ὅδε οἶκος, ὦ ἑταῖρε, μνημεῖον ἐστιν ζῴων τῶν σοφῶν ἀνδρῶν, καὶ τῶν ἔργων αὐτῶν

Seminar for Geometry, education and visualization with applications

 

PROGRAM


MATEMATIČKI INSTITUT SANU
Seminar geometriju, obrazovanje i vizualizaciju sa primenama


PLAN RADA ZA MART 2017.

 

ČETVRTAK, 09.03.2017. u 17:15, sala 301f, MI
Ivan Dimitrijević, Matematički Fakultet, Beograd
GEOMETRIJSKA GENERALIZACIJA AJNSTAJNOVE TEORIJE GRAVITACIJE
Ajnstajnova teorija gravitacije uspesno opisuje pojave u Suncevom sistemu. Ona takodje predvidja postojanje crnih rupa, gravitacionih sociva i gravitacionih talasa, sto je uspesno opservirano. Medjutim Ajnstajnova teorija nije dovoljno proverena na velikim kosmickim rastojanjima. Zbog toga, posmatramo nelokalnu modifikaciju gravitacije i dobijamo nova resenja za skalirajuci faktor a(t). Takodje, posmatramo i prostorno-vremenske perturbacije oko de Siterovog prostora.


ČETVRTAK, 16.03.2017. u 17:15, sala 301f, MI
Batat Wafaa
ON THE CLASSIFICATION OF HOMOGENEOUS LORENTZIAN STRUCTURES
The complete classification of the simply connected three-dimensional naturally reductive Riemannian manifolds was given by Tricerri and Vanhecke (1983). In this talk, we shall generalize this result to the Lorentzian case. We obtain, as in the Riemannian case, the symmetric spaces and further the unimodular Lie groups SU(2), SL(2,R) and the Heisenberg group equipped with some left-invariant Lorentzian metric. On the other hand, we shall classify all homogeneous Lorentzian structures on some Lorentzian manifolds such as Egorov spaces, three-dimensional manifolds admitting a parallel null vector field and the Heisenberg group.


ČETVRTAK, 23.03.2017. u 17:15, sala 301f, MI
Batat Wafaa
ON THE CLASSIFICATION OF HOMOGENEOUS LORENTZIAN STRUCTURES
The complete classification of the simply connected three-dimensional naturally reductive Riemannian manifolds was given by Tricerri and Vanhecke (1983). In this talk, we shall generalize this result to the Lorentzian case. We obtain, as in the Riemannian case, the symmetric spaces and further the unimodular Lie groups SU(2), SL(2,R) and the Heisenberg group equipped with some left-invariant Lorentzian metric. On the other hand, we shall classify all homogeneous Lorentzian structures on some Lorentzian manifolds such as Egorov spaces, three-dimensional manifolds admitting a parallel null vector field and the Heisenberg group.


ČETVRTAK, 30.03.2017. u 17:15, sala 301f, MI
Miloš Djorić, Matematički Fakultet
OSOBINE BLIZU KELEROVE MNOGOSTRUKOSTI $S^3 \times S^3$
Pokazacemo kako se metrika, skoro kommpleksna i skoro produkt struktura homogene blizu Kelerove mnogostrukosti $S^3 \times S^3$ mogu dobiti pomocu submerzije $\phi: S^3 \times S^3 \times S^3 \to S^3 \times S^3$. Preslikavanja na $S^3 \times S^3 \times S^3$ dobijena permutovanjem dve koordinate ili ciklicnim pomeranjem koordinata slazu se sa submerzijom. Pokazacemo koja preslikavanja ona indukuju na $S^3 \times S^3$ i kako se slazu sa skoro kompleksnom i skoro produkt strukturom. Predstavitiću rezultate koje su dobili kolege Luc Vrancken i Marilena Moruz.




Sednice seminara odrzavaju se u zgradi Matematickog instituta SANU, Knez Mihailova 36, na trecem spratu u sali 301f.

Rukovodilac Seminara dr Stana Nikcevic