u)) +∇p = b in Ω,

where b : Ω→ Rd is a given external force, D(u) := 1
2 (∇u+ (∇u)T) and

S(D(u)) = 2µD(u)

is a linear constitutive relation between the deviatoric stress tensor S and the
symmetric velocity gradient D(u), involving the viscosity µ > 0 of the fluid.
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Synovial fluid

The rheological response of the synovial fluid — a biological fluid found in the
cavities of movable joints, which is composed of ultrafiltrated blood plasma and
hyaluronan — is modelled by a more complicated constitutive relation.

Laboratory experiments have shown that the viscosity of the fluid depends on the
concentration c of hyaluronan as well as on the shear-rate |D(u)|:

Consistency and visual appearance of synovial fluid. From Rijswijk (1992).
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In this case
S(c,D(u)) = 2µ (κ1 + κ2|D(u)|2)

r(c)−2
2 D(u),

where µ, κ1, κ2 are positive constants,

r(c) = 2 + 1
2 (e−αc − 1) or r(c) = 2 + β

(
1

αc2+1 − 1
)
,

with α, β > 0, and

div (cu)− div(A(c, |D(u)|)∇c) = 0 in Ω.

If c(x) ≡ 0 then r(c(x)) ≡ 2 and the model collapses to the Navier–Stokes model.

Generally, instead of the familiar Sobolev space H1(Ω) = W 1,2(Ω), the velocity
field u now needs to be sought in W 1,r(c(·))(Ω), whose integrability exponent

x ∈ Ω 7→ r(c(x)) ∈ (1, 2]

is spatially variable, and is required to be at least log-continuous.

Question: How to ensure that c is log-continuous?
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Hilbert’s 19th problem (ICM Paris 1900)

Are the solutions to regular problems in the calculus of variations always analytic?

∫∫
Ω

F (x, y, u, p, q) dxdy = Minimum

[
p :=

∂u

∂x
, q :=

∂u

∂y

]
,

∂2F

∂2p
· ∂

2F

∂2q
−
(
∂2F

∂p ∂q

)2

> 0 [ellipticity condition],

F is an analytic function of all of its arguments x, y, u, p, q.

Question: Is u then an analytic function?
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Bernstein (1904) showed that for C3 solutions the answer was positive.

Hopf (1932) for C2,α solutions, Stampacchia (1952) for C1,α solutions and
Morrey (1954) for C1 solutions, showed that the answer was still positive.

However, the direct method in the calculus of variations guarantees the
existence of a solution with weak (Sobolev) differentiability properties only.

This gap was filled independently by Ennio De Giorgi (1956/57) and John Nash
(1957/58), and a different proof was later given by Jürgen Moser (1961/62).

They showed that variational solutions had first derivatives that were Hölder
continuous, which, thanks to previous results, solved Hilbert’s 19th problem.
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continuous, which, thanks to previous results, solved Hilbert’s 19th problem.

6 / 22



Bernstein (1904) showed that for C3 solutions the answer was positive.

Hopf (1932) for C2,α solutions, Stampacchia (1952) for C1,α solutions and
Morrey (1954) for C1 solutions, showed that the answer was still positive.

However, the direct method in the calculus of variations guarantees the
existence of a solution with weak (Sobolev) differentiability properties only.

This gap was filled independently by Ennio De Giorgi (1956/57) and John Nash
(1957/58), and a different proof was later given by Jürgen Moser (1961/62).

They showed that variational solutions had first derivatives that were Hölder
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De Giorgi–Nash–Moser Thm for −div (A∇c) = divF + g

A. Bensoussan and J. Frehse:
Regularity Results for Nonlinear Elliptic Systems and Applications. Springer, Berlin, 2002.

Theorem

Let Ω ⊂ Rd be a Lipschitz domain and s > d. Suppose that A ∈ L∞(Ω)d×d is
uniformly elliptic with ellipticity constant λ > 0. Then, there exists an α ∈ (0, 1)

such that, for any F ∈ Ls(Ω)d, g ∈ L
ds
d+s (Ω) and any cb ∈W 1,s(Ω), there exists

a unique c ∈W 1,2(Ω) such that c− cb ∈W 1,2
0 (Ω) ∩ C0,α(Ω) and∫

Ω

A∇c · ∇ϕdx = −
∫

Ω

F · ∇ϕ dx+

∫
Ω

gϕdx ∀ϕ ∈W 1,2
0 (Ω);

furthermore, the following uniform bound holds:

‖c‖W 1,2(Ω)∩C0,α(Ω) ≤ C
(

Ω, λ, s, ‖A‖∞, ‖F ‖s, ‖g‖ ds
d+s

, ‖cb‖1,s
)
.

Question: Does this result have a discrete counterpart, in the case of piecewise
affine finite element approximation of the problem?
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Discrete De Giorgi–Nash–Moser estimate

L. Diening, T. Scharle, and E. Süli:
Uniform Hölder-norm bounds for finite element approximations of second-order elliptic
equations. IMA J. Numer. Anal. (2021). https://doi.org/10.1093/imanum/drab029.

Previous work:
For continuous piecewise affine finite element approximations of Laplace’s equation
∆c = 0, using a De Giorgi type argument, an h-uniform Cα(Ω)-bound, assuming a
quasi-uniform, shape-regular and uniformly acute triangulation, was proved in

N.E. Aguilera and L. Caffarelli:
Regularity results for discrete solutions of second-order elliptic problems in the finite element
method, Calcolo, 23, 327–353 (1986).

New contributions:

The theory in DSS (2021) applies to −div(A∇c) = F + g and is extendable
to continuous p.w. affine approximations of uniformly elliptic nonlinearities.

We do not require uniform acuteness of the triangulation, we do not need
quasi-uniformity of the triangulation, and admit highly graded triangulations.
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We need the following technical assumption on F :

Definition

We shall say that F ∈ Lp(Ω;Rd) satisfies assumption (?) if there exists a
‘dominating function’ G ∈ Lp(Ω;Rd) such that

div (G± F ) ≤ 0 in W−1,p(Ω).
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Theorem

Let Ω ⊂ Rd be a polyhedral domain. Furthermore, let p, q be defined via p = d
1−δ

and q = d
2−δ , let F ∈ Lp(Ω;Rd) satisfy assumption (?) with dominating function

G ∈ Lp(Ω;Rd), let g ∈ Lq(Ω), and let A ∈ L∞(Ω;Rd×d) be a uniformly elliptic
matrix-valued function. Let Th be an A-nonobtuse, shape-regular triangulation of
the polyhedral domain Ω with respective continuous p.w. affine finite element
space Vh. Let ch ∈ Vh be the finite element approximation to the solution of
−div (A∇c) = divF + g. Assume further that ch|∂Ω ∈ Cβ(∂Ω), uniformly in h.

Then, there is an α ∈ (0, 1) such that

ch ∈ Cα(Ω)

and, uniformly in h,

‖ch‖Cα(Ω) . ‖G‖Lp(Ω) + ‖g‖Lq(Ω) +D,

where D depends on ‖ch‖Cβ(∂Ω),A, δ,α and the shape-regularity parameter of Th.

L. Diening, T. Scharle, and E. Süli:
Uniform Hölder-norm bounds for finite element approximations of second-order elliptic
equations. IMA J. Numer. Anal. (2021). https://doi.org/10.1093/imanum/drab029.
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The PDE system

We consider the following system of PDEs:

divu = 0 in Ω,

div (u⊗ u)− div S(c,D(u)) +∇p = b in Ω,

div (cu)− div qc(c,∇c,D(u)) = 0 in Ω,

where Ω ⊂ Rd, d ∈ {2, 3}, is a bounded open Lipschitz domain,

u : Ω→ Rd, p : Ω→ R, c : Ω→ R≥0

are the velocity, pressure and concentration fields, b : Ω→ Rd is a given external
force, and D(u) is the symmetric velocity gradient: D(u) = 1

2 (∇u+ (∇u)T).

We impose the Dirichlet boundary conditions:

u = 0, c = cb on ∂Ω,

where cb ∈W 1,s(Ω) for some s > d.
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We assume that the stress tensor S : R≥0 × Rd×dsym → Rd×dsym is a continuous
mapping satisfying the following growth, strict monotonicity and coercivity
conditions: there exist positive constants C1, C2 and C3 such that

|S(ξ,B)| ≤ C1(|B|r(ξ)−1 + 1),

(S(ξ,B1)− S(ξ,B2)) : (B1 − B2) > 0 for B1 6= B2,

S(ξ,B) : B ≥ C2(|B|r(ξ) + |S|r
′(ξ))− C3,

where r : R≥0 → R>1 is a continuous function satisfying

1 < r− ≤ r(ξ) ≤ r+ <∞ (∗∗)

and

r′(ξ) :=
r(ξ)

r(ξ)− 1

is its Hölder conjugate.
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We further assume that the concentration flux vector

qc(ξ, g,B) : R≥0 × Rd × Rd×dsym → Rd

is a continuous mapping, which is linear with respect to g, and satisfies the growth
and coercivity conditions: there exist positive constants C4 and C5 such that

|qc(ξ, g,B)| ≤ C4|g| and qc(ξ, g,B) · g ≥ C5|g|2.

Example

The prototypical examples we have in mind are the following:

S(c,D(u)) = µ(c, |D(u)|)D(u), qc(c,∇c,D(u)) = A(c, |D(u)|)∇c,

where the viscosity µ(c, |D(u)|) is of the form

µ(c, |D(u)|) ∼ µ0(κ1 + κ2|D(u)|2)
r(c)−2

2 ,

and where µ0, κ1, κ2 are positive constants, and [Model 2a and Model 2b below]

r(c) = 2 + 1
2 (e−αc − 1) or r(c) = 2 + β

(
1

αc2+1 − 1
)
.
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Since we are considering a power-law index depending on the concentration, we
need to work with Lebesgue and Sobolev spaces with variable exponents, equipped
with the corresponding Luxembourg norms:

Lr(·)(Ω) :=

{
u ∈ L1

loc(Ω) :

∫
Ω

|u(x)|r(x) dx <∞
}
,

‖u‖Lr(·)(Ω) = ‖u‖r(·) := inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣r(x)

dx ≤ 1

}
.

Similarly, we introduce the following generalized Sobolev spaces:

W 1,r(·)(Ω) :=
{
u ∈W 1,1(Ω) ∩ Lr(·)(Ω) : |∇u| ∈ Lr(·)

}
,

‖u‖W 1,r(·)(Ω) = ‖u‖1,r(·) := inf

{
λ > 0 :

∫
Ω

[∣∣∣∣u(x)

λ

∣∣∣∣r(x)

+

∣∣∣∣∇u(x)

λ

∣∣∣∣r(x)
]

dx ≤ 1

}
.

These are Banach spaces and, because of (∗∗) they are separable and reflexive.
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We define the following spaces:

W
1,r(·)
0 (Ω)d :=

{
v ∈W 1,r(·)(Ω)d : v = 0 on ∂Ω

}
,

W
1,r(·)
0,div (Ω)d :=

{
v ∈W 1,r(·)

0 (Ω)d : div v = 0 in Ω
}
,

L
r(·)
0 (Ω) :=

{
q ∈ Lr(·)(Ω) :

∫
Ω

q(x) dx = 0

}
.

Finally, let P log(Ω) be the set of all continuous functions r : x ∈ Ω 7→ r(x), with
1 < r− ≤ r(x) ≤ r+ <∞, such that the following log-continuity condition holds:

|r(x)− r(y)| ≤ Clog(r)

− log |x− y|
∀x, y ∈ Ω : 0 < |x− y| ≤ 1

2 .

Hölder-continuous functions on Ω automatically belong to this class.

L. Diening, P. Harjulehto, P. Hästö, M. R̊užička:
Lebesgue and Sobolev Spaces with Variable Exponents. Springer, 2011.
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Weak formulation of the problem

Problem (Q).

For b ∈ (W 1,r−

0 (Ω)d)∗, cb ∈W 1,s(Ω), s > d, and a Hölder-continuous function r,
with 1 < r− ≤ r(c) ≤ r+ <∞ for c ∈ [c−, c+], find (c− cb) ∈W 1,2

0 (Ω)∩C0,α(Ω),

for some α ∈ (0, 1), u ∈W 1,r(c)
0 (Ω)d, p ∈ Lr

′(c)
0 (Ω) such that∫

Ω

S(c,D(u)) : ∇ψ − (u⊗ u) : ∇ψ dx− 〈divψ, p〉 = 〈b,ψ〉 ∀ψ ∈W 1,∞
0 (Ω)d,∫

Ω

q divudx = 0 ∀ q ∈ Lr
′(c)

0 (Ω),∫
Ω

qc(c,∇c,D(u)) · ∇ϕ− cu · ∇ϕ dx = 0 ∀ϕ ∈W 1,2
0 (Ω).

M. Buĺıček and P. Pustějovská:
Existence analysis for a model describing flow of an incompressible chemically reacting
non-Newtonian fluid. SIAM J. Math. Anal. 46(5):3223–3240 (2014).

S. Ko:
Analysis and Approximation of Incompressible Chemically Reacting non-Newtonian Fluids.
DPhil Thesis. University of Oxford, 2018.
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We are now able to state the finite element approximation of the problem under
consideration. Note that we enforce the skew-symmetry of the convective terms
because uh is no longer pointwise divergence-free.

Definition

Given a sequence of triangulations Th with finite element spaces Xh, Qh, Vh and
cb ∈W 1,s(Ω) for s > d, find (uh, ph, ch) ∈ Xh,0 ×Qh × Vh such that∫

Ω

1
2 ((uh ⊗ vh) : ∇uh − (uh ⊗ uh) : ∇vh) dx

+

∫
Ω

S(ch,D(uh)) : D(vh) dx−
∫

Ω

(divvh) ph dx =

∫
Ω

b · vh dx ∀vh ∈ Xh,0,∫
Ω

(divuh) qh dx = 0 ∀ qh ∈ Qh,∫
Ω

qc(ch,∇ch,Duh) · ∇φh − 1
2 (chuh · ∇φh − uh · ∇chφh) dx = 0 ∀φh ∈ Vh,0

with ch = Πh,V cb on ∂Ω.
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S = 2(κ1 + κ2|D(u)|2)n(c) D(u), where κ1, κ2 > 0 and n(c) = 1
2 (exp(c)− 1).

Pe = 106, SUPG stabilization, Scott–Vogelius P2/Pdisc
1 velocity/pressure pair on a

barycentrically refined mesh, Kačanov iteration, augmented Lagrangian precond.
263979 dof. Boundary conditions: top c = 0.3, bottom c = 0.1, zero normal flux
on vertical walls; u = [(x2/625)(10− x)2, 0] on top and 0 on all other walls.

By Alexei Gazca Orozco (Oxford/Erlangen)
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S = 2|D(u)|r−2 D(u), where r = 1.6.

Pe = 106, SUPG stabilization, Scott–Vogelius P2/Pdisc
1 velocity/pressure pair on a

barycentrically refined mesh, Kačanov iteration, augmented Lagrangian precond.
263979 dof. Boundary conditions: top c = 0.3, bottom c = 0.1, zero normal flux
on vertical walls; u = [(x2/625)(10− x)2, 0] on top and 0 on all other walls.

By Alexei Gazca Orozco (Oxford/Erlangen)
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Convergence of the numerical method

Lemma

Define µ = max{r+, s} where 1 < s < d
d−2 . Then,∫

Ω

|∇uh|r(ch)
dx+

∫
Ω

|S(ch,D(uh))|r
′(ch)

dx ≤ C1,∫
Ω

|∇ch|2 dx+

∫
Ω

|qc(ch,∇ch,D(uh))|2 dx ≤ C2,

‖ph‖Lµ′ (Ω) ≤ C3.

Furthermore, there exists an α ∈ (0, 1) such that

‖ch‖Cα(Ω) ≤ C4.

The constants C1, C2, C3, C4 are independent of h.
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(A very brief) sketch of the proof

uh ⇀ u weakly in W 1,r−

0 (Ω;Rd), r− >
2d

d+ 1
,

uh → u strongly in Ln+ε(Ω;Rd), ε > 0,

S(ch,D(uh)) ⇀ S̃ weakly in L(r+)
′

(Ω;Rd×d),

ph ⇀ p weakly in Lµ
′
(Ω)

for µ = max{r+, s} where 1 < s < d
d−2 .

Furthermore,

ch ⇀ c weakly in W 1,2(Ω),

qc(ch,∇ch,D(uh)) ⇀ q̃ weakly in L2(Ω;Rn).

Finally, as Cβ(Ω) ↪→ Cα(Ω) compactly for β < α, we have

ch → c strongly in Cβ(Ω).

We then show that u ∈W 1,r(c)
0,div (Ω;Rd), and identify the weak limits

S̃ = S(c,D(u)) and q̃ = qc(c,∇c,D(u)).
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The key technical tools

Minty’s method

The extension of the discrete Bogovskĭı operator and the finite element
version of the Acerbi–Fusco Lipschitz truncation, developed in

L. Diening, Ch. Kreuzer and E. Süli:
Finite element approximation of steady flows of incompressible fluids with implicit
power-law-like rheology. SIAM J. Numer. Anal. 51(2): 984–1015 (2014).

to variable-order Sobolev spaces; see,

T. Scharle:
A priori regularity results for discrete solutions to elliptic problems. D.Phil. Thesis.
University of Oxford (2020).
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