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Introduction

The problem of generalized inverses computation is
closely related with the following Penrose equations:
(1) AXA = A (2) XAX = X

(3) (AX )∗ = AX (4) (XA)∗ = XA.
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(1) AXA = A (2) XAX = X

(3) (AX )∗ = AX (4) (XA)∗ = XA.

The Drazin inverse X = AD is the unique matrix which
fulfills the matrix equation (2): XAX = X in conjunction
with
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obeying the conditions contained in S is denoted by
A{S}.
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Introduction

The problem of generalized inverses computation is
closely related with the following Penrose equations:
(1) AXA = A (2) XAX = X

(3) (AX )∗ = AX (4) (XA)∗ = XA.

The Drazin inverse X = AD is the unique matrix which
fulfills the matrix equation (2): XAX = X in conjunction
with
(1k) Ak+1X = Ak , k ≥ ind(A), (5) AX = XA.

For a subset S ⊆ {1, 2, 3, 4}, the set of all matrices
obeying the conditions contained in S is denoted by
A{S}.

- For any matrix A there exists a single element in the set
A{1, 2, 3, 4}, called the Moore-Penrose inverse of A and
denoted by A†.
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Introduction

The outer inverse of A ∈ Cm×n
r with prescribed range T

and null space S , denoted by A
(2)
T ,S , satisfies the matrix

equation (2): XAX = X and two additional properties:
R(X ) = T and N (X ) = S .
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Introduction

The outer inverse of A ∈ Cm×n
r with prescribed range T

and null space S , denoted by A
(2)
T ,S , satisfies the matrix

equation (2): XAX = X and two additional properties:
R(X ) = T and N (X ) = S .

The Moore-Penrose inverse A† and the weighted
Moore-Penrose inverse A

†
M,N , the Drazin inverse AD and

the group inverse A# can be derived by means of
appropriate choices of T and S :
A† = A

(2)
R(A∗),N (A∗), A

†
M,N = A

(2)

R(A♯),N (A♯)
,A♯ = N−1A∗M

AD = A
(2)

R(Ak ),N (Ak )
, k ≥ ind(A), A# = A

(2)
R(A),N (A).
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Introduction

The main efforts in the generalized inverse computation
can be divided into two main types: numerical algorithms
and continuous-time neural network algorithms.
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Introduction

The numerical algorithms can be divided in two
categories: direct and iterative methods.
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The direct methods can be divided as:

- The singular value decomposition (SVD) algorithm is the
most known between the direct methods.
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The direct methods can be divided as:
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most known between the direct methods.

- Also, other types of matrix factorizations has been
exploited in computation of generalized inverses, such as
the QR decomposition, LU factorization.
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The direct methods can be divided as:

- The singular value decomposition (SVD) algorithm is the
most known between the direct methods.

- Also, other types of matrix factorizations has been
exploited in computation of generalized inverses, such as
the QR decomposition, LU factorization.

- Methods based on the application of the Gauss-Jordan
elimination process to an appropriate augmented matrix
were also investigated.
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Introduction

The numerical algorithms can be divided in two
categories: direct and iterative methods.

The direct methods can be divided as:

- The singular value decomposition (SVD) algorithm is the
most known between the direct methods.

- Also, other types of matrix factorizations has been
exploited in computation of generalized inverses, such as
the QR decomposition, LU factorization.

- Methods based on the application of the Gauss-Jordan
elimination process to an appropriate augmented matrix
were also investigated.

- The SVD algorithm is more accurate and is thus the most
commonly used method, but it requires a large amount of
computational resources.
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Introduction

The iterative methods, such as the orthogonal projection
algorithms, the Newton iterative algorithm, and the
higher-order convergent iterative methods as well as the
methods based on optimization are more suitable for
implementation.
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Introduction

The iterative methods, such as the orthogonal projection
algorithms, the Newton iterative algorithm, and the
higher-order convergent iterative methods as well as the
methods based on optimization are more suitable for
implementation.

- All iterative methods, in general, require initial conditions
which are ultimate, rigorous and sometimes cannot be
fulfilled easily.
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Introduction

The continuous-time neural learning algorithms have
emerged as parallel distributed computational models for
real-time applications.
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Introduction

The continuous-time neural learning algorithms have
emerged as parallel distributed computational models for
real-time applications.
- In many real-time systems, real-time solutions of
pseudoinverse matrices are usually imperative. An
example of such applications is application in robotics.
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Introduction

The continuous-time neural learning algorithms have
emerged as parallel distributed computational models for
real-time applications.
- In many real-time systems, real-time solutions of
pseudoinverse matrices are usually imperative. An
example of such applications is application in robotics.

The starting point of our investigations in developing
recurrent neural network (RNNs) were previously
developed neural network models for the matrix inversion
as well as for the pseudoinversion of full-rank and
rank-deficient rectangular matrices.
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GNN in time-invariant case

Neural network approach restricted by the spectrum

Our intention was to develop and investigate the RNN
approach in computation of the Drazin and group inverse and
later in computation of {2}-inverses with prescribed range and
null space, in both the time invariant and the time-varying
case.
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GNN in time-invariant case

Neural network approach restricted by the spectrum

Our intention was to develop and investigate the RNN
approach in computation of the Drazin and group inverse and
later in computation of {2}-inverses with prescribed range and
null space, in both the time invariant and the time-varying
case.

Two GNNs for computing {2}-inverses with prescribed
range and null space are defined in
[I. Živković, P.S. Stanimirović, Y. Wei, Recurrent Neural
Network for Computing Outer Inverses, Neural
Computation 28 (2016), 970–998.]
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Time-invariant case

Neural network approach restricted by the spectrum

Step 1. Exploit a matrix equation corresponding to a
generalized inverse or a class of generalized inverses.
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Time-invariant case

Neural network approach restricted by the spectrum

Step 1. Exploit a matrix equation corresponding to a
generalized inverse or a class of generalized inverses.

Lemma 1

Let A ∈ C
m×n
r be given and G ∈ C

n×m
s be arbitrarily chosen

matrix satisfying 0 < s ≤ r . Assume that X := A
(2)
R(G),N (G)

exists. Then the matrix equations

GAX = G , XAG = G

are satisfied.
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GNN in time-invariant case

Neural network approach restricted by the spectrum

- The equation GAX = G can be rewritten as the dynamic
matrix equation

GAVG (t)− G = 0,

where VG ∈ R
n×m denotes the unknown matrix to be

solved and which corresponds to the outer inverse with
prescribed range and null space X := A

(2)
R(G),N (G).

Predrag S. Stanimirović Recurrent Neural Network Approach to Computation of Generalized



GNN in time-invariant case

Neural network approach restricted by the spectrum

Our intention is to solve GAVG (t)− G = 0 for the
unknown matrix VG using dynamic-system approach.
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GNN in time-invariant case

Neural network approach restricted by the spectrum

Our intention is to solve GAVG (t)− G = 0 for the
unknown matrix VG using dynamic-system approach.

Step 2. A common approach in that purpose is to define
a scalar-valued norm based error function. In our case,

E (t) =
‖GAVG (t)− G‖2F

2
.
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GNN in time-invariant case

Neural network approach restricted by the spectrum

Step 3. A computational scheme for computing the
minimum point VG could be defined along the gradient
descent direction of E (t).
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GNN in time-invariant case

Neural network approach restricted by the spectrum

Step 3. A computational scheme for computing the
minimum point VG could be defined along the gradient
descent direction of E (t).

- The derivative of E (t) with respect to VG ∈ R
n×m could

be derived applying the principles of the matrix calculus:

∂E (t)

∂VG

= (GA)T (GAVG (t)− G ) .
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GNN in time-invariant case

Neural network approach restricted by the spectrum

Step 3. A computational scheme for computing the
minimum point VG could be defined along the gradient
descent direction of E (t).

- The derivative of E (t) with respect to VG ∈ R
n×m could

be derived applying the principles of the matrix calculus:

∂E (t)

∂VG

= (GA)T (GAVG (t)− G ) .

The constant term (GA)T in the last identity can be
omitted without loss of generality.
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GNN in time-invariant case

Neural network approach restricted by the spectrum

Step 4. Define the dynamic equation of the underlying
recurrent neural network (RNN) using

dVG (t)

dt
=−β

∂E (t)

∂VG

.
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GNN in time-invariant case

Neural network approach restricted by the spectrum

Step 4. Define the dynamic equation of the underlying
recurrent neural network (RNN) using

dVG (t)

dt
=−β

∂E (t)

∂VG

.

In this way, the dynamic equation of the initiated
recurrent neural network (called GNNATS2-I) is given in
the form
{

dVG (t)
dt

=−β (GAVG (t)−G ) ,V (0) = 0, if m ≥ n,
dVG (t)

dt
=−β (VG (t)AG−G ) ,V (0) = 0, if m < n.
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GNN in time-invariant case

Neural network approach restricted by the spectrum

Theorem 1

Let A ∈ Rm×n
r be a given matrix, G ∈ Rn×m

s be arbitrary

matrix satisfying 0 < s ≤ r , and σ(GA) = {λ1, λ2, . . . , λn} be

the spectrum of GA. Suppose that the condition

Re (σ(GA)) ≥ 0 ≡ Re(λj) ≥ 0, j = 1, 2, . . . , n

is satisfied.

Then the model GNNATS2-I gives the result

VG = lim
t→∞

VG (t) = A
(2)
R(G),N (G).
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GNN in time-invariant case

Neural network approach dependent on the restriction on
spectrum

- According to the last theorem, the application of the
dynamic equation GNNATS2-I is conditioned by the
properties of the spectrum of the matrix GA or AG :

{

Re (σ(GA)) ≥ 0≡σ(GA) ⊂ {z : Re(z) ≥ 0}, m ≥ n,

Re (σ(AG )) ≥ 0≡σ(AG ) ⊂ {z : Re(z) ≥ 0}, m < n.
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GNN in time-invariant case

Neural network approach dependent on the restriction on
spectrum

- According to the last theorem, the application of the
dynamic equation GNNATS2-I is conditioned by the
properties of the spectrum of the matrix GA or AG :

{

Re (σ(GA)) ≥ 0≡σ(GA) ⊂ {z : Re(z) ≥ 0}, m ≥ n,

Re (σ(AG )) ≥ 0≡σ(AG ) ⊂ {z : Re(z) ≥ 0}, m < n.

- More precisely, the first GNNATS2-I model fails in the
case when Re (σ(GA)) contains negative values.
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GNN in time-invariant case

Neural network approach restricted by the spectrum

- The neural network defined by GNNATS2-I used in our
implementation is composed from a number of
independent subnetworks.
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GNN in time-invariant case

Neural network approach restricted by the spectrum

- The neural network defined by GNNATS2-I used in our
implementation is composed from a number of
independent subnetworks.
Let us denote by vj(t) (resp. gj) the jth column vector of
VG (t) (resp. G ), for j = 1, 2, . . . ,m. The dynamics of
the jth subnetwork of GNNATS2-I is in the general form:

dvj(t)

dt
= −β (GAvj(t)− gj) .
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GNN in time-invariant case

Neural network approach restricted by the spectrum

- The neural network defined by GNNATS2-I used in our
implementation is composed from a number of
independent subnetworks.
Let us denote by vj(t) (resp. gj) the jth column vector of
VG (t) (resp. G ), for j = 1, 2, . . . ,m. The dynamics of
the jth subnetwork of GNNATS2-I is in the general form:

dvj(t)

dt
= −β (GAvj(t)− gj) .

Each subnetwork exploits the same connection weight
matrix W = −βGA and βgj = {βg1j , βg2j , . . . , βgnj} is
the biasing threshold vector for the jth subnetwork.
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GNN in time-invariant case

Neural network approach dependent on the restriction on
spectrum

- Elements vij of unknown matrix VG (t) are computed
using the system of differential equations

v̇ij =
dvij

dt
=

n
∑

k=1

wikvkj + βgji ,

i = 1, 2, . . . , n; j = 1, 2, . . . ,m,

where wij are elements of W = −βGA and vij are
elements of VG (t).
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GNN in time-invariant case

Neural network approach dependent on the restriction on
spectrum

- Elements vij of unknown matrix VG (t) are computed
using the system of differential equations

v̇ij =
dvij

dt
=

n
∑

k=1

wikvkj + βgji ,

i = 1, 2, . . . , n; j = 1, 2, . . . ,m,

where wij are elements of W = −βGA and vij are
elements of VG (t).

- It is important to mention that the column vector
vj = {v1j , v2j , . . . , vnj} is output in the jth subnetwork.
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Time-invariant case

Neural network approach without restriction on the spectrum

An approach to resolve the restriction Re (σ(GA)) ≥ 0
was proposed in
[I. Živković, P.S. Stanimirović, Y. Wei, Recurrent Neural
Network for Computing Outer Inverses, Neural Computation
28 (2016), 970–998.]
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Time-invariant case

Neural network approach without restriction on the spectrum

An approach to resolve the restriction Re (σ(GA)) ≥ 0
was proposed in
[I. Živković, P.S. Stanimirović, Y. Wei, Recurrent Neural
Network for Computing Outer Inverses, Neural Computation
28 (2016), 970–998.]

The dynamical equation and the initiated GNN are
denoted by GNNATS2-II and they are based on the
replacement of G by G0 = G (GAG )TG in GNNATS2-I:

{

dVG0
(t)

dt
=−β (G0AVG0

(t)− G0) , V (0) = 0, if m ≥ n,
dVG0

(t)

dt
=−β (VG0

(t)AG0 − G0) , V (0) = 0, if m < n.
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GNN in time-invariant case

Neural network approach without restriction on the spectrum

Advantages: The GNNATS2-II model is globally
convergent.
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GNN in time-invariant case

Neural network approach without restriction on the spectrum

Advantages: The GNNATS2-II model is globally
convergent.

Disadvantages: The GNNATS2-II requires additional
matrix multiplications during the computation of the
matrix G0 instead of the matrix G . In the essence, it
eliminates the requirements on the spectrum, at the cost
of increasing the number of matrix operations.
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GNN in time-invariant case

Neural network approach without restriction on the spectrum

Advantages: The GNNATS2-II model is globally
convergent.

Disadvantages: The GNNATS2-II requires additional
matrix multiplications during the computation of the
matrix G0 instead of the matrix G . In the essence, it
eliminates the requirements on the spectrum, at the cost
of increasing the number of matrix operations.

- Also, the numbers in G0 grows, which could cause
numerical instability.
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GNN in time-invariant case

Particular cases

In the particular case G = AT we immediately derive
known results concerning the usual inverse when matrix A

is nonsingular, as well as the Moore–Penrose inverse when
the matrix A is rectangular or rank-deficient.

dV (t)

dt
= −βATAV (t) + βAT, V (0) = V0.
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GNN in time-invariant case

Particular cases

In the particular case G = AT we immediately derive
known results concerning the usual inverse when matrix A

is nonsingular, as well as the Moore–Penrose inverse when
the matrix A is rectangular or rank-deficient.

dV (t)

dt
= −βATAV (t) + βAT, V (0) = V0.

The choice G = A♯ = N−1ATM produces the weighted
Moore-Penrose inverse A

†
M,N .

dV (t)

dt
= −βA♯AV (t) + βA♯
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GNN in time-invariant case

Particular cases

The cases G = AT and G = A♯ was established initially.
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GNN in time-invariant case

Particular cases

The cases G = AT and G = A♯ was established initially.
We observed that additional possibilities are available.

In the case G = Al , l ≥ ind(A) the general GNNATS2
model could be applicable in computation of the Drazin
inverse.
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GNN in time-invariant case

Particular cases

The cases G = AT and G = A♯ was established initially.
We observed that additional possibilities are available.

In the case G = Al , l ≥ ind(A) the general GNNATS2
model could be applicable in computation of the Drazin
inverse.

For a matrix A of index ind(A) = 1 the general
GNNATS2 model produces the group inverse A# of A.

The choice of an arbitrary matrix G ∈ Gn×m
s satisfying

rank(G ) = s ≤ rank(A) is also interesting.
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GNN in time-invariant case

Particular cases with restriction on the spectrum

One important case is G = Al , l ≥ ind(A), which defines a
recurrent neural network for computing the Drazin inverse of a
real square matrix in real time. The choice G = Al in
GNNATS2-I is called GNNAD-I.

dV (t)

dt
= −β

(

Al+1V (t)− Al
)

, l ≥ ind(A), V (0) = 0.
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GNN in time-invariant case

Particular cases with restriction on the spectrum

One important case is G = Al , l ≥ ind(A), which defines a
recurrent neural network for computing the Drazin inverse of a
real square matrix in real time. The choice G = Al in
GNNATS2-I is called GNNAD-I.

dV (t)

dt
= −β

(

Al+1V (t)− Al
)

, l ≥ ind(A), V (0) = 0.

This case was considered in
[P.S. Stanimirović, I. Živković, Y. Wei, Recurrent neural
network for computing the Drazin inverse, IEEE Transactions
on Neural Networks and Learning Systems, 26 (2015),
2830–2843.]
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GNN in time-invariant case

Particular cases with restriction on the spectrum

The main goals of that paper are:
1. The considered cases had been GA = ATA or GA = A#A,
where the matrices GA had been positive semidefinite. In the
case GA = AlA, the matrix Al+1 is not positive semidefinite,
and this difficulty had to be avoided.
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GNN in time-invariant case

Particular cases with restriction on the spectrum

The main goals of that paper are:
1. The considered cases had been GA = ATA or GA = A#A,
where the matrices GA had been positive semidefinite. In the
case GA = AlA, the matrix Al+1 is not positive semidefinite,
and this difficulty had to be avoided.
2. An algorithm for finding the first integer l satisfying

Re (σ(AlA)) ≥ 0 ≡ σ
(

Ak+1
)

⊂ {z : Re(z) ≥ 0} (1)

is defined.
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GNN in time-invariant case

Particular cases with restriction on the spectrum

Also, very important particular case is G = Al , l ≥ indA in
G0 = G (GAG )TG , i.e. in GNNATS2-II, which defines a
recurrent neural network for computing the Drazin inverse of a
real square matrix in real time (called GNNAD-II). This case
was considered in
[P.S. Stanimirović, I. Živković, Y. Wei, Recurrent neural
network approach based on the integral representation of the

Drazin inverse, Neural Computation, 27(10) (2015),
2107–2131.]

Predrag S. Stanimirović Recurrent Neural Network Approach to Computation of Generalized



GNN in time-invariant case

Particular cases with restriction on the spectrum

Also, very important particular case is G = Al , l ≥ indA in
G0 = G (GAG )TG , i.e. in GNNATS2-II, which defines a
recurrent neural network for computing the Drazin inverse of a
real square matrix in real time (called GNNAD-II). This case
was considered in
[P.S. Stanimirović, I. Živković, Y. Wei, Recurrent neural
network approach based on the integral representation of the

Drazin inverse, Neural Computation, 27(10) (2015),
2107–2131.]
The main goals of this paper are:
1. Avoid restrictions on the spectrum and ensure global
stability.
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GNN in time-invariant case

Additional dynamic state equations for outer inverses

Two additional dynamic state equations and corresponding
gradient based RNNs for generating the class of outer inverses
are proposed in
[P.S. Stanimirović, I. Živković, Y. Wei, Neural network
approach to computing outer inverses based on the full rank

representation, Linear Algebra Appl., 501 (2016), 344–362.]
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GNN in time-invariant case

Additional dynamic state equations for outer inverses

Lemma 2

Let A ∈ Cm×n be of rank r , let T be a subspace of Cn of

dimension s ≤ r , and let S be a subspace of Cm of dimension

m − s. In addition, suppose that G ∈ Cn×m
s satisfies

R(G ) = T and N (G ) = S. Assume that G = PQ is a full

rank factorization of G . Then A
(2)
T ,S exists if and only if

QAP is invertible.

In this case

A
(2)
T ,S = G (AG )# = (GA)#G

= P(QAP)−1Q.
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GNN in time-invariant case

Additional dynamic state equations for outer inverses

One RNN model is based on the representation

A
(2)
R(G),N (G) = G (AG )# = (GA)#G

of the outer inverse A
(2)
R(G),N (G) and uses the GNNAD-I

model in order to compute (AG )# or (GA)#.
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GNN in time-invariant case

Additional dynamic state equations for outer inverses

One RNN model is based on the representation

A
(2)
R(G),N (G) = G (AG )# = (GA)#G

of the outer inverse A
(2)
R(G),N (G) and uses the GNNAD-I

model in order to compute (AG )# or (GA)#.
State equation:

dV (t)

dt
= −β

(

(GA)l+1V (t)− (GA)l
)

, l ≥ ind(A).
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GNN in time-invariant case

Additional dynamic state equations for outer inverses

One RNN model is based on the representation

A
(2)
R(G),N (G) = G (AG )# = (GA)#G

of the outer inverse A
(2)
R(G),N (G) and uses the GNNAD-I

model in order to compute (AG )# or (GA)#.
State equation:

dV (t)

dt
= −β

(

(GA)l+1V (t)− (GA)l
)

, l ≥ ind(A).

Output equation:

X (t) = V (t)G .
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GNN in time-invariant case

Additional dynamic state equations for outer inverses

- But, this approach requires an appropriate power of AG
or GA.
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GNN in time-invariant case

Additional dynamic state equations for outer inverses

- But, this approach requires an appropriate power of AG
or GA.

- Moreover, this approach is not globally asymptotically
stable, and requires the zero initial approximation V0 = 0.

Predrag S. Stanimirović Recurrent Neural Network Approach to Computation of Generalized



GNN in time-invariant case

Additional dynamic state equations for outer inverses

An additional dynamic equation and the induced RNN
were proposed in
[P.S. Stanimirović, I. Živković, Y. Wei, Neural network
approach to computing outer inverses based on the full

rank representation, Linear Algebra Appl., 501 (2016),
344–362.]
They were derived using the representation

A
(2)
R(G),N (G) = A

(2)
R(P),N (Q) = P(QAP)−1Q, G = PQ,

where
P ∈ R

n×s
s , Q ∈ R

s×m
s .
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GNN in time-invariant case

Additional dynamic state equations for outer inverses

- State equation:

dV (t)

dt
= −β

(

(QAP)TQAP V (t)− (QAP)T
)

, V (0) = V0,
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GNN in time-invariant case

Additional dynamic state equations for outer inverses

- State equation:

dV (t)

dt
= −β

(

(QAP)TQAP V (t)− (QAP)T
)

, V (0) = V0,

Output equation:

X (t) = P V (t)Q = A
(2)
R(P),N (Q).
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GNN in time-invariant case

Additional dynamic state equations for outer inverses

- This approach resolves the problems of restrictions on the
spectrum as well as the problem of cumulative matrix
multiplications.
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GNN in time-invariant case

Additional dynamic state equations for outer inverses

- This approach resolves the problems of restrictions on the
spectrum as well as the problem of cumulative matrix
multiplications.

Firstly, the proposed neural network possesses the global
stability, since QAP is invertible.
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GNN in time-invariant case

Additional dynamic state equations for outer inverses

- This approach resolves the problems of restrictions on the
spectrum as well as the problem of cumulative matrix
multiplications.

Firstly, the proposed neural network possesses the global
stability, since QAP is invertible.

Moreover, this approach is fastest, since it uses RNN for
matrices of small dimensions s × s, s ≤ min{m, n}.
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GNN in time-invariant case

Symbolic computation of outer inverses using dynamic state
equation

An algorithm for symbolic computation of outer inverses
is defined by means of the exact solution of first order
systems of differential equations which appear in the
dynamic state equation GNNATS2-I.
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GNN in time-invariant case

Symbolic computation of outer inverses using dynamic state
equation

An algorithm for symbolic computation of outer inverses
is defined by means of the exact solution of first order
systems of differential equations which appear in the
dynamic state equation GNNATS2-I.

The algorithm is applicable to matrices whose elements
are integers, rational numbers as well as rational or
polynomial expressions.
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GNN in time-invariant case

Symbolic computation of outer inverses using dynamic state
equation

Main algorithmic steps:
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GNN in time-invariant case

Symbolic computation of outer inverses using dynamic state
equation

Main algorithmic steps:
1. Solve dynamical equation elementwise and
symbolically. Denote the output by VG .

Predrag S. Stanimirović Recurrent Neural Network Approach to Computation of Generalized



GNN in time-invariant case

Symbolic computation of outer inverses using dynamic state
equation

Main algorithmic steps:
1. Solve dynamical equation elementwise and
symbolically. Denote the output by VG .
2. Compute elementwise

VG = lim
t→∞

VG (t) ≈ A
(2)
R(G),N (G).
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GNN in time-invariant case

Symbolic computation of outer inverses using dynamic state
equation

Main algorithmic steps:
1. Solve dynamical equation elementwise and
symbolically. Denote the output by VG .
2. Compute elementwise

VG = lim
t→∞

VG (t) ≈ A
(2)
R(G),N (G).

The implementation is performed by the following code in
the symbolic mathematical computation program
Mathematica.
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GNN in time-invariant case

Symbolic computation of outer inverses using dynamic state
equation

Main algorithmic steps:
1. Solve dynamical equation elementwise and
symbolically. Denote the output by VG .
2. Compute elementwise

VG = lim
t→∞

VG (t) ≈ A
(2)
R(G),N (G).

The implementation is performed by the following code in
the symbolic mathematical computation program
Mathematica.

- Main Mathematica functions used are DSolve and Limit.
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ZNN in time-varying case

Complex ZNN models for time-varying Drazin inverse

Lemma 1

Let A ∈ Cn×n be a given square matrix. A closed-form

solution of AD is given by

AD = lim
λ→0

(

Al(A2l+1)HAl+1 + λI
)−1

Al(A2l+1)HAl , l ≥ Ind(A).
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ZNN in time-varying case

Complex ZNN models for time-varying Drazin inverse

Lemma 1

Let A ∈ Cn×n be a given square matrix. A closed-form

solution of AD is given by

AD = lim
λ→0

(

Al(A2l+1)HAl+1 + λI
)−1

Al(A2l+1)HAl , l ≥ Ind(A).

Step 1. (Choose a suitable ZF).

E (t) = (G (t)A(t) + λI )V (t)− G (t),

where
G (t) = A(t)l

(

A(t)2l+1
)H

A(t)l .
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ZNN in time-varying case

Complex ZNN models for time-varying Drazin inverse, model
LZNN-I

Step 2. (Define Zhang design formula).

Ė (t) :=
dE (t)

dt
= −γH(E (t)),

where the design parameter γ ∈ R, γ > 0, corresponds to
the inductance parameter, and H(·) is a complex-valued
activation function.

Predrag S. Stanimirović Recurrent Neural Network Approach to Computation of Generalized



ZNN in time-varying case

Complex ZNN models for time-varying Drazin inverse, model
LZNN-I

Step 3. (Generate a ZNN model LZNN-I).

V̇ (t) =
1

λ

[

−G (t)A(t)V̇ (t) + Ġ (t)

−
(

Ġ (t)A(t) + G (t)Ȧ(t)
)

V (t)

−γH ((G (t)A(t) + λI )V (t)− G (t))] .
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ZNN in time-varying case

Complex ZNN models for time-varying Drazin inverse, model
LZNN-I

Step 3. (Generate a ZNN model LZNN-I).

V̇ (t) =
1

λ

[

−G (t)A(t)V̇ (t) + Ġ (t)

−
(

Ġ (t)A(t) + G (t)Ȧ(t)
)

V (t)

−γH ((G (t)A(t) + λI )V (t)− G (t))] .

The LZNN-I model was proposed in
[X.-Z. Wang, Y. Wei, P.S. Stanimirović, Complex neural

network models for time-varying Drazin inverse, Neural
Computation, Accepted for publication.]
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ZNN in time-varying case

Complex Neural Network Models for Time-Varying Drazin
Inverse, model LZNN-I

The dynamic equation of the (ij)th neuron can be
presented in the form

v̇ij =
1

λ

(

n
∑

k=1

bik v̇kj−γ

n
∑

k=1

H (cikvkj − gij)−
n
∑

k=1

dikvkj + ġij

)

,

where bik , cik , dik and gij denote the elements of the
matrices that appear in the LZNN-I model:
B=−G (t)A(t),C =G (t)A(t)+λI ,
D = Ġ (t)A(t) + G (t)Ȧ(t) and G (t), respectively.
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ZNN in time-varying case

Complex Neural Network Models for Time-Varying Drazin
Inverse, model LZNN-I

The dynamic equation of the (ij)th neuron can be
presented in the form

v̇ij =
1

λ

(

n
∑

k=1

bik v̇kj−γ

n
∑

k=1

H (cikvkj − gij)−
n
∑

k=1

dikvkj + ġij

)

,

where bik , cik , dik and gij denote the elements of the
matrices that appear in the LZNN-I model:
B=−G (t)A(t),C =G (t)A(t)+λI ,
D = Ġ (t)A(t) + G (t)Ȧ(t) and G (t), respectively.

- Note that the parameter λ should be sufficiently close to
zero.
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ZNN in time-varying case

Complex ZNN models for time-varying Drazin inverse, model
LZNN-I

Definition 2

Let A ∈ R
n×n, B ∈ R

n×n be given.
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ZNN in time-varying case

Complex ZNN models for time-varying Drazin inverse, model
LZNN-I

Definition 2

Let A ∈ R
n×n, B ∈ R

n×n be given.Type I activation function
array is defined by

H1(A+ ιB) = F(A) + ιF(B), ι =
√
−1.
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ZNN in time-varying case

Complex ZNN models for time-varying Drazin inverse, model
LZNN-I

Definition 2

Let A ∈ R
n×n, B ∈ R

n×n be given.Type I activation function
array is defined by

H1(A+ ιB) = F(A) + ιF(B), ι =
√
−1.

Type II activation function array is defined as
H2(A+ ιB) = F(Γ) ◦ exp(ιΘ),

where
Γ = |A+ ιB | ∈ Rn×n and Θ = Θ(A+ ιB) ∈ (−π, π]n×n

denote element-wise modulus and the element-wise
arguments, respectively, of the complex matrix A+ ιB .
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ZNN in time-varying case

Complex ZNN models for time-varying Drazin inverse, model
LZNN-I

Additionally, F(A) is defined to be an element-wise odd and
monotonically increasing function for a real matrix A, i.e.,
F(A) = (f (akj)) for A = (akj) ∈ R

n×n, with an odd and
monotonically increasing function f (·).
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ZNN in time-varying case

Complex ZNN models for time-varying Drazin inverse, model
LZNN-II

Lemma 3

The Drazin inverse of A ∈ Cn×n possesses the limit

representation

AD = lim
λ→0

(A+ λI )−(l+1)
Al , l ≥ Ind(A).
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ZNN in time-varying case

Complex ZNN models for time-varying Drazin inverse, model
LZNN-II

Lemma 3

The Drazin inverse of A ∈ Cn×n possesses the limit

representation

AD = lim
λ→0

(A+ λI )−(l+1)
Al , l ≥ Ind(A).

The matrix (A(t) + λI )l+1, λ > 0, is nonsingular for any
complex (regular or singular) matrix A(t).
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ZNN in time-varying case

Complex ZNN models for time-varying Drazin inverse, model
LZNN-II

Lemma 3

The Drazin inverse of A ∈ Cn×n possesses the limit

representation

AD = lim
λ→0

(A+ λI )−(l+1)
Al , l ≥ Ind(A).

The matrix (A(t) + λI )l+1, λ > 0, is nonsingular for any
complex (regular or singular) matrix A(t).
Therefore,

lim
λ→0

(A+ λI )l+1
AD = Al , l ≥ Ind(A).
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ZNN in time-varying case

Complex ZNN models for time-varying Drazin inverse, model
LZNN-II

It is possible to define the following ZF function as the
fundamental error-monitoring function (called LZF2):

E1(t) = (A(t) + λI )l+1
V (t)− A(t)l , H(t)V (t)−Q(t),

where H(t) = (A(t) + λI )l+1 and Q(t) = A(t)l .
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ZNN in time-varying case

Complex ZNN models for time-varying Drazin inverse, model
LZNN-II

It is possible to define the following ZF function as the
fundamental error-monitoring function (called LZF2):

E1(t) = (A(t) + λI )l+1
V (t)− A(t)l , H(t)V (t)−Q(t),

where H(t) = (A(t) + λI )l+1 and Q(t) = A(t)l .

- The time derivative of E1(t) is equal to

Ė1(t) = −Q̇(t) + H(t)V̇ (t) + Ḣ(t)V (t).
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ZNN in time-varying case

Complex ZNN models for time-varying Drazin inverse, model
LZNN-II

Following the design formula

Ė (t) :=
dE (t)

dt
= −γH(E (t)),

we obtain the implicit dynamic equation which initiates
the second complex neural network model LZNN-II as

H(t)V̇ (t)= Q̇(t)−Ḣ(t)V (t)−γH ((H(t)V (t) − Q(t))) .
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Time-varying case

Complex ZNN models for time-varying Drazin inverse, model
LZNN-II

Theorem 2

Given a time-varying complex matrix A(t) ∈ Cn×n. If an

activation function with an odd and monotonically increasing

function f (·) is used, then the state matrix V (t) ∈ C
n×n of

the complex neural network model LZNN-II globally converges

to A(t)D, starting from arbitrary initial state V (0).
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Time-varying case

Complex ZNN models for time-varying Drazin inverse, model
LZNN-II

Theorem 2

Given a time-varying complex matrix A(t) ∈ Cn×n. If an

activation function with an odd and monotonically increasing

function f (·) is used, then the state matrix V (t) ∈ C
n×n of

the complex neural network model LZNN-II globally converges

to A(t)D, starting from arbitrary initial state V (0).

The LZNN-II and LZNN-II models were proposed in
[X.-Z. Wang, Y. Wei, P.S. Stanimirović, Complex neural

network models for time-varying Drazin inverse, Neural
Computation, Accepted for publication.]
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Time-varying case

RNN approach based on constrained quadratic optimization

Two continuous-time neural networks for computing
generalized inverses of complex-valued matrices were
presented in
[Y. Xia, P.S. Stanimirović, S. Zhang, Neural network for

computing pseudoinverses and outer inverses of

complex-valued matrices, Appl. Math. Comput. 273
(2016), 1107–1121.]
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Time-varying case

RNN approach based on constrained quadratic optimization

Two continuous-time neural networks for computing
generalized inverses of complex-valued matrices were
presented in
[Y. Xia, P.S. Stanimirović, S. Zhang, Neural network for

computing pseudoinverses and outer inverses of

complex-valued matrices, Appl. Math. Comput. 273
(2016), 1107–1121.]

These neural networks are generated using the fact that
the outer inverse A

(2)
T ,S and the Moore-Penrose inverse can

be derived as the solution of appropriate, matrix valued,
convex quadratic programming problems.
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Time-varying case

RNN approach based on constrained quadratic optimization

A† is a solution of the following optimization problem
with respect to X ∈ Cn×m

minimize ‖X‖2F
subject to AHAX = AH ,
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Time-varying case

RNN approach based on constrained quadratic optimization

A† is a solution of the following optimization problem
with respect to X ∈ Cn×m

minimize ‖X‖2F
subject to AHAX = AH ,

The proposed continuous-time neural networks have a low
complexity of implementation and they are globally
convergent without any condition.
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Time-varying case

RNN approach based on constrained quadratic optimization

Continuous-time algorithm (I) for m ≥ n case
State equation

dY (t)

dt
= β

[

AH − (AHA)2Y (t)
]

.

Output equation
X (t) = AHAY (t).

Y (t) ∈ Cn×m is the state matrix trajectory, X (t) ∈ Cn×m is
the output matrix trajectory, and β > 0 is a scaling constant.
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