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1. FSS – Introduction

• Many methods for solving discrete and continuous global
optimization problems are based on changing one
formulation to another,

• which is either equivalent or very close to it, so that by
solving the reformulated
problem we can easily get the solution of the original one.

• These types of methods include
• (i) dual methods,
• (ii) primal-dual methods,
• (iii) Lagrange methods,
• (iv) linearization methods,
• (v) convexification methods,
• (vi) (nonlinear) coordinate system change methods

(e.g., polar, Cartesian, projective transformations, etc.),
(vii)discrete / continuous reformulation methods,
(viii)augmented methods, to mention a few.



1. FSS – Introduction (cont.)

• In all those classes, the set of formulations of one problem
are not considered as a set having some structure provided
with some order relation among formulations.

• The usual conclusion in papers oriented to a new formulation
is that a given formulation is better than another or the best
among several.

• The criteria for making such conclusions are typically the
duality or integrality gap provided (difference between
upper and lower bounds), precision, efficiency (the CPU
times spent by the various methods applied to different
formulations of the same instances), and so on.



1. FSS – Introduction (cont.)

• Formulation space search (FSS) is a metaheuristic first
proposed in 2005 by Mladenovic, Plastria and Urosevic.

• Since then, many algorithms for solving various
optimization problems have been proposed that
apply this framework.

• The main idea is to provide the set of formulations used for
solving a given class or type of problem with some metric or
quasi-metric.

• In that way, the distance between formulations can be
induced from those (quasi) metric functions, and thus, the
search space is extended to the set of formulations as well.



1. FSS – Introduction (cont.)

• The search space becomes a pair (F, S), consisting of
formulation space F and solution space S.

• Most importantly, in all the mentioned method classes (i) -
(viii), the discrete metric function between any two
formulations can easily be defined.

• For example, in Lagrange methods, the distance between
any two formulations can be defined as the difference
between their relaxed constraints (the number of 
multipliers used);

• in coordinate change methods the distance between
formulations could be the difference between the
number of entities (points) presented in the same
coordinate system, etc.



2. Literature review

• Circle packing - Reformulation descend (Mladenovic 
et al. 2005, 2007)

• Packing unequal circles (Lopez and Beasley 2013)
• Packing unequal circles in a fixed size circular 

container (L ́opez and Beasley, 2016).
• Mixed Integer nonlinear programming problem

(L ́opez and Beasley 2017).
• Timetabling problem (Kochetov et al. 2008).



2. Literature review (cont.)

• Multi-item capacitated lot-sizing problem 
(Erromdhani et al. 2017)

• Graph Colouring (Hertz et al. 2008)
• Cut-width minimization problem (Pardo et al. 2013)
• Maximum min-sum dispersion (Amirgaliyeva et al. 
2017)

• Continuos location problems (Brimberg et al. 2014, 
2017).



2. Stochastic FSS

• Let us denote with (φ,x) an incumbent formulation-
solution pair, and with fopt=f(φ,x) the current
objective function value.

• One can alternate between formulation space F
and solution space S in the following ways:
(i) Monte-Carlo FSS. This is the simplest
search heuristic through F:

(a) take formulation - solution pair (φ′,x′)∈(F,S) at
random and calculate the corresponding

objective function value f′;
(b) keep the best solution and value;
(c) repeat previous two stepsp(a parameter) times



3.1 Stochastic FSS (cont.)

• .(ii) Random walk FSS. For a random walk procedure,
we need to introduce neighborhoods of both, the
formulation and the solution: (N(φ),N(x)),φ∈F and x∈S.

• Then we simply walk through the formulation-solution
space by taking a random solution from such a defined
neighborhood in each iteration.

• (iii) Reduced FSS. It represents a combination of
Monte-Carlo and random walk stochastic search
strategies.



3.2 Deterministic FSS

• (i) Local FSS. One can perform local search through F as well.
That is, find local solution x′ for any φ′∈N(φ)(startingfromxasaninitialsolution)andkeep
the best; repeat this step until there is a formulation in the
neighborhood that gives an improvement.

• (ii) Reformulation descent (RD). We assume that at least two 
(kmax ≥ 2) not linearly related formulations of the problem are 
constructed (φk),k= 1,...,kmax, and that initial solution x and 
formulation (k = 1) are found.

• (iii) Steepest descent FSS.
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1 repeat
2 Using formulation φl and an

optimization code, find a stationary or
local optimum point x J starting from x ;

3 if x J is better than x then
4 x ← x J; l ← 1 (start again from the

first formulation) ;
else

5 l ← l + 1 (change formulation);
end

until l = lmax;

Algorithm 1: Reformulation descent
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repeat
1 Take formulation - solution pair 

(φ, x ) ∈ (F , S ) at random;

2 if f (φ, x ) < f opt then

3 φopt ← φ; xopt ← x;
f opt ← f (φ, x );

end
until stopping condition is met ;

Algorithm 2: Monte–Carlo FS S
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repeat
Take formulation - solution pair (φJ,
x J) ∈ (F ∩N (φ), S ∩N (x )) at 
random;
if f (φJ, x J) < f opt then

f opt ← f (φJ, x J); φopt ←
φJ; x opt ← x J;

end
Set φ← φJ; x ← x J;

until stopping condition is met ;

Algorithm 3: Random walk FSS
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1 repeat

l ← 1;

2 while l ≤ lmax do

Take formulation - solution pair

(φJ, x J) ∈ (N l (φ),N (x )) at random;

3 if f (φJ, x J) < f opt then

f opt ← f (φJ, x J), φ← φJ; x ← x J;

l ← 1
else

l ← l + 1;

end
end

until stopping condition is met ;

Algorithm 4: Reduced VN FSS
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function RD-PCC(n);

1 CurrCoord ← Cartesian;

2   r curr ← I n i t i a l S o l u t i o n (n, x, y);

3   r next ← MinosFull(n, x, y);

4 repeat

5 rcurr ← rnext;

6 if CurrCoord = Cartesian then
7 Cur r Cor d ← Polar;

8 CartToPolar(n, x, y, ρ, α);

9 r next ← MinosReduced(n, ρ, α);
else

1 0 CurrCoord ←

Cartesian;1 1 PolarToCart(n, ρ, α, x,
y);1 2 r next ← MinosReduced(n, x, y);

end
until rnext ≤ rcurr ;

Algorithm 5: Reformulation descent for P C C problem



Optimality not so simple.

E.G. n = 1 0

Published by Martin Gardner 1992, following S.Kravitz 1967.

First-order stationary solution of cartesian formulation.



Better solution :

10 circles in the unit circle

radius = 0.262258924190   density = 0.687797433174

ratio = 3.813025631398   contacts = 20

© E.SPECHT

20-JUL-2004

Obtained by a ‘linear’ move in a polar coordinate formulation.

Proven to be optimal by Pirl 1969
according to E. Friedman, website ‘Erich’s Packing Center’
http://www.stetson.edu/~efriedma/packing.html

http://www.stetson.edu/~efriedma/packing.html


(a) Radius : 3.8284271 (b) Radius : 3.8130256

Figure 1: Packing 10 unit circles into a circle.
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Pack ing circles into a circle

What is the smallest circle in which N unit circles may be packed ?

70 circles in the unit circle

radius = 0.106997012559   

density = 0.801385248757

ratio = 9.346055334486   

contacts = 134

© E.SPECHT
14-JUL-2004

80 circles in the unit circle

radius = 0.100314375962   

density = 0.805037921977

ratio = 9.968660926278   

contacts = 146

© E.SPECHT
17-JUL-2004

For much more see E.Specht website (updated 25oct 2008)
http://hydra.nat.uni -magdeburg.de/packing /cci/cci .html

http://hydra.nat.uni-magdeburg.de/packing/cci/cci.html
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r = 0.071030 r = 0.076630 r = 0 .082678

r = 0.089554 r = 0 .095698 r = 0.102252

r = 0.108378 r = 0.114007 r = 0.117733

r = 0.120250 r = 0 .121858

F ig . 1. RD heuristic for PCC and n = 50
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r = 0.121858

RD result

r = 0.122858

k c u r r = 12

r = 0.123380

k c u r r = 6

r = 0.123995

k c u r r = 9

r = 0 .124678

k c u r r = 15

r = 0 .125543

k c u r r = 3

r = 0.125755

k c u r r = 21

r = 0.125792

k c u r r = 3

r = 0 .125794

k c u r r = 21

r = 0 .125796

k c u r r = 12

r = 0.125798

kcurr = 18

Fig. 2. Reduced VN FSS for PCC problem and n = 50.





Computational results

n Best known
RD FSS FSS-RC

Best Avg. Time Best Avg. Time Best Avg. Time

50 7.947515 0.06 0.79 3.19 0.00 0.24 80.54 0.00 0.21 72.83

55 8.211102 0.00 2.09 3.37 0.00 0.60 72.81 0.00 0.58 69.17

60 8.646220 0.03 1.40 4.71 0.00 0.95 84.39 0.00 0.89 81.23

65 9.017397 0.00 1.33 16.24 0.00 0.21 108.25 0.00 0.19 96.35

70 9.346660 0.10 0.99 19.56 0.01 0.27 151.64 0.01 0.24 143.18

75 9.678344 0.10 0.77 26.46 0.02 0.20 164.51 0.02 0.18 158.43

80 9.970588 0.10 0.93 39.15 0.04 0.23 229.49 0.03 0.21 206.24

85 10.163112 0.72 1.75 38.79 0.18 0.72 256.17 0.16 0.67 231.49

90 10.546069 0.02 1.27 96.82 0.02 0.56 294.77 0.02 0.53 249.23

95 10.840205 0.18 0.93 147.35 0.07 0.39 308.34 0.05 0.36 281.62

100 11.082528 0.30 1.01 180.32 0.12 0.68 326.67 0.08 0.63 293.18

Mathematical Formulation
I  = {1, 2, ..., n} - labels of disks; Partition I = Cφ ∪ Pφ; Cφ ∩ Pφ = ∅;

max r

(x −xi j

2) + (y
i j

2
—y ) −

2

4r ≥ 0
∀ i, j ∈ Cφ(i ≤ j )

∀ i ∈ Cφ

∀ i, j ∈ Pφ(i ≤ j )
∀ i ∈ Pφ

∀ i ∈ Cφ,∀ j ∈ Pφ

∀i ∈ Cφ

∀ i ∈ Pφ

i i
x + y ≤ (1− r )2 2 2

2 2
i j i   j i j

2
ρ + ρ −4ρ ρ cos(α −α ) −4r ≥ 0

i
ρ + r ≤ 1

j j i j j

2 2 2
(x −ρ cos(α )) + (y −ρ sin(α )) −4r ≥ 0

r ≥ 0

I i
x , y ∈R

i
ρ ≥ 0, α i  ∈ [0, 2π]i















5. Conclusions

• Many methods for solving global optimization problems are based on 
changing one formulation to another.

• These types of methods include dual, primal-dual, Lagrangian, 
linearization, surrogation, convexification methods, coordinate system 
change, discrete/continuous reformulations, to mention a few.

• The main idea of Formulation Space Search (FSS) is to provide the set of 
formulations for a given problem with some metric or quasi-metric 
functions.

• In that way, the (quasi) distance between formulations is introduced, and 
the search space is extended to the set of formulations as well.

• Most importantly, in all solution method classes mentioned, the discrete 
metric function between any two formulations can easily be defined.



5. Conclusions

• Those simple facts open an avenue to a new approach where 
heuristics are developed within the FSS framework.

• Instead of a single formulation with corresponding solution 
space, as in the traditional approach, there are now multiple
formulations and solution spaces to explore in a structured way.

• This opens immense possibilities in designing new and powerful 
heuristics. For example, it may be that new types of distances in 
the formulation space will make some hard problems easier to 
solve

• I hope I have convinced the audience that FSS is an exciting 
direction for future research.
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