ὅδε οἶκος, ὦ ἑταῖρε, μνημεῖον ἐστιν ζῴων τῶν σοφῶν ἀνδρῶν, καὶ τῶν ἔργων αὐτῶν

Seminar on Applied Mathematics

 

PROGRAM


Matematicki Institut
Matematicki fakultet
Fakultet organizacionih nauka
JUPIM

SEMINAR ZA PRIMENJENU I INDUSTRIJSKU MATEMATIKU

MI SANU, Knez Mihailova 35, biblioteka

PLAN RADA SEMINARA ZA MART 2004. GODINE

Utorak, 30.03.2004. u 14:15, sala 2 SANU:

Leo Liberti, DEI, Politecnico di Milano, Italy
METAHEURISTICS APPLIED TO THE MINFCB PROBLEM: NUMERICAL EXPERIENCES WITH VNS AND TABU SEARCH

Abstract: A cycle basis of a simple biconnected graph G is fundamental if, given a spanning tree of G, each cycle in the basis has a unique co-tree edge. Finding the fundamental cycle basis (FCB) of minimum cost is an NP-hard problem. We propose a local search based on an edge-swapping move, and insert said local search in various metaheuristic frameworks. In particular, we perform an in-depth computational analysis of the performances of VNS and Tabu Search, based on the aforementioned edge-swapping move.

Takodje pozivamo sve zainteresovane da prisustvuju jos jednom predavanju ovog autora koje ce biti odrzano na zajednickom sastanku Odeljenja za matematiku MI SANU i Opsteg matematickog seminara na Matematickom fakultetu:

Petak, 26.03.2004. u 14h, RL ili sala 718, Matematicki fakultet :
Leo Liberti, DEI, Politecnico di Milano, Italy
DETERMINISTIC GLOBAL OPTIMIZATION OF CONTINUOUS NONCONVEX PROGRAMMING PROBLEMS
Abstract: Many real-life problems are nonconvex, and therefore present many complicating features, including multiple local minima. One of the most widely used deterministic techniques for the global solution of continuous nonconvex problems is spatial Branch-and-Bound. We describe a spatial B&B algorithm where the convex relaxation at each node is built with the help of symbolic computation, and discuss a family of tightening cuts that significantly accelerate the convergence of the algorithm on a wide class of bilinear nonconvex problems.

RUKOVODIOCI SEMINARA

Vera Kovacevic-Vujcic
Milan Drazic