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Some of common ML assumptions:
• Training and test instances are drawn independently 

from the same unknown distribution
• Function mapping explanatory variables 

(inputs/features) to response variables (outputs) is 
smooth almost everywhere

• Signal to noise ratio is large 
• Ignored information has negligible effects
• Labels are precise and sufficiently large

Machine Learning in Temporal Networks
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• Some of ML assumptions are often violated in temporal networks
Complex relationships ⇨ various modeling challenges arise

• Challenges discussed today: 
The ability of ML techniques to detect, classify and anticipate events when

1. Data is anonymized
2. Observations are scarce 
3. Labels are imprecise

ML Objective: Learn a function 𝑓 that 
maps the given input to the output
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Example 1: Learning from Sequentially Structured Data
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• Given: A sequence of user activities, along with their corresponding time stamps                                  
.

• Objective: Learn a function that projects a user to a task-independent, compact, temporally 
aware embedding  

Our Solution: Time-aware sequential autoencoder – achieved 25% lift in conversion prediction (advertising)

Pavlovski, M., Gligorijevic, J., Stojkovic, I., Komirishetty, S., Gligorijevic, Dj., Bhamidipati, N., Obradovic, Z. “Time-
Aware User Embeddings as a Service,” ACM SIGKDD Conf. on Knowledge Discovery and Data Mining, 2020
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Outage Cost: $150B annually in US
Challenge: Heterogeneous spatio-temporal data
(outage records, weather measurements and forecast)

Solution: Collaborative Logistic Ensemble Classifier
+ utilized distance correlation to balance 

underfit/overfit [Pavlovski et al, IJCAI 2018]
+ learned from spatial substructures

Example: Lightning as a cause of outages (PNW)

• No outages occurred ⇨ outage probabilities are smaller than 60% for all substations
• Outages occurred ⇨ the area around the outages has points with probability over 80%
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Example 2: Structured Learning in Temporal Networks: 
Predictive Electrical Outage Management

Probabilities of outages when: no outages occurred (left), and outages were caused by lightning  (right).

Train a subbagging ensemble of 𝑀 components:

Iteratively exchange examples to minimize:

Prediction:

Dokic T, Pavlovski M, Gligorijevic Dj, Kezunovic M, Obradovic Z., “Spatially Aware Ensemble-Based Learning to 
Predict Weather-Related Outages in Transmission,” IEEE HICSS 2019



TODAY: Power System Events Detection and Classification 
from PMUs Across the US

PMUs (Phasor measurement units) - hundreds of terabytes data 
• simultaneously register and records multiple variables in an electric grid
• record magnitude/phase angle of a phasor quantity (voltage, current), frequency, ROCOF
• use GPS for synchronization
• sparsely located (approximately 2,000 deployed, covering < 5% of the electrical buses) across Eastern

Interconnection, Western Interconnection and Texas (ERCOT) Interconnection
Objective:
• Pro-active approach to improving the reliability and situational awareness of power systems based on 

detection and further classification of local and global events from scarce PMUs based on non-
representative and imprecise labels

Source: Black, Clifton “Synchrophasors: Improving Reliability & Situational Awareness”, Research & Technology Management, October 2011
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Problem formulation: Given a signal segment 𝐬 𝑡 − Δ, 𝑡 + Δ = [𝐬 ! 𝑡 − Δ, 𝑡 + Δ ,… , 𝐬 " 𝑡 − Δ, 𝑡 + Δ ] ,  

from multiple anonymized PMUs (removed grid topology) predict event type 𝑦 ∈ 0,… , 𝐶 that 
occurred at [𝑡 − Δ, 𝑡 + Δ] by learning from scarce observations and low precision  labels.

Q1: Can we automate feature learning? 
Yes – Multi-channel filtering by CNN

Q4: Can we use relevant labeled PMU data from a 
related task? Yes - transfer learning 

Q3: Can we enhance PMU data through 
simulations? 
Yes, but need 3 phase data
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Q2: Should we learn from more data or from 
better data?
Use both if data is small 

TODAY: Events Detection and Classification from PMU Data



Details: Described in Our 2021 Publications

M. Pavlovski, M. Alqudah, T. Dokic, A. Abdel Hai, M. Kezunovic, Z. 
Obradovic, “Use of Hierarchical Convolutional Neural Networks for Event 
Classification on PMU Data,” IEEE Trans. on Instrumentation and 
Measurement, In Press.

A. Abdel Hai, T. Dokic, M. Pavlovski, M. Alqudah, M. Kezunovic, Z. 
Obradovic, “Transfer Learning for Event Detection from PMU 
Measurements with Scarce Labels,” IEEE Access, vol. 9, 1274420-127432, 
10 Sept. 2021 Preprint.

H. Otudi, T. Dokic, T. Mohamed,Y. Hi, M. Kezunovic, Z. Obradovic, “Line 
Faults Classification Using Machine Learning On Three phases Voltages 
Extracted from Large Dataset of PMU Measurements,” IEEE HICSS-55, 
January 2022, In Press.

R. Baembitov, T. Dokic, M. Kezunovic, Z. Obradovic,  “Fast Extraction and 
Characterization of Fundamental Frequency Events from a Large PMU 
Dataset Using Big Data Analytics,” IEEE HICSS-54, January 2021.

M. Alqudah, M. Pavlovski, T. Dokic, M. Kezunovic, Y. Hu, Z. Obradovic, 
“Convolution-based Event Detection Utilizing Timeseries Data Streams 
from Phasor Measurement Units Sparsely Located Across Electric Power 
Systems,” In Review. 

A. Abdel Hai, M. Pavlovski, T. Dokic, T. Mohammed, S. Saranovic, M. 
Kezunovic, Z. Obradovic, “Transfer Learning for Detection of Events using 
Phasor Measurement Data from Another Grid,” In Review.



Existing traditional ML methods: aim to increase the value of collected PMU data for improved 
situational awareness and predictive decision-making

(1) Face many challenges such as high dimensionality, autocorrelation, adaptation, evaluation
(2) Rely on missing, unreliable, or imprecise labels
(3) Do not focus on characterizing local and global events 
(4) Typically utilize only a single PMU variable

Problem Formulation

Problem formulation: Given a signal segment
𝐬 𝑡 − Δ, 𝑡 + Δ = [𝐬 ! 𝑡 − Δ, 𝑡 + Δ ,… , 𝐬 " 𝑡 − Δ, 𝑡 + Δ ] ,  

from multiple anonymized PMUs, predict 𝑦 ∈ 0,… , 𝐶 which indicates the type of event that 
occurred during [𝑡 − Δ, 𝑡 + Δ] by learning from scarce observations and low precision  labels. 

Our objectives: Consider more advanced methods (capable of modeling temporal network data)
• Employ automated feature learning
• Utilize all available channels, as well as each channel separately
• Analyze the effect of different mechanisms for improving labels on local/global event characterization
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This work is a part of “Big Data Synchrophasor Monitoring and Analytics for Resiliency Tracking (BDSMART)”, an ongoing 
project funded by the US Department of Energy (DOE).
• Pavlovski, M., Alqudah, M., Dokic, T., Abdel Hai, A., Kezunovic, M., Obradovic, Z. “Hierarchical Convolutional 

Neural Networks for Event Classification on PMU Measurements,” IEEE Transactions on Instrumentation & 
Measurement. In press.



Model Variants

Traditional
• Decision Tree (DT)
• Logistic Regression (LR)
• Multilayer Perceptron (MLP)
• Support vector machine (SVM)

Single-channel
• Single-channel Convolutional Neural Network (SC-CNN)

Multi-channel
• Parallel Channel Filtering CNN (PCF-CNN)
• Simultaneous Channel Filtering CNN (SCF-CNN)

Classification modes

o Standard (multi-class)
o Hierarchical (cascade)

- Detected events are classified into line or freq. events

Automated Feature Learning for Events Predictions in PMUs
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Single-Channel CNN Architecture
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Single-Channel (SC) CNN utilizing voltage signal segments



Multi-Channel CNN Variants
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Parallel Channel Filtering (PCF) CNN

Simultaneous Channel Filtering (SCF) CNN
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Data

PMUs’ voltage signals (an event detected by majority of the PMUs).
• 38 PMU devices from unknown locations at Western 

U.S. Interconnection
• Signal types: vp_m, ip_m, f
• 2 years of data (2016, 2017)

Preprocessing
• Downsampling: 30 samples/seconds
• Resulting in 180 values in 1 minute for each PMU
• Aggregation of all PMUs’ sub-signals

• Soft-DTW (Dynamic Time Warping) [*]

Event Logs

[*] Cuturi, M., et al. “Soft-DTW: a differentiable loss function for time-series,” ICML, 2017.

* The domain expert was working ~3 hours/day.
+ Additional (secondary) visual inspection Descriptive summary of train/test datasets.



Overall Effect of Event Labeling on Event Classification

Observations

• CNNs outperform traditional models in most cases

• Voltage seems more relevant than current/ 
frequency

• Hierarchical models consistently outperform the 
standard multiclass variants

• In general, the multi-channel CNNs are 
outperforming the other model alternatives

• HSCF-CNN on the refined event log
• HPCF-CNN in the other cases

• Increase in classification performance as more 
curated event logs are used

13/31



Four distinctive performance regions:
(1) Sudden improvement obtained by fully inspecting 2 

months of rapidly refined segments

(2) Performance stabilizes up until 5 months of fully 
inspected data are used
o requires 16-28 days of inspection time

(2) Lift in performance once 6 months of segments are 
fully inspected
o translates into 12% more inspection time
o no significant change for 7th month

(3) Inspecting ≥ 8 months: performance is similar to the 
one of the best-performing HPCF-CNN 
o requires the expert to devote 2-2.5 months
o ~20%-60% more inspection time

Gradual Effect of Event Labeling on Event Classification

Observations:

• Domain expert’s time is extremely limited ⇨ labeling at least 2 months of data is suggested
• Otherwise ⇨ inspection of ≥ 8 months is needed to achieve satisfactory performance

* Using smaller fractions of expert-inspected labels alone yields greater performance than using them 
in addition to labels that were not fully inspected by a domain expert
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Sensitivity Analysis

• Aims to quantitatively inspect the ‘expertise’ 
of the domain expert

• Label noise is injected by flipping labels to 
simulate a less-experienced domain expert

• For each fraction of flipped labels, the 
experiment was repeated 10 times

Can we achieve event classification performance 
similar to the best-performing HPCF-CNN in case a 
less-experienced domain expert labeled the data?

Observations:

• As expected, the performance drops with the 
increase of the flipping fraction

• Larger fractions enforce more ‘randomness’ in 
selecting which labels will be flipped

o leads to larger fluctuations
• Significant drops in performance after flipping more 

than 5% of the labels

Similar performance may be achieved with   
a less experienced curator as long as < 5%
of the event annotations are mislabeled
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TOPIC 2: Line Faults Classification Using Machine Learning on 3-
Phase Voltages Extracted from Large PMU Measurements 

This work is a part of “Big Data Synchrophasor Monitoring and Analytics for Resiliency Tracking (BDSMART)”, an ongoing 
project funded by the US Department of Energy (DOE). 
• Otudi, H.,  Dokic, D., Mohamed, T., Kezunovic, M.,  Hu, Y.,  Obradovic, Z., IEEE HICSS, Jan. 2022.

Objective:
Transmission line faults classification based on 
supervised learning

Data:
2-year field-recorded synchronized measurements 
of 3-phase voltages recorded by 38 phasor 
measurement units (PMUs) sparsely located in the 
US Western Grid interconnection.

Challenge 1:
It is difficult to separate PP (or 3P) from PP-G (or 
3P-G) faults using field-recorded data.

Challenge 2: 
There are fewer examples of PP, PPG,3P, and 
3P-G faults compared to P-G faults in the field-
recorded dataset.
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PMU Measurement Data

• Field-recorded data: collected from 38 
PMUs over 2 years at the US West 
Interconnection

• Simulations: based on 14-bus power 
system that includes 12 PMUs

• Extracted from both sources:  three-phase 
measurements of the voltage magnitude

• Features: computed based on a statistical 
analysis of 2-second data windows (this 
window provides high accuracy of line 
fault-type classification)

PMU placement in the synthetic IEEE 14-bus power system
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Top: Field-recorded data
Bottom: Simulated PMU data 
(left to right: phases A, B and C)

Field-Recorded vs 
Simulated AB-G Fault 
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Example: 



Feature Extraction

• The range of voltage for each PMU is determined  as

• The range of voltage is aggregated for all PMUs as

• Then, difference between each two phases is determined as

• Finally, the ratio between the differences in the voltage range is determined such 
that the larger value is always divided by the smaller value

19/31



Fault Type Labels

Automatic labeling was performed for 
multiclass line faults, as shown in Table 1. 

• Each label represents the occurrence
of line fault type. E.g., a phase-to to ground
fault (i.e., A-G, B-G, or C-G) is a combination
of four labels. 

• The labels are assigned as follows: 
for a phase-to-ground fault, if ABdiff = 1 and 
CAdiff = -1 and YZdiff = 1 and ZXdiff = -1, then 
the label will be “A-G”

Table 1. Automatic labeling for seven types 
of line fault

20/31



Faults Distribution Before and After Data Integration

Integrated data distributionField recorded data distribution(2016)
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Benefits of Data Integration: Results

Fault classification accuracy on unseen year 2017 field-recorded data across multiple 
metrics was significantly improved by learning from integrated field-recorded and 
simulated data 
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Motivation

• Event detection tasks are often done using unsupervised approaches since assigning labels 
manually can be time-consuming and costly

• Unsupervised detectors do not benefit from labelled data that provide the possibility of 
correcting errors made by unsupervised detectors

• Supervised learning algorithms rely on a sufficient number of precisely labelled data

• Thus, both unsupervised and supervised learning algorithms are infeasible for event 
detection tasks when labels are scarce and temporally imprecise

This work is a part of “Big Data Synchrophasor Monitoring and Analytics for Resiliency Tracking (BDSMART)”, an ongoing 
project funded by the US Department of Energy (DOE).
• Abdel Hai, A., Dokic, T., Pavlovski, M., Mohamed, T., Saranovic, D., Alqudah, M., Kezunovic, M., Obradovic, Z. 
“Transfer Learning for Event Detection from PMU Measurements with Scarce Labels,” IEEE Access, 2021.

TOPIC 3: Transfer Learning for Event Detection from PMU 
Measurements with Scarce Labels



Objective
• Line fault, frequency, and transformer event detection based on transfer learning

techniques to detect events based on minimal labeled time windows

Problem Formulation
Given a signal segment originating from multiple PMU devices, predict 𝑦 ∈ 0, 1 , which 
indicates whether an event occurred during [𝑡 − Δ, 𝑡 + Δ]

Transfer Learning
• Leverage a small number of relevant labeled data instances from a task related to the 

target task 
• Often, it is used in conjunction with semi-supervised algorithms since semi-supervised 

algorithms assume only a limited amount of labeled data is available 

Challenges: violates traditional machine learning assumptions: 
(1)dimensionality of the feature space of the source and target might be different; 
(2)marginal distributions could differ (covariate shift); and 
(3) the same behaviour might have a different meaning in two domains (concept shift)

Problem Formulation
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Localized and unsupervised instance 
selection (LocIT):

• Transfer an annotated instance xt from 
source domain Ds to target domain Dt if 
local structure of xt is similar in Ds and Dt

• Measure distance between the centroids 
of the nearest neighbourhood N1 in Ds 
from N2 in Dt

• Also measure the relative distance 
between the covariance matrices of N1 
and N2

• Use these distances to learn the instance-
transfer function by training SVM on the 
target distribution

Transfer Learning for Event Detection: Methodology

Semi-supervised anomaly detection  (SSKNNO):

• Assign anomaly score 𝑦 ∈ 0, 1 by a semi-
supervised nearest neighbor

Input: 
• transferred labeled instances from Ds
• unlabeled target dataset Dt

• Consider the local distribution of Dt when 
computing the score

• Weight this score by comparing the 
neighborhoods of transferred instances from Ds



• 38 Phasor Measurement Unit (PMU) devices from the Western Interconnection of the U.S.A
• Signal types: vp_m, ip_m, f
• 2 years of data (2016, 2017)
• Geographical locations of the PMUs and the network topology are not made available
• Data are collected with two fps: 30 fps, and 60 fps
• Duplicates and outliers were observed, but did not have a significant impact on our method
Pre-processing
For each time window TW and a specific PMU calculate the Rectangle Area using frequency and positive-
sequence voltage magnitude: 

Time windows considered (West):

Data

26/31



Experiments are based on
• Temporal Split: 

• Ds: leveraging labeled data from time windows collected from 2016
• Dt: target domain containing unlabeled time windows collected from 2017
• Feature Vectors containing 38 RA features

• PMUs Split:
• a subset of PMUs was used for Ds and remaining PMUs for Dt• Feature Vectors containing 19 RA features

Distributional Difference between Source and Target Datasets
• covariate shift assumption & concept shift assumption validation

• Kolmogorov-Smirnov test was used to check whether the source 
and target distributions are identical by comparing the underlying 
distributions F(x) and G(x) of two independent samples

• Null hypothesis: F = G

• Obtained p-values for all PMUs. The maximum p-value was 3.9e-15

• Hence, we can safely reject the null hypothesis

Experiments 



Observations: (experiments conducted on a temporal split)
• Performances improve with more labeled data added to the source
• LocIT obtained an average AUROC of 0.94 with a confidence interval width of 0.0032 

(±0.0032) outperforming baselines with high confidence (p-value vs the second-best SSKNNO 
method was 1.4e-8)

• When learning from limited labelled data (using <10% of labeled source data from a related 
task) transfer learning outperformed unsupervised, semi-supervised, and fully supervised 
algorithms 

Events Detection by Transfer Learning vs. Alternatives

X-axis: percentage of the labeled source data 2%=20 
examples, 5%=51 examples, 10%=103 examples
LocIT: transfer learning; SKNNO: semi-supervised; 

MLP: supervised; kNNO: unsupervised
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Conclusions

• The ability of machine learning techniques to detect, classify and anticipate events is 
significantly reduced by 

(1) data anonymization (removal of the grid topology); 
(2) scarce observations; 
(3) low precision labels (log file). 

• Manual labeling and precise time stamping of events in big PMU data is not cost-
effective and could be infeasible, but our results provide evidence that monitoring and 
analytics for resiliency tracking can be significantly improved by 
– automated feature learning, 
– rapid refinement and partial inspection of labels, 
– events simulations, and 
– transfer learning 

• The technology for development and implementation of automated means for 
characterizing the events is readily available, but related data processing standards and 
practices are needed to support the technology    
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Questions?

Questions?

Research collaboration 
opportunities:
• partnerships 
• visiting scholars
• postdocs and Ph.D. students

Zoran Obradovic
zoran.obradovic@temple.edu
www.dabi.temple.edu/~zoran


