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min
x∈Rn

f (x)

I f (x) can be computed with different levels of accuracy
{1,2 . . . ,N}

I fJ(x) - the functional value when f is computed at the J-th
level of accuracy

I no error bound for inexact evaluation

min fN(x). (1)
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I Sample Average Approximation

f (x) = E [F (x , ξ)], fJ =
J∑

i=1

F (x , ξi)

I Data fitting methods

fN(x) =
N∑

i=1

F (x , y i)

I Electronic Structure Calculation
I f is computed iteratively, fJ(x) - the inexact functional value

after J iterations
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min fN(x)

I Cheaper evaluations fJ(x), J < N whenever possible
Schedule sequence

{N0,N1,N2, . . .}

Nk ∈ {1, . . . ,N} - accuracy level at iteration k

The dynamics of the schedule sequence - Inexact Restoration
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The dynamics of the schedule sequence:
I SAA problem: Shapiro, Ruszczynski 2003, Shapiro, Wardi

1996, Spall 2003, Polak, Royset 2008, Pasupathy 2010,
Homen-de-Mello 2003

I Bastin 2004, Bastin, Cirillo, Toint 2006, NK, Krklec 2013,
NK, Krklec-Jerinkic 2014

I Data fitting: Friedlander, Schmidt 2012, Byrd et al
2011,2012,2014

I Distributed optimization: Bajović, Jakovetić, NK, Krklec
Jerinkić, 2016
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min fN(x)

min z s.t. z = fN(x)

Inexact Restoration
I Restoration phase - yk improved feasibility w.r.t. xk

I Optimality phase - yk + αdk - improved optimality w.r.t. yk

I IR + trust region Martínez 2001, Martínez, Pillota 2000, IR
+ filter Gonzaga, Karas, Vanti 2003, IR + line search
Fischer, Friedlander 2010
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Infeasibility measure (z, x ,M)

h(z, x ,M) = |z − fM(x)|+ g(M)

g(M)− decreasing and g(N) = 0.
Feasible point (z, x ,M) : M = N, z = fN(x)
Merit function

φ(z, x ,M, θ) = θz + (1− θ)h(z, x ,M), θ ∈ [0,1]

min z s.t. z = fN(x)

(zk , xk ,Nk ) ∈ R× Rn × N
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Algorithm 1 Given z0 ∈ R, x0 ∈ Rn,
N0 ∈ {1,2, . . . ,N}, r ∈ (0,1), τ, θ0 ∈ (0,1), and β, γ, γ̄ > 0, set
k ← 0.

Step 1. (Restoration phase)
If Nk < N find Ñk+1 > Nk and (uk , yk ) ∈ R× Rn such that

Ñk+1 ≤ N, h(uk , yk , Ñk+1) ≤ rh(zk , xk ,Nk ), (2)

and
‖(uk , yk )− (zk , xk )‖ ≤ βh(zk , xk ,Nk ). (3)

If Nk = N set Ñk+1 = N and find (uk , yk ) such that (2) and
(3) hold.
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Step 2. (Updating the penalty parameter)
If

φ(uk , yk , Ñk+1, θk )− φ(zk , xk ,Nk , θk )

≤ 1− r
2

(
h(uk , yk , Ñk+1)− h(zk , xk ,Nk )

)
(4)

set θk+1 = θk .
Else compute

θk+1 =
(1 + r)

(
h(zk , xk ,Nk )− h(uk , yk , Ñk+1

)
2
[
uk − zk + h(zk , xk ,Nk )− h(uk , yk , Ñk+1)

] (5)
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Step 3 (Optimization Phase)
Step 3.1 Choose pk ∈ Rn and an integer valued function Nk+1(α)

such that, for all α ∈ (0, τ ], we have that Nk+1(α) ≤ Ñk+1,

fNk+1(α)(yk + αpk )− fÑk+1
(yk ) ≤ −γα‖pk‖2, (6)

and

h(uk +dk (α), yk +αpk ,Nk+1(α)) ≤ h(uk , yk , Ñk+1)+γ̄α2‖pk‖2,
(7)

where

dk (α) = [−fÑk+1
(yk ) + fNk+1(α)(yk + αpk )]. (8)

Step 3.2. Find αk ∈ (0,1] as large as possible such that (6) and (7)
hold for α = αk and

φ(uk + dk (αk ), yk + αk pk ,Nk+1(αk ), θk+1)

≤ φ(zk , xk ,Nk , θk+1)+
1− r

2

(
h(uk , yk , Ñk+1)−h(zk , xk ,Nk )

)
.

(9)
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Step 4. Set xk+1 = yk + αkpk , zk+1 = uk + dk (αk ),Nk+1 =
Nk+1(αk ), k ← k + 1 and go to Step 1
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Convergence results

Assumption A1 For all k = 0,1,2, . . . , it is possible to compute
sequences {Nk} and {(uk , yk )} such that (2)-(3) are satisfied.

|fNk (xk )− fN(xk )| ≤ (β − 1)g(Nk ),

I The algorithm is well defined
I The penalty parameters are positive, nonincreasing and

limk→∞ θk = θ∗ > 0
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Theorem
Assume that A1 is satisfied, fN is Lipschitz continuous, the
functions fM are continuous for M ≤ N and that the sequences
{zk} ∈ R, {xk} ∈ Rn generated by Algorithm 1 are bounded.
Then, there exists k0 ∈ N such that Nk = Ñk+1 = N for k ≥ k0.
Furthermore limk→∞ ‖pk‖ = 0.
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Electronic Structure Calculation
I Originates from the time-dependent Schrödinger equation
I Fixed nuclei coordinates, an ESC consists of finding the

wave function from which the spatial electronic distribution
the system can be derived

I Simplifications
I C - coefficient matrix, 2×nocc - the number of electrons, K

- the number of basis elements, P = CCT - density matrix
I Fixed Point Self-Consistent Field (SCF) Method: Given Pc

solve (10) to get Pnew

Minimize Trace(∇E(Pc)P)

subject to P = PT ,P2 = P,Trace(P) = nocc,P ∈ RK×K .
(10)
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Birgin, Martínez, Martínez, Rocha, J. Chem. Theor.
Comput. 2013

min
x

f (x)

f (x) = (Trace[B(x)]− nocc)2, B ∈ RK×K

I Evaluation of f is based on the application of the projective
gradient method to solve (10)

I Max number of iterations for the projective gradient method
in practice is N

I xk ∈ (λnocc , λnocc+1), Trace(Bk ) ≈ nocc
I Otherwise many PG iterations are wasted

The level of accuracy (max number of PG iterations) - the
schedule sequence
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Assume that ε > 0 and Nk ∈ {1, . . . ,N}.
Step 1 Compute Bstart = c(−A− xI) + 1

2 IK×K in such a way that
all the eigenvalues of Bstart are between 0 and 1.
Step 2 Consider

Minimize ‖B2 − B‖2F s.t. B = Bt

with the sparsity pattern constraint and obtain an approximate
solution B(x) as the result of applying the Projected Gradient
method with convergence stopping criterion ε on the∞-norm of
the projected gradient and a maximum of Nk projected gradient
iterations.
Step 3 Define fNk (x) = (Trace[B(x)]− nocc)2.
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Implementation
I N = 1000.
I The accuracy measure g(M) is given by

g(M) =
N −M

M
.

I

x0 =
[K − (nocc + 0.5)]a + (nocc + 0.5)b

K
where a and b are lower and upper bounds for the
eigenvalues of ∇E(Pc) computed using the Gershgorin
Theorem.

I N0 = 10 and z0 = fN0(x0).
I r = 0.5, β = 103, γ = 10−4, γ̄ = 100, θ0 = 0.9, τ = 10−2.
I Ñk+1 = 2Nk and uk = fÑk+1

(yk )

I z0 = fN0(x0)
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I Trace[B(x)] is non-decreasing as a function of x and we
wish to find x such that Trace[B(x)] = nocc, we keep
approximate upper and lower bounds of the solution. The
first trial for pk is based on safeguarded regula-falsi and
bisection. If this direction satisfies (6) and (7) for α = 1 we
adopt this choice for pk and set Nk+1(1) = Ñk+1/2.
Otherwise we choose pk = −∇fÑk+1

(xk ) and

Nk+1(1) = Ñk+1.
I The value of αk that satisfies (9) is obtained by

backtracking (with factor 0.5) using α = 1 as first trial. If
α < 1 we define Nk+1(α) = Ñk+1.

I ‖B(x)2 − B(x)‖ ≤ 10−8 and |Trace[B(x)]− nocc| ≤ 0.4 or
k > 1000
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Test examples
I Family A - ∇E(Pc) - diagonal
I Family B - ∇E(Pc) - tridiagonal
I Family C - ∇E(Pc) - band sparse
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Family A:∇E(Pc ) Diagonal
Problem nocc K Pseudo-gap ‖B2 − B‖ Iterations CPU Time (seconds)

1 500,000 1,000,000 8.E-8 7.E-16 | 7.E-16 3 | 5 5.51 | 7.57
2 250,000 1,000,000 4.E-6 4.E-14 | 1.E-8 4 | 1 5.41 | 5.80
3 5,000,000 10,000,000 4.E-9 4.E-15 | 5.E-16 9 | 9 100.4 | 110.5
4 2,500,000 10,000,000 2.E-7 1.E-9 | 1.E-9 3 | 4 52.1 | 86.7

Family B:∇E(Pc ) Tridiagonal
Problem nocc K Pseudo-gap ‖B2 − B‖ Iterations CPU Time

5 500,000 1,000,000 3.25 9.E-7 | 9.E-7 4 | 4 22.0 | 172.2
6 250,000 1,000,000 3.25 5.E-7 | 9.E-7 2 | 7 4.07 | 154.0
7 5,000,000 10,000,000 3.35 9.E-7 | 9.E-11 1 | 0 51.9 | 6.89
8 2,500,000 10,000,000 3.35 6.E-8 | 6.E-8 4 | 4 121.1 | 1082.8

Family C:∇E(Pc ) Band Sparse
Problem nocc K Pseudo-gap ‖B2 − B‖ Iterations CPU Time

9. diags = 21 24,000 36,000 12.5 2.E-9 | 2.E-9 7 | 7 3.7 | 124.2
10, diags = 41 24,000 36,000 17.2 2.E-10 | 2.E-10 1 | 1 11.5 | 284.1
11, diags = 81 24,000 36,000 30.0 6.E-11 | 6.E-11 1 | 1 33.9 | 1057.6

12, diags = 161 24,000 36,000 60.0 2.E-9 | 2.E-9 1 | 1 231.6 | 7753.2
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Conclusions

I Unconstrained optimization problem with expensive
function evaluation

I IR Merit function combines the accuracy of function
evaluation and optimality

I Infeasibility is defined without calculation the (expensive)
true functional value

I The schedule sequence and the penalty parameters
depend on internally computed quantities

I Max precisssion is eventually reached
I Good numerical results
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