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Introduction

frin 1)

» f(x) can be computed with different levels of accuracy
{1,2...,N}

» fy(x) - the functional value when f is computed at the J-th
level of accuracy

» no error bound for inexact evaluation

min fy(x). (1)
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Introduction

» Sample Average Approximation

J
f(x) = EFF(ON, fy =Y F(x,€)
i=1

» Data fitting methods

» Electronic Structure Calculation

» fis computed iteratively, f;(x) - the inexact functional value
after J iterations
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Introduction

min fy(x)

» Cheaper evaluations f(x),J < N whenever possible
Schedule sequence

{No, Ny, N>, ...}

N¢ € {1,...,N} -accuracy level at iteration k

The dynamics of the schedule sequence - Inexact Restoration
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Introduction

The dynamics of the schedule sequence:

» SAA problem: Shapiro, Ruszczynski 2003, Shapiro, Wardi
1996, Spall 2003, Polak, Royset 2008, Pasupathy 2010,
Homen-de-Mello 2003

» Bastin 2004, Bastin, Cirillo, Toint 2006, NK, Krklec 2013,
NK, Krklec-Jerinkic 2014

» Data fitting: Friedlander, Schmidt 2012, Byrd et al
2011,2012,2014

» Distributed optimization: Bajovi¢, Jakoveti¢, NK, Krklec
Jerinki¢, 2016
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Introduction

min fy(x)
minz s.t. z = fy(x)

Inexact Restoration
» Restoration phase - yx improved feasibility w.r.t. xx
» Optimality phase - yx + «di - improved optimality w.r.t. yx
» IR + trust region Martinez 2001, Martinez, Pillota 2000, IR

+ filter Gonzaga, Karas, Vanti 2003, IR + line search
Fischer, Friedlander 2010
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Inexact Restoration Algorithm

Infeasibility measure (z, x, M)

h(z,x, M) = |z = fu(x)| + g(M)
g(M)— decreasing and g(N) = 0.
Feasible point (z, x,M) : M = N, z = fy(x)
Merit function

&(z,x,M,0) =60z+ (1 —6)h(z,x,M), 6 € [0,1]

minz s.t. z = fy(x)

(Zk,Xk,Nk) ERxR"xN
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Inexact Restoration Algorithm

Algorithm 1 Given z5 € R, x5 € R”,
No€{1,2,...,N},re(0,1),7,60 € (0,1),and 3,~,7 > 0, set
k + 0.
Step 1. (Restoration phase)
If Nk < N find Ni,1 > N and (uk, yx) € R x R such that

Ni 1 < N, h(ug, yi, Nk 1) < rh(zi, Xk, Ni), (2)

and

(ks Yie) = (Zics Xi) 1| < Bh(Zk, Xk, Nic)- 3)
If Nk = N set Niy 1 = N and find (ug, yx) such that (2) and
(3) hold.
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Inexact Restoration Algorithm

Step 2.

Natasa Kreji¢

(Updating the penalty parameter)
If

DUk, Y Nic11, 0k) — (2, Xk, Ni, Ok)
1—r -
< -5 <h(uk7}’k7 Nk1) — h(zx, Xk, Nk)) (4)

set 0k+1 = O.
Else compute

(1+7r) (h(zk,Xk, Nk) — h(uk, Y« Nk+1>

2 [Uk — zi + h(zi, xic, Ni)) — h(ug, y«, Nk+1)}

0k+1 =
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Inexact Restoration Algorithm

Step 3 (Optimization Phase)
Step 3.1 Choose px € R" and an integer valued function Ny 1(«)
such that, for all « € (0, 7], we have that Ni.1(a) < Nki1,

(o) Yk + i) = T, (VK) < —va| gl f?, (6)
and
h(uk+dk(), Yk-+apk, Nicy1(a)) < h(uk, Yk, Nicy1)+702] x|,
(7)
where
(@) = [Ty, (Vi) + s (o) Yk + pi)]- (8)

Step 3.2. Find ak € (0, 1] as large as possible such that (6) and (7)
hold for & = a and

d(Uk + dk(ow), Yk + axPrs Nkt (ak), Oki1)
1—r &
< oz, Xx, Nk79k+1)+T (h(UkJ’k, Ni1)—h(2k, Xk, Nk))-
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Inexact Restoration Algorithm

Step 4. Set Xky1 = Yk + kP, Zk+1 = Uk + dk(ak), Nkt =
Ni+1(ak), k < k+ 1 and go to Step 1

Natasa Kreji¢ Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia




Inexact Restoration Algorithm

Convergence results

Assumption A1 Forall k =0,1,2,...,itis possible to compute
sequences { Nk} and {(uk, yx)} such that (2)-(3) are satisfied.

[ (Xi) — fn(Xi)| < (B — 1)9(N),

» The algorithm is well defined

» The penalty parameters are positive, nonincreasing and
limg_ o0 0k =60 >0
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Inexact Restoration Algorithm

Theorem

Assume that A1 is satisfied, fy is Lipschitz continuous, the
functions fyy are continuous for M < N and that the sequences
{zx} € R, {xx} € R" generated by Algorithm 1 are bounded.
Then, there exists ky € N such that Ny = Ni,1 = N for k > kg.
Furthermore limy_, |||l = O.
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Application to Electronic Structure Calculation

Electronic Structure Calculation

» Originates from the time-dependent Schrédinger equation

» Fixed nuclei coordinates, an ESC consists of finding the
wave function from which the spatial electronic distribution
the system can be derived

» Simplifications

» C - coefficient matrix, 2 x nocc - the number of electrons, K
- the number of basis elements, P = CC' - density matrix

» Fixed Point Self-Consistent Field (SCF) Method: Given P,
solve (10) to get Prew

Minimize Trace(V E(P;)P)

subjectto P = P, P2 = P, Trace(P) = nocc, P ¢ RK*K,
(10)
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Application to Electronic Structure Calculation

Birgin, Martinez, Martinez, Rocha, J. Chem. Theor.
Comput. 2013

mXin f(x)

f(x) = (Trace[B(x)] — nocc)?, B e RK*K

» Evaluation of f is based on the application of the projective
gradient method to solve (10)

» Max number of iterations for the projective gradient method
in practice is N

> Xk € (Anoce, Anocer1), Trace(By) =~ nocc

» Otherwise many PG iterations are wasted

The level of accuracy (max number of PG iterations) - the
schedule sequence
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Application to Electronic Structure Calculation

Assume thate > 0and Ny € {1,...,N}.

Step 1 Compute Bsiart = ¢(—A — xI) + %IKxK in such a way that
all the eigenvalues of Bg;t are between 0 and 1.

Step 2 Consider

Minimize ||B% — B||2 s.t. B= B!

with the sparsity pattern constraint and obtain an approximate
solution B(x) as the result of applying the Projected Gradient
method with convergence stopping criterion £ on the co-norm of
the projected gradient and a maximum of Ny projected gradient
iterations.

Step 3 Define fy, (x) = (Trace[B(x)] — nocc)?.

Natasa Kreji¢ Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia




Application to Electronic Structure Calculation

Implementation

» N =1000.
» The accuracy measure g(M) is given by
N—-M
9g(M) = M
>
X [K — (nocc + 0.5)]a+ (nocc + 0.5)b
0 p—

K

where a and b are lower and upper bounds for the
eigenvalues of VE(P;) computed using the Gershgorin
Theorem.

No = 10 and zg = fi,(Xo)-
r=05,6=10%~vy=10"%5=100,09=0.9, 7 = 1072,
Nit1 = 2Ny and ux = g, (¥k)

20 = fNo (XO)

vV vV VY
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Application to Electronic Structure Calculation

» Trace[B(x)] is non-decreasing as a function of x and we
wish to find x such that Trace[B(x)] = nocc, we keep
approximate upper and lower bounds of the solution. The
first trial for py is based on safeguarded regula-falsi and
bisection. If this direction satisfies (6) and (7) for o = 1 we

adopt this choice for px and set N 1(1) = Ni1/2.
Otherwise we choose px = —Vf,;,k+1 (xx) and
Nicy1(1) = Nig1.

» The value of ay that satisfies (9) is obtained by
backtracking (with factor 0.5) using «« = 1 as first trial. If

a < 1 we define Ni;1(a) = Niy1.

» ||B(x)? — B(x)|| < 108 and | Trace[B(x)] — nocc| < 0.4 or
k > 1000
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Test examples
» Family A - VE(P.) - diagonal
» Family B - VE(P,) - tridiagonal
» Family C - VE(P.) - band sparse
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Experiments

Family A: V E(P;) Diagonal

Problem nocc K Pseudo-gap HB2 — B Iterations CPU Time (seconds)
1 500,000 1,000,000 8.E-8 7.E-16 | 7.E-16 3]5 551|757
2 250,000 1,000,000 4.E-6 4.E-14 | 1.E-8 411 5.41|5.80
3 5,000,000 10,000,000 4.E-9 4.E-15| 5.E-16 99 100.4 | 110.5
4 2,500,000 10,000,000 2.E-7 1.E-9|1.E9 3|4 52.186.7
Family B: VE(P,) Tridiagonal
Problem nocc K Pseudo-gap HB2 — B|| Iterations CPU Time
5 500,000 1,000,000 3.25 9.E-7 | 9.E-7 414 22.0172.2
6 250,000 1,000,000 3.25 5.E-7 | 9.E-7 217 4.07 | 154.0
7 5,000,000 10,000,000 3.35 9.E-7 | 9.E-11 110 51.9|6.89
8 2,500,000 10,000,000 3.35 6.E-8 | 6.E-8 414 121.1]1082.8
Family C: VE(P;) Band Sparse
Problem nocc K Pseudo-gap HB2 — B Iterations CPU Time
9. diags = 21 24,000 36,000 125 2E9[2E9 717 371242
10, diags = 41 24,000 36,000 17.2 2.E-10 | 2.E-10 101 11.5 | 284.1
11, diags = 81 24,000 36,000 30.0 6.E-11 | 6.E-11 1)1 33.9 | 1057.6
12, diags = 161 24,000 36,000 60.0 2.E-9|2E-9 1)1 231.6 | 7753.2
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Conclusions

» Unconstrained optimization problem with expensive
function evaluation

» IR Merit function combines the accuracy of function
evaluation and optimality

» Infeasibility is defined without calculation the (expensive)
true functional value

» The schedule sequence and the penalty parameters
depend on internally computed quantities

» Max precisssion is eventually reached
» Good numerical results
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