
APPROXIMATIONS OF NONLINEAR 
DIFFERENTIAL EQUATION SOLUTIONS

Hedrih (Stevanović) R. Katica
Mathematical Institute SANU Belgrade, 

and Faulty of Mechanical Engineering University of Niš, Serbia

Abstract: A list of approximations of nonlinear functions of one and two arguments is done. The linearizations of nonlinear differential equations 
around stationary points correspond to equilibrium positions or relative equilibrium positions of mechanical system dynamics with trigger of coupled 
singularities are obtained. By using known analytical solutions of linearized nonlinear differential equations around stationary point, as the starting 
solutions, by application Krilov-Bogolyubov-Mitropolyski asymptotic methods and method of variation constants and averaging, different 
expressions of first approximations of nonlinear differential equation solution are obtained. First approximations of a nonlinear differential equation 
obtained by different methods and around different known analytical solutions were compared and corresponding conclusions are presented. As 
special examples are used nonlinear differential equations describing nonlinear dynamics of the mechanical system with coupled rotations in damping 
field. A list of approximations of nonlinear functions of one and two arguments is done. The linearizations of nonlinear differential equations around 
stationary points correspond to equilibrium positions or relative equilibrium positions of mechanical system dynamics with trigger of coupled 
singularities are obtained. By using known analytical solutions of linearized nonlinear differential equations around stationary point, as the starting 
solutions, by application Krilov-Bogolyubov-Mitropolyski asymptotic methods and method of variation constants and averaging, different 
expressions of first approximations of nonlinear differential equation solution are obtained. First approximations of a nonlinear differential equation 
obtained by different methods and around different known analytical solutions were compared and corresponding conclusions are presented. As 
special examples are used nonlinear differential equations describing nonlinear dynamics of the mechanical system with coupled rotations in 

damping field.

For nonlinear differential equation with small cubic nonlinearity

from numerous world known monographs and books it is known the following first aproximation:

Starting analytical solution is in the form:

of liner differential equation in the form:
For the case, that                     nonlinearuty in equation is equal to zero linearized differential equation is:

and from first approximation, we obtain the following solution of previous equation:

which is not correct for this limit case. The correct solution of previous linear  differential equation is:

By use as a starting known analytical solution in previous form with amplitude and phase as a function in the following form:

For first asymptotic approximation of the nonlinear differential equation solution, we obtain the following expression:

or for known initial condition

First asymptotic aproximation of the nonlinear differential equation solution is in the following form:

The previous obtained first aproximation of the starting nonlinear differential equation solution is possible to obtain by different 
methods:  1* Combination of the methods: Variation constants of the known analytical solution of the corresponding linear to the
nonlinear differential equation with small cubic nonlinearity and applied averaging along full phase as proposed by Hedrih; 2* 
Asymptotic method Krilov-Bogolyubov Mitropolyski adopted by Mitropolyski for obtaining asymptotic approximation of the 
solutions of the nonlinear differential equation with small nonlinearity expressed by nonlinear function  depending on the 
slowchanging time.

By comparison, border cases for solutions obtained from the first approximation: 
1* obtained by Hedrih, which start from known analytical solution of the linear differential equation

CONCLUDING REMARKS

Let we made a general review of the obtained results for approximately solving of the nonlinear differential equation with small cubic 
nonlinearity and linear damping in the form:

(7)

in which hard or soft, refers to  sign       , and , and and      are  small parameters. By use two methods [9] and 
[8] starting known analytical solutions,                        ,                             and          
and we obtained same first approximation of the solution in the following forms [9]:

for (8)

for                                             (9)

For the case that damping coefficient tends to zero, from both first approximations (8) and (9), we obtain same analytical 
approximation of the solution for conservative nonlinear system dynamics. For the case that coefficient of the cubic nonlinearity tends 
to zero, from first approximation (8), we obtain known analytical solution of the linear no conservative system dynamics in the 
following form: 

for

but from the second form (9) obtained solution 
for

is not correct. Because is not solution of the differential equation:  

Then we can conclude that, starting different known analytical solutions, for obtaining first approximations are acceptable, but limited 
by corresponding conditions.  Approximation of the solution of nonlinear differential George Duffing differential equations (7) in the 
form (8) is better them (9) known from numerous literatures. Presentation of full original results is limited by length of the paper.
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