Inexact Restoration approach for minimization with inexact evaluation of the objective function

Nataša Krejić

University of Novi Sad, Serbia

MI SANU 2016

Nataša Krejić

$\min_{x\in\mathbb{R}^n}f(x)$

- ► f(x) can be computed with different levels of accuracy {1,2...,N}
- ► f_J(x) the functional value when f is computed at the J-th level of accuracy
- no error bound for inexact evaluation

$$\min f_N(x). \tag{1}$$

Nataša Krejić

Sample Average Approximation

$$f(x) = E[F(x,\xi)], \ f_J = \sum_{i=1}^J F(x,\xi^i)$$

Data fitting methods

$$f_N(x) = \sum_{i=1}^N F(x, y^i)$$

- Electronic Structure Calculation
 - ► f is computed iteratively, f_J(x) the inexact functional value after J iterations

$\min f_N(x)$

• Cheaper evaluations $f_J(x)$, J < N whenever possible Schedule sequence

 $\{N_0, N_1, N_2, \ldots\}$

 $N_k \in \{1, \dots, N\}$ - accuracy level at iteration k

The dynamics of the schedule sequence - Inexact Restoration

The dynamics of the schedule sequence:

- SAA problem: Shapiro, Ruszczynski 2003, Shapiro, Wardi 1996, Spall 2003, Polak, Royset 2008, Pasupathy 2010, Homen-de-Mello 2003
- Bastin 2004, Bastin, Cirillo, Toint 2006, NK, Krklec 2013, NK, Krklec-Jerinkic 2014
- Data fitting: Friedlander, Schmidt 2012, Byrd et al 2011,2012,2014
- Distributed optimization: Bajović, Jakovetić, NK, Krklec Jerinkić, 2016

$\min f_N(x)$

min z s.t. $z = f_N(x)$

Inexact Restoration

- Restoration phase y_k improved feasibility w.r.t. x_k
- Optimality phase $y_k + \alpha d_k$ improved optimality w.r.t. y_k
- IR + trust region Martínez 2001, Martínez, Pillota 2000, IR + filter Gonzaga, Karas, Vanti 2003, IR + line search Fischer, Friedlander 2010

900

Nataša Krejić

Infeasibility measure (z, x, M)

$$h(z, x, M) = |z - f_M(x)| + g(M)$$

g(M) – decreasing and g(N) = 0. Feasible point $(z, x, M) : M = N, z = f_N(x)$ Merit function

$$\phi(z, x, M, \theta) = \theta z + (1 - \theta)h(z, x, M), \ \theta \in [0, 1]$$

min z s.t. $z = f_N(x)$

 $(z_k, x_k, N_k) \in \mathbb{R} \times \mathbb{R}^n \times \mathbb{N}$

Nataša Krejić

Algorithm 1 Given $z_0 \in \mathbb{R}$, $x_0 \in \mathbb{R}^n$, $N_0 \in \{1, 2, \dots, N\}$, $r \in (0, 1)$, $\tau, \theta_0 \in (0, 1)$, and $\beta, \gamma, \overline{\gamma} > 0$, set $k \leftarrow 0$.

Step 1. (Restoration phase) If $N_k < N$ find $\tilde{N}_{k+1} > N_k$ and $(u_k, y_k) \in \mathbb{R} \times \mathbb{R}^n$ such that

$$ilde{N}_{k+1} \leq N, \ h(u_k, y_k, ilde{N}_{k+1}) \leq rh(z_k, x_k, N_k),$$
 (2)

and

$$\|(u_k, y_k) - (z_k, x_k)\| \le \beta h(z_k, x_k, N_k).$$
(3)

If $N_k = N$ set $\tilde{N}_{k+1} = N$ and find (u_k, y_k) such that (2) and (3) hold.

Nataša Krejić

Step 2. (Updating the penalty parameter) If

$$\phi(u_k, y_k, \tilde{N}_{k+1}, \theta_k) - \phi(z_k, x_k, N_k, \theta_k) \\ \leq \frac{1-r}{2} \left(h(u_k, y_k, \tilde{N}_{k+1}) - h(z_k, x_k, N_k) \right)$$
(4)

set $\theta_{k+1} = \theta_k$. Else compute

$$\theta_{k+1} = \frac{(1+r)\left(h(z_k, x_k, N_k) - h(u_k, y_k, \tilde{N}_{k+1})\right)}{2\left[u_k - z_k + h(z_k, x_k, N_k) - h(u_k, y_k, \tilde{N}_{k+1})\right]}$$
(5)

Nataša Krejić

Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia

• B > < B</p>

Step 3 (Optimization Phase)

Step 3.1 Choose $p_k \in \mathbb{R}^n$ and an integer valued function $N_{k+1}(\alpha)$ such that, for all $\alpha \in (0, \tau]$, we have that $N_{k+1}(\alpha) \leq \tilde{N}_{k+1}$,

$$f_{N_{k+1}(\alpha)}(\boldsymbol{y}_k + \alpha \boldsymbol{p}_k) - f_{\tilde{N}_{k+1}}(\boldsymbol{y}_k) \le -\gamma \alpha \|\boldsymbol{p}_k\|^2, \quad (6)$$

and

$$h(u_{k}+d_{k}(\alpha), y_{k}+\alpha p_{k}, N_{k+1}(\alpha)) \leq h(u_{k}, y_{k}, \tilde{N}_{k+1}) + \bar{\gamma}\alpha^{2} \|p_{k}\|^{2},$$
(7)

where

$$d_k(\alpha) = [-f_{\tilde{N}_{k+1}}(y_k) + f_{N_{k+1}(\alpha)}(y_k + \alpha p_k)].$$
(8)

Step 3.2. Find $\alpha_k \in (0, 1]$ as large as possible such that (6) and (7) hold for $\alpha = \alpha_k$ and

$$\phi(u_{k}+d_{k}(\alpha_{k}),y_{k}+\alpha_{k}p_{k},N_{k+1}(\alpha_{k}),\theta_{k+1}) \leq \phi(z_{k},x_{k},N_{k},\theta_{k+1})+\frac{1-r}{2}\left(h(u_{k},y_{k},\tilde{N}_{k+1})-h(z_{k},x_{k},N_{k})\right).$$

Nataša Krejić

Step 4. Set $x_{k+1} = y_k + \alpha_k p_k$, $z_{k+1} = u_k + d_k(\alpha_k)$, $N_{k+1} = N_{k+1}(\alpha_k)$, $k \leftarrow k+1$ and go to Step 1

Nataša Krejić

Convergence results

Assumption A1 For all k = 0, 1, 2, ..., it is possible to compute sequences $\{N_k\}$ and $\{(u_k, y_k)\}$ such that (2)-(3) are satisfied.

$$|f_{N_k}(x_k)-f_N(x_k)|\leq (\beta-1)g(N_k),$$

- The algorithm is well defined
- The penalty parameters are positive, nonincreasing and lim_{k→∞} θ_k = θ^{*} > 0

Nataša Krejić

Theorem

Assume that A1 is satisfied, f_N is Lipschitz continuous, the functions f_M are continuous for $M \le N$ and that the sequences $\{z_k\} \in \mathbb{R}, \{x_k\} \in \mathbb{R}^n$ generated by Algorithm 1 are bounded. Then, there exists $k_0 \in \mathbb{N}$ such that $N_k = \tilde{N}_{k+1} = N$ for $k \ge k_0$. Furthermore $\lim_{k\to\infty} ||p_k|| = 0$.

Nataša Krejić

Electronic Structure Calculation

- Originates from the time-dependent Schrödinger equation
- Fixed nuclei coordinates, an ESC consists of finding the wave function from which the spatial electronic distribution the system can be derived
- Simplifications
- C coefficient matrix, 2 × nocc the number of electrons, K
 the number of basis elements, P = CC^T density matrix
- Fixed Point Self-Consistent Field (SCF) Method: Given P_c solve (10) to get P_{new}

Minimize $Trace(\nabla E(P_c)P)$

subject to
$$P = P^T$$
, $P^2 = P$, Trace $(P) = nocc$, $P \in \mathbb{R}^{K \times K}$. (10)

Birgin, Martínez, Martínez, Rocha, J. Chem. Theor. Comput. 2013

$\min_{x} f(x)$

$f(x) = (\mathit{Trace}[B(x)] - \mathit{nocc})^2, \ B \in \mathbb{R}^{K imes K}$

- Evaluation of *f* is based on the application of the projective gradient method to solve (10)
- Max number of iterations for the projective gradient method in practice is N
- ► $x_k \in (\lambda_{nocc}, \lambda_{nocc+1}), Trace(B_k) \approx nocc$
- Otherwise many PG iterations are wasted

The level of accuracy (max number of PG iterations) - the schedule sequence

Nataša Krejić

Assume that $\varepsilon > 0$ and $N_k \in \{1, ..., N\}$. **Step 1** Compute $B_{start} = c(-A - xI) + \frac{1}{2}I_{K \times K}$ in such a way that all the eigenvalues of B_{start} are between 0 and 1. **Step 2** Consider

Minimize
$$\|B^2 - B\|_F^2$$
 s.t. $B = B^t$

with the sparsity pattern constraint and obtain an approximate solution B(x) as the result of applying the Projected Gradient method with convergence stopping criterion ε on the ∞ -norm of the projected gradient and a maximum of N_k projected gradient iterations.

Step 3 Define $f_{N_k}(x) = (Trace[B(x)] - nocc)^2$.

Implementation

- ► *N* = 1000.
- The accuracy measure g(M) is given by

$$g(M)=\frac{N-M}{M}.$$

$$x_0 = \frac{[K - (nocc + 0.5)]a + (nocc + 0.5)b}{K}$$

where *a* and *b* are lower and upper bounds for the eigenvalues of $\nabla E(P_c)$ computed using the Gershgorin Theorem.

▶
$$N_0 = 10$$
 and $z_0 = f_{N_0}(x_0)$.
▶ $r = 0.5, \beta = 10^3, \gamma = 10^{-4}, \bar{\gamma} = 100, \theta_0 = 0.9, \tau = 10^{-2}$.
▶ $\tilde{N}_{k+1} = 2N_k$ and $u_k = f_{\tilde{N}_{k+1}}(y_k)$
▶ $z_0 = f_{N_0}(x_0)$

- ► *Trace*[*B*(*x*)] is non-decreasing as a function of *x* and we wish to find *x* such that *Trace*[*B*(*x*)] = *nocc*, we keep approximate upper and lower bounds of the solution. The first trial for p_k is based on safeguarded regula-falsi and bisection. If this direction satisfies (6) and (7) for $\alpha = 1$ we adopt this choice for p_k and set $N_{k+1}(1) = \tilde{N}_{k+1}/2$. Otherwise we choose $p_k = -\nabla f_{\tilde{N}_{k+1}}(x_k)$ and $N_{k+1}(1) = \tilde{N}_{k+1}$.
- The value of α_k that satisfies (9) is obtained by backtracking (with factor 0.5) using α = 1 as first trial. If α < 1 we define N_{k+1}(α) = Ñ_{k+1}.
- ▶ $||B(x)^2 B(x)|| \le 10^{-8}$ and $|Trace[B(x)] nocc| \le 0.4$ or k > 1000

Nataša Krejić

Test examples

- Family A $\nabla E(P_c)$ diagonal
- Family B $\nabla E(P_c)$ tridiagonal
- Family C $\nabla E(P_c)$ band sparse

크

Family A: $\nabla E(P_c)$ Diagonal						
Problem	nocc	К	Pseudo-gap	$ B^2 - B $	Iterations	CPU Time (seconds)
1	500,000	1,000,000	8.E-8	7.E-16 7.E-16	3 5	5.51 7.57
2	250,000	1,000,000	4.E-6	4.E-14 1.E-8	4 1	5.41 5.80
3	5,000,000	10,000,000	4.E-9	4.E-15 5.E-16	9 9	100.4 110.5
4	2,500,000	10,000,000	2.E-7	1.E-9 1.E-9	3 4	52.1 86.7
Family B: $\nabla E(P_c)$ Tridiagonal						
Problem	nocc	К	Pseudo-gap	$ B^2 - B $	Iterations	CPU Time
5	500,000	1,000,000	3.25	9.E-7 9.E-7	4 4	22.0 172.2
6	250,000	1,000,000	3.25	5.E-7 9.E-7	2 7	4.07 154.0
7	5,000,000	10,000,000	3.35	9.E-7 9.E-11	1 0	51.9 6.89
8	2,500,000	10,000,000	3.35	6.E-8 6.E-8	4 4	121.1 1082.8
Family C: $\nabla E(P_c)$ Band Sparse						
Problem	nocc	К	Pseudo-gap	$ B^2 - B $	Iterations	CPU Time
9. diags = 21	24,000	36,000	12.5	2.E-9 2.E-9	7 7	3.7 124.2
10, diags = 41	24,000	36,000	17.2	2.E-10 2.E-10	1 1	11.5 284.1
11, diags = 81	24,000	36,000	30.0	6.E-11 6.E-11	1 1	33.9 1057.6
12, diags = 161	24,000	36,000	60.0	2.E-9 2.E-9	1 1	231.6 7753.2

・ロン ・四 と ・ 声 ・ ・ 声 >

Nataša Krejić

Conclusions

- Unconstrained optimization problem with expensive function evaluation
- IR Merit function combines the accuracy of function evaluation and optimality
- Infeasibility is defined without calculation the (expensive) true functional value
- The schedule sequence and the penalty parameters depend on internally computed quantities
- Max precisssion is eventually reached
- Good numerical results