
Mirjana Čangalović, 
Faculty of Organizational Sciences, University of Belgrade

Grupa: J. Kratica, V. Kovačević-Vujčić, N. 
Mladenović, M. Čangalović, M. Stanojević, N. 

Nikolić, I. Grujičić, D. Dzamić

PROBLEM METRIČKE DIMENZIJE NA 
GRAFOVIMA



The metric dimension problem
 G=(V,E) is a simple connected undirected graph.
 For u,v∈V, let d(u,v) is the length of shortest path from u to v.
 Vertex x resolves two vertices u,v if d(x,u)≠d(x,v).
 Ordered set S={x1,...,xk}, (xi∈V, xi≠ xj) is

a resolving set of G if every two u,v∈V (u≠v) are resolved by 
some t∈S .

 r(t,S)=(d(t,x1), ...,d(t,xk)), t∈V - the vector of metric
coordinates (metric vector)of t w.r.t. S

(S is a resolving set iff no two vertices of G have the same metric 
vectors  w.r.t. S.)

 Metric basis of G is a resolving set of the minimal cardinality.
 Metric dimension β(G) is the cardinality of the metric basis.

 Metric dimension problem: finding the value of β(G) 
for graph G



Example 

 Vertices C and D are resoved by B, but not resolved by E: 
d(C,B)=1 ≠ d(D,B)=2, d(C,E)=d(D,E)=1.

 Set S={A,B} is a resolving set since the metric vectors for vertices 
w.r.t. S are : r(A,S)=(0,1), r(B,S)=(1,0), r(C,S)=(1,1), 
r(D,S)=(1,2), r(E,S)=(2,1).

 If set S is {A} or {C} or {D}, then r(B,S)=r(D,S)=1.
 If set S is {B} or  {D} , then r(A,S)=r(E,S)=1.

 β(G)=2 with a metric basis {A,B}.
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The metric dimension problem

 Introduced by:
Slater, P.J. Leaves of trees, Congr. Numerantium 14 (1975) 

549-559. 
Harary, F., Melter, R.A., On the metric dimension of a 

graph, Ars Combinatoria, 2 (1976), 191–195.
• 1996. Proof of NP-hardness: 

Khuller, S., Raghavachari, B., Rosenfeld, A., Landmarks in 
graphs, Discrete Applied Mathematics, 70 (1996), 217-229.

 Large number of theoretical papers devoted to exact values or 
upper and lower bounds of the metric dimension for some classes 
of graphs.

 Applications to: network discovery and verification, the robot 
navigation, chemistry, geographical routing protocols, etc. 



The metric dimension and their  bounds for  some 
classes of graphs

 Theoretically obtained exact values of  β(G):

• for trees, the join and the Cartesian product of special 
graphs, for some of Petersen graphs, Hamming graphs, 
convex polytopes,…

 Theoretically obtained lower and upper bounds for  β(G):
• especially  for the Cartesian product of  graphs





Example

 A metric basis need not uniquely determine graph G: 

d(a,b)=3                                  d(a,b)=1



The minimal doubly resolving set problem

 G=(V,E) is a simple connected undirected graph.
 Vertices x,y doubly resolve two vertices u,v if

d(x,u)-d(y,u) ≠ d(x,v)-d(y,v).
 Ordered set D={x1,...,xk}, (xi∈V, xi≠ xj) is a doubly

resolving set of G if every two vertices u,v∈V (u≠v) are 
doubly resolved by some pair s,t∈D (s≠t).

 (t,S)=(d(t,x1), ...,d(t,xk)), t∈V - the vector of metric 
coordinates (metric vector) of t w.r.t. D.

 (D={x1,...,xk} is a doubly resolving set iff no  two vertices u
and v of G such that differences d(u,xi)-d(v,xi) are the same.)

 Minimal doubly resolving set of G is a doubly resolving set 
with the minimal cardinality ψ(G).

 The minimal doubly resolving set problem: 
finding the value of ψ(G) for graph G.



Example 

 Vertices C and D are doubly resolved by A and B:
d(C,A)-d(C,B)=0 ≠ -1=d(D,A)-d(D,B).

 Vertices C and D are not doubly resolved by A and E:
d(C,A)-d(C,E)=d(D,A)-d(D,E)=0.

 Set S={A,B,C} is a doubly resolving set since the metric vectors 
for vertices w.r.t. S are : r(A,S)=(0,1,1), r(B,S)=(1,0,1), 
r(C,S)=(1,1,0), r(D,S)=(1,2,1), r(E,S)=(2,1,1).

 Set  S={A,B} is not a doubly resolving set:
r(A,S)=(0,1), r(D,S)=(1,2) .

 Set {A,B,C} is a minimal doubly resolving set, so ψ(G) = 3.
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The minimal doubly resolving set problem

 Introduced by:
• Caceres, J., at al., On the metric dimension of Cartesian 

products f graphs, SIAM Journal on Discrete Mathematics, 21
(2007), 423–441.

 2009. Proof of NP-hardness: 
• Kratica J., Čangalović M., Kovačević-Vujčić V., Computing 

minimal doubly resolving sets of graphs, Computers & 
Operations Research, 36 (2009) 2149-2159

 Every doubly resolving set is a resolving set, so  β(G) ≤ ψ(G).
 The main theoretical result:

 Applications to: finding upper bounds of metric dimension for the 
Cartesian products of graphs



The strong metric dimension problem
 G=(V,E) is a simple connected undirected graph.
 Vertex  w  strongly resolves vertices u, v if there exists some 

shortest u–w path containing v or some shortest v–w path 
containing u.

 Set W of vertices is a strong resolving set of G if every two 
u,v∈V (u≠v)  are strongly resolved by some t∈W .

 Strong metric basis of G is a strong resolving set of the minimal 
cardinality.

 Strong metric dimension sdim(G) is the cardinality of the 
strong metric basis.

 Strong metric dimension problem: finding sdim(G) for graph
G.

 If  S  is a strong resolving set , then metric vectors  r(v,S), 
v∈V , uniquely determinates graph G : if  for a graph  G’    
V(G’)=V(G) , S  strongly resolves  G’   and  for all vertices  v  
rG’ (v,S)=rG (v,S), then  G=G’.



Examples

 A metric basis need not uniquely determine graph G: 

W= {a,1,2} W= {a,b,1,2}
sdim(a,b)=3                             sdim(G)=4   



The strong metric dimension problem

 Introduced by:
Sebo, A., Tannier, E., On metric generators of graphs,
Mathematics & Operations Research 29(2) (2004) 383-393.
• 2007. Proof of NP-hardness: 

Oellermann, O., Peters- Fransen, j., The strong metric 
dimension of graphs and digraphs, Discrete Applied 
Mathematics, 155 (2007), 356-364.

 Every strong resolving set is a resolving set, so 
β(G) ≤ sdim(G).

 Increasing number of theoretical papers.



Solution techniques
 The first papers with metaheuristic approaches:

• Kratica J, Kovačević-Vujčić V, Čangalović M., Computing the
metric dimension of graphs by genetic algorithms,
Computational Optimization and Applications, 44 (2009), 343-
361

• Kratica J., Čangalović M., Kovačević-Vujčić V., Computing
minimal doubly resolving sets of graphs, Computers & 
Operations Research, 36 (2009) 2149-2159

• Kratica J, Kovačević-Vujčić V, Čangalović M., Computing strong 
metric dimension of some special classes of graphs by genetic 
algorithms, Yugoslav Journal of Operations Research, Vol 18, 
No. 2, (2008) 143-151. 

• Mladenovic, N., Kratica, J., Kovacevic-Vujcic, V., Cangalovic, M., 
Variable neighborhood search for metric dimension and minimal 
doubly resolving set problems, European Journal of Operational 
Research, 220(2)(2012)   328-337

• Nikolić N., Cangalovic, M., Grujičić I., Symmetry properties of 
resolving sets and metric bases in hypercubes, Optim. Letters, 
DOI 10.1007/s11590-014-0790-2 (2015)



Solution techniques
 Meta heuristic solution approaches:

• Genetic algorithm, 2009,
• Variable neighborhood search (VNS), 2012.
• Special heuristic for hypercubes, 2015.
• Special VNS for hypercube, 2016. 

 Experimentally obtained exact values or upper bounds for  
β(G), ψ(G) , sdim (G) for:

• Some ORLIB instances (crew scheduling, graph coloring) 
up to 1534  nodes.

• Hamming graphs up to 4913 nodes.
• Hypercubes with the dimension up to 25.  

 VNS approach overcomes GA aproach.



Hamming graphs

 The Hamming graph Hr,k : 

 Number of vertices: kr ; Number of edges: kr *r*(k-1)/2

 Theoretical result:

 Experimental results:

• GA and VNS applied to H2,k , 3 ≤ k≤ 30 : exact values of
the metric dimension has been found for all instances.

• For instances H3,k , 3 ≤ k≤ 17, H4,k , 3 ≤ k≤ 8, 
H5,k , 3 ≤ k≤ 5, H6,k , 3 ≤ k≤ 4, H7,3 , new upper bounds
for the metric dimension has been calculated.



Hamming graphs

 Kratica J., Kovacevic-Vujcic V., Cangalovic M., Stojanovic
M., Minimal doubly resolving sets and the strong metric 
dimension of Hamming graphs, Applicable Analysis and 
Discrete Mathematics, 6(1) (2012) 63-71.

sdim(Hn,k)=(k-1) k n-1



Generalized Petersen graphs
 The generalized Petersen graph  GP(n,k), (n≥3, 1 ≤ k<n/2):

• vertex set  V = { ui ,vi | 0 ≤ i ≤ n − 1} and
• edge set E = {{ui ,ui+1},{ui ,vi},{vi ,vi+k} | 0 ≤ i ≤ n−1},

where vertex indices taken modulo n.

Petersen graph GP(5,2) GP(7,3)GP(5,1)



Generalized Petersen graphs

 The metric dimension of  GP(n,1) :

 The metric dimension of  GP(n,k), k≥2 :

• For k≥2  β(GP(n,k)) ≥ 3 .

• β(GP(n,2))= 3.



Prism graphs

 Cangalovic M., Kratica J., Kovacevic-Vujcic V., Stojanovic M. , 
Minimal doubly resolving sets of prism graphs, Optimization, 
62(8), (2013) 1037-1043

Prism graph Yn ≅ GP(n,1)



Convex polytopes Dn

Metric dimension of Dn : 3



Convex polytopes Dn

 Kratica, J., Kovacevic-Vujcic, V., Cangalovic, M., & Stojanovic, 
M., Minimal doubly resolving sets and the strong metric 
dimension of some convex polytopes, Applied Mathematics and 
Computation, 218(19), (2012) 9790-9801.

 For any Dn, sdim (Dn)=2n for n odd and n ≥ 5, and
sdim (Dn)=5n/2 for n even and n ≥ 10.

≥



Convex polytopes Tn

Metric dimension of Tn : 3



Convex polytopes Tn

 Kratica, J., Kovacevic-Vujcic, V., Cangalovic, M., & Stojanovic, 
M., Minimal doubly resolving sets and the strong metric 
dimension of some convex polytopes, Applied Mathematics and 
Computation, 218(19), (2012) 9790-9801.

 For any Tn and n ≥ 5 , sdim (Tn)=2n for n odd, and
sdim (Tn)=5n/2 for n even.

≥



Hypercubes
 The hypercube Qn of dimension n: 

 Vertices are all n-dimensional binary vectors.

 Number of vertices: 2n. Number of edges: n*2n-1.

 Two vertices are adjacent if they differ in exactly one coordinate.
 Distance between two vertices: number of different coordinates.
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Previous results

 Exact values of  β(Qn)  found by the computer search:

β(Q2) = 2,  β(Q3) = 3,  β(Q4) = 4,  β(Q5) = 4,  β(Q6) = 5,
β(Q7) = 6,  β(Q8) = 6,  β(Q9) = 7,  β(Q10) = 7.

 The best known upper bounds for  11 ≤ n ≤ 17  obtained by a 
special version of VNS (Q18 has 262144 nodes!!):

β(Q11) ≤ 8,  β(Q12) ≤ 8,  β(Q13) ≤ 8,  β(Q14) ≤ 9, 
β(Q15) ≤ 9, β(Q16) ≤ 10,  β(Q17) ≤ 11.



Previous results
 The best known upper bounds for  18 ≤ n ≤ 90  by a dynamic 

programming approach based on the cardinality  ψ(Qm)  of 
the minimal doubly resolving set:

β(Qn) = β(Qn-m×Qm) ≤ β(Qn-m) + ψ(Qm) – 1,  and
β(Qn) ≤ 2n,  for each n: (k-1)∙2k-2 < n ≤ k∙2k-1.

• Upper bounds for  ψ(Qm); m ≤ 17,  and exact values of  
β(Qn); n ≤8,  obtained by GA.

 Theoretical results: 

• β(Qn) ≤ n,
• β(Qn) ≤ n-6,  for  n ≥ 15,
• β(Qk∙2

k-1) ≤ 2k,  for  k≥1,
• Asymptotic behavior of β(Qn):

loglim ( ) 2.
→∞

⋅ =nn

nβ Q
n



• Nikolić N., Cangalovic, M., Grujičić I., Symmetry properties of resolving sets     
and metric bases in hypercubes, Optim. Letters, DOI 10.1007/s11590-014-
0790-2 (2015)

• Vi = {x=(x1,x2,...,xn): ∑xi=i}:

Property 1: There is a metric basis  S  of  Qn such that

Property 2: There is a metric basis S of  Qn such that (0,0,...,0) ∈ S.

Property 3: If  S is a subset of  V(Qn)  such that  (0,0,...,0) ∈ S, 
then  S is a resolving set of  Qn if and only if S resolves every two 

distinct vertices .

Reduction in the search process: The number of vertex     
candidates for a metric basis is 2n-1

Reductions in checking the resolving condition:
The complexity of checking is reduced                  times.

Symmetry properties
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Symmetry properties
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Symmetry properties
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New bounds for hypercubes

 Greedy heuristic and VNS algorithm  for hypercubes based 
on symmetry properties.

 For 2≤n≤17 VNS reaches the best bounds for shorter time 
than general VNS.

 For 18≤n≤22 VNS reaches the best bounds obtained  by 
greedy heuristic.

 For 23≤n≤25 VNS directly reaches the best bounds 
obtained by DP.

 VNS does not have the memory space problems up to 
n=30.



Further research

 Experiments with some other  interesting families of graphs 
with the corresponding theoretical hypotheses.

 Further work on hypercubes on dimensions greater than 25 
(improve VNS and test on more powerful and/or parallel 
computers, implement some other types  of reductions, etc)

 Considering new problems related to the metric dimension 
problem (the min connected resolving set, min independent 
resolving set)



Thank you 
for your 

attention!!!
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