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The PDE system

The fundamental equations governing the velocity u and pressure p of a viscous
incompressible Newtonian fluid (at steady state) are the Navier—Stokes equations:

divu =0 in Q,
div(u®@ u) —divS(D(u)) + Vp=0b in €,

where b : 2 — R? is a given external force, D(u) := 3 (Vu + (Vu)T) and
S(D(u) = 24 D(u)

is a linear constitutive relation between the deviatoric stress tensor S and the
symmetric velocity gradient D(w), involving the viscosity p > 0 of the fluid.



Synovial fluid

The rheological response of the synovial fluid — a biological fluid found in the
cavities of movable joints, which is composed of ultrafiltrated blood plasma and
hyaluronan — is modelled by a more complicated constitutive relation.

Laboratory experiments have shown that the viscosity of the fluid depends on the
concentration ¢ of hyaluronan as well as on the shear-rate |D(u)]:

Consi and visual app e of synovial fluid. From Rijswijk (1992).




In this case
r(c)—2
2

S(e, D(w)) = 2 (k1 + £z D(w) )

where u, k1, ko are positive constants,

]D)(u)’

r(c):?—i—%(e_“c—l) or r(c):2+5<#+1—1),
with a;, 5 > 0, and

div (cu) — div(A(c, |D(uw)]|)Ve) =0 in Q.
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If ¢(z) = 0 then r(c(z)) = 2 and the model collapses to the Navier-Stokes model.
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with a;, 5 > 0, and
div (cu) — div(A(c, |D(uw)]|)Ve) =0 in .
If ¢(z) = 0 then r(c(z)) = 2 and the model collapses to the Navier-Stokes model.

Generally, instead of the familiar Sobolev space H!(Q) = W12(Q), the velocity
field w now needs to be sought in W1 (¢()(Q), whose integrability exponent

zeQ — r(c(z)) € (1,2]

is spatially variable, and is required to be at least log-continuous.
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r(c)—2
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S(e, D(w)) = 2 (k1 + £z D(w) )

where u, k1, ko are positive constants,

]D)(u)a

r(c) =2+ 3 (e7 —1) or r(c):?—&-ﬁ(ﬁ—l),
with a;, 5 > 0, and
div (cu) — div(A(c, |D(uw)]|)Ve) =0 in .
If ¢(z) = 0 then r(c(z)) = 2 and the model collapses to the Navier-Stokes model.

Generally, instead of the familiar Sobolev space H!(Q) = W12(Q), the velocity
field w now needs to be sought in W1 (¢()(Q), whose integrability exponent

zeQ — r(c(z)) € (1,2]

is spatially variable, and is required to be at least log-continuous.
Question: How to ensure that ¢ is log-continuous?
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Hilbert's 19th problem (ICM Paris 1900)

Are the solutions to regular problems in the calculus of variations always analytic?
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Hilbert's 19th problem (ICM Paris 1900)

Are the solutions to regular problems in the calculus of variations always analytic?

//QF(x,y,u,p,q)dxdy:Minimum p = %’ q::% 7
or OF - O°F \* >0 [ellipticity condition]
0%p 9%q dp dq p Y ’

F' is an analytic function of all of its arguments z, y, u, p, q.

Question: Is u then an analytic function?



@ Bernstein (1904) showed that for C?3 solutions the answer was positive.
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@ Hopf (1932) for C*« solutions, Stampacchia (1952) for C1:* solutions and
Morrey (1954) for C solutions, showed that the answer was still positive.
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@ However, the direct method in the calculus of variations guarantees the
existence of a solution with weak (Sobolev) differentiability properties only.



@ Bernstein (1904) showed that for C?3 solutions the answer was positive.

@ Hopf (1932) for C*« solutions, Stampacchia (1952) for C1:* solutions and
Morrey (1954) for C solutions, showed that the answer was still positive.

@ However, the direct method in the calculus of variations guarantees the
existence of a solution with weak (Sobolev) differentiability properties only.

This gap was filled independently by Ennio De Giorgi (1956/57) and John Nash
(1957/58), and a different proof was later given by Jiirgen Moser (1961/62).

They showed that variational solutions had first derivatives that were Holder
continuous, which, thanks to previous results, solved Hilbert's 19th problem.
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De Giorgi-Nash—-Moser Thm for —div (AVc¢) = divF + g

@ A. Bensoussan and J. Frehse:
Regularity Results for Nonlinear Elliptic Systems and Applications. Springer, Berlin, 2002.

Theorem

Let 2 C R? be a Lipschitz domain and s > d. Suppose that A € L>(Q)?*9 js
uniformly elliptic with ellipticity constant A > 0. Then, there exists an o € (0,1)

such that, for any F € L*(Q)¢, g € deTSs(Q) and any ¢, € W*(Q), there exists
a unique ¢ € WY2(Q) such that ¢ — ¢, € W, () N C%*(Q) and
/ AVe-Vodr = —/ F. wdx+/ gode Ve W)
Q Q Q

furthermore, the following uniform bound holds:

lellwra@ncoa@ < C (225 14 loo; 1 s, gl s leolls) -

ds
d+s

7

22




De Giorgi-Nash—-Moser Thm for —div (AVc¢) = divF + g

@ A. Bensoussan and J. Frehse:
Regularity Results for Nonlinear Elliptic Systems and Applications. Springer, Berlin, 2002.

Theorem

Let 2 C R? be a Lipschitz domain and s > d. Suppose that A € L>(Q)?*9 js
uniformly elliptic with ellipticity constant A > 0. Then, there exists an o € (0,1)

such that, for any F € L*(Q)¢, g € L7 (Q) and any c, € Wh*(Q), there exists
a unique ¢ € WY2(Q) such that ¢ — ¢, € W, () N C%*(Q) and

/AVC-chdx:—/F-Vnpdx—F/gwdx Yo e Wyt (Q);
Q Q Q

furthermore, the following uniform bound holds:

lellwzcayncon < C (A5, 1Al I1Flls gl e lepllr.s) -

Question: Does this result have a discrete counterpart, in the case of piecewise
affine finite element approximation of the problem?
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Discrete De Giorgi—-Nash—Moser estimate

[3 L. Diening, T. Scharle, and E. Sili
Uniform Holder-norm bounds for finite element approximations of second-order elliptic
equations. IMA J. Numer. Anal. (2021). https://doi.org/10.1093/imanum/drab029.
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Discrete De Giorgi—-Nash—Moser estimate

[3 L. Diening, T. Scharle, and E. Siili:
Uniform Hélder-norm bounds for finite element approximations of second-order elliptic

equations. IMA J. Numer. Anal. (2021). https://doi.org/10.1093/imanum/drab029.

Previous work:

For continuous piecewise affine finite element approximations of Laplace's equation
Ac = 0, using a De Giorgi type argument, an h-uniform C(2)-bound, assuming a
quasi-uniform, shape-regular and uniformly acute triangulation, was proved in

[3 N.E. Aguilera and L. Caffarelli:
Regularity results for discrete solutions of second-order elliptic problems in the finite element

method, Calcolo, 23, 327-353 (1986).



Discrete De Giorgi—-Nash—Moser estimate

[3 L. Diening, T. Scharle, and E. Siili:
Uniform Hélder-norm bounds for finite element approximations of second-order elliptic
equations. IMA J. Numer. Anal. (2021). https://doi.org/10.1093/imanum/drab029.

Previous work:

For continuous piecewise affine finite element approximations of Laplace's equation
Ac = 0, using a De Giorgi type argument, an h-uniform C(2)-bound, assuming a
quasi-uniform, shape-regular and uniformly acute triangulation, was proved in

[3 N.E. Aguilera and L. Caffarelli:
Regularity results for discrete solutions of second-order elliptic problems in the finite element
method, Calcolo, 23, 327-353 (1986).

New contributions:

@ The theory in DSS (2021) applies to —div(AVec) = F + g and is extendable
to continuous p.w. affine approximations of uniformly elliptic nonlinearities.

@ We do not require uniform acuteness of the triangulation, we do not need
quasi-uniformity of the triangulation, and admit highly graded triangulations.



We need the following technical assumption on F':
Definition

We shall say that F' € LP(Q;R?) satisfies assumption (x) if there exists a
‘dominating function’ G € LP(€2; R?) such that

div(GEF)<0 in W=LP(Q).
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Theorem

Let Q C R? be a polyhedral domain. Furthermore, let p,q be defined via p = 1%5
and g = 5%, let F € LP(Q;RY) satisfy assumption (x) with dominating function
G € LP(O;RY), let g € L9(R), and let A € L>=(;RY*?) be a uniformly elliptic
matrix-valued function. Let T, be an A-nonobtuse, shape-regular triangulation of
the polyhedral domain Q0 with respective continuous p.w. affine finite element
space Vj,. Let ¢, € V}, be the finite element approximation to the solution of
—div(AVc) = divF + g. Assume further that ci|o0 € CP(9S2), uniformly in h.

Then, there is an o € (0, 1) such that
ey, € C*(Q)
and, uniformly in h,
lerllca@ S NGl Loy + 19l Loy + D;

where D depends on |[cp||cs(a0), A, 6, @ and the shape-regularity parameter of Tj,.

@ L. Diening, T. Scharle, and E. Siili:
Uniform Hdlder-norm bounds for finite element approximations of second-order elliptic
equations. IMA J. Numer. Anal. (2021). https://doi.org/10.1093/imanum/drab029.



The PDE system

We consider the following system of PDEs:

divu =0 in Q,
div(u ® u) — divS(e,D(u)) + Vp=1b in €,
div (cu) — div gc(c, Ve,D(u)) =0 in Q,

where Q C R9, d € {2,3}, is a bounded open Lipschitz domain,

w:Q — R p:Q =R, c:Q— Rx

are the velocity, pressure and concentration fields, b: © — R% is a given external
force, and D(u) is the symmetric velocity gradient: D(u) = 1(Vu + (Vu)T).
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The PDE system

We consider the following system of PDEs:

divu =0 in Q,
div(u ® u) — divS(e,D(u)) + Vp=1b in €,
div (cu) — div gc(c, Ve,D(u)) =0 in Q,

where Q C R9, d € {2,3}, is a bounded open Lipschitz domain,
w:Q — R p:Q =R, c:Q— Rx

are the velocity, pressure and concentration fields, b: © — R% is a given external
force, and D(u) is the symmetric velocity gradient: D(u) = 1(Vu + (Vu)T).

We impose the Dirichlet boundary conditions:
u = 07 C=Cp on BQ,

where ¢, € Wh#(Q) for some s > d.
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We assume that the stress tensor S : Ry x REX? — RIX4 is a continuous

mapping satisfying the following growth, strict monotonicity and coercivity
conditions: there exist positive constants C, C> and C5 such that

IS(,B)| < C1(|B"©~1 + 1),
(S(£,B1) —S(€,B3)) : (By —By) >0 for B # By,

S(¢,B) : B > Co(|B|"© + [S|”©) — G,

where r : R>¢ — R+ is a continuous function satisfying

I<r™<r) <rt <o ()
and ©
TS

is its Holder conjugate.
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We further assume that the concentration flux vector
q.(£,9,B) : Rog x RY x R 5 RY

sym

is a continuous mapping, which is linear with respect to g, and satisfies the growth
and coercivity conditions: there exist positive constants C; and Cs such that

lgc(&,9,B) < Culgl  and  q.(¢,9,B) g > Cslgl*.
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We further assume that the concentration flux vector

qC(é-)gaIB%) : RZO X Rd RdXd — ]Rd

sym

is a continuous mapping, which is linear with respect to g, and satisfies the growth
and coercivity conditions: there exist positive constants C; and Cs such that

lgc(&,9.B)| < Culgl] and  q.(¢,9,B)-g > Cslgl*.

Example

The prototypical examples we have in mind are the following:
S(e,D(w)) = p(c, D(w))D(w),  ge(c, Ve,D(u)) = A(c, [D(w)|) Ve,

where the viscosity p(c, |D(u)]) is of the form

r(c)—2

p(e, D()]) ~ polky + kaD(w)|*) "2,

and where pg, k1, ko are positive constants, and [Model 2a and Model 2b below]

r(c) =241 (e7—1) or ()—2+,8(ac2+1—1).




Since we are considering a power-law index depending on the concentration, we
need to work with Lebesgue and Sobolev spaces with variable exponents, equipped
with the corresponding Luxembourg norms:

r0@ = {ue L@ [ ula)® @z < oo}

. u(z) r(x)
preva) = llullyy ==inf ¢A>0: /Q dz <1,.

x
A

[l
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r(x)
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u A
Ju :
Similarly, we introduce the following generalized Sobolev spaces:

wrO©) = fu e WH(Q) A IO© ) |Vu| err0},

r(z)
u\xr
”u”le()(Q) ”quT() —lnf{)\>0 /52[ ( ) ’ ( ) 1 dx<1}'

A




Since we are considering a power-law index depending on the concentration, we
need to work with Lebesgue and Sobolev spaces with variable exponents, equipped
with the corresponding Luxembourg norms:

r0@ = {ue L@ [ ula)® @z < oo}

r(x)
L) = llull,y == inf {)\ >0: /Q dz < 1} .

w s
o .
Similarly, we introduce the following generalized Sobolev spaces:

Wl,T(')(Q) = {’LL c Wl’l( ) M LT( )( ) |V'U/| € LT( )}

r(z)
u\xr u\xr
lullw.rer @) = lulli _mf{)‘>0 /Q[ uof ’ ute) 1 dx<1}'

A
These are Banach spaces and, because of (k) they are separable and reflexive.
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We define the following spaces:
WOI’T(')(Q)d = {'v eWO@Q)?: v =0on 89} ,

Woas () = {v e Wy (@) : divo = 0in Q} :

LY = {q e L'O(Q): /Qq(x) dz = o} .
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We define the following spaces:
Wol’r(')(Q)d = {'v € Wl"’(')(Q)d :v=0on 89} ,
Wo @ := {v e W@ s dive =0in 0},
LY = {q e L'O(Q): /Qq(x) dz = o} .

Finally, let P'°8(Q) be the set of all continuous functions r : = € Q + r(z), with
1 <r_ <r(z) <ry < oo, such that the following log-continuity condition holds:

(@) — ()] < —alest”)

< ——— Vo,y€Q:0< |z —y| < 1.
—log [a —y|

Haolder-continuous functions on  automatically belong to this class.

@ L. Diening, P. Harjulehto, P. Hasto, M. Razi¢ka:
Lebesgue and Sobolev Spaces with Variable Exponents. Springer, 2011.
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Weak formulation of the problem

Problem (Q).

Forbe (Wy" (Q2)%)*, ¢, € WH5(Q), s > d, and a Holder-continuous function r,
with 1 <7~ <7(c) <1t < oo forc e [, ], find (c— ) € Wy (Q)NCO(Q),
for some o € (0,1), u € W(}’T(C)(Q)d, pe L (9)(Q) such that

S(e,D(w)) : Vap — (u @ u) : Vepdz — (divep, p) = (b)) Vb € Wy ™(Q)4,
Q

/qdivud:z::O Vge Ly ),
Q

/qc(c,Vc,]D)(u))~Vgofcu~Vg0dx:O Ve Wy2(Q).
Q

[3] M. Bulitek and P. Pust&jovska:
Existence analysis for a model describing flow of an incompressible chemically reacting
non-Newtonian fluid. SIAM J. Math. Anal. 46(5):3223-3240 (2014).

& S. Ko:

Analysis and Approximation of Incompressible Chemically Reacting non-Newtonian Fluids.
DPhil Thesis. University of Oxford, 2018.
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We are now able to state the finite element approximation of the problem under
consideration. Note that we enforce the skew-symmetry of the convective terms
because uy, is no longer pointwise divergence-free.

Definition
Given a sequence of triangulations 7, with finite element spaces X3, Q. V5, and
e, € Whe(Q) for s > d, find (wp, pn,cn) € Xno X Qn X Vi, such that
/ % ((uh ®’Uh) :Vuy, — (uh ® uh) : V’Uh) dz

Q

+/ S(ch,D(uh)) : ]D)(’Uh) dx — / (diV’Uh)ph dx = / b-v,dx Vo, € Xh,O;

Q Q Q
/ (divup) gndz =0 Vaqn € Qp,
Q

/ ac(ch, Ve, Duy) - Vo — 2(cpun - Vo, —up - Vepdp)dz =0 Vop € Vi
Q

with ¢, = Hh,VCb on 0.




S = 2(k1 + k2|D(u)[>)"(¢) D(u), where k1, k2 > 0 and n(c) = 3(exp(c) —1).

Pe = 10%, SUPG stabilization, Scott—Vogelius Py /P{i*¢ velocity/pressure pair on a
barycentrically refined mesh, Kaéanov iteration, augmented Lagrangian precond.
263979 dof. Boundary conditions: top ¢ = 0.3, bottom ¢ = 0.1, zero normal flux
on vertical walls; u = [(22/625)(10 — z)2,0] on top and 0 on all other walls.

By Alexei Gazca Orozco (Oxford/Erlangen)



S = 2|D(u)|" "2 D(u), where r = 1.6.

Pe = 10%, SUPG stabilization, Scott—Vogelius Py /P{i*¢ velocity/pressure pair on a
barycentrically refined mesh, Ka&anov iteration, augmented Lagrangian precond.
263979 dof. Boundary conditions: top ¢ = 0.3, bottom ¢ = 0.1, zero normal flux
on vertical walls; u = [(22/625)(10 — z)2,0] on top and 0 on all other walls.

By Alexei Gazca Orozco (Oxford/Erlangen)



Convergence of the numerical method

Lemma

Define p = max{r*, s} where 1 < s < df‘lQ. Then,

/ |V |7 dx+/ IS(en, D(u))|” ) dz < €,
Q Q
[ 1Venl? do+ [ Jaulen, Ven D)) do < Co
Q Q
||ph||LH'(Q) < Cs.
Furthermore, there exists an « € (0,1) such that
||Ch||ca(§) < Cy.

The constants C, Cy, C3, C4 are independent of h.
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(A very brief) sketch of the proof

up — u
up —u
S(cn, D(up)) = S
Pn—p

- 2d
Kly in Wy (€ R —
weakly in Wy (;RY), r >d—|—1’
strongly in L""¢(Q;RY), € > 0,
weakly in L) (Q; R?*),

weakly in L*' ()

for p = max{r*, s} where 1 <s < 5%.

21 /22



(A very brief) sketch of the proof

w, —=uw  weakly in W3 (Q;RY), > %,
up —u strongly in L""¢(Q;RY), € > 0,
S(en, D(un)) —§  weakly in L) (; RI*9),
Ph— P weakly in L“,(Q)
for p = max{r*, s} where 1 < s < 2% Furthermore,
cn — ¢  weakly in WH3(Q),

gc(cn, Ven, D(up)) = @ weakly in L*(Q;R™).
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(A very brief) sketch of the proof

w, —=uw  weakly in W3 (Q;RY), > %,
up —u strongly in L""¢(Q;RY), € > 0,
S(en, D(un)) —§  weakly in L) (; RI*9),
pn—p  weakly in L ()
for p = max{r*, s} where 1 < s < 2% Furthermore,
cn — ¢  weakly in WH3(Q),
qc(ch, Ver, D(up)) — @ weakly in L*(Q;R™).
Finally, as C?(Q) < C%(Q) compactly for < «, we have
cp—c strongly in C*(9).
We then show that u € Wol’gi(vc) (;R9), and identify the weak limits

S = S(c, D(u)) and q =q.(c,Ve,D(u)).

21 /22



The key technical tools

@ Minty's method

@ The extension of the discrete Bogovskil operator and the finite element
version of the Acerbi—Fusco Lipschitz truncation, developed in

[ L. Diening, Ch. Kreuzer and E. Siili:
Finite element approximation of steady flows of incompressible fluids with implicit
power-law-like rheology. SIAM J. Numer. Anal. 51(2): 984-1015 (2014).

to variable-order Sobolev spaces; see,

@ T. Scharle:
A priori regularity results for discrete solutions to elliptic problems. D.Phil. Thesis.
University of Oxford (2020).
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