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Jubilee 135 years anniversary of birthday

ANTON DIMITRIJA BILIMOVIC
(July 20, 1879 - September 17, 1970)

Dear Readers,

Before 135 years Anton Dimitrija Bilimovi¢ was born on July 20, 1879 in Zhitomir,
Ukraine. Professor Bilimovi¢ died on September 17, 1970, at the age of 91 in
Belgrade, Serbia (and Yugoslavia).

He worked in Russia (and Ukraine) from November 25, 1903 until January 1920,
when he left Russia (and Ukraine). After that, he worked in Serbia (and Yugoslavia)
from April 20, 1920, to February 15, 1955 when he was retired.

Anton Bilimovi¢ defended his doctoral dissertation, entitled: "Contact motion of
rigid body, first part: motion with one degree of freedom" in Odessa, in 1907.

In 1907 he became associate professor of the Kiev University, and in 1915 full
professor for the subject mechanics, at the Novorossisky University in Odessa.
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On April 20, 1920 Anton Bilimovi¢ was elected professor under contract at the
Faculty of Philosophy, Belgrade University. On November 3,1926 he was elected full
professor of same Faculty for the subjects rational mechanics and applied
mathematics.

On February 18, 1925 he was elected a corresponding member of the Serbian
Academy of Sciences. On February 17,1936 he was elected full member of the
Serbian Academy of Sciences, in which he held the position of Secretary General of
the Department of Natural Sciences and Mathematics, from 1939 to 1940.

Professor Bilimovi¢ was one of the founders of the Belgrade school of mechanics.
His first doctorate students at the Belgrade University were Vjeleslav Zardecki,
Demcenko, Konstantin Voronjec and Tatomir Andeli¢. Bilimovic's scientific activity
deserves recognition for dissemination of the Russian school of mechanics in Serbia.

Professor Bilimové is founder of the journal Publications de I'Institut
mathematique de |I'Academie Serbe des Sciences. In 2012 this Journal celebrates
80 years of subsistence. This Journal is founded as journal for mechanics and
mathematics, but nowday by strong aspration of mathematicians, this journal is only
journal for pure mathematics.

Professor Bilimovi¢ initiated foundation of Institute for Mathematics of the
Serbian Academy of Sciences and Arts which was founded in 1946. Due to his
engagement the first post-second world-war journal Publications de |'Institute
mathematique de I' Academie Serbe des Sciences, was published in 1949.

Academicians Konstantin Voronyec, Anton Bilimovié, Tatomir Andjeli¢ (from right to left) and
Professor Danilo Raskovié¢ - Members of Commission for doctoral dissertation evaluation and
defence at Natural-Mathematica Faculty University of Belgrade (Aprl 1961).

Together with the Serbian scientists Milutin Milankovi¢, Jakov Hlitéijev, Konstantin Voronjec
and Tatomir Andeli¢ Professor Bilimovi¢ founded study-group for mechanics Mathematical
Institute. On the suggestion of professor Hlit¢ijev the same group was founded at the Faculty
of Natural Sciences and Mathematics of the Belgrade University, in 1952. The first professors
were above mentioned founders, and its first Head of the group, until his retirement, was
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professor Bilimovi¢. But nowday, by strong aspiration of mathematicians same as to the journal,
and working mechanicians without corresponding personality in area of theoretical and applied
mechanics, this study group of mechanics, after working of 50 years, dissapears from Faculty of
mathematics.

Professor Bilimovi¢ published his scientific results in the most acknowledged world journals.
He published 138 research scientific works, 28 scientific papers, 35 books and university text
books, many of them with several editions, 9 texts for popularization of science, 15 reviews and
15 reports. Papers and works of Bilimovi¢ numerous times was cited by world and Yougoslav
scientists. His first Ph.D students at the Belgrade University was Vjeleslav Zardecki, Basile
Demcenko, and Konstantin Voronjec and Tatomir Andelié¢, late also academician. Professor
Bilimovu¢ is laurete of important state prize the Labor Medal of the Firest Class, in 1855.

Professor Bilimovi¢ in the Reference titled: “A. M. Lyapunov in Odesse"
presented and showed his meetings, acquaintance with Lyapunov and his impressions
of the famous Russian and world scientist Alexand Mihailovich Lyapunov. He
described the tragic death of Lyapunov. Before he met Lyapunov, it was familiar
with scientific work and character and its important personality , because it's heard
from his teacher and Professor Gavril Konstantinovich Suslov. Lyapunov and Suslv
was students of Dimitriya Konstantinovich Bobilyev at Saint Petersburg University.
Both, as the students in the same generation, wrote on the same topic works titled:
“On rigid body equilibrium in fluid". And, both were awarded a Gold medal for work.
Lyapunov's large and more complex addressed this issue and received the additional
award, so that his work published in Saint Petersburg University scientific
publicatin. How are at Sain Petersburg Univetsity all professorship was busy,
Lyapunov was sent to Kharkov, and Suslov in Kiev, at corresponding chair of
Mechanics. Lyapunov founded the Kharkiv scientific school of mechanics, up to
nowdays with world very inportant scientific results and scientists. First student of
Lyapunov at Kharkov was Vladimir Andreevich Steklov. In Kiev scientific school of
mechanics, founded by Suslov , first student was Petar Vasilyevich Voronec.

Bilimovi¢ writes that Suslov described Lyapunov, as a man who is still in his youth
thinking about scientific ideas, issues, completely ho interested for the
environment, ighoring the fact and living conditions. Bilimovui¢ visited Sain
Petersburg University, but does he not had the opportunity to meet Lyapunov. At
that time Lyapunov works were not observed in Russia and also in aboard, because a
small number of scientists involved in these area of science. Since Bilimovi¢ was in
Paris, hi listened to lectures by P. Appe;l on the form of rotating fluids, why in a
popular way represent the scientific results of H. Poncare, 6.H. Darwin and A.M.
Lyapinov. In one of his lectures Appell recommended works Lyapunov and advised
mathematicians to study scientific results of Lyaounov. Next, Bilimovi¢ says that to
his knowledge, the research task of the form of rotating fluid, Pafnutiy Levovich
Chebyshev give to Lyapunov in recommendation with following words: “You,
Alexander Mihailovich, need to deal with only serious problems of mathematical
tasks." As reported by Bili, the Lyapunov adhered this recommendation during all his
life.
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Bilimovi¢ met Lyapunov in Saint Petersburg, and their relationship was beginning to formal
acquaintance, which lagged turn into spiritual scientific closeness.

1918 Lypunov was in Odessa with his brothers who worked at the History-Philosophical
Faculty in Odessa. At this period Bilimovi¢ was Rector of Odessa University.

While in Odessa had difficult living conditions, Lyapunov continued to work on
problems of form of rotating fluids. He had finished his fundamental work, which in
1925 published in the Saint Petersbug's Academy under the title: “"Sur certaines
séries de figures d'équilibred'un liquide hétérogéne en rotation".

Next Bilimovi¢ weote, that in 1918 Lyapunov's wife dead and that in this time was
in Kieve.

Although taking care of Lyapunov, which is difficult submitted his wife death at a
time when he was alone in room with his wife, he fired a bullet in his head and so he
ended at fragic way his life. This happened ar November 3, 1918 in Odessa.

In closing his article on Lyapunov in Odessa, Blimovi¢ wrote the following: In
considering the life work and fragic dead of Lyapunov in Odessa, believed in a need
to write about it to your knowledge, because much more about Lyapunov in Odessa
was written false. Such inaccuracy of Lyapunov appear in the publications of the
French Academy of Sciences.

Bilimovié¢ this work finished by saying that he wanted to clarify this period of life
and death of important world scientist A.M. Lyapunov in Odessa.
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ANTON DMITRIEVICH BILIMOVICH, AN OUTSTANDING
SCIENTIST OF MECHANICS

UDC 501: 531

LE. Rikun, chief bibliographer of Odessa National Scientific Library named after
M. Gorkiy

Anton Dmitrievich Bilimovich was born on the 20"of July, 1879, in Zhitomir. In
1903 he graduated from the Mechanical Division of Kiev University Physics and
Mathematics Faculty with the first-degree diploma and gold medal for the research work
“Application of geometric derivable in the theory of curves and surfaces”. He was the
follower of G.K. Suslov and P.V. Voronets. On the same year he became the member of
Kiev Society in Physics and Mathematics and took up the position of a secretary. He has
been working as an assistant of Theoretical and Applied Mathematics Department.
Since 1909 he became a privat-docent of this Department. He gave lectures in analytical
mechanics. In 1910-1911 Bilimovich went on a business trip abroad to prepare for the
professorial degree. In 1912 he defended his Master’s thesis “The motion equitation for
conservative systems and its application” in Kiev University. In 1912-1914 the scientist
visited Paris and Gottingen during his academic trip.

In April 1915 he occupied the position of a full professor of Mechanics Department
in Novorossiysk University. He lectured the basic course in theoretical mechanics,
additional sections of rigid body dynamics, the theory of elasticity, special courses for
the integration of mechanics equitation and the theory of airplane. During that time he
was in charge of University mechanics shop and in 1915-1917 he became the Head of
Mechanics cabinet. A.D. Bilimovich also ran the mathematical circle for young
students.

On February 26™ (March 11™) 1918 he was elected for the position of University
Chancellor. On July 19", 1918 he was approved for the position of a Chancellor by
Higher Education Board of Ministry of Public Education and Art under hetman
P.P. Skoropadskiy’s government.

He has been occupying this position till April 1919 and afterwards during the
period from August to November. This pause was explained by the presence of Soviet
Government in Odessa. In November 1919 by the order of A.I Denikin, the
commander-in-chief of the armed forces at the south of Russia, he was appointed at the
position of a trustee in Odessa Educational District.
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He attached A.M. Lyapunov to the cooperation in the University. After the death of
scientist, A.D. Bilimovich was a member of the Commission for his manuscripts
preservation. In 1918 he became a member of Odessa Polytechnic Institute
Organizational Committee and up to 1920 the scientist was acting as a professor and the
Head of Mechanics Department. In 1919 he was lecturing the Theoretical Mechanics at
Advanced Female Courses in Agricultural Institute. He submitted his research work
with the title “The osculating motion of a rigid body”, as a doctoral thesis, for the
University Board consideration, but he didn’t manage to defend it in Odessa.

He has been living at the following address: Uyutnaya st.9.

In 1920 he moved to Yugoslavia and in April the scientist became a Head of
Theoretical Mechanics Department in Belgrade University. In1925 he was elected as an
associate member and, thereon, in 1936 — as an active member of the Academy of
Science in Serbia. In 1939-1940 the scientist held the position of a secretary at the
Division of Mathematical and Natural Sciences.

A.D. Bilimovich was one of the founders of Mathematical Institute in Serbian
Academy of Science, Yugoslav Society of Mechanics; in 1964 he was elected for the
position of an Honorary Chairman. This scientist also established the journal
“Publications Mathématiques de 1’Université de Belgrade”.

During the World War II he abandoned the cooperation with occupants and was
retired at his own free will. After Belgrade has been set free, he became a professor of
Belgrade University Mathematical and Natural Sciences Faculty. He has been working
there till his retirement in 1955.

The scientist died on September 15", 1970 in Belgrade.

A.D. Bilimovich is the author of above 200 scientific works. His first works were
devoted to differential geometry, which he also continued to examine later. His essential
achievements are related to the development of the different sections in Analytical
Mechanics. He paid special attention to the fundamentals of Mechanics (general
principle of Pfaff and its application in perturbation theory). In 1958 he discovered the
new differential and variation concept in mechanics, which is equal to d’ Alembert-Euler
principle. He realized the fundamental researches in mechanics of a rigid body
(dynamics of a rigid body with a fixed point and others). He studied canonical equitation
of rigid body and system motion (Master’s thesis and other research works during 1910-
1932), material system motion through the construction and examination of the relevant
model movement. His distinguished research works refer to nonholonomic mechanics,
in which he continued and developed G.K. Suslov’s ideas. This is the description of
several unsteady nonholonomic mechanisms structures, which broke the ice for the
further elaboration of nonholonomic mechanisms application in machinery, computing
instruments theory and other branches of techniques: research works about the
integration of canonical nonholonomic mechanics equations, development of the
equations of curves of nonholonomic system paths, doctoral thesis, elaborated in Odessa,
and other research works. He also made his great contribution in the area of
gravitational mechanics: in 1911 he found the new integratable case in the n-bodies
problem and also studied the issue of three bodies. The scientist received the important
results in the theory of Earth’s rotation around its axis (particularly, about seasonals).
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He also developed the issues about vector analysis and methods of mathematics teaching
in school.

G.K. Suslov’s ideas elaboration and propagation in Yugoslavia is considered to be
the most important achievement of this scientist. He founded a big school of Analytical
Mechanics, raised a lot of gifted scientists and fully participated in publishing activities
of Russian Emigrants.

His brother — O.D. Bilimovich, a well-known economist.
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Academiei Romane and Facultatea de Matematica, Universitatea "Al.I.Cuza'
B-dul Carol I, 11, 700506 — Iasi

U

Dedicated to Memory of Anton Dimitrija Blimovici

Abstract

One introduces and studies the Lagrangian and Hamiltonian mechanical
systems by means of geometrical methods. One established the fundamen-
tal equations: the Lagrange and Hamilton equations, respectively. Some
examples and applications are pointed out.

Preface

Recently has been published the authors’s monograph Lagrangian and Hamilto-
nian geometries. Application to Analytical Mechanics (Ed. Academiei Romane,
2011). A half of the book is devoted to introducing and investigating new analyt-
ical Mechanics: Finslerian, Lagrangian and Hamiltonian.

One knows (R. Abraham [1], J. Klein [11], R. Miron [20] et al.) that the ge-
ometrical theory of nonconservative mechanical systems can not be rigourously
constructed without the use of the geometry of the tangent bundle of the configu-
ration space.

The solution of this problem is based on the Lagrangian and Hamiltonian ge-
ometries, [3], [5], [18], [19], [20], [21]. In fact, the construction of these geome-
tries relies on the mechanical principles and on the notion of Legendre transfor-
mation.

The whole edifice has as support the sequence of inclusions:

{L@H} C {Fll} C {L/F} C {GL/I}

formed by Riemannian, Finslerian, Lagrangian, and generalized Lagrangian spaces.
The £ —duality transforms this sequence into a similar one formed by Hamilto-
nian spaces, 8], [20].
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Of course, these sequences suggest the introduction of the correspondent Me-
chanics: Riemannian, Finslerian, Lagrangian, Hamiltonian etc.

The fundamental equations (or evolution equations) of these Mechanics are
derived from the variational calculus applied to the integral of action and these
can be studied by using the methods of Lagrangian or Hamiltonian geometries.

For short, in the monograph are presented the solutions of the problems:

1° A solution of the problem of geometrization of the classical nonconservative
mechanical systems, whose external forces depend on velocities, based on
the differential geometry of velocity space.

2° The introduction of the notion of Finslerian mechanical system.
3° The definition of Cartan mechanical system.

4° The study of theory of Lagrangian and Hamiltonian mechanical systems by
means of the geometry of tangent and cotangent bundles.

5° The geometrization of the higher order Lagrangian and Hamiltonian me-
chanical systems.

6° The determination of the fundamental equations of the Riemannian mechan-
ical systems whose external forces depend on the higher order accelerations.

In the present paper we introduce the notions of Lagrangian and Hamiltonian
mechanical systems and present only their fundamental equations.

1. Riemannian mechanical systems

Let g;;(x) be Riemannian tensor field on the configuration space M. So its kinetic
energy is .
1 I .
I=Sgijx)yy, y'= d% =i (L.1)
Following J. Klein [11], we can give:
Definition 1.1 A Riemannian Mechanical System (shortly RMS) is a triple
Y% = (M,T,Fe), where

1° M is an n—dimensional, real, differentiable manifold (called configuration
space).

2° T = 5gij(x)x'+/ is the kinetic energy of an a priori given Riemannian space
A" = (M.gij(x)).

12
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, Jd . . . .
3° Fe(x,y)= F'(x.,y)? is a vertical vector field on the velocity space TM (Fe
y

are called external fz)rces).

Of course, X is a scleronomic mechanical system. The covariant components
of Fe are: .
Fi(x,y) = gij(x)F/ (xy). (1.2)

Examples:

1. RMS - for which Fe(x,y) = a(x,y)C, a # 0. Thus F' = a(x,y)y" and L is
called a Liouville RMS.

2. The RMS Xz, where Fe(x,y) = F[(x)%, and Fj(x) = grad;f(x), called
conservative systems. '

3. The RMS X, where Fe(x,y) = F'(x) a% but F;(x) # grad; f(x), called non-
conservative. '

Remarks 1.1. A conservative system X is called by J. Klein [11] a Lagrangian
system. One should pay attention to not make confusion of this kind of mechani-
cal systems with the “Lagrangian mechanical systems” X = (M, L(x,y). Fe(x,y))
introduced by R. Miron [20], where L : TM — R is a regular Lagrangian.

Starting from Definition 1, in a very similar manner as in the geometrical
theory of mechanical systems, one introduces

Postulate. The evolution equations of a RSM X are the Lagrange equations:

d dL dL o dY

—— ——=F(x,y), y=— L=2T. 1.3

dr dyt  dx (x:3)s 3 dr’ (1.3)
This postulate will be geometrically justified by the existence of a semispray

S on TM whose integral curves are given by the equations (1.3). Therefore, the

integral curves of Lagrange equations will be called the evolution curves of the
RSM X4.
The Lagrangian L = 27 has the fundamental tensor g;;(x).

Remark 1.2. In classical Analytical Mechanics, the coordinates (x') of a material
K '

) . .. d - dq'
point x € M are denoted by (¢'), and the velocities y' = dit by ¢' = d—qr However,

we prefer to use the notations (x') and (y') which are often used in the geometry
of the tangent manifold 7M.

13
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2. Lagrangian Mechanical systems

A natural extension of the notion of the Riemannian mechanical system is that of
the Lagrangian mechanical system. Itis defined as a triple £, = (M, L(x,y). Fe(x,y))
where: M is a real n—dimensional C* manifold called the configuration space;
L(x,y) is aregular Lagrangian, Fe(x,y) is an a priori given vertical vector field on
the velocity space TM called the external forces. The number 7 is the number of
freedom degree of ¥;.

The Lagrangian L(x, y) is regular if its fundamental tensor

gij(x,y) = %aiafL(x,y) (i,j=1,2,...,n)

d 3 d
oy’ LT ox
this case the pair L" = (M,L(x.y)) is called Lagrange space associated to the
Lagrangian mechanical system ¥;. For instance, we can consider the systems ¥
where L(x,y) is the Lagrangian from electrodynamics:

is nonsingular, i.e. det(g;;(x,y)) # O (with notations o ). In

.. e .
L(x.y) = mey;j(x)y'y + iA,-(x)y’ + (x).

yij for (i, j = 1,...,n) are the gravity potentials (7;(x) is a pseudo-riemannian met-
ric), Aj(x), (i = 1,...,n) are the electromagnetic potentials, % (x) is the potential
function and m, c. e are the known physical constants.

The fundamental tensor of L(x,y) is g;; = mc?¥;;. The external force F,(x.y) of
a system Xz can be given in the form F, = Fi(x,_yf)gi. Thus Fi(x,y), (i=1,....n)
is a contravariant d—vector field on the velocity manifold 7M.

The covariant components F;(x,y) of F, are

Fi(x,y) = gij(x,)F/ (x.y).

Exactly, as in the Riemannian mechanical systems X, [23], [24], we introduce
the following Postulate:

Postulate. The evolution equations of the Lagrangian mechanical system
Y, = (M,L,Fe) are the Lugrange equations:

d (0L\ OJL podx
o (8\’) oEr =F(xy), ¥y = . (i=1.2,..,n). 2.1

But the both members of the Lagrange equations (2.1) are d—covectors on the
velocity spaces 7M. Consequently, we have:

Theorem 2.1. The Lagrange equations (2.1) of a Lagrangian mechanical
system X, = (M, L, Fe) have a geometrical meaning.

14
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Theorem 2.2. The trajectories without external forces of the Lagrangian me-
chanical system i = (M.L,Fe) are the geodesics of the Lagrange space L' =
(M,L).

Indeed, Fi(x,y) = 0 implies the previous affirmations.

Since L(x,y) is a regular, the Lagrange equations (2.1) are equivalent to the
second order differential equations (SODE):

A2y ol dx 1 . dx
—+2G (x.— | =<F"[x.— |, 22
a " ()k’ dr) 2 (k‘ dr) ’ (22)

ol 1 . ,
where the functions 2G = Eg”{(&ﬁ,,L)y” — dsL} are the local coefficients of

o o . ol .
canonical semispray S of Lagrange space L" = (M, L(x,y)), S =y'0i —2G (x,y)d\.
The equations (2.2) are called fundamental equations of X;, too.

Remark. The Lagrangian L(x,y) and the external forces Fe(x,y) do not explic-
itly depend on the time ¢. Therefore ¥ is a scleronomic Lagrangian mechanical
system, [23], [24].

The evolution semispray of £,

The Lagrange equations determine a semispray .S which depend on the Lagrangian
mechanical system X7, only.
Indeed, the vector field on TM:

S=y'0—2G'(x, )0 (2.3)
with ) .
2G'(x,y) = 2G (x,y) — EFJ(X"'V) (2.4)

has the property /S = C. So it is a semispray depending only on X;.
Theorem 2.3. [Miron] For a Lagrangian mechanical system X, the following
properties hold:

1° The semispray S is given by
o 1
S:S+§F(% (2.5)

2° Sis a dynamical system on the velocity space TM.

3° The integral curves of S are the evolution curves of L.

15
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In fact, 1° derives from the formulas (2.3) and (2.4).
2° S being a vector field on TM, compatible with the geometric structure of TM,
(i.e. JS =€), it is a dynamical system on the manifold TM.
3° The integral curves of S are determined by the system of differential equations

dx' i dy' P

7 =y, s +2G'(x,y) =0. (2.6)
By means of the expression (2.4) of the coefficients G(x,y) of the semispray S,
the system (2.6) is coincident to (2.2).

The vector field S is called the evolution (or canonical) semispray of the La-
grangian mechanical system X;. Exactly as in the case of Riemannian or Finsle-
rian mechanical systems, one can prove:

Theorem 2.4. The evolution semispray S is the unique vector field, on the
velocity space TM, solution of the equation

[¢]

is6 = —d& + 6 2.7)

aL ) . o . .
where &1 = 5 L is the energy of Lagragian L, 0 is the symplectic structure of
y

the Lagrange space L", [5],[20] and © = Fi(x,y)dx'.

But S being a solution of the previous equations, we get:

dcg"L(S) = CT(S) = F,-_yi = g,»jF"yj.

So, we have:
Theorem 2.5. The variation of energy &1 along the evolution curves of me-
chanical system X is given by

dé&; dx\ dx

The external forces field Fe is called dissipative if g(C,Fe) = g;;F'y/ <O0.
Thus, the previous theorem implies:

Theorem 2.6. The energy of Lagrange space L' = (M, L) is decreasing along
the evolution curves of the mechanical system Xy if and only if the external forces
field Fe is dissipative.

Evidently, the semispray § being a dynamical system on the velocity space
TM it can be used for study the important problems, as the stability of evolution
curves of Xy, the equilibrium points etc.

16
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3. The Hamiltonian mechanical systems

Following the ideas from the section 3, we can introduce the next definition:
Definition 3.1. A Hamiltonian mechanical system is a triple:

Yy = (M,H(x,p),Fe(x.p)), (3.1)
where H" = (M, H(x, p)) is a Hamilton space and

Fe(x,p) = F,-(x.,p)a'i 3.2)

is a given vertical vector field on the momenta space T*M and o' = T (i=

1,...,n).

Fe is called the external forces field.

The evolution equations of £y can be defined by means of the following Pos-
tulate:

Postulate 3.1. The evolution equations of the Hamiltonian mechanical system
Yy are the following Hamilton equations:

%—8% 0, dp’+8jé” Fx.p), H# — (3.3)

Evidently, for Fe =0, the equations (3.3) give us the geodesics of the Hamilton
space H".

o

Using the canonical nonlinear connection N we can write in an invariant form
the Hamilton equations, which allow to prove the geometrical meaning of these
equations, [21].

Examples. 1° Consider H" = (M, H(x, p)) the Hamilton spaces of electrodynam-
ics, [8], [19], [21]:

e

2e ;
H(X,p) = —Y{j()t)p,p/ A ( )pl + .iA,'(X)A ()‘)
me me? me?

and Fe = p;d'. Then Xy is a Hamiltonian mechanical system determined only by
H".

2° H" = (M,K?(x, p)) is a Cartan space and Fe = pid. N

3° H" = (M.H(x.p)) with H*(x, p) = Y/ (x)pipjand Fe = a(x)p;d".

Returning to the general theory, we can prove:

17
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Theorem 3.1. The following properties hold:
1° & given by

&:%@W&—@ﬂ—ﬁﬁﬂ (3.4)

is a vector field on T*M.

2° & is determined only by the Hamiltonian mechanical system L.

3° The integral curves of & are given by the Hamilton equation (3.3).

The previous Theorem is not difficult to prove if we remark the following
expression of &:

&= g‘ + %Fe. (3.5)

Also we have:
Proposition 3.1. The variation of the Hamiltonian H(x, p) along the evolution

curves of Xy is given by: _
dH dx' i
R S — (3.6)
dt dt

As we know, the external forces Fe are dissipative if (Fe,C) > 0.

Looking at the formula (3.6) one can say:

Proposition 3.2. The fundamental function H(x,p) of the Hamiltonian me-
chanical system Ly is decreasing on the evolution curves of Xy, if and only if, the
external forces Fe are dissipative.

The vector field & on T*M is called the canonical dynamical system of the
Hamilton mechanical system Zp.

Therefore we can say: The geometry of Xy is the geometry of pair (H",&).

For other details see [3], [8], [12], [16], [19], [21].
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Abstract. In this paper the problems of invariant manifolds inclusion into the integral
manifolds’ set and the first integrals construction of differential equations based on the
invariant relations, including the equations of rigid body dynamics, and also the
integration of these equations by means of K. Jacobi theorems at the invariant relations of
T. Levi-Civita and S.A. Chaplygin have been solved. The first integral existence of Euler—
Poisson equations under Hess conditions has been proved and its first approximation has
been obtained.
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Introduction. The issue of the first integrals existence along with Cauchy problem
holds a central position in the theory of ordinary differential equations (ODE).
Generally, for the equations, considered in mechanics, Cauchy problem has a solution,
which depends on the properties of phase-space points. All phase-space points are
divided into ordinary and singular, in the neighborhood of these points not only the
solutions properties, but also the integral manifold analytical structure are different. The
information, concerning the fact that in the neighborhood of a an ordinary point, a full
set of the first integrals is existed and the availability of the first integrals, which leads
to the boundedness of solution, makes it possible to get the solution at the infinite
horizon. The classical problems of mechanics (the problem of N bodies and the problem
about heavy rigid body motion with a fixed point) are common; a special attention is
drawn to them not only due to the importance of the application results, but also because
the equations of motion assume the first integrals. In these problems the cases of a full
set of the first integrals existence are rendered. For instance, in the problem about the
heavy rigid body motion the integrals of Euler [1], Lagrange [2], Kovalevskaya [3] are
specified. Hence, the results, received in this area, are not sufficient for getting the
complete solution of the issue for the rigid body motion general properties determination
in a classic problem. This circumstance is explained by the fact, that due to the research
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works of Husson [4], Burgatti [5], Poincare [6], Lyapunov [7], Kozlov [8] and other
authors the facts of non-existence of the new integrals of algebraic and analytic structure
are only established. Therefore, with the examination of the integrals, the development
of the research trend, based on specific solutions construction, has been initiated
practically at the same time. The most famous solutions of the following authors may be
distinguished: Hess [9], Bobylev [10], Goryachev [11, 12], Steklov [13, 14], Chaplygin
[15, 16], N. Kovalevskiy [17], Grioli [18] and other authors (see the reviews [19-22]).

Specific solutions construction methods are closely related to the invariant
manifolds and invariant relations theorems, which determine these manifolds. Poincare
[6] was the first to give the definition for the invariant relations system. The equations
for the functions determination, which characterize the invariant manifolds, were
received by T. Levi-Civita [23, 24] and S.A. Chaplygin [25]. The equations of Levi-
Civita represent the system of linear inhomogeneous differential equations of first order,
which contain the undetermined coefficients. Evidently, the availability of these
undetermined coefficients caused the fact, that these equations were not entirely known
and examined. However, the approaches of Barbashin—Krasovskiy in the theory of
stability and Kalman’s approaches in the control theory require the detailed examination
of the invariant manifold properties [26] and, particularly, the possibility of its
replacement by their integral manifolds. In dynamic systems theory the last issue may be
formulated as a problem about the possibility of the stated invariant manifold inclusion
in a set of integrals. The first four sections of this paper are devoted to the solution of
this problem [27].

In the first section of this research the task is given and necessary definitions and
equations have been provided. The issues about the invariant manifold inclusion in the
set of integrals have been considered at the second section. The role of the special
manifold in the dynamic system phase portrait and the first equations integrals
formation were mentioned herein. The equations of rigid body motion with a fixed point
in the gravity field were brought in the third section; also there is a description of the
fourth integrals in cases of Euler, Lagrange, Kovalevskaya. The fourth section gives us
the proof that under Hess condition the fourth integral is existed, the special case of
which is the integrals of Euler and Lagrange and the solutions of Hess and Dokshevich.

The notion about the invariant relations only always gives the opportunity to reduce
the solution of the integrating of the motion equation problem to quadrature (for
instance, in Hess solution). So in line with the above-mentioned task, the dynamics
equations theory extension, offered by Jacobi, in case of n—2 first integrals, at the
invariant relation of different nature remains relevant [28]. In section 5 of this paper the
main formula of Jacobi is set, which is regarded as a reduced, on the basis of the
integrals of differential equations system. The sufficient conditions of dynamic
equations, integrating in quadratures on the basis of n-3 first integrals and an invariant
relation as per Levi-Civita case and on the basis of n—4 first integrals and two invariant
relations as per Levi-Civita case, provided in Sections 6 and 7. The connection with the
Chaplygin’s results about integrating of the equations on the first and particular
integrals (Hamilton dictionary) considered in Section 8.
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1. STATEMENT OF A PROBLEM

Let us consider the dynamic system

x=f, (M
where x=(x,,...,xn)T — phase vector: xe Dc R", x:%, te[0,00); f(x) is a
t

sufficient number of times continuously differentiable function for xe D.
Let x(r;x°) is a solution of the system (1) with initial condition x(0;x°)=x"e D.
If x(t;x°)=x° for all >0, therefore the point x° is called singular and we have

f(x°)=0. If the function f(x°)=#0, then the point x° is called ordinary one.
Definition 1. The function F(x) is called the first integral of the system (1), if it

preserves the constant value at any solution of the system (1), viz. F(x(t;x°))=c(x°)

for all values t>0 and arbitrary value x°e D.
The integrals of the equation (1) are considered as the solutions of a homogeneous
partial differential equation

L,F(x)=0 (Lf = iﬁ(@%} : 2)
i=1 i

So, it is assumed, that F(x) is a continuously differentiable function to a certain order.

It has been known [29], that in the neighborhood of an ordinary point of equation
(1) there are exist n—1 independent first integrals

F(x)=¢ (i=Ln-1), 3)
viz. the equation (2) has n—1 solution.

Definition 2. The integral manifold of the equation (1) is called the manifold S, of
the phase space, filled with the integral curves, defined for all te R, which can be
presented as the equation

x=g(tc), “
where g(t;c) is defined for all t of R, and the point c¢=(c,,...,c,) refers to some

) ) . 9 .
area G. This function possesses the certain smoothness; the vectors a—g (i=1k) are
C.

linearly independent for each t. The integral manifold (4) is called k -dimensional
integral manifold with the same smoothness as the function (4).

It should be noted, that if k =n, then formula (4) gives the general solution of the
equation (1).

In some cases, instead of the Definition 2, it is convenient to use the definition,
based on the first integrals of the vector equation (1).

Definition 3. The manifold N =\x:F,(x)=c,, (i= (I,_k)}, where F,(x)e C™ (m,
is natural number) — the first integrals of the equation (1); c¢=(c,,...,c,)€ G, is called

k -dimensional integral manifold.
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The main role in the dynamics of differential equations integrating theory plays
invariant manifolds.

Definition 4. The set M € D is called the invariant manifold of the equation (1), if
xt;xYe M as t20 and some x°e M. If all x°e M are singular points of the
system (1), then the manifold M is called the singular invariant manifold.

Sometimes the invariant manifold of the dynamic system is defined as the integral
submanifold M of the phase space of the dynamic system, the invariant one with regard
to “time shifts”: y,: X — X — phase flow conversion (\y, — “the shift for time ),

then invariant manifold is set in by the inclusion y,(M)c M for all admissible time

points 7.

Comments. While using the Definition 3 we will exclude the cases, which are
indicated in research work [30], because manifold N formation may be referred to the
main issue in the researching of the equation properties (1), and excluding the
extraneous solutions (the solution, which does not comply with the equation (1)) is not
considered as the problematic.

For the further description and identification of the first integrals of the invariant
relations of the equation (1) it is necessary to have the constructive researching method,
based on the functional approach. Therefore, let us give the following definition.

Definition 5. Let the function ©(x) is a continuously differentiable up to some

order and @(p(x,,...,xn) #0 in D. The relation

o(x;,....x,) =0 ®)
is called the invariant relation of the equation (1), if it defines the set G, which
contains the invariant manifold M Cc G.

In definition 5 the terms of T. Levi-Civita [23, 24] and P.V. Kharlamov [31] are
regarded as the particular cases. Actually, according to the term of T. Levi-Civita, the
relation (5) is called the invariant relation (IR) relative to the equation (1), if from the
condition @(x(0;x°))=0 follows the equality @(x(z;x°))=0 for >0. So, this case we
receive from the definition 5 if =M . But it is very important for the investigation of
the IR issue problem, because we can get the equation of T. Levi-Civita for it [23]

W:(p(x,,...,xn)k(x,,...,xn) . 6)

According to the P.V.Kharlamov’s definition [31], the relation (5) is called
invariant and relative to the equation (1), if the manifold is not void

o(x,...,x,)=0,
Loo(x,....x,) =0,(x,....x,) =0,
Lo (xpsesx,)=9,(x,...,x,) =0, @)
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Therefore, his definition is closely associated with the approach, which helps to get the
indicated manifold. Whilst as in Definition 5 the way of invariant manifold ©
formation may be different from the above-mentioned approach (see the relation (7)).

The definition 5 may be generalized in case of IR system. As this generalization
can’t be regarded as problematic, we will not analyze it. It should be only noted, that it
will be different from the terms of A. Poincare [5], S.A. Chaplygin [25], T. Levi-Civita
[24], stated in different periods of time. Indeed, these terms allow formulating the
general definition [6]: the system from m < n finite representations

@, (X0enx,) =0 (j=L1), ®)

a(pj (X500 X,)
ox,

i

where @, (x)e C', the rank of matrix ( J is equal to [, is called the

invariant, if it will comply with any solution of the system (1) x=x(z;x"), the initial
value of x(0;x°) will comply with it.

Special attention should be drawn to the equations at the functions (8). The most
common equations are indicated by S.A. Chaplygin [25]

d m uy

% = Q" (X ey X )M (X ey X)) e QY (X s XA (X0 X))

d(p2 — (21 My

I = Q" (X X)) (X X)) F o F @) (X ey X, )y (X5 X)) 9
d m m,

%z(p, X seees X Ny (X ey X ) o O (X ey X, DA (X s X, )

where m; >0. It should be observed, that IR has been indicated as particular integrals
by S.A. Chaplygin.
We can get the equations of T. Levi-Civita from (9) if m; =1 Vi, j =1,0. Let us

put in the reduced form [23]

l —
W=Z<pj(x,,...,xn)x,j(x,,...,xn) (i=10). (10)
=l

In this paper we consider two problems.

Problem 1. The invariant manifold M ={x:V,(x)=0,i=1,...,n—m; m=dimM }
of the system (1) is given. It is required to include it in some set of the integral
manifolds N, in which in particular values of constants we get the given invariant
manifold (IM).

Problem 2. Given: either one IR according to Levi-Civita or IR system according
to Levi-Civita or S.A. Chaplygin. It requires on these relations to integrate the
differential equations system in quadrature that results from (1).
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2. INCLUSION OF THE INVARIANT MANIFOLD IN A SET OF INTEGRAL
MANIFOLDS

Let the invariant manifold is to be described by the relations of class (8), i.e.
indicating redifinitions [27] by the equations

V.(x)=0 i=Ln—m). (1D
We will use parametric approach, i.e. from the equalities (11) let us find
X=0(T,...T, ) - (12)
Where as 1,,...,7 we can tale local coordinates.

> Yn—m
Among various parameterizations we would like to highlight the one, in which the
time ¢ is determined as one of the characteristics. Let us call such parameterization as
natural. It can be presented in the following way

x=x(6x° (T s Ty s
where x°(,,...,T, ,,,) is the parametrization of the initial state, which can assume the
arbitrary rule, as well as function ¢. Ordinary parameterization always exists in the
neighborhood of the ordinary point; besides, it comprises the following property (a): for

the values under consideration 7,,...,T, ,_, vectors f(x"),dx’/d1,,..., ox’/drt, , , are

n—m—
linearly independent. The usage of the ordinary parameterization for the manifolds,
comprising the singular points, needs the additional review. Finally, special invariant
manifold doesn’t assume any ordinary parameterization. In particular it is explained by
the fact, that the singular points are not transmitted with the time-change, so it is not
possible to choose it as local coordinate. The issue about the invariant manifolds
inclusion in the set of integrals is decided in different ways for special and non-special
invariant manifolds.

Theorem 1. The invariant manifold of n—k dimension in the neighborhood of
ordinary point is included in k -parametric set of the integral manifolds.

Proof. Let us define the invariant manifold for the n—k dimension in the
neighborhood of a simple point by means of ordinary parameterization:

x:x(t;xo('c,,...,'cn_k_,)). We will put comprehensive n—1-dimensional manifolds of
the initial states Xo(r,,...,rn_,), which include, if T, , =0,..., T,_, =0, the initial first
manifold: X°(t,,...,T, ;_;,0,....0) = x°(,,....T, ,,) and satisfy the characteristic (a):
vectors f(X°),0X°/0r,,..,0X°/dt, | are linearly independent. The set of solutions
x(t;XO('c,,...,'cn_,)) of the system (1) comprises the invariant manifold under
consideration x(t;x°(t,,...,7, , ,)) and coincides with it, if 1, , =0,..,T,,=0. If we
solve the equations x = x(t;X°(1,,...,T, ,)) relatively to £,T,,...,T, ,, we will get n—1 of
independent integrals T,(x), i=1,...,n—1. Under the construction k -dimensional set of
integral manifolds t,(x)=c¢;, i=n—k,..,n—1 includes the invariant manifold under

consideration, which can be singled out from it, if ¢, =0, i=n—k,.,n—1.
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Theorem 2. The singular invariant manifold of n—k dimension is included in k -
I-parametric set of the integral manifolds.
Proof. Let us define the special invariant manifold of n—k dimension by means of

parameterization x=x°(r,,...,rn_k). We shall put the comprehensive (n-1)-

dimensional manifold of the initial states XO(T],...,Tn_]) , comprising as T, ., =0,...,
T,., =0 the special manifold Xo(r,,...,rn_k,O,...,O) = xo(r,,...,rn_k) and complying with
the characteristic (a) if T._,,, +...+ 7., #0, vectors f(X°), ox°/ot, ,.,,....0X° /9,

are linearly independent. The set of solutions x(t;XO(T],...,Tn_])) of the system (1)
complies with the condition x(t;X°(%,,...,T, ;,0,....,0)) = x’(%,,...,T,,) . The points
x°(t,....,t,,) are ordinary points in the system (1) as 1., +...+ 1., # 0, therefore, if
in the neighborhood of these points we solve the equations x=x(t;X°(1:,,...,Tn_,))
relatively to ¢,7,,...,T,_, , we will get (n—1) of independent integrals T,(x),i=1,...,n—1.
Under the construction  k—1-dimensional set of integral manifolds
T,(x)=c;,,i=n—k+1,..,n—1, includes the invariant manifold. The integral manifold
T,(x)=0 (i=n—-k+1,..,n—-1), either coincides with the special invariant manifolds
under consideration, or it is (n—k +1) -dimensional invariant manifold which contains
the stated special manifold.

From the theorem 2 for k =1 we get the following statement.

Corollary 1. The singular invariant manifold of n—1 dimension is included in
the set of integral manifolds only in the cases, when the multiplier of Levi-Civita is
identically equal to zero.

The received conclusion about the inclusion of the invariant manifold inclusion in
the set of the integrals indicates the important role of the invariant relations and
particular solutions of the differential equations, namely, the possibility of its usage for
integrals construction and the description of their structure. The solution of this problem
for the invariant manifolds of the arbitrary dimensions is sufficiently difficult; however,
for the manifolds of n—1 dimension the following property may be received.

Theorem 3. Let for the system (1) k -values for the invariant manifolds of n—1
dimension are known, which are described by the equations V,(x)=0, i=1,...k, for
which the multipliers of Levi-Civita in the equations

dav,
—L =7V (13)
dt
complies with the condition o\, +...+ oA, =0, o, — some numbers. Then the system

(1) assumes the integral V,"'V,>..V* =c.

The theorem is proved by the direct checking by means of equations (2), (13).
It should be noted, that the statement of the theorem doesn’t depend on the fact,
whether the equation V,(x)=0 has the solution or not, i.e. for the integral construction

it is possible to use so-called “imaginary” solutions, which are known, but, for instance,
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they don’t attach any importance in rigid body dynamics and physic sense. The
consequence of the theorem 3 is a known theorem about integral construction as per two
integrating multipliers. Indeed, the integrating multiplier p(x) of the system (1)

satisfies the equation L u=pdivf . So, for two solutions W ,l, the conditions of the

theorem 3 are realized if o, =—0, =1, that will result to the known integral u, W' =c.

Let us additionally indicate the property of the integrating multiplier: if the equation
U(x) =0 has the solution, then it determines the invariant manifold. Unfortunately, for

the Euler—Poisson equations, the known integrating multiplier u(x)=1 doesn’t

determine the invariant manifold.

The theorem 3 can be generalized in different ways and used the integrals structure
description. So, if k=2 and invariant manifold is of n—2 dimension, the
classification of the singular points of the differential equations can be used at the plane.

Theorem 4. Let the invariant manifolds are stated by the equations V,=0, V, =0.

Depending on the type of the equations of Levi-Civita (12) it is possible to get the
following types of the integrals:

1. hyperbolic integral: V\V,=c: LV,=AV,, L,V,=-AV,;

2. dicritical integral V,/V,=c: L,V,=L\V, (i=12);

3. elliptic integral: V' +V} =c: LV,==AV,, LV,=L\V,;

4. spiral integral: In(V?> +V,?) +2arctg(V,/V))=c :

LVv,=-Vi-V,; LV,=V,-V,.

The theorem is proved by the direct checking the equations (2) and (13).

The theorems 3, 4 and similar statements may be used for integrals construction
from the known particular solutions and, vice versa, to receive the invariant manifolds
from the known integrals. As an example, let us analyze the invariant manifolds and the

integrals of one system, which demonstrates the complexity of invariant relations
method.

. . . 1
X=x, y=x"+7"-d*, i=——Qx'+7"-d). (14)
Z

The system (14) is considered in the domain D=R*\{(x,y,z):z=0}.The special
invariant manifolds are determined by the equations

x=0, xX’+7°-d"=0, 2X°+7°-a’=0 (15)
and presented in the form of straight lines. The first two equations from (15) are
independent and may be used to select of the special invariant manifold. To determine

its functions V, =x, V,=x"+z>—a’ let us put the equations of Levi-Civita

LV,=V;; LV,=-2V,.
Therefore, two-dimensional manifolds, defined by the equations V, =0 and V, =0, are
invariant. For the multipliers of Levi-Civita the following condition 2A, +A,=0 is
preserved, according to theorem 3 the system (14) has the integral
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I, =V, = x*(x* +z* —a”) =¢,. Using the integral from the first two equations (14) we
define  dy/dx=c¢,/x’, ie. this system possesses additional integral
I,=2y+x*+7> =c, . So, for the system (14) the full set of integrals is indicated
I, =x*(x*+7*-a*)=c,, I,=2y+x"+7’ =c,.

The phase space structure can be described in the following way. In the space there is a
special invariant manifold, consisting of two straight lines x=0, z=2a. This one-
dimensional manifold is included in two-dimensional integral manifold 1, =0,
consisting of two connected components: a plane x=0 and a circular cylinder
x>+ 7> =a*, which are crossed at special manifold. Any other invariant manifold is
integral and defined by the equations: I,=c¢,, I,=c, — the path — one-dimensional
invariant manifold; F(/,,I,)=c - two-dimensional invariant manifold. The first

integral I, gives us sufficiently clear picture of the phase space stratification on the

integral planes: it is a set of cylindrical surfaces: x*(x* +z>—a*) =c,.

3. APPLICATION OF THE RESULTS FOR THE SOLUTIONS ANALY SIS OF EULER—-
POISSON EQUATIONS

Let us consider the classical problem of a heavy rigid body motion with a fixed point.
We shall put down the equations in the principal coordinate system [19, 20]
A0 =(A, - A)0,0,+1(e,v;—ev,), Vv, =0,v,-0,v, (123). (16)
In formulas (16) two equations are indicated, four others we shall get from the data after
the cyclic interchange of the numbers 1, 2, 3, that shows the symbol (123).
It should be observed, that in (16) ®. — angular velocity components; v, — vertical

vector components; A, — principal inertia moments of rigid bodies; e, — unit vector

1
components, directed to a vector 7, = OC (C - center of solid masses); I'=mg| rl,m-—
solid mass; g — acceleration of gravity.
The equations (16) have first integrals
AO + A0, + A0, —20(ev, +e,v, +ev,) =2E,
a7
A®V, + A0V, +AOV, =k, Vi+Vi+vi=1.
As it was mentioned above, the equations (16) have three general cases of the
additional first integral existence. Let us define the conditions for the parameters and

additional integral.
Euler’s case ( I'=0):

A®; +A,0; + AW; = g; - (18)
Lagrange’s case: ¢ =e,=0, A =A,:
o= (19)

Kovalevskaya’s case: e, =e; =0, A = A, =2A;:
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(@] =0 +cv,)* + w0, +cv,) =k, (20)
where ¢=T"/A,.
Let us consider Euler’s case and assume that A, > A > A, . It is easy to prove, that

the following equations can be formed
LV, =-A\V,; LV,=\V,, 2D

7\,=(D] ’(A2_A])(A]_A3) , (22)
A2A3

V=0, A4 —A) +0[AA —A) . V,=0,4JA (A — A) 0, A4 - A) . (23)
Due to the theorem3 from (21)—(23) we have the first integral
I =V\V, =const, 24

in which owing to the equality 7 = gg —2AE, received from (17), (23), (24), we shall

where

find the integral of Euler (18). The integral (24) with zero value of the constant gives
two invariant manifolds V, =0, V,=0.

Lagrange’s case will be further considered, as the method of integral formation (19)
directly from the equations of Euler—Poisson can’t indicate any difficulties.

In case of S.V. Kovalevskaya from (16) we shall get the following equations

LVi=aV,, LV,=-0V,, V,=of-w;+cv,, V,=200,+cv,, (25)

which form the integral of Kovalevskaya (20). Zero level of the integral (20) splits into
two manifolds: V, =0, V, =0, where V, indicated in the system (25).

4. THE INTEGRAL UNDER HESS CONDITION

For generality the following item, after the above-mentioned equations, goes V. Hess
solution. Hess conditions for the rigid bodies masses arrangement are used, as follows

(91

e,=0, eJA(A—A)+e[A A -4,) =0. (26)
While preserving the equality (26) the equations (16) allow the invariant manifold
V=Aew +Aen, =0, 27
because for the function V', Levi-Civita equation takes place.
LV =\V, a=aldmA) (28)
34,

Euler—Poisson equations, under Hess conditions, and the equations (27), (28) are
easy to review in a special coordinate system, in which the first axis is directed to
barycentric line. Let us use the components of angular momentum x,y,z and vertical

components V,,V,,V,as the variables. If we set by a the gyro tenser, then under Hess
conditions it can be presented as follows [27]
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a b 0
a=|b a 0]. 29)
0 0 a.

Euler—Poisson equations due to (29) are the following [31, 32]
¥=-bzx, y=(a-a)wx+byz—v,[, i=-(a—a)yx+b(x’—y*)+v,I', (30)
Vv, =a.zv, —(a.y +bx)vy, V,=(a x+by)V,—a.zv,, V,=(a.y+bx)v,—(ax+by)v,.
Let us put down the first integrals of the equations (30)
ax’ +a.(y*+z2°)+2bhyx —2v[=2E, Vvi+vi+vi=1, xv,+y,+zv,=k. (31)
From the first equation of the system (30) comes IR of Hess

V=x=0 (32)
and Levi-Civita equation
LV =-bzV . (33)
In Euler’s case from the system (30) in addition to the equation (33) we get
LVi=bzV,, V,=(a—a)x+2by (34)
and thus on the basis of the theorem 3 we shall get the first integral
I =VV, =x[(a—a.)x+2by] = const. (35)

Euler’s integral x>+ y”+z>=g; will be received from the formula I =-a.g; +2E,

where [ is defined by the relation (35), and 2E - by the first equality from the system
(30).

In Lagrange’s case b, =0, so Lagrange integral

X = const 36)

may be received from the formula (35).

Let us turn into consideration of the equations (30) with integrals (31) in general
case. Based on the theorem 3 due to the equation (33) and the first equation of the
system (34)

LV, =bzV,, (37)
the initial system (30) accepts the first integral
I=xV, . (38)

It is only necessary to indicate, that the integral (38) is not a combination of the
integrals (31). For this, we shall use the properties of a special invariant manifold of
Hess gyroscope, which is represented as a manifold (including the integral

Vi +V2+V2=1), consisting of six curves S,,...,S, [27]

S8,
x=0,
al = bl y*(2%al +(al +b)y*),
Iv, =b’y*/a., Iv, =57y, Iv,=byz;
SyseesS,
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[(@a—a)yx—b,(x* = yHP[(ax+b,y)’ +(a.y +bx)*1=T*(a.y +bx)*,  (39)
ax+b,y

Iv, =—— " [(a—a)yx—b, (x* = y")].
a.y+bx

I'v, =(a—a.)yx—b, (xz—yz), v;=0 .
The integral I =xV,=c if c¢=0 defines the integral manifold, which includes the
curves S;,S, of a special manifold. We shall verify that any combination of the integrals
(31), which defines the integral manifold, including the curves S,,S,, cannot have the
same structure.

Lemma. Any combination of the integrals (31), which defines the integral manifold,
including the curves S,,S, of a special invariant manifold does not contain x, as a
multiplier.

Proof. By means of formulas (39) we shall exclude the variables v, from the
integrals (31) of energies and surfaces

Tk=by(y*+2°), (40)

2a.E =al(y* +7)—2b%y". 41

Excluding from the equation (41) the expression y”+ z*> by means of formula (40); and
the variable z by the second equation (39), we get the following equations

2b,y(by* +a.E)—a’Tk =0, 42)

367y —T2aZ (bl y*) ' +2a.E=0. (43)

Excluding from the equations (42), (43) the variable y, we receive the desired expression

for the combination of integrals
—E*+2K.E°+2IPE* — 18k, E +271%k2 -T"* =0, (44)

where 4k, =a.k”. Its explicit expression in the initial variables, received by means of

computer program for the analytical calculations, shows, that the equation (44) does not
contain x as a multiplier.

Before the formulation of the final conclusion we shall indicate that for Hess
gyroscope, except Hess solution, Dokshevich solution also exists. Let us enter his note in
special axes, following the treatise [21]:

v, =ax’+a,, Iv,=Bx"+B, Tv,=vmxz, by=(p,—a)x+p,/x,

(45
(0ox” +00,)7 + (Box” +B) +yex?z =T,
The explicit expressions for the coefficients, contained in formulas (45), may be found in
the research work [21].

The above-mentioned arguments allow making the following conclusion.

Statement. Euler—Poisson equations under Hess conditions (29) have the additional
integral of I =xV , where V is the solution for the equation L,V =bzV . The special

case of this integral are Euler and Lagrange integrals. Hess and Dokshevich solutions
define invariant manifolds of the integral manifold 1 =xV =c.
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With a view of integral structure description, under Hess conditions, let us consider
the integrals of the system (30), linearized near the curve (39). Let us introduce the
disturbances as per formulas

X=X, Y=YytX,, Z=Z5+X;, Vi=ViotX,, V=V, +X,  V3=Vi+x.
The values y,,z, comply with the second equation from (39), and v,,,V,,,V,, are

expressed by y,,z, as per three last formulas from (39).
The equations of linear approximation are the following
X ==bzyx,, X, =(a—a.)zyX, +bzy%, +by,x; —I'xg,

Xy = (@ —a)yoX; —2b yox, +Ixs

. b Yoz a.b y§
%= _ITUU(b]x] +a.0) X H AL — . YoX
. b YoZo blzy(? . bly(? 2
X5 = 17070 T (ax, +bx,)— Xy —A.ZpXy + by yoXg, Xg = (b —aa.)x, +a.y,x, —by,xs

To the eigenvalues A, =—bz,, A, = bz, of the characteristic equation of this system the
following integral is corresponded
x[(a.(a’ + b a. —a)(z2 + y2) + by (b —2a.” —3aa,))x, -
—2ab (@ +b])(z5 +2Y0)%, —2a.b, yozo(a” +b])x, +
+6a.” +b, y,Tx, +2a.y,(a.” = 2b1)Tx; + 2a.z,(a.” +b})Tx,] = const .

This integral is the first member of the Hess integral decomposition near the curve (39).

Finally, it should be noted that Dokshevich solution belongs to integral manifold
with a non-zero constant of Hess integral, which is testified by the availability of x™
member in formulas (45).

Comment. As a result, the local way of invariant manifold inclusion in the set of
integral manifolds has been indicated. It was demonstrated on the proof of the statement
about the first integral existence of Euler—Poisson equations under Hess conditions. The

first integrals construction, which states the invariant manifold on function by means of
Levi-Civita equations, may be realized in a global way (theorem 3).

5. THE INTEGRATION OF DYNAMICS DIFFERENTIAL EQUATIONS
WITH n-2 FIRST INTEGRALS

Rigid body dynamics equations are autonomous and comply with the following
conditions: the right sides of the differential equations do not depend on that variable, in
reference to which its left side has been written (see the equations (16))

X, (x,....x,)
ox, B

i

%= X,(X0X,) 0. (46)

. . - . X, . . —
Here right side satisfies the conditions a—’e C" in the domain E, c R, (i=1,n).

X
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The equations (46) have a range of the first integrals (for better understanding let us
change the identifications comparing with (21))

Q,(x.nx)=c;, (i=1k), 47

00, (x,,....X,)
ox.

where functions @,(x;,...,x,)€ C' and rank of matrix [
J

J isequal tok .

Let us put the new variables y,,..,y, in the point x°=(x),..,x)e E, and its

n

neighborhood
% =g (psy,)  (=Ln), (48)
where y=(y,,...,y,)" € E, € R, . Jacobi replacement (48) in the domain E,
D(yyny,) = | 2B 2l
dy;
So the replacement (48) is inversible
v, =G(x,....X,) , (49)
and y) =G,(x,...x"). Dueto D#0 the condition is realized
D' (X)X )=|aGf(x"""x") = 1 #0, (50)
! ox; | (D(y s ¥,))
where the identification is taken into account
(D(y1s23,)) = D(Gy (%) 10001 X, G (X000 X,)) (51)

Obviously, due to D #0 the value D" from (50) is not transformed in zero.
With the replacement (48) the equations (46) are transformed to the system

Vi =Y, (¥sees y,) (i:l,_n). (52)
For the equations (46), (52) Jacobi identity takes place

iaxi(x],...,xn) B 1 2 OD(Yysees )Y (Ve V)
i=l1 ax,‘ D(y]n"?yn) Jj=1 ay]
Jacobi theorem is known: Let the system (46) has n-—2 first integrals

(53)

Q,(x,...x,)=¢; (i=1,n-2). So the system (52) allows the additional first integral and
it is integrated in quadrature.
This theorem proof is based on the usage of the first integrals (47) in the replacement
(49):
yk :(pk(xl""’xn):ck (k:],n—Z), y,,-] :X,’_], y,,:x,,~ (54)
So due to (54) the system (52) is presented in the following way
yk :0 (k:],l’l—Z), )'7,,_] :)/;1_](6]9~~~9c,,_29yn_]9yn)7 5’,,:Y,,(Cp---,cn_z»y,,_py,,)~ (55)
This system due to Jacobi condition (53) has the integrating multiplier
M(cl""’cn—Z’ yn—l’ yn) = D(cl ""’cn—Z’ yn—l’ yn) . (56)
So it is integrated in quadrature, as two last equations from (55) allow the existence of
additional integral
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Qi (Cranes €y Voot ¥0) =€y - (57)
So the relation (57) allows getting the solution for the equations (55)

Ve=¢, (k=1n=-2), y,_=y,(c.C,st), Y, =Y, (cpenC,5) .
The equations (46) solutions (46) we can take from (48).
In classic problem three cases of the additional (forth) integral existence in Euler—
Poisson equation are known. These are the cases of Euler, Lagrange and Kovalevskaya.
There are no any other additional algebraic and analytical integrals [4-8]. Therefore
the task to integrate the dynamic equations at invariant relations is challenging.

6. THE INTEGRATION OF THE EQUATIONS (46) BASED
ON -3 FIRST INTEGRALS AND ONE IR ACCORDING TO LEVI-CHIVITA
Let the equations (46) have n—3 first integrals:
O, (X}, x,) =¢, (k=Ln-3) (58)
and one invariant relation (5). Let us introduce the new variables
yi:(pi(x]v"'vx,,) (lzlvn_3)7

(59
yn—2 :(p(x]""’xn)’ yn—] :xn—l’ yn :xn'
So based on (6), (58), (59) the system (46) is reduced to
¥, =0 @(=Ln-3), Ve = YneaYna (Visees ¥, 5
(60)

Vot =Y (Vs 1) Vo =Y, (Vs v, -
We shall consider the system (60) integration at invariant relation @(x;,...,x,) =0,
viz. assume in (60) y, , =0 and bear in mind the first integrals (58). Then from (60)
we shall get [28]

yi=¢, (i=1ln-3), Vo =0,
(61)
Vo =Y, (€10, 3.0, ¥, ) Y, =Y, (¢50sC, 350,05 V)
The equations (61) have been received in the assumption, that
« dy, — —
A (Xx,) = % #£0  (i=Lm k=Ln), (62)
X;

where x = (x],...,xn)T eE,,ay (= I,_n ) complies with the relations (59). Due to (62)

i

the condition takes place
0%
dy

J

1 R J—

:mio i=1Ln; j=Ln). (63)

Here x;(y,,...,y,) are received from the equality (59). Taking into account the equations
(60), (61), out of condition (53) we get
Ay 35,530, Y, . ¥,)Y, 5 (€150, 550, Y, 5 Y, +

Ay, y,) =
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N OA(C)seesCp 350, Yty V)Y (€1 seens €z 0, Y0y V) N
0,
N OA(CyserCp 350, ¥, Y)Y, (€1 5ees €350, ¥, ¥,)
dy
As the condition (63) is to be realized, so the following item is resulted out of the
condition (64), that due to the availability of the equality

Y _,(¢,.n¢,5.0,¥,4,5,)=0. (65)
The function A(c,,...,c,5,0,y,,,y,) will be the integrating multiplier of the two last

(64)

=0.

n

equations of the system (61). Therefore, the sufficient condition (65) for the system (46)
integration at the invariant relation @(x,,...,x,) =0 has been defined. The further system

(61) integration is realized similar to the case of n—2 first integrals existence in the
system (64).

7. THE EQUATIONS (46) INTEGRATION, INVOLVING n—4 FIRST INTEGRALS
AND TWO INVARIANT RELATIONS ACCORDING TO LEVI-CIVITA

Let us consider the case, when the system (46) has n—4 first integrals

0, (x,...x,)=¢; (i=1n-4) (66)
and two IR according to Levi-Civita
o(x;,...,x,) =0, 8(x..x,)=0. (67)

If we consider, that the derivative coefficients from IR (67) are the analytical
functions of the variables @=@(x,,...,x,), g =g(x,,...,x,), then IR (67) complies with
the equation of a class (10) [24]

Q=N (X ety X,)Q(X, s X, )+ Ay (X ey X, ) (X e X, )

(68)
8 = Ay (X ey X )O(X ey X))+ Ay (X ey X,) 8 (X ey X))
Adding in (46) the new variables y,,...,y, as per formulas
Vi =0,(xx,)=¢; (i=Ln-4), Yoz = O(x),..0,%,)
(69)

Yooa T8(Xises X)) s Y Z Xy Yo =Xy

where ¢, — constants of the first integrals, we shall put down the reduced equations,
using (66), (68):

%=0 (i=lLn-4),

Yus = Vsl s O ¥+ 9,500, 5

Yz = Vs Va s Wiseees V) + Va5 (s 1) s (70)

Vor =Y Oy 2 =Y, Oy, -
Let us consider the system (70) integration at IR (67). Assuming in Jacobi formula (53)
that y,=¢, (i= 1,11——4) s Yoz =0, y,., =0, we shall get
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A(C] ,...,C,’_4,0,0, Yu-1s yn)[Yn(Pz (C],...,Cn_4,0,0, Yu-1» )7,,)+
+ Y,’(_ZZ)(C],...,C,,_4,O,O, Yn-1 yn)]+
N OA(C) sy 0s 3,15 V)Y (Cpyeees € 0 V15 V) N
ayn—]

N OA(cy,..,€, 40,0, ¥, 1, ¥,)Y, (C1peenC, 40, Y, 15 V)
dy

(7D

=0.

n

ox,

In formula (71) A== G j=Ln) and

J

YO (P ¥,) = <7»] (x],...,xn)> ,

Yn(—ZZ(y]v"vyn) = <}\.4(x],...,x,,)> .
If in equality (71) we set
Yn(lé (¢)5esC_s00, ¥, 1, y,) + Yn(_zz (¢)5e€,_4,0,0,5,,,9,)=0, (72)
then from two last equations of the system (70) and the equality (71) it is implied that
the integrating multiplier of the equations (70) at IR (67) may be taken as follows
M*(c] 3o Crns0,0, Y, Y,) = Aleyhe56,.4,0,0, v, 0, y,) - (73)
Therefore, we received the sufficient condition (72) of the solutions existence for the
equations (46) at two IR (in quadrature) [28], based at formula (53). The other cases of
the equations (46) integration at IR are analyzed in a similar way.
Examples.
For the demonstration of the received results, first of all, let us make an example of
the three-dimensional system, which allows having one invariant relation.
Assume that for the variables x,,x,,x; the following system has been given

1
X = 0+ 0y (X, + X)) + 2%, %, +E(1 —a)x;,
1
%, =0, (X, + X)) +2x,%, +5(1—b)x12 +x7,
(74)
1 1
Xy =0y (3, + X,) + 22, X, +5(1 +b)x} +5(1 +a)x;,
where o,,a,b — fixed characteristics. Obviously, the right-hand sides of the equations

(74) comply with the conditions % =0. This system accepts the invariant relation

i
Oy + X, + X, + X, =Q(x;, %,,%,) =0, (75)
so for the function from (75) due to (74) we have the following equation
O(x;, %y, X3) = Q7 (%, Xy, X5) (76)

Let us enter in system (74) the new following variables y =x, y,=ux,,
¥; = @(x,,x,,x;) . Then on the basis of (74), (76) we have
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+3)

. (a
i =—(x0y1—2(x0y2+(x0y3—2y,y2— y22+2y2)73»

(77

. 1+b) .
Yy =0y, =0y y;— Y12_2)’2Y3+)7§+)732» V3 :y32~

It is obvious, that for the system (74) the condition (65) has been maintained. For the

system
(a+3) . (1+b)
5 ¥, y2=060y2—Tyf+y§, (78)

which comes from a system (77) as y, =0, the integrating multiplier is 1. The first

Y =—0y, 20y, =2y, y, —

integral of the system (78) has the following form

a+b) ; (a+3) ;
0y, ¥, + Y, yZ—Ty?+ocoy§+ y=c, (79)

where ¢ — arbitrary constant. By means of the integral (79) the system (78) is integrated
in quadratures.

By means of the system (74) it is easy to make an example, when the system has a
first integral and one invariant relation. Let us consider the system of the 4-th rank,
consisting of three equations (74) and one equation [28]

Xy =000 +200 (2, 42, + ;) = 20X, + X, + X,0) F X+ X5+ x5 . (80)
The equations system (74), (80) allows the first integral
X=X —X,—X;=cC,
where ¢ — arbitrary constant. While replacing y, =x,, y,=x,, y; =0,+x +x,+2x;,
Yy =X, —X,—X, —x, the system (74), (80) is modified to the system (77) and y, =0.
As y, =0 it is integrated and assumes two integrals: the integral (79) and y, =c,. The
result, received in these examples, is stipulated by the condition (72).

8. EQUATIONS (46) INTEGRATING AT S.A. CHAPLYGIN INVARIANT
RELATIONS

S.A. Chaplygin reviewed the issue about the integrating multiplier of the equations

(46), which allow [ invariant relations [25]
@, (x,50.x,)=0,...,0,(x,...,x,) =0 81

and n—2—1 first integrals

O (X X)) = Cags oo @, (X X,) =€,y - (82)
It is expected that the functions, which are placed on the left sides of the equalities (81),
00, (x;,....X,)
ox,

i

(82), are continuously differentiable and rank[ J (j=Ln-2; i =1,_n) is

equal to n—2. Herewith, the relations (81) were called as particular integrals by
S.A. Chaplygin and he put down the equations (9), in which the values m; >0. As

mentioned above, the system (9) in S.A. Chaplygin’s case is more generalized, than the
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system (10). However, this exception may make difficult the application of the results, as
in general case the right sides of the equations (9) are not considered as analytic
functions of the variables @,,...,@, , which set the IR (81).
If, following [25], we are to arrange the transformation of the variables x,...,x,
according to the formulas
M= (K X)), s 3 = @ (X X)) Vier = P (X505 X,) 5
.............................................. , (83)
Ve = Q0 (Xp5e0%,) Yot = Xuo1» Yn = X0s
then the system (64) due to (9), (82), (83)will be reduced to
! —
y, = z}yf"”Aij(y,,...,yl,cm,...,cn_z,yn_,,yn) (i=L1D),
=

Yt =Cras +oos Yp2 =Chns (84)
.).}n—l :Yn_1(y1»~~~»yz»C[+1»~~~»C,,_2»y,,_1»yn) )

Vo =Y, (Vises Y Craees €y Yot Vi) -
Having transformed the system (46) by means of the replacement (83) and indicated

by D= (’;i (i,k =1,n) Jacobi form of a backward transformation, for the application
of Jacobi form (53) S.A. Chaplygin put down the following expressions [25]
% =m,y""'DA; + " % . (85)
y, ay,
By means of (85) the formula (53) may be reduced to
/
z miiyim”_]DAii +yz'mH aDAii + aDY,,_] + aDY,, =0. (86)
p 9y, Wy O,

Considering the system (84) integration at IR (81), S.A. Chaplygin assumes that
m,; >1 in the equation (9). That is similar to the approach, which was applied during
the integration of the dynamics equations, allowing n—4 first integrals and two IR, we
can verify the two last equations from the system (84) allow the integrating multiplier
D(0,...,0,¢c/y5.-5C, 05 15 Y, ) » 1.€. the system (84) is integrated in quadratures at IR (81)
and at first integrals (82). Thereby, S.A. Chaplygin condition is formed on the basis of
the statement, that m, dimensions of ¢, functions of the diagonal system elements (9)
are above one.

As stated in the research work by A.V. Maznev [33], the result of S.A. Chaplygin
[25] may be generalized, by assuming that some m, >1 (i=n,,n,,...,n,, m<I[), and
for others m ;=1 and

ZAW(O,O,...,O,CM yeesCrns Yos ¥,) =0
(6#n,...,6#n;)
Then again as an integrating multiplier of the system (84) the function
D(0,...,0,¢;,(5-sC,_5,Y,_1»Y,) can be held. So the supplement to the results of

S.A. Chaplygin lies herein.
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9. CONCLUSIONS

In this paper two problems, concerning the invariant relations method development
in the rigid bodies dynamics equations, have been reviewed. There problems are closely
associated with the issues of ordinary differential equations integration, which assume
the first integrals existence and invariant relations. The applicability of this research in
the area of mechanics was highlighted in the articles of the following outstanding
scientists: A. Poincare, E.Husson, P. Burgatti, A.M. Lyapunov, S.A. Chaplygin and
others. Due to the approval of nonexistence of algebraic and analytical integrals of the
Euler—Poisson equations in general case (A. Poincare, V.V. Kozlov and others) the
problems, which were solved here, allow using the new approaches for the further
investigation of integral manifolds properties in the dynamic equations and thereby
establish the general patterns in the motion of mechanic systems. For rigid body
dynamics it is very important to attract the scientists attention to the investigation of the
new fourth integral (A.M. Kovalev [27,34]) which is obtained under the Hess
conditions.

REFERENCES

1. Euler L. Découverte d'un nouveau principe de mécanique, Histoire de I'Académie Royale
des Science et Belles Lettres, Berlin, vol. 6 (1750, 1752), p. 185-217.

2. Lagrange G. Analytical mechanics, Gostekhizdat, Moscow; Leningrad 1950, vol. 2, 440 p.

3. Kovalevskaya S.V. The problem about solid rotation in a neighborhood of a fixed point. —
in book: Kovalevskaya S.V. Scientific works, USSR Academy of Science edition, Moscow
1948, p. 153-220.

4.  Hisson E. Recherche des integrales algebriques dans le mouvement d'un solide pesant
autour d'un point fixe, Ann. Fac. sci. Univ. Toulouse 1906, ser. 2, vol. 9, p. 73-152.

5. Burgatti P. Dimostrazione della non esistenza d'integrali algebrici (oltre i noti) nel
Problema del moto d'un corpo pesante intorno a un punto fisso, Rend. Circ. mat. Palermo
1910, vol. 29, p. 369-377.

6.  Poincare A. New methods of celestial mechanics. Collected work. In 3 volumes.vol.1.
Moscow 1971, 771 p.

7. Lyapunov A.M. About one property of differential equations of heavy rigid body motion,
having a fixed point. col.edition vol.1. USSR Academy of Science edition, Moscow 1954,
p.402-417.

8. Kozlov V.V. Integrability and non-integrability in Hamilton mechanics, Uspekhi
matematichskikh nauk, vol.38, ed. 1 (1983), p. 3—67.

9. Hess W. Uber die Euler'schen Bewegungsgleichungen und iiber eine neue partikiilare
Lisung des Problems der Bewegung eines starren schweren Korpers um einen festen Punkt,
Math. Ann. 37. H. 2 (1890), s. 153-181.

10. Bobylev D.K. About one particular solution of differential equations for a heavy rigid body
rotation around a fixed point, The department of Physics in the Society of Natural Science
Amateurs, vol. 8, No. 2 (1896), p. 21-25.

11.  Goryachev D.N. New particular solution of the problem about a heavy rigid body motion
around a fixed point, The department of Physics and Mathematics in the Society of Natural
Science Amateurs, vol. 10, ed. 1 (1899), p. 23-24.

40



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

32.

Invariant relations method development

Goryachev D.N. About a heavy rigid body motion around a fixed point in case of
A = B = 4C, M. Mathematics Club Publications, vol. 21, ed. 3 (1900), p. 431-438.

Steklov V.A. One case of a heavy rigid body motion, having a fixed point, The department
of Physics in the Society of Natural Science Amateurs, vol. 8, ed. 2 (1896), p. 19-21.
Steklov V.A. New particular solution of the problem about a heavy rigid body motion
having a fixed point, The department of Physics in the Society of Natural Science Amateurs,
vol. 10, No. 1 (1899), p. 1-3.

Chaplygin S.A. New case of heavy rigid body rotation, braced on one point, the department
of Physics in the Society of Natural Science Amateurs, vol. 10, ed. 2 (1901), p. 32-34.
Chaplygin S.A. New particular solution of the problem about a heavy rigid body motion
around a fixed point, the department of Physics in the Society of Natural Science Amateurs,
vol. 12, ed. 1 (1904),p.1-4.

Kowalewsky N. Eine neue partikulare Losung der differentialgleichungen der Bewegung
eines schweren starren Korpers um einen festen Punkt, Math. Ann. vol. 65 (1908), s. 528-
537.

Grioli G. Esistenza e determinazione delle prezessioni regolari dinamicamente possibili per
un solido pesanto asimmetrico, Ann. Mat. pura ed Appl., vol. 26, fasc. 3—4 (1947), p. 271-
281.

Gorr G.V., Kudryashova L.V., Stepanova L.A. Classical problems of rigid body dynamics,
Naukova dumka, Kiev 1978, 296 p.

Kharlamov P.V. Lectures in rigid body dynamics, publishing office of Novosibirsk State
University, Novosibirsk 1965, 221 p.

Dokshevich A.L. Solutions in the final variant of Euler—Poisson equations, Naukova dumka,
Kiev 1992, 168 p.

Gorr G.V., Maznev A.V. Gyrostat dynamics, having a fixed point, Donetsk National
University, Donetsk 2010, 364 p.

Levi-Civita T. Amaldi U. Lezioni di Meccanica Razionale, Nicola Zanichelli, Bologna
1927, vol. 2, 671 p.

Levi-Civita T. Amaldi U. Course of theoretical mechanics. in2 volumes. Publishing office
of foreign literature, Moscow 1951, vol. 2, part 2, 555 p.

Chaplygin S.A. About final multiplier principle. Collected edition. vol.I, M.-L. 1948, p. 4—
9.

Kovalev AM. The equations of invariant and oriented manifolds of dynamic systems,
Report of National Academy of Science of Ukraine, No. 9 (1998), p. 21-25.

Kovalev A.M. Inclusion of the invariant manifolds in a set of integral manifolds and Hess
solution analysis, Mekhanica tverdogo tela, ed. 32 (2002), p. 16-31.

Gorr G.V., Schetinina Ye.K. About integrating multiplier of dynamic equations of rigid
body at invariant manifolds, Report of National Academy of Science of Ukraine, No. 1
(2007), p. 60-66.

Pontryagin L.S. Simple differential equations, Nauka, Moscow 1965, 331 p.

Gorr G.V., Ilyukhin A.A., Kharlamova Ye.l. About particular solutions of one equations
form for rigid body motion, having a fixed point, Mekhanica tverdogo tela, ed. 6 (1974),
p- 3-9.

Kharlamov P.V. About invariant relations of differential equations system, Mekhanica
tverdogo tela, ed. 6 (1974), p. 15-24.

Kovalev A.M., Kirichenko V.V. The equations and integrals of Hess gyroscope motion near
the proportional rotations, Mekhanica tverdogo tela, ed. 30 (2000), p. 87-93.

41



33.

34.

AM. KOVALEYV, G.V.GORR

Maznev A.V. About one case of an integrating multiplier existence of the rigid body
dynamic equations at invariant relations of Chaplygin’s class, Research works of Institute
of Applied Mechanics and Mathematics, vol. 19 (2009), p. 155-161.

Kovalev A.M. Invariant and integral manifolds of dynamical systems and the problem of
integration of the Euler—Poisson equations, Regular and chaotic dynamics, vol. 9, No 1
(2004), p. 59-72.

PA3BOJ METOJAE UHBAPUJAHTHUX PEJIALINJA Y
MNPOBJIEMUMA JTUHAMMUKE KPYTUX TEJIA

Axanemuk Hannonanne Akagemuje Hayka Ykpajune, A.M. KoBajes n
npogeccop I'.B. I'opp

VYV pany ce IpeAcTaBjbajy pellema IpodiemMa YyKIbydema
WHBApUjaHTHUX MHOTCTPYKOCTH Y CKYIl MHOTOCTPYJOCTH MHTETrpaja u
KOHCTPYKIMje TpPBUX WHTerpaja AudepeHlHjaTHuX jeAHauYrnHa
MOCTaBJbEHE HA OCHOBY WHBApHUjaHTHUX pelaldja YKbydyjyhu u
jenHaynHEe AWHAMHUKE KpyTux Tena. Takohe je mpenctaBibeHa
WHTerpanyja TUX audepeHuujarnux jenHaunHa momohy K. Jacobi-
jeBHX Teopema Ha wuHBapHjaHTHUM penanujama T. Levi-Civita u
S.A. Chaplygin. Ercucrennuja npsux unrerpaia Euler—Poisson-oBox
jenHaynHa y3 3a70BoJbee Hess-OBHX yclioBa je I0Ka3aHO U BUXOBa
MpBa anpoKcUMaIiyja je 1o0ujeHa.

Kibyune peum: WHBapHjaHTHE MHOTOCTPYKOCTH, MHOTOCTPYKOCTH
WHTEerpaia, uHBapujanTHe penaunuje, Euler—Poisson-oBe jenqHauunne.

Submitted on June 5, 2012, accepted on November 10, 2012.

DOI : 10.2298/TAM14S1021K Math.Subj.Class.: 70E05; 70E40; 70H33;

42



JOURNAL OF THEORETICAL AND APPLIED MECHANICS
Series: Special Issue dedicated to memory of ANTON DIMITRIJA BILIMOVIC (1879 - 1970)
Vol. 41 (S1), 2014, pp. 43-60, Belgrade 2014.

MULTI MEMBRANE FRACTIONAL ORDER SYSTEM
VIBRATIONS

UDC 531: 534.1: 532.135

Katica R. (Stevanovi¢) Hedrih

Mathematical Institute SANU Belgrade, Department for Mechanics
and Faculty of Mechanical Engineering, University of Ni$, Serbia.
Priv. address: 18000-Nis, ul Vojvode Tankosic¢a 3/22, Serbia,
e-mail: khedrih @eunet.rs, katicahedrih @ gmail.com.khedrih @sbb.rs

Abstract. A model of multi membrane fractional order oscillations is presented and
corresponding partial fractional order differential equations are solved. A hybrid
fractional order element with translator and rotator inertia properties is introduced
by corresponding constitutive relations. Generalized function of fractional order
energy dissipation is introduced. Generalized forces of two membrane and fractional
order layer as well as of its constitutive element are expressed by energies and
generalized function of fractional order energy dissipation.

For obtaining solution of system of partial fractional order differential equations, it
is used Euler-Bernoulli method of particular integral and transformation of the
system of ordinary fractional order differential equations along eigen time functions
introducing eigen main coordinates of fractional order system. In result it is obtained
a system of independent ordinary fractional order differential equations each along
one eigen fractional order main coordinates. Eigen fractional order main modes of an
eigen time function in each of infinite number of eigen amplitude shapes are defined.

Key words: Hybrid system, fractional order element, translator and rotator inertia,
discrete continuum fractional order layer, membrane, fractional order energy
dissipation, eigen time functions, eigen main fractional order mode, trigonometric
method.

1. INTRODUCTION

Aim of this paper is to investigate properties of the vibrations of a hybrid system
vibrations consisting of finite number of membranes coupled by discrete continuum
fractional order layers with translator and rotator inertia properties. Idea of discrete
continuum layer consisting by standard light hereditary elements [1-3] or standard light
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fractional order elements [4-8] appear in the papers [9-13] written by (Stevanovic)
Hedrih. Standard light hereditary element is defined in the monograph [1] authored by
Goroshko and (Stevanovi¢) Hedrih. Standard light fractional order element is defined in
the numerous References [8-10] by (Stevanovi¢) Hedrih, and both elements was used as
coupling elements between rigid or deformable bodies for obtaining model of different
kind hybrid system dynamics. Discrete continuum fractional order layer is defined on
the basis of discrete continuum method, containing standard light fractional order
elements distributed homogeneously along line or surface for coupling deformable
beams or plates, or deformable bodies with same boundary conditions.

Idea that coupling element can be with translator and rotator inertia properties
appears in the papers [14-15] by (Stevanovi¢) Hedrih and schematically presented by a
rolling element between two surfaces. Late a standard visco-elastic element with
translator and rotator inertia properties is used in a discrete continuum layer between
two circular plate system in the first submitted dissertation [16] authored by Simonovié¢,
and also in the paper [17] by (Stevanovi¢) Hedrih and Simonovi¢, and also in the papers
[18] by (Stevanovi¢) Hedrih and [19] by Simonovi¢.
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Figure 1. Discrete continuum fractional order layers with translator and inertia
properties: Five membranes with same contours and boundary conditions, coupled by discrete
continuum fractional order layers (a*); and Standard fractional order element with translator and
inertia properties — schematically presentation ( b*).

Next chapter of this paper is focused to the constitutive relation of standard hybrid
fractional order element with translator and inertia properties as subelements of discrete
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continuum fractional order layer with translator and rotator inertia properties. Third
chapter is related to partial fractional order differential equations of transversal
vibrations of multi membrane system with fractional order layers of translator and
inertia properties. Next two chapters are focussed to solution of system of partial
fractional order differential equations.

2. DISCRETE CONTINUUM FRACTIONAL ORDER LAYER WITH TRANSLATOR AND ROTATOR
INERTIA PROPERTIES

In this chapter we describe discrete continuum layer consisting of numerous standard
hybrid fractional order elements, each containing parallel coupled standard ligh ideal
elastic element, standard light fractional order element [20-21] and standard translator
and rotator inertia element. These elements are presented in Figure 1. b* schematically
as a hybrid element with the following coefficients: of rigidity Cokks)® fractional order

disipative properties C,( 441), @& and coefficient of translator and rotator inertia

.2
properties: m ,,, mass of rolling sub-element and its ratio Kyt = (lczj between
k. k+1

square of inertia radius and square of radius of its contour.

2.1. Constitutive relation of standard light fractional order element.

Taking into account, that each standard light fractional order element is between two
deformable membranes, with membrane transversal displacements w, (x,y,t) and
Wi (x,y,r), respectivelly in same direction, then extension of this element is:
AWkﬂ,k(x,y,l):wM (x,y,1)=w,(x,y,r), We can use expression for generalized forces for
generalized coordinates w, (x,y,t) and  w,, (x, y,t) in the following constitutive
relations:

Oy (Z) = _{co(k,m)[wm (x, y,t)— Wi (x, Y, l)]"' ca(k,kﬂ)sra[wkﬂ (x, Y, Z)_ Wi (x, Y f)]}: =0y s (’)
k=1234,..M (D
where ®¢[] is a fractional order differential operator of the o™ derivative with respect

to time 7 in the following form [20, 21,22]:

t

1 d i [ (3. 7).y, 2], @)
1-a)dry -z

27l )=

where c,c, are rigidity coefficients — momentary and prolonged one, and « is

rational number between O and 1, 0<a <1.

45



KATICA R. (STEVANOVIC) HEDRIH
2.2. Standard inertia element with translator and rotator inertia properties

By use primary idea from 2007 and published References by Hedrih (Stevanovi¢) in
Refs. [14], [15] and [18], and late in [16] and [19] by Simonovi¢ J. in her doctoral
dissertation used in a number of investigated examples, in this paper, we extended
number of basic elements by a standard hybrid fractional order element with translator
and inertia properties. Taking into account mass and mass inertia moments and realized
by a rolling disk or sphere a standard inertia element with translator and inertia
properties is presented in Figure 1. In same Figure 1, two different realization of the
standard element with translator and rotator inertia properties by two rolling disks or
two spheres and with transversal forces compensations are presented. This structure of
element is only schematically represented for simulation inertia properties at macro
level, but this element must to accept at micro-level.

Basic constitutive relation for standard inertia element is possible to obtain by use
kinetic energy and corresponding expression for inertia forces. Taking into account that
standard inertia element have only kinetic energy E%zn;ﬁff ", we can use expression for
generalized forces of inertia for generalized coordinates W, (x, y,t) expressed by kinetic

energy in the following form:

elem-layer clem-layer
Qelelmluye'r:F _ iaEK(kai) _aEK(Mﬂ)) 3)
inert,wy jwe
dr ow, ow,
ot

and corresponding constitutive relations between corresponding generalized force and
generalized coordinates, W, ( X, Y, t)and Wea (x, v, z) are expressed by following double

relation:
2 2 2 2
Qélen-larr _ :_l m 9 W, i 9°w, Ti 9 Wy _ 9wy 4)
inert,wy [ wyy, FAGYAL 4 k k+l atz azt kk+1 atz azt
k=1234,..M
where my ,,, is specific mass of discrete inertial element, . _[lcj coefficient
’ kk+l T 2
kk+1

depending of rolling inertia properties-of inertia constitutive sub-element, for disc
Kejn = % , or for sphere x = % , or for hollow sphere with thin value Ko = % .

kk+1
We can see that this coefficient K, is constant, and no depending of dimension, but
only of mass distribution around axis of rolling and of ratio between radius of axial mass
inertia and radius of rolling surface.

From previous expressions, we can see that generalized forces in axial direction are
with different values. Then difference between previous generalized forces is

1 0’ 0’
elem—layer __ ~yelem—layer _ K wk+] _ w]k (5)
Qinerl,ww Qinerl,wk - 2 mk,k+] kk+1 atz aZt
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and represent influence of rolling element inertia rotation in the form of kinetic angular
momentum in the form:

(6)
] da)(‘(k,kﬂ) ) d aE o K (k A’+1) aE ’A A’+1 I d aE o K (k. AI+1) aE o K(k AI+1 R
k) ™ dr 5 ow,., oW, dr ow, ow, b
ot ot
or in form
dwC(k,k+])

Jewx
C(k k+1) atz azt

1 82 82 7
(Qelem—layer Qelem la)er) K R Wk+] W]k ( )
inert,w, inert,w, A k+1 lk,k+] k417 e k4
dt o * 2

g (y.) T N(xy)

\:,m(r p.1)

B

VW, ("/”)

Figure 2. Models of multi membrane hybrid system: Five membranes, same contours and
boundary conditions, coupled by discrete continuum fractional order layers with translator and
rotator inertia properties: (a*) circular membranes; and (b*) rectangular membranes.

2.3. Standard hybrid fractional order element with translator and rolling
inertia properties

In the beginning of this chapter we describe structure of a standard hybrid fractional
order element with translator and inertia properties, each containing paralel coupled a
standard ligh ideal elastic element, a standard light fractional order element and
standard inertia element with translator and rotator inertia properties. This definition
give us formula fo obtaining constitutive relation between generalized forces and
extenssion of the element. Expressions of the generalized forces of interactions between
deformable bodies- membranes and standard hybrid fractional order element with inertia
properties in the discrete continuum model, in function of independent generalized
coordinates w, (x,y,r) are possible to obtain by different principles. In this paper,

lem-1
generalized forces Q"""

between standard hybrid fractional order element and
membranes with transversal displacements w, (x,y,r)and wM(x, y,t) which are

independent genarlized coordinates of a hybrid fractional order multi membrane system
dynamics, (presented in figures 1.a*, and 2.a* and b*, are in the form:
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1* If it is known expressions for kinetic energy Eele;"?ff’fr, potential energy

em—layer

elem—layer
E (k k+1)

p(kx+1) and generalized function q)el

of fractional order dissipation of

mechanical energy of hybrid fractional order element with inertia properties, the
generalized forces are in the following forms:

elem-layer uﬁm layer elem~layer lem~layer 8
ledmfla(\wr - i aEK(kaI) aE K (k A+I) aE Pk Afl) acb‘ sA A+a| ’ Q””" plate ( )
! di a(ﬁwk ow, ow, (sya [WA ]) "
ot

or
2* in developed form in function of generalized coordinates w,(x,y,z) and

Wk+] (X, yvt):

Q,ff::’/,:»’zl;lx,l = i{Co(k,l\url)[Wl\url (X, y,l‘)— Wi (X, y,t)] +Colk st )sfa [Wk+1 (x, Y, t)_ Wi (x, y,t)]}—

—lm 9’w,., N 9’w, T W,y 9°w,
47 o 9% s U TR

Last expressions (8) and (9) present generalized force interactions between two
bodies-membranes coupled by standard hybrid fractional order element with inertia
properties.

€))

3. GOVERNING PARTIAL FRACTIONAL ORDER DIFFERENTIAL EQUATIONS OF TRANSVERSAL
OSCILLATIONS OF A HYBRID MULTI MEMBRANE SYSTEM WITH FRACTIONAL ORDER LAYERS
WITH TRANSLATOR AND ROTATOR INERTIA PROPERTIES

Let’s consider transversal oscillations of a hybrid multi deformable membrane system
presented in Figure 1. b* or in Figure 2. a* and b*. Hybrid multi membrane system
contains M ideal elastic membranes coupled by M —1 discrete continuum fractional
order layers with translator and rotator inertia properties. Constitutive elements of these
layers are standard hybrid fractional order elements with translator and rotator inertia
properties of which constitutive relation between generalized forces and generalized

coordinates are defined by expressions (8) or (9). These generalized forces Q;’j’r’im I
are defined as forces distributed along unit area of contact membrane surface between
membrane and discrete continuum layer. We propose that all A membranes are same
contour line in parallel planes, and that membranes are loaded by distributed force along

contour producing stress intensities o, k=1234,.M and that membranes are with

mass density distribution along surface of membranes O, . Then, taking into account

that cizo-k ,k=1234,..M are surface velocities of corresponding membrane
Px

transversal waves propagations in the hybrid multi-membrane system dynamics, the
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system of partial differential equations describing transversal oscillations of a hybrid
multi deformable membrane fractional order system (presented in Figure 1, b* or in
Figure 2. a* and b*) is in the following form (see References by Raskovi¢ [23, 24] and
by Hedrih (Stevanovic¢) [9, 10]):
9°w, (x, y,t
I%zplclewl (xvyvt)+Co(|.z)[wz(xvyvt)_w| (x,y,t)]+

+ o022 Twy (x v ) =y (x, y0)] =
—lm 9w, +32W, e o’w, 0w, +a(xy)
Mo T )T e Ty )T

9’w, (x, y,1)
oo

= PuciAw (x, y,0) —

1 ’w, 9w, *w, 9w,
_4mk—Lk|:(E%Mz/‘+ W“j'*"(k—lx[?w;_ awz};IJ:|_ (10)

9%t
1 ’w,,, 0w, ’w,, 0w,
—4mu+1|:[ at; Lt az;J—KLM[ at; - az; J:|_

_CO(k—Lk)[Wk (x, yvt)_wkfl(xv yvt)]_ca(kflﬁ)gra[wk (x, )’J)_kal(xa y,t)]+
+ cO(k4k+I)[Wk+l (x, Y J)_ W (x, y,t)]+ Ca(kk-v—l)gra [Wk+l (x, Y t)_ W (x, y,t)]+

+qk (xs yst)
k=234,..M-2,M -1

P azWM (x,y,1)
M

o = ,UMC:,,AWM (x,y,0)— co(M—l.M)[WM (x, y,t)— Wi (x, y,t)]—

- c(l(M—I.M)g/(l[WM (x, )’vt)_ Wy (x, y,t)]—

1 *w,, 0w, *w, 0w,
_4mM—1.M|:[atzM+ a;:] + Kyoim TZM_ azﬂt/“ +qM(x’y’l)
2 2
where Laplace differential operator A:i+i in Descartes coordinates (x,y),
ox* 9y’
suitable for the case that membranes are with rectangular contour line, and

_0° 10 10 in polar coordinate system (r,p), suitable for the case that
or* r’d¢’ ror
membranes are with circular contour line.
To previous system of partial fractional order differential equations a system of
the boundary conditions is add in the following form:
1* for the system containing M membranes with rectangular contours:

x=0 0<y<bh w (0,y,0)=0  k=1234..M

x=a 0<y<bh w(a,y,1)=0  k=1234..M

0<x<a y=0 w(x0,1)=0  k=1234,..M (11
0<x<a y=b  w(xbt)=0  k=1234..M

2% for the system containing M membranes with circular contours:

r=R 0<y<2z w (R.@,)=0  k=1234,.M (12)
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To previous system of partial fractional order differential equations and a system of
the boundary conditions for complete definition of the vibrations of the system is
necessary to add corresponding initial conditions in the following forms:

1*fort =0, Wk(x’y’l],:():f(x9y) and aWk(nyyl)

PR Flx,y) k=1234,.M

aw‘ x, y, )

2o, = ) 30 2, 1,1 = Fliy): £=1234,.1

for the system containing M membranes with rectan gular contours;
and

2% fori=0, w,(r.@.1)_, = f(r.p) and M

} E)wA r(pt)

o= F(r.p)k=1234...M

sIa![‘/vk (r7¢7tx]/;:00 =f(l",¢) and@f’[wk(r,(pt F(r’¢)»k:1,2,3,4,...M

for the system containing membranes with circular contours.
In the both cases functions f(x, y) and F(x, y) as well as f(r, q)) and

F (r, (0) must to satisfy boundary conditions (11) or (12) respectively.

4. SOLUTION OF GOVERNING PARTIAL FRACTIONAL ORDER DIFFERENTIAL EQUATIONS OF
TRANSVERSAL OSCILLATIONS OF A HYBRID MULTI-MEMBRANE SYSTEM

As it is suposed all M membranes are same contour-lines and same boundary
conditions (11) or (12). This fact permit us to suppose that eigen amplitude functions

W,,(x,y) oo W _(r,@), for all M membranes in the considered multi membrane

system are possible to take in the same form W, (x,y) or an(r, (p) n,m=12734..0

as in the case of one single membrane with same baoundary conditions (11) or (12)
depending of form contour line of membrane in rectangular form or circular form.
Taking, this fact into account, solution of system (15), the posible solution suppose in
the following forms (see Reference [23] by Raskovi¢ and [25] by Jankovi¢, Poti¢ and
Hedrih (Stevanovic)):

wy (x, y,1)= ZZan(x D))+ k=1234,...M (16)
n=1 m=1
and that distributed excitation along membrane surfaces are :
X, ).t .
qk( L) ZZhOk W (X, ) SIN(Q gl + Ty ) -k =1,23,4,.. M (17)
m=1 n=1

Suposed solutions of previous system (15) of partial fractional order differential
equations are in the forms of series along eigen amplitude functions,
W, (X, y) ,n,m=1234,...,0 satisfaying boudary conditions and with eigen time

functiones Ty (m) () k=1234,.M, n,m=1234,... c and expresed by (16).
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4.1. Ordinary differential equations along eigen time functions of a hybrid
multi membrane system fractional order transversal oscillations

For beginning, let’s introduce the following denotations:

m,, ¢ 2 _ Colris) My
H =k ao(x k) = Aeks) , Aok k1) = s Hi g1 = ’
Pr Px k k
- My g ~2 Co(k-1.k) ~ Colk-1k g (x,y,1)
Hi—1k =L, Ao(k-1.4) = (L), aaf(k—l,k) = el G (x, y,1) === (18)
P P Pr Px

For first, we introduce supposed solutions (16) and expressions (17) into partial
fractional order differential equations of the system (15). Then, we multiply all M
previous obtained fractional order differential equations with S7° -th eigen amplitude
functions W, (x,y)dxdy, s,r=1,2,3,4...,.0 and after integrating by following way

J' J' #W,, (x,y)dxdy all terms in all M equations along surface of the membranes, taking

into account orthogonally conditions of the eigen amplitude functions expressed by
formula _”W (x, y)W (x, y)dxdy= for mn # sr and m,n,s,r=1,2,3,4...,oo and

mn

taking denotations (18), we obtain system of the coupled ordinary fractional order
differential ~equations along eigen time functions T(um)(®) s k=1,2,...M ,

n,m=1,2,34,...., , in the following forms:
[1 +—u,(1+ K)} @O+ Tk T O+ ag T ()=
+ gD [Tl(nm)(f - gt Ta(um) (D = gy D [TZ(nm)(t)]_
- % o (1= )T (0 = i 50(Q 0t +8,0)
nm=1234,...,0o
{1 + g, 1+ /c)+ 7 M 1+ /c)} O+ ek T () + [Zzoz(k_u, + g ]ﬂ (D F
@+ @ B T O] G 0= @1 D 0]

ao(k k+1) k+l nm) (Z) a ok k+1) @ [TA+1 (nm) (l)]+ ,UA u(l - ) (nm) (Z)+

19

+ Zﬂu»fl (1 - Kﬁi‘+l(l11n)(l) = Pyt SIN (an’ +7; nm)
nm=1234,.. .0, k=234,..M-2.M-1

1 ~
|:1 +— LM (1 + ’():| (nm) (t) +CA nm (nm)(t) + a()z(M—l M )L M (nm) (t) +

|
+Z/uM—l,M(1 K1 M—1(nm) n- aOM 1M)TA 1(m) (t)+a (M~ lMg [T (nm) (t)]

- ‘7;(1\471,1‘4 )gra [TMfl(nm)(t )] =Ny SIN (QMnmt +3y, ,um)
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nm=1234,...,00

4.2 Transformation of ordinary differential equations along eigen time functions of a
hybrid multi membrane system fractional order transversal oscillations to the eigen main
coordinates and eigen main fractional order modes

System (19) contains infinite number of independent sub-systems corresponding to
each of eigen amplitude function from a set with W, (x,y), n,m=1234,....,c0. Each
of these sub-systems contains M coupled ordinary fractional order differential
equations along eigen time functions 7, (t) k=12,.. , nym=1234,.....00

There are sets with the ordinary fractlonal order differential equations (19) of the same
type, but with different coefficients. We are going to analyze one of the subsystem, for

hom =0, corresponding to free fractional order vibrations of membranes, that we can

write in matrix form (see References [23], [20] and [21)]:
A,,m{j;(nm)}l k=1,23,...M " Cnm{n( )}l k=1,2.3,..M +C @“[{ k(nm)}l k:1,2,3,,,,,M]={0} (20)

a,nm
nm=1234,....,00

where {Tk }i k=1,2.3,..M

nm

is a matrix column with M elements which are eigen time
functions T}, (#),k =12,....,M for free vibrations, corresponding to one eigen
amplitude function from the set of infinite number of W (x,y), n,m=1,2,34,....,00

Anm is the matrix, in rank M XM ,of coefficients of system (19) mass inertia

properties in the form:

k=1,2,3,..M
Anm = (anm,kj)i =123, M , n,m=1234,.. 0 (2])

C,,, is the matrix, in rank M XM , of coefficients of system (19) rigidity properties in

n
the form:
Cp = (e ) T2 =123, 0 22)

— j=1,2,3,...M

and C

wnm 18 the matrix, in rank M XM , of coefficients of system (19) visco-elastic
creep fractional order properties, in the form:

Com = om0 =1234,... 00, (23)

anim - j=1,2,3,..M

The modal matrix, in rank M X M , that of linear system correspond to fractional
order system defined by (19) or (20) is :

w = Y= UV, mm=1234 @

where K, . &re corresponding cofactors of determinate, in rank M XM ,of defined

characteristic equation of corresponding linear system to matrix equation (20), and in
the following form:

fle2,)=lc,, -2 A, |=0 . nm=1234.... (25)

nm nm* = nm
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with M roots @’

nm,s

s=123,...,M , for each combination from pn,m=1234,...,0.

@, are eigen circular frequencies of linear (harmonic) vibrations.

nm,s
If we apply modal matrix R, to the fractional order system matrices A, ., C
and C,

nm

., in results of their transformations from generalized coordinates - eigen time

functions Tk(nm)(l‘) , k=1,2,...,M along eigen main coordinates of corresponding linear

system, we obtain M diagonal matrices (see References [23], [20] and [21]):

%, =R, A, R, =diagla,.): ©,=R,C,.R,, =diagl,.,)

nm nm* > nm nm nm=~" nm

6o =R Co R, =diagley ) 1m=1230ie 26)

a.nm,s nm = a,nm

where 20, , € and €

According to previous obtained results in transformations of matrices of the system of
ordinary fractional order differential equations and theorem presented in References
[23], [20], [21] or [26], we can take the following formula of coordinate transformation:

{Tk(nm)P 2 :llnm{gnm,s}L . = (Krfm,Mk )ik:lzz:M {gm\nmg }i TSl (27)

from the generalized coordinates Tk(nm)(t) of linear system to corresponding eigen

2.nm.s ¢ diagonal matrices, also each in rank M XM .

main coordinates fnm,s (l‘) , s=1,23,....M and eigen main modes of free oscillations:

¢ 0)=C,, cosl@,, 1 +5,.). 28)

nm,s nm,s

where C,, . and ¢} = are integral constant for linear system determined by initial

s nm,s

conditions, and @,

nm,s

eigen circular frequencies of linear system obtained as roots from

characteristic equations (25).
Taking into account results (26) of the transformations of matrices of fractional
order system in corresponding diagonal form and formula of coordinate transformation

(27) of eigen time functions Tk(nm)(t) applied to the system of ordinary fractional order

differential equations (19) or in matrix form (20), after transformation of system of
fractional order differential equation (19), or in matrix form (20), we have series of
subsystems with all independent fractional order differential equations along one eigen

main coordinate f (t) , s=1,2.3,....M in the following form:

nm,s

9"Yll‘)l {Eﬂl‘)l,x }l e + (SYII‘)I {§n111,x }l T2 + Ca,nlngta [{5’11‘)1,.? }l TS ]= {O} (29)

where fnm‘y}i s=b23-Mmatrix column with M elements which are eigen main
coordinates ‘fnm,s free fractional order vibrations of system (20) of fractional order

differential equations along  of each time functions T},,(1).k=12,...M

correspond to one eigen amplitude function from the set of infinite number of
W, (x,y), n,m=1234,..,0. From obtained subsystems of the fractional order
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differential equations in matrix form (29) is easier to  separate the corresponding
subsystems of fractional order differential equations only along one eigen main

coordinate cfms, n,m=1234,...,00, s=123,..

fnm 5 nm 5 fnm S

where a)nms and a) are characteristic numbers of fractional order vibrations of

M in the following form:
e, =0, nm=1234 0, 52123 (0)

(z nm,s

eigen time functions T (). k=12,...M for free fractional order vibrations,

correspond to one of the eigen amplitude functions ,W, (x,y) n.m=1234,...00
from the infinite set of these functions determined by boundary conditions of all
membranes.

First set of M characteristic numbers a)fm,s ,s=1,23,....M for each combination

of n,m=1234,....,00, contains elements which are roots of characteristic frequency
equation (25) which correspond to linear system. These characteristic numbers a)jm are
square of the eigen circular frequencies of linear (harmonic) vibrations. Also these

cnm S

characteristic numbers satisfy the following relations a)jms =———_. Second set of
Tooa

nm,ss
M  characteristic numbers a)(z)nms,szl,2,3,...,M for each combination of

n,m=1234,..,0, present characteristic numbers which express fractional order

properties of the system and corresponding characteristic coefficients of fractional order
dissipation of the multi membrane system energy. There characteristic numbers is

C
. . 2 a ,
possible to determine by @), = alumss for O<a<l1.
anm,ss
1* For «a=0all differential equations are in the form
fnmg + (a)nm .t a)a s )‘fnm; =0 and characteristic numbers are
=+ C - . . .
2 = Somss T Claoyum.ss _ O+ and eigen main modes are pure periodic
s | =0 nm, (a=0)nm,s
« anm,.m‘
with eigen circular frequency _ | Comss T Claz)umss _ [ 3 and main
Do gy P s Ty,
s
coordinates are & | ' =C,, COS(L o} + a)a s T B ) (€1Y)
2% For «@=1 all differential equations are in the form
fnms nmsfnms .,],Im\fnms =0 and characteristic numbers are complese and
4
2 (a=1)nm,s . .
conjugate 4 __ e , for a)nms >——"and eigen main
s | ey )
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4

w
modes are pure aperiodic with eigen circular frequency g =.|@? ——tems and
nm,s a=l1 nm,s 2
a)Z
coefficient of dissipation §nm E = —__(e=bms and main coordinate are :
Sla=1
Ratoms, )
_ — (a1 (32)
£l = Conre cos| 1@, — e g,

3* For a=1 all (differential equations are in the form
2

f f f =0 and characteristic numbers are real
nm,s nm s nm,s a: Yam,s 2 NI,S
a)z [0) a)4 . .
=B 7 | Cwims _ 0, for @ <=V and eigen main modes are
nm.s | =1 - 2 2 nm,s nm,s

aperiodic with eigen and eigen main coordinate are linear

nm,s

a=1

=C, e

nm,s

a=1

Barthns, 33
=D, e : (33)

nm,s

a=1

Type of fractional order differential equation (30) is known from literature (see
(t,a)|ogag like cosine and

cos

References [22] and [27]) and particular integrals f

nm,s
fnm’s (t, a’]ogag] like sine are in the following forms:

sin

)

o 1
& (t.0)ocasr = Y (<1) ) nm‘t”‘i( J amd T 0<a<l @34

cos =0 =0 a)zl F(2k+1 Q«'])
s=123,..M nm—1234 ,00
d k (k 2]
(t,)oza =D (1) @, £ @Jum.s 0<ac<l
s=1223,..M n,m=1,2,3,4,....,oo

Eigen time functions Tk(nm)(;),k:],z,,,,,M corresponding to one eigen amplitude

function from the set of infinite numbers of W _ (x,y), n,m=1234,..,0 are

0<,1<, like cosine and fnms

(1,0 o like

sin

expressed by particular integrals & S(t 0()

sine, in the form
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(nm) (t) Z nm Mk< nm,s O a) 0=as1 Gy s (t a) oses + fnm s (O’ a) 0=a<1 Sy, (t a) O<e<l >
cos cos sin sin

k=12,..M , nm=1234,...0 (36)
Then, it is possible to obtain expressions for transversal displacements of all M
membranes coupled by M —1 discrete continuum fractional order layers, in the

following form
1* for rectangular membranes:

w, (x, 1) ZZ L (x, y)ZK,,,,,W 1) k=1234..M 37)

n=l m=1

or in the following form developed form.

> 4 s=1,2,3,..M
{Wk (x’ y,t)}(i =1.23M _ zngm(x y)an{gmw ((), ajogasl s (t! ajosasl} + (38)

n=l m=1 ©os

1 s=123
0<a<1G,, (l‘ N4 Xogasl }
s sin

where for boundary conditions (11) eigen amplitude functions are in the forms:

-7

+ i zvvmn (x y)Rmn {é:nm,s (0! a)

n=l m=1

W (x,y) :sinﬂxsinm—ﬂy, nm=1234,..,0 (39)
2% for circular memcll)raneS' ¢
w,(r,0.1) ZZWm(r go)z s oG (t)s k=1234,..M (40)
or in the following de\:ellompeld form:
Ol =SS W OR 0@ (@ }i T
g cos

%3 mn<r,¢>R,z,,z{§m,_,(0,a)

1 s=123,..M
0<a<1 G (t ,a Xogasl }
et sin sin
where for boundary conditions (12) eigen amplitude functions are in the forms [23]:
W, (r.9)=R,(r)p,(p)=J,, k,,r)sinme (42)
where J m(kr) Bessel’s or cylindrical function of first order 7 -th order in one of the
form [23]:

L kr \n 7w
kr (17) ,or inthe form J (kr)= (_l) e cosmt (43)

I (kr) [ 2 ) HZ:(; (m+n)!n! m( ) 27 ,'[,
where i =+/—1 imaginary unit. (44)

5. CONCLUDING REMARKS

Theoretically task for solving system of coupled partial fractional order differential
equations describing transversal fractional order oscillatory displacements of finite
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number of M membranes coupled by M —1 discrete continuum fractional order
layers is solved. For particular solutions it is necessary to obtain eigen characteristic
numbers and modal matrix of linear system corresponding to fractional order system for
free linear vibrations.

For solving problem for forced vibrations of M membranes coupled by M —1
discrete continuum fractional order layers, when each of membrane is loaded by single
frequency external excitation distributed along each membrane, system of fractional
order differential equations (19) is possible to write in the form:

A .. - }l k=1,2.3,..M ,m,{T - }l k=123 M |~ ga[{Tk(nm)}l k=1,2.3,..M ]:

a,nm
= {h()k,nnx sin (leml + 19& nm

After that, using same formula transformation (27) and taking into account previous
results, transformation of matrix fractional order differential equation (45) give the
following result:

2 U s=1,2,3,...M U s=1,2,3,.., 0
9ll‘llﬂ {fnm,s} ' + (Sﬂlﬂ {fﬂlﬂ,.ﬂ‘} s M C Illﬂga [{ nm, V} " ] 2 3 M ]:
. | k=1,23,....
= R:llﬂ {hOk,nm Sln(QAnl1;t + 19 ) e

k,nm

) L k=1,2,3,..M (44)

(45)

where &

nm,s

}i s=123-M s matrix column with M elements which are eigen main
coordinates fnm,s for forced fractional order vibrations, of system (20) of fractional

order differential equations of each eigen time function 7}, (1), k=12,...M

correspond to one eigen amplitude function from the set of infinite number of
W, (x,y),n,m=1234,...00

C.."énm,s + a)jm,scfnm s Y, \ [Lfnm s] Z Knm Mk Ok nm SIH(anmt + l9k nm)

n,m:1,2,3,4,....,°<>, s=123,...M (46)

Each of obtained independent ordinary fractional order differential equation (46)

describes a fractional order oscillator loaded by M frequency external excitation,

which is also solvable by Laplace direct and inverse transformations or by generalized

Laplace method of variation constant in the solution (36) or (38) (for detail see
References [23] and [28].

At the end it is necessary point out series of the Review References [29]. [30]
and [31] containing presentation of all the world selected publications concerning
applications of fractional calculus for dynamic problem of solid mechanics with novel
trends and resent results, and also applications of fractional calculus to dynamic
problems of linear and nonlinear hereditary mechanics of solids. In Reference [31] a
reflections on two parallel ways in the progress of fractional calculus in mechanics of
solids are pointed out, a s results of the closed groups of researchers at large world west
and east. These trends appear, also, in the very small countries as it is in Serbia in
present time.
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OSCILACIJE SISTEMA VISE MEMBRANA POVEZANIH
SLOJEVIMA SA FRAKCIONIM I INERCIONIM SVOJSTVIMA

Katica R. (Stevanovi¢) Hedrih

Matematici institut SANU, Beograd, Odeljenje za mehaniku
1 MaSinski fakultet Univerziteta u Ni§, Srbija.

Apstrakt. Jedan model sistema konacnog broja membrana spregnutih diskretno kontinualnim
slojevima sa frakcionim i inercionim svojstvima je definisan. Uveden je standardni hibridni
element frakcionih i inercionih svojstava i za isti generalisana funkcija disipacije energije
frakcionih svojstava. Dati su izrazi za odredivanje generalisanih sila interakcije elementa i
membrane pomocu energija i disipacije energije frakcionog reda. Napisan je odgovarajuéi sistem
parcijalnih diferencijalnih jednacina sa izvodima necelog (racionalnog) reda. Resenje dobijenog
sistema parcijalnih diferencijalnih jednacina je dobijeno pomocu Euler-Bernoulli-jeve metode
partikularnih integrala i transformacijom dobijenih obi¢nih diferencijanih jednacina sa necelim
izvidima po sopstvenim vremenskim funkcijama koje odgovaraju jednom od beskonacnog broja
sopstvenih amplitudnih funckija. Odredene su glavne koordinate sistema frakcionih svojstava i
modovi parcijalnig oscilatora sistema frakcionih svojstava za slucajeve sopstvenih i prinudnih
modova fracionih svojstava.

Kljuéne reli: Hibridni sistem, elementi frakcionog redda, inercija translacije i rotacije,
discretno kontinualni sloj frakcionih svojstava, membrane, disipacija frakcionih svojstava,
generalisana funkcija disipacije energije frakcionih svojstava, sopstvene vremenske funkcije,
sopstveni modovi frakcionih svojstava, sopstveni karakteristicni brojevi sistema frakcionih
svojstava..
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Abstract. The paper is addressed at analytical and numerical analysis on local
stability of oscillatory regimes in systems of coupled deformable bodies. Systems
consists of coupled deformable bodies like plates, beams, belts or membranes that are
connected through visco-elastic non-linear layer, modeled by continuously distributed
elements of Kelvin-Voigt type with nonlinearity of third order. Using the
mathematical analogies the similarities of structural models in systems of plates,
beams, belts or membranes is obvious. The structural models consists by a set of two
coupled non-homogenous partial differential equations. The problems to solve are
divided into space and time domains by classical Bernoulli-Fourier method. In the
time domains the systems of nonlinear coupled ordinary differential equations are
completely analog for different systems of deformable bodies and are solved by using
the Krilov-Bogolyubov-Mitropolskiy asymptotic method. The first asymptotic
approximation of the solutions describing stationary behavior, in the regions around
the resonances, consists of four differential equations on amplitudes and phases of
two nonlinear coupled modes. This paper presents the beauty of mathematical
analytical calculus which could be the same even for physically different systems.

The stability was investigated applying the Lyapunov’s method and for stationary regimes
stability we used the theorems of stability by linearized the obtained systems of solutions for
amplitudes and phases of component harmonics in the vicinity of stationary solutions. The
solutions of characteristic equation of linearized systems are numerically treated for any
stationary values from resonant regimes and the conclusions of local stability have been
obtained. The mathematical numerical calculus is powerful and useful tool for making
the final conclusions between to many input and output values.

Key words: phenomenological and mathematical analogy, multi-bodies system, non-
linear dynamics, local stability, multi-frequency stationary regimes, mode
interactions.
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1. INTRODUCTION

This paper presents systems of coupled deformable bodies: plates, beams,
belts or membranes, with non-linear interconnecting layer. The mathematical non-
linear descriptions are treated in a sense of making the qualitative analysis of the local
stability behavior of such systems.

In engineering systems with non-linearity, high frequency excitations are the sources
of multi frequency resonant regimes, appearance of high as well as low frequency
coupled modes. The many experimental and theoretical research results ([2-5])
demonstrate that. List of the valuable research results in connected area of the objects of
author’s research is large; some of them may be finding in the reference lists of referred
papers.

The study of transversal vibrations of a double, or multi, deformable bodies systems
with elastic, visco-elastic or creep connections is important for both theoretical and
pragmatic reason. Many important structures may be modeled from coupled systems and
possess a big importance in many appliances. For example, in civil engineering for
roofs, floors, walls, in thermo and acoustics isolation systems of walls and floors
constructions, orthotropic bridge decks or for building any structural application in
which the traditional method of construction uses stiffened steel.

An analysis of system energy of the excited modes depending on amplitudes, phases
and frequencies of different non-linear modes are obtained with averaging and
asymptotic methods for obtaining system of ordinary differential equations of amplitudes
and phases in first approximations in [2, 5]. The energy analysis of mode interaction in
the multi frequency free and forced vibration regimes of non-linear elastic systems
(beams, plates, and belts) excited by initial conditions of system deformation and
velocities, was made and a series of resonant jumps as well as energy transfer features
were identified. Meaning that excitation was done by perturbation of equilibrium state of
the double plate system at initial moment, defined by initial conditions for displacements
and velocities of both plate middle surface points. Besides, two or more resonant energy
jumps at the non-linear modes are present for the case of an external excitation in the
resonant frequency range near one of the natural eigen frequency of the basic linear
system.

Based on power of mathematical analytical and numerical analyses and noted
analogies this paper gives an access to investigation of stability of stationary regimes in
different systems of coupled deformable bodies. By applying the Lyapunov’s method and
the theorems of stability to the obtained systems of solutions for amplitudes and phases
of component time harmonics are linearized. The features of roots of characteristic
equations of linearized system for any values from the resonant regions give us
information of stability of particular stationary regimes. It also clarifies the non-linear
phenomena like: passing through resonant range with discrete values changes of
external excitation frequencies and appearance of one or several resonant jumps in the
amplitude-frequency and phase-frequency curves, like as the multi-non-linear mode
mutual interactions between amplitudes and phases of different non-linear modes of
stationary regimes.
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2. MATHEMATICAL MODEL OF TRANSVERSAL VIBRATIONS OF DEFORMABLE BODIES SYSTEMS

When presenting physical models of deformable bodies systems shown in the Fig.1.a,
b, c. then it is clear that the mathematical model of such a system may be expressed by
the system of two coupled partial differential equations (1), [2, 3 and 5]. The partial
differential equations in this case are formulated in terms of two unknowns: the
transversal displacementw,(g,7), i=12 in direction of the Z axis, of the upper body

middle surface and of the lower body middle surface. We present the interconnecting
layer as a model of one standard light visco-elastic element with started spring’s length [,

and non-linearity ot third order in the elastic part of the layer as shown in Fig.1d.
The system of partial differential equations (1) is derived by using the Principle of
dynamic equilibrium in the following forms (see Refs. [2, 3 and 5]):

9w, (.1 ow,,, (@.1) ow (o,
2ulot), o ()23, 2esle) 2wl n
—apylwal@.0)-w .)]=2e8, [, (0.0)-wilp) +30.0)  for  i=12
cp o EN B c D b _
where are : ® = 5 £fB = y al = s o= D08 = , P=r9
Rl=w) = T D=
for circular plates; B,=El ¢ = B, at) = C , b"ﬂ(,)_i’ 26, = b ., p=z for

P4, PA; P4, PA;
beams; or and the sign T on the right hand side corresponds to the soft (sign +) or
hard (sign -) properties of the non-linear elastic layer. We suppose that the functions
of external excitation at nm-mode of oscillations are the two-frequency process in the

form: q(i)lun (t) = Ry, COS [Qlumt + B ]+ hy cos [Qzlunt + o ] - The SO]uthl’l, 1n one eigen mod of

oscillation, for the system (1) is taken in the form of the eigen amplitude functions
Wi(nm)(r, @)> n,m=123...c0 for plates or membranes, or ‘/Vi(n)(z)’ n=123...00 for beams

02 nm

or belts, satisfying the same boundary conditions and orthogonally conditions, expansion
with time coefficients in the form of unknown time functions Ti(f)’ and describing their

time evolution (see Refs. [2, 3 and 5]):
Wi eigen) (r,¢,t): W, (go)?j (t) =W, (go)lK“"e“i"Rl (t)cos<1>| (t)+ K‘(z)e"%’R2 (t)cos<1>2(t)l 2
where are: K f, co-factors of determinant corresponding to basic homegenous coupled
system , _j and p are real and imaginary parts of the appropriate pair of the roots of

the characteristic equation (see Refs. [2, 5] ).

Amplitudes R (r) and phases & (t)=Q;+¢.(c) are unknown time functions which
were obtained by using the Krilov-Bogolyubov-Mitropolyskiy asymptotic method. It is
taken into account that defined task satisfies all necessary conditions for applying
asymptotic method Krilov-Bogolyubov-Mitropolskiy concerning small parameter. The
external excitation frequencies Q = p, and Q, = p, are in the resonant range of the
corresponding eigen frequencies of unperturbed linear system solutions. By applying the
asymptotic method as well as the method of averaging to the right-hand sides of that

63



J. SIMONOVIC

system with respect to the full phases ¢ () and cI)(Z")(z) , we obtain the system of the first

order differential equations according to unknown amplitudes and phases in the first
asymptotic averaged approximation [2-4] as follow:

a‘l(t):_é‘lal(t)_ﬁcos(pl 1( 1() ()¢1()¢z(t)v91.\vgz.\)
1= -0)- 22 004 Bt P =60 0 ()0 00,0.0,.2,)
3
dz(t):—(fzaz(t)—ﬁcos:?z:0'2(a|(t),az(t),¢|(t),¢z(t),§2“,QZr) ( )

)=l -0 30200 1 2200+ T ing, =200 (0000.002,.0.,)

where g, ()= R (t)e dtis the change of variables hence a(t) = (Rf (t)- SR, (,))6-5«’. The
full forms of constants 5, ¢ , g and pwere presented in [5]. Here it was underlined that
these constants all rely on coefficients of coupling properties via cofactorsg{), that
6,depends of damping coefficients of visco-elastic layer 8, &P depend of excited
amplitudes, and ¢, , 3,0f non-linearity layer properties. Coefficients f, are coefficients

of mode mutual interactions.

Fig. 1. A visco-elastically connected: a) double circular plate system; b) double
beams system; ¢) membranes system; d) model of discrete element at visco-elastic
non-linear interconnected layer.

It was observed the case when external distributed two-frequencies force acts at
normal direction and along middle plain of upper body with frequencies near eigen
circular frequencies of coupled linearized plate systemsQ. = p.. In this case the lower

body is free of load. This means that we were observed the passing thought main
resonant states by discrete changing the values of the forced frequencies. By using the
first asymptotic approximation of the amplitudes and phases of multi frequency
particular solutions of the non-linear system dynamics (3), we are in position to make
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analytical analysis of the stability of nonlinear modes in stationary regimes and to
present results of theirs numerical solutions, for particular eigen mod of oscillations,
n,m=1,23...0 for plates (membranes) or np=1,2,3... for beams (belts).

3. STABILITY OF THE STATIONARY REGIMES OF TRANSVERSAL VIBRATIONS OF COUPLED
SYSTEMS

For the analysis of the stationary regime of oscillations, we equal the right hand sides
of differential equations (3) with null. Eliminating the phases ¢ and g, we obtained
system of two non-linear algebraic equations by unknown amplitudes 4, and q, (for
detail see Refs. [2, 5] ). Also, with elimination of amplitudes @, and g, , we obtained the
algebraic equations for phases¢ and ¢,in the case of two-frequencies forced
oscillations in stationary regime of one eigen (nmfor plates or mode n for beams)
mode of double bodies system oscillations. Solving these algebraic systems by numerical
Newton-Kantorovic's method in computer program Mathematica, we obtained stationary
amplitudes and phases curves of two-frequencies regime of one eigen amplitude mode
oscillations in double bodies system coupling with visco-elastic nonlinear layer
depending on frequencies of external excitation force. If we fixed the value of on
external excitation frequency of two possible, we obtained amlitude- and phase-
frequency curves of stationary resonant vibration regime in the following forms:

1* for Q, = const proper amplirude-frequency and phase-frequency curves are:

a, = fl(Ql)’ a, = fz(Q|)’ = f}(Ql) and ?, :fA(QI) and
2% for Q, = const proper amplirude-frequency and phase-frequency curves:

a, = fs(Qz)’ a, :fﬁ(Qz), ) =f7(Qz) and ¢z=fs(Qz)'

e, Q, 2005 |LJa, Q, =202fs7|
A A

o, -2 |

ot Q =210s7] A

o, =207 |

E 0 T F 3 E ] 0 E] 0 150 ™ )

Fig. 2. Amplitude-frequency characteristic curves for the amplitudes of the first time
harmonics g4 = £,(Q,) for hard characteristics of interconnected layer and for the

different discrete values of excited frequency Q, =const with noted proper one or

more resonant jumps. Arrows means directions of the resonant jumps.
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For any different discrete value of external force frequencies, we get characteristic
diagram of that amplitide-frequency and proper phase-frequency curves. The Fig. 2
illustrates the series of that diagrams representing the passing through discrete
stationary states alog resonant frequency intervals. We will follow the changes at that
characteristics for the frequencies of external force in the range of eigen frequencies of
coupling in one eigen amplitude mode of proper linearized system oscillations.

The phenomena of the resonant transition for stationary regime are evident from
diagrams. Those are the distinctive jumps of the amplitude and phase response in the
vicinity of the resonant values Q. =p,, appearance of the new stable and unstable

branches causing the more value-system responses and the emergence of two stable
solutions of the system in the area of those new branches, the mutual interaction of the
time harmonics and the jumps of the system energies.

Also, amplitude jumps are followed with new instability branches appearances, so
there is more than one instability branch in the proper amplitude-frequency curves. Itis
visible that in the listed discrete values of the external excitation frequency from the
proper resonant intervals two pairs plus one or three pairs with one more resonant jump
appear together with proper instable branch presented by dot line in the listed diagrams.

Q, =100[s]

A0 i

100 1 200 250 £

4 e

-05 /,-‘l & :
-10 2 M
i \M‘T H i Sigxn

Fig. 3. Frequency characteristic curves for the amplitude of the first time
harmonicaI = £(Q,) for the amplitude of the second time harmonic q, = f, (Q]), for the

phase of the first time harmonic ¢ = f3(Ql)and for the phase of the second time

harmonic ¢, = £,(Q, )on discrete value of excited frequency @, =100[s™

The stability was investigated applying the Lyapunov’s method and for stationary regimes
stability. We’ve used the theorems of stability by linearized the obtained systems of solutions
for amplitudes and phases of component harmonics in the vicinity of stationary solutions. The
data of stability or instability of the stationary amplitude and phase were obtained by
using the linearization of the system of first approximation equations in each discrete
stationary vibration state. The matrix notation of the stationary equations of system (3)
has the form:
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(00, 090, do, a0,
da, 04, Oda, J¢,

a| |97, ar, 97, o a, a ,i=12 4)
o |_|0a, 3¢ 3a, 99, hl_g %l _p

a,| |90, 9o, do, do, a, [ Tenelg,

éz da, 94, Oda, J¢, @, @,

97, 9%, 07, 97,
| da, 04, da, 09, |

s §is Qs

where the J b0 is Jacobi-an matrix of system (3). The eigen values of that matrix need

to be known, consequently corresponding characteristic equation was composed in the
form:

P, si
~8,-4 L"?h 0 0 i=12
A @, +5,) ,
1o, Sund e, 1A, :
4 p, (QI\'+1)I )al\' (QI\'+[)I )alr 2p . -0
0 0 —8,-4 £hsing,
. (QZ\'+[)Z)
_l/ABz a,, 0 _E?z a, - EP25"1¢2\-Z EPZU"AS%\- iy
2p, 4 p, (QZ\'+1)Z )az\- (QZ\'+1)Z )az\- 00,
or in the extend form:
A+AL +BX +CA+D=0 ®)

where the coefficients have the forms:

A:§|+52_€[ Reosg, | Feosg, j’
(Qn +D )an (er t D, )azr
_3a  Rsing, R sin’g,  eheosy,(6,46) 3 ePsing,  £Psin’g,
=7~ Y ~ - ~ N 2 ~

ap @, +p) (@ +p Va2 Qutha, 4, @ +h) (@, +p,fdd
_ &P, cos ¢z.\ (Jz + 51 ) + &P, cos ¢z.\ R cos ¢1.\

(QZ.\ +i’2 )az.\ (QZ.\ +i’2)a2.\ (Ql.\+i,l )al.\

C:[Jz— &P, cos @y, ][E o ehsing, ER’sin’g, &b cosgd, ]+ and

Zla, d &
(Qu'*'i]z;z: 4 p, I(Q|r+1]|) (Q“-#[AJ,)Za,Zr (Q|r+17|)a|r

. 2 .
+[5|_ P, cos ][gaza P, sin ¢, . e sin’g, &P, cosl?zﬁz]

(er+1}ILIr 4 p, ZT(QZT*'PAz) (er+1}2)zazzr (QZr+ﬁZ)aZr

-

+0,0,

4 p, p, (@ + PN + 1)

3a  eRsing,  E'R'sin’g,  eRhcosp S, |3a, ePsing,  £Psin’g,  &Pcosp, S,
+ ——ay e ~ v 2 ~ —~ 7 Gy t ~ Y 2 ~
4 p, (Ql,\ +[7,) (Q,»\ + P ) ai, (Ql,\ +D )al,\ 4 p, (Qz.\ +pz) (Qz\ +pz) as, (Qz.\ +D, )az.\
The values of these coefficients need to be valued for any value of o and
determined values of 4 for j=1,2 from the above diagrams and of ¢ from proper

diagrams of phase-frequencies curves. Than, the corresponding roots of the equation (5)
are obtained numerically.

If all real parts of the all roots of the characteristic equation are negative, then
stationary resonant regime is stable. For example, the noted star point A, on a diagrams

at Fig. 3, with coordinate (q,;¢;a,;¢,;Q,)=(0.0654;—1.485;0.0734;1.465;240), is stable
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because the roots of equation (5) are all complex with negative real parts:
(A2: Ay, )= (- 11.121£125.196i;-8.347 £ 29.577i)-

If only one is positive, then stationary resonant regime is unstable, per example star
point C. It has coordinate (a,;¢;a,;¢,;Q,)=(0.9785;—0.2881;0.0561;1.4904;154) and gives
the complex roots of equation (5): (],l/z’gw):(9.084115.35;_24,313112,6861), two with
positive real parts. The start points D with coordinate

(a;0,:a,:0,:Q,) =(1.0204;0.0183;0.0549;1.492;154) and 1o0ts :

(A2- 4. 4,), = (-6.355+13.531i:-0.324;-17.398), and point B with coordinate:

(a,:0,:0,:0,:Q,)=(0.2751,—1.2978;0.0717;1.467;154) and roots :

(A2- 4. 4,), = (-3.063£13.069i:—15.541:-40.209) are stable on the same external
frequency, Q =154s7", like as point C. These three star points present trigger of the

coupled three singularities- two stable stationary values and one unstable saddle type
value [1]. A series of the amplitude-frequency curves of the two-frequency like vibration
regimes are obtained numerically and presented with noted branches corresponding to
unstable stationary vibration resonant regimes. In the listed diagrams of Fig. 2 branches
presented with dot line corresponds to unstable stationary vibration regimes.

4. CONCLUDING REMARKS

By using asymptotic method Krilov-Bogolyubov-Mitropoksiy, we solved system of
PDE's (1) semi analytically in averaged asymptotic first approximation to analyzed the
stationary regimes of forced resonant non-linear oscillations for presented model of
double bodies system. This paper presents the beauty of mathematical analytical calculus
which could be the same even for physically different systems. The mathematical
numerical calculus is powerful and useful tool for making the final conclusions between
to many output values. One step (part) of solutions were obtained numerically and
presented at a series of the amplitudes-frequency characteristics. We could conclude that
there exist complexities in the system forced non-linear response, depending of initial
conditions and of proper relation between the system kinetic parameters.

Non-linearity is source for appearing two resonant jumps at the amplitude-frequency
and phase-frequency curves in the resonant frequency interval. Between two jumps there
appear three or five, or seven or more singular values of the stationary amplitudes and
phases with alternatively stable and unstable values which build coupled singularities
and trigger of coupled singularities, two stable around one unstable amplitudes and
corresponding phases. Passing through resonant ranges of the external excitation
frequencies unique values of the stationary amplitudes and phases lose its stability and
split into trigger of the coupled three singularities- two stable stationary values and one
unstable saddle type of the amplitudes (or phases) for simple case without non-linear
interactions between time modes. But, in the case when there are resonant interactions
between modes, more than one pair of the resonant jumps appears, and there are
possibilities for appearance of the coupled triggers of the coupled singularities consisting
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of odd number of the alternating coupled stable and unstable singularities, [1]. The
mentioned instabilities of the stationary vibration regimes are associated with Hopf
bifurcations in mathematical descriptions of the first asymptotic approximations of
solutions.

Acknowledgement. The paper is a part of the research done within the project OI 174001 of the
Serbian Ministry of Education, Science and Technological Development.
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AHAJIM3A CTABUJIHOCTHU CTAHIUOHAPHUX PEXKUMA
OCIIUWJIOBAIBA CUCTEMA CIIPETHYTHUX
JAE®@OPMABUWJIHUX TEJIA
Jynujana CumonoBuh

ManmHckn ¢akynrer YHuBep3urera y Humry, A. Mensenesa 14, 18000 Hum, Cepbua .
€-MaMJI. ojyimmjana@machak.Hu.ai.pe

AncTpakt. Pad je nocseehen ananumuuxkoj u HYMepuuyKoj AHAAU3U JTOKAIHE
CMAOUTHOCMU OCYUTATNOPHUX DENCUMA Y CUCMEMUMA CHPEeSHYMux 0e@popmabuiHux
mena. Cucmemu ¢y cayurberu 00 cumema 0eghopmMadbunHuUX mena: KaKko wimo cy niode,
epede, nojacesu uau memedpane, Koja cy noge3ana 8UCKO-eiacmudHumM HenuHeapHum
cnojem. Cnoj je Mooenupanum Kao cucmem KOHMUHYATHO PACHOOE/bEHUX OUCKPEMHUX
enemenama muna Keneun-Bouem-a ca nenuneapnowhy mpehee peda. Ilosnasajyhu
Mamemamuyke awaio2uje jacHo je 0a NOCMOjU CAUYHOC CMPYKMYPHUX MOOend
cucmema nioua, epeoa, nojaceea uiu memopane. CmpykmypHu mooenu ce cacmoje 00
no 08e cnpezHyme HexomozeHe napyujaine oughepenyujanne jeonadure. I[Ipobnem je
Hajnpe pazosojen Ha BPEeMEeHCKU U NPOCMOPHY 0OMeH NPUMEHOM Kaacuune bepnoynnu-
Doypuep-ose memode. YV 8pemeHckOM OoMeHy cucmem 08e CHpecHYMe HeXxOMO2eHe
obuyHe Ougepenyujarte jeOHayune NOMNYHO je AHANO02AH 3a4 pasiudume cucmeme
Odedhopmabunnux mena u  pewasan je Kpunos-boeonyybos-Mumpononckuy
acumnmomckom Mmemooom. Ilpea acumnmomcka anpoxcumayuja peuwterba Koja
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onucyje cmayuoHapHa NOHAWAFA CUCTHEMA Y PE3OHAHMHO] 00aACmu cacmoju ce 00
cucmema yemupu Ougepenyujarte jeonauune no amnaumyoama u ¢pazama 08a
HeluHeapHa cnpesHyma mooa. Y o0eom cmuciy pao npeocmasmsda  Aenomy
MaAmemMamuykoe aHAIUMU4Ko2 pauyna Koju Modice Oumu ucmu 3a Gusuyku paziuiume
cucmenme.

Cmabunnocm je npoyyasana npumenom Jlyanynoe-eee memode u meopeme
CMAbUIHOCMU 34 CMAYUOHAPHE pediciMe NO KOjoj ce auHeapusyje u3eeoeHu cucmem
anpoxcumayuja pewersa 3a amnaumyoe u ¢haze KOMIOHEeHMHUX XAPMOHUKA Y OKOTUHU
cmayuonapnux pewersa. Pewerba xapakmepucmuune jeOnauune auHeapu3o8ano2
cucmema 0odujajy ce HyMepuyKku 3a cée CMAyUOHApHe 8PEOHOCMU U3 PEe3OHAHMHUX
obnacmu u 000ujajy ce 3aKmyuyu O JNOKAAHO] cmabunoHocmu. Y mom cmucny
NOKA3aHO je 0a je HymMepuuku npopauyn Mohaw u KOPUCMAH anam 3a Kpajrbe
3aKBYUKe NPU 8EIUKOM OPOJY VIAZHUX U USNAZHUX 8PEOHOCTU.

Kbyune pehu: gpenomenonowxa u mamemamuyka ananoauja, cucmemu uuie mend,

HeluHeapHa OUHAMUKA, JOKAAHA CMAOUTHOCH, Guule-(PEKGEeHMHU Pe3OHANMHU
pedcuMu, UHmepaxKyuja Moooea.
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Abstract. The paper analyzes Hamilton’s principle for nonlinear nonholonomic systems with
regard to different viewpoints on transpositional relations in the mechanics of nonholonomic
systems, for both real coordinates and quasicoordinates. In the first part it is shown why the
application of variation instead of mechanical variation results in the correct form of Hamilton’s
principle, wherefrom there follow the differential equations of motion. Thereafter, a detailed
analysis proves why the approach presented in [5] is the only one applicable, i.e., the operator of
variation and the operator of differentiation are commutative for all quasicoordinates.

Key words: nonholonomic, nonlinear, principle, transposition, quasicoordinate

1. FORMS OF HAMILLTON’S PRINCIPLE FOR NONLINEAR NONHOLONOMIC SYSTEMS IN
QUASICOORDINATES

In literature, there are two different viewpoints on the formation of Hamilton’s principle
for the case of nonholonomic systems. According to the first, maintained by Hertz,
Appel and Suslov, the operators of variation and differentiation are not commutative for
the case of kinematically dependent coordinates. However, according to the second,
advocated by Holder, the operators of variation and differentiation are commutative for
all real coordinates. As for quasicoordinates, in literature (for example, [1], [2], [3], [4])
there is an undivided attitude that the operators of variation and differentiation are non-
commutative for all quasicoordinates. In this paper, the problem is solved only for the
case when quasicoordinates are introduced and the initial approach is that the operators
of variation and differentiation are always commutative [5]. The same approach, i.e., of
Holder’s, is also applicable only for the case of real coordinates, as shown in [3], [6].
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Let us consider a mechanical system subject to conservative forces, whose position is
determined at an arbitrary instant of time by Lagrange coordinates ¢', but its motion is
limited by nonlinear nonholonomic constraints of the form

¢'(¢.q')=0 (1.1)

The equations that determine the relations between the quasivelocities (derivatives with
respect to time of quasicoordinates ©n') and generalized velocities have the form

i =0(g, ') (1.2)

i i J
Egs (1.2) can be also written in the form (where det Bi #0, 8i a\!Ik =3)
g’ g’ on
it =v'le’ ®). (13)
Now, let nonlinear nonholonomic constraints (1.1) be determined by equations
i =0"(¢7.4")= 9"l¢".¢") = 0. (1.4
Based on Egs (1.2), we find
o = 50" = 2 500 + B 540 (1.5)
dq’ g’
however, based on the constraints between virtual variations
on' = % 5 (1.6)
g’
for the derivatives with respect to time di&ti we obtain
t
A g -4 i&[j ) (1.7)
dt dt\ 9q’
From (1.5) and (1.7) there follow
de i s 00 [d(; . .
—on' - 81’ = —| —8q’ ) - 8¢’ | + ¢} dr* 1.8
dt aq’{dz(q) q} ¢ (9

where the coefficients €’ are determined by expressions
k Y €Xp:

; 0’6" ., 0’0 . 08 \oy’
& =|l——¢ +———§ —— |-
04’ dq 0q’9q dq’ ) on

(1.9
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* . . . . .
Einstein summation convention is used in the paper. Indices take the following values:
iLjkr,s=1l...,n;o=1L....m;p=m+1,....om+Il=n

Assuming Holder’s viewpoint on commutability properties of the operators of variation
and differentiation for all real coordinates ([3], [6]), Eqs (1.8) read

d . S
—on' - &' =¢ ont 1.8°
" ' (1.8")

and, based on above, an approach to non-commutability of the operators of variation and
differentiation for all quasicoordinates ([1], [2], [3], [4]) is derived.

Prior to performing the analysis of the relations (1.8') that are inconsistent with the rules
of variational calculus, let us derive the form of Hamilton’s principle in
quasicoordinates. Starting from

jSLdtZO (1.10)

and taking into account that the application of mechanical principles requires that the
constraints between virtual variations hold

.00 o .
STCI = —8 / 16
20 q (1.6)
that is
A om =4[ 5, (1.7)
dt dt\ 9g’
let us first calculate the variation of the Lagrange function L= L(q ) = L(qi,fci ) It
reads
o = 2L 5t 4 2L g o[ O g QL AV 5} OL W i gy
ag* or* dq 0q" 9dq a " oRt

where from it follows that

OL gk = f — OL | NV g 4 NV g
og* 0q" \ 9q on

the variation of the Lagrange function 8L now reads

oL = 2L 5g" + 0L 54+ = 6F - aL(a‘*’swal&tk

aL ..,
+—38¢". (1.12
G YL 3 Lag* 1 " ok J agr - 412
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In further calculations we obtain

SL = 8L + ;—L(Sq ~ oy’ )=0L + :L (diﬁq’ - 8\41’]
r .r t
9 _ (1.13)
5L = of + 2Ly m*
on'
where the coefficients Y, are determined by expressions
i 20 .7 2. .1 r K3
vy = -2 OV e, OV e OV OV (1.14)
oq" | ont*aq’ on‘on’ dq’ on
Based on Eq. (1.13), the expression (1.10) reads
1 1 - r )
j&dz:j(&—iy;&ﬂ}dtzo. (1.15)
Ty fy anl
For nonlinear nonholonomic systems, taking into account that the expression for
'=0"=¢0"=0->"=0
8L has the form
oF = 9L 54 + 9L o 4 O iy = O 5yr 4 OL 5o OL d gy (146)
dq on* on dq on® on’ dt

where due to the constraints ©° = 0

bzl. ., - L%ﬁ} 8¢ { oL } 4 sne
' =0

on* |, dt
' =0

the variation of the function L = Z(fr“:()) = L(qi, 7'1:“) has the form

o1 = 9L ot + O e o[ O, OL O o [ OL | OL O s
" pre 3" | on og° o | on or”
~ oL ., oL .. ~
oL = —8g* + — ™ =L . 1.17
o o " (417

So, the final form of Hamilton’s principle for nonlinear nonholonomic mechanical
systems in quasicoordinates is

f SL + iy;&rk dt = I 8L + iyﬁx&r“ + iy@&rv dr .
on' on' on'

fy fy
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Respectively
oL
j(& —a—ya&t (1.18)
fy

It can be shown that such form of Hamilton’s principle (1.18) can be also obtained when
using the variations

00 )
o' = —08q’ 1.6
3 q (1.6)
and the variations
i .09 . < I
ot =80 = —98q’ + —84q’. 1.5
T 3 q 3 q (1.5)

G.K. Suslov considered that for the case of nonholonomic systems D’Alembert’s
principle should be transformed in the following way, [7]. Starting from D’Alembert’s

principle
d( dL oL
C = 18 - — §g* 1.19
dz(aqu CEFYIR (119
or from the form

d(dL . oL . . OL ... oL (d . ,
Sk _ k+ 8'1» __(_Sl‘_s'kao 1.20
dt(aijk q] (aqk&] 9" q] ag- Lar > % 1

taking into account that

. 8\|1
8q* or!
i o'

Eq. (1.20) in quasicoordinates has the form as follows

T k s k T k T
(aL SRJ—{B—L N g, L 20 (ial_JSnf—a—Lai&ma—L.sﬁ}—

ot dq* or’ ' 3Gk \dr on ot 9q' o’
oL [ on' — 87‘:'} =0. (1.2D)
an

Taking into account that concurrently (1.5) and (1.6) hold, we would arrive at the proper
form of Hamilton’s principle, wherefrom there follow correct differential equations of
motion of nonholonomic systems
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j(sl* —iy;&r“}h =0. (1.18)
o'

fy

A question can be raised in what is a contradiction when using variations (1.5) instead
of (1.6) (as required by the principles of mechanics) one arrives at correct form of
Hamilton’s principle (1.18).

Note that D’Alembert’s principle (1.19) can be written in the form (1.21) in
quasicoordinates, i.e., in the form

1 T k T K k T k
I([_B_Law ot — 0L 99 (d oY ]gni+a_LaL5nf_

. dg* on or* 9g* \ dr of' of* 9q'
- ~ ~ (1.22)
SO 9L iy O i |l =0
or' o' dt or'
using the conditions
oy, = dnj,) = 0. (1.23)

Based on Eq. (1.22), it is evident that any assumption on the values of &’ does not
affect the final result of transformation (1.22). Accordingly, to obtain the correct form of
Hamilton’s principle, the assumption for variations &7’ (but not for 87’ ) is of relevance
grounded on a physical model of the corresponding constraints and presented in the
form of a basic assumption.

2. APPROACH CORRECTNES ANALYSIS OF TRANSPOSITIONAL RELATIONS IN
QUASICOORDINATES

Hamilton’s principle is applicable for nonholonomic systems, because it is derived from
D’Alembert’s principle that holds for both holonomic and nonholonomic systems, [3].
However, Hamilton’s principle for the case of nonholonomic systems does not have
identical meaning as it does for the case of holonomic systems, [7], [8]. Namely, it does
not differ significantly from the transformed D’Alembert’s principle and does not have
the stationary property of action in a general case, [7].

However, if it is taken into account that concurrently hold
o' = 80’ (1.5)

and

on' = — 8¢’ (1.6)
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there occurs contradiction, because simultaneous fulfillment of conditions (1.5) and (1.6)
means either the variation of the trajectory into itself or the integrability of constraints
(in a general case, in nonholonomic systems the constraints are not maintained on the
varied trajectory). In holonomic systems the variations (1.5) and (1.6) can be used,
however, not simultaneously and in the corresponding variational problems, [9].
Variations (1.5) differ from variations (1.6) in that that the system with variations (1.5)
does not perform virtual displacements.

8}[Z+7»1.(J't"—9i)+vp7't"]dt:0 2.1)
HS[Z + 4, (7% - 6“)]+ % Y08q' + v, 8n° + up(&t" - %‘:Sq’)}dt =0 (2.2)

that is, two different problems.

The equation (2.1) represents a conditional variational problem and expresses the
condition of stationarity of the functional. The problem (2.2) does not express the
condition of stationarity of the functional and because of that the Hamilton principle for
nonholonomic system differs from the Hamilton principle for holonomic systems.
Hence, if the conditions (1.5) and (1.6) are used simultaneously, we have a
contradiction, as these conditions belong to different variational problems. The
variations set up by the expression (1.5) differ from the variations set up by the
expression (1.6), because the particles of the system with the variations (1.5) do not
perform virtual displacements.

Let us form, according to (1.3), a system of n differential equations that can be used to
determine variations 8¢g* We obtain

k k
5 = oyl 1) > Logt = s + N s 23)
dr %’ e
k k
Logt -] 5y =¥ | Lgpe 2.3
dt oq" " on* o 4t

whose solution from the condition 8¢5 = 0 (condition 8g; = 0 does not disturb the
general solution) read

k t K]
80 = 2 om0 [Tyl 2L | smoar. (2.4)
ot o' ),

fy

Where
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kyr _ Sk
q)rry - 8.?

¢* is a fundamental matrix of a corresponding homogeneous system of differential

equations (2.3'). Based on this, evidently, there is a difference between variations
determined by (1.5) and variations determined by (1.6). Manners of varying (1.5) and
(1.6) will coincide only for the case when

t 5
[T, N srodr = 0 (2.5)
: o' ),
0 t)
respectively, when y’;l(t) =0, i.e., when the expressions (1.2) and (1.3) are integrable,

[51, [6].

Now, it is shown that using variations (2.4) leads to another variational
problem. As shown from (1.3) there follows (from the condition Sqé =0)

k t

8g" = ¥ sre 4 o [T NV Snvdr
on'

on*

Iy
For the case of variations
Sq'r = Swr

from Eq. (1.12) for the variation of Lagrange’s function it is obtained
~ L /. ~
OL = 3L +%6(q’ —w’): oL
q

and as shown by Eq. (1.17) there follows
8L = 8L".

(If Hamilton’s principle is applied now, for example, to nonlinear nonholonomic system
of the Chaplygin type, we obtain

1 _t' ~ _t' 75 o o — iaZ% —a‘LW =
ISLdt—ISLdt—fSL(‘I ”‘)d"o_)dzair“ aq“_o

fy ty fy

i.e. equations that do not correspond to the motion of a mechanical system. This means

that the relation L = L is inconsistent with Hamilton’s principle.)

Accordingly, for this case, Hamilton's principle reads

TSLdt = }Sidz = }Si*dz =0 (2.6)

fy ty ty

that is
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i AL [y ¢
og* | on*

fy

where

fy

fo

VoL d O s — E)L8
on® dt on” 0

Then, we perform calculations of the integral

J, ¢ j r’ = ya&t“dt

lu
t oL

fu

Taking into account that

= _q) dzf F’ —_ ya&r“dt IB_

-

fy

d oL

(dt on”

fy

oL aon,)

is the solution of the system of differential equations

Do+ Mg,
dt 9q
Now, integral (2.7) reads
J = [a‘“
on* .

o

3"

— ya&t“dt + oL ot |dt =0
8 or*

g

A J - j A, —ya&t“dt

Based on (2.7"), Eq. (2.6') has the form

Tﬁi*dt = T(i o on® -

dg" on*

fy fy

dt on®

+ aL a\]f 8758) =0
on* T oo 0 !

wherefrom for the case dn(;) = 0 there follow differential equations

dt on®

dq* oR”

d oL

ot — A

oy’

Yan

Y. on°T! [ o —dz}d.
dq

v, om® Jdt +

(2.6")

(2.7)

(2.8)

(2.9)

2.7)

(2.6%)

(2.10)
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If the boundary condition for 8n(;, is eliminated, then

_ )
AL M| Zo enp, 20,
on” o™ o) :

@2.11)

Note that the system of differential equations (2.9) can be written in the following form

k k kAT
4 Ay a‘.p +alj'1. 'Yl.a}”k_a.La_Lkz
dt on* on' on® dg

because when developed that expression has the form

dr F )Rt K ar or®

that is

s T* k
R A
dt dq dq" ) oft®

Based on Eqgs (2.10) and (2.12) it is obtained
k k kAT
i[xk oy Jﬁl i vt oL

ow ) M T m 9 | d (x oyt ai*]
= , e —|Mow o
d oL oy’ A+ oy" JL 0 dt on*  on

=0

dr or® o Mt an® og

that is

oy* oL

k . . -
ot  on” *

respectively, since according to (2.11)

. )
(aL ) a“’] =0—C, =0.
0)

or® " ane
Based on (2.14) there follows

k k k k
) Qv L oy _(M_SLJW A

“ort gt ar -

PR v
Accordingly, Eqs (2.10) and (2.12) finally read

T T k 5
d oL' oL dy +( Y+BLJ8\V ‘o

di on®  3g" or” 9 ) o

80

k k k s k PN
(dxk]aw Y ial{aw oy'  d oy J}»k_aw oL _o

2.12)

(2.12°)

(2.13)

(2.14)

(2.10)



Analysis of Hamilton’s Principle for Nonlinear Nonholonomic Systems

d oL | oy* oL \oy* , oy* oL .
S, +— T T iy s SRV Sy | ) 2.12
dt H“ g aqu aﬁ“} (“ , aqu o e e og* ( )

The variational problem corresponds to the principles of mechanics

II OLdt = 0.
Where
B
qu — a‘%’(x &.coc
on

wherefrom there follow the differential equations of motion

~x ~u k i T o k T s i
4oL _OL oy  OLOy ., _dOL _OL oy , OL 08 Iy i _ 05

dt an*  og* on* 3¢ om' ¢ dr or® dg* or® ok g o'

—Ye =0 (2.15%)
whereas the variational problem

}SLdt =0

fy

with variations

k t 5
8" = %&c“ +0i [T ?,l.,- v Sndt
T T

fy

leads to Eqgs (2.10), the difference being obvious.

CONCLUDING REMARKS

On the basis of the previous analysis we can conclude the following: in the mechanics of
nonlinear nonholonomic systems the operators for the variation and the differentiation
are commutative for all quasicoordinates.
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AHAJIM3A XAMUWJITOHOBOI TIPUHLUIIA 3A HEJIMHEAPHE
HEXOJIOHOMHE CUCTEME C OB3UPOM HA
TPAHCIIO3UIITUOHE OJHOCE Y KBABUKOOPANUHATAMA

Jparomup H. 3exoBuh

Apstrakt. 'V noenedy ¢opmuparea Xamunmonosoe npuHyuna 3a Ciyyaj HeXOJOHOMHUX
cucmema, y Jumepamypu nocmoje 08a pa3IUMUMA CX6AMAlbd WMO ce Muye CMEAPHUX
Koopounama. Melymum, wmo ce muye KEA3UKOOPOUHAmMA, y Jumepamypu ROCMOoju
Jeouncmeeno eneduwime 0a Cy onepamopu 8apuparsa u Ou@epeHyupar-a HeKOMymamueHu 3a ceée
K6a3uKoopourame. Y o0eom pady pewiasa ce npobiem camo 3a CIyuaj K8A3UKOOPOUHAmMa u
nonA3U ce 00 cmaga no Kome Cy Onepamopu 8apuparsa u OupepeHyuparsa Komymamushu [5].

Key words (in Serbian): nexononomHu, HenuHeapHu, RNpUHYUn, MPAHCRO3UYU]A,
K8A3UKOOpOUHAme
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ON THE MOTION OF A TWO-BLADE SYSTEM WITH A NON-
LINEAR SPRING
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Abstract: A system consisting of two particles that move in a horizontal plane and
are connected with a non-linear spring is considered. The particles are placed on two
blades causing their velocities to be perpendicular mutually and yielding two non-
holonomic constraints. Two differential equations of motion are solved approximately
and are used then together with the non-holonomic constraints to obtain the motion of
one point analytically as well as to determine its trajectory. Analytical results are
verified numerically. In addition, the condition when this trajectory becomes
unbounded is found. The case when the spring non-linearity is beneficial in this
respect is determined, too.

Key words: non-holonomic constraint, non-linear spring, frequency, trajectory

1. INTRODUCTION

Systems with blades and skates have been recognized for decades as the exemplary non-
holonomic constraints [1]. This type of constraint is such that a fixed point on the object
can only move relative to the plane below in a direction that is also fixed in the object
[2]. The constraint is realized by an ice skate which glides easily in one direction
without allowing sideways motion. One of the most famous systems that uses this skate
constraint is the Chaplygin sleigh [3]. This system has various disguises, such as no
hands tricycle (Tenessee racer) [2], fins on an underwater missile [4] and locked wheels
on a skidding car [5].

An interesting model of a system with such constraints consists of two particles
whose velocities can have certain directions realizable through the use of blades attached
to the particles, while they are connected by a pitchfork of negligible mass which
permits the distance between them to vary [6]. The case when two particles are
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connected by a linear spring is considered in [7]. The system is shown to be integrable
and general theoretical considerations carried out for one of the particles imply that its
trajectory stays bounded under certain conditions, which is confirmed numerically. The
following study is seen to generalise the analysis performed in [7] for the case when the
particles are connected by a non-linear spring, which has not been considered so far. In
addition, a deeper analytical analysis is conducted to obtain analytical solutions for
motion as well as the conditions for (un)bounded response.

The paper is organised as follows. Mechanical and mathematical descriptions of the
system considered are given in Section 2. Section 3 provides approximate approaches
developed to obtain motion of the system analytically and includes numerical
confirmations of these new results. The final section contains conclusions, which point
out all new findings as well as the case when the use of certain non-linear spring is
advantageous.

2. ON THE MODEL

The system under consideration consists of two particles, Point 1 and Point 2 (Fig.
1). Their masses are equal m;=m,=m, and each of them is placed on a blade that makes
the velocities v, perpendicular to the direction 12 and the velocity v, passing through
these points, as shown in Fig. 1. The masses, which move in a horizontal plane, are
connected by a non-linear spring. The restoring force F, is assumed to be of a power

form of the deflection Al,i.e. F, = ksgn(Al)-|Al|a , where & and k are real and positive.

In order to assure that this force is an odd function of the deflection, and, thus yields
oscillatory motion, the sign and absolute value functions are used. Four generalised
coordinates are assigned to the system: x; and y; - two Descartes’ coordinates defining
the position of Point 1, the coordinate p - defining the position of the second point with
respect to the first one and the angle ¢ between the direction passing through these two
points and the horizontal, all as defined in Fig. 1. Two unit vectors e, and e, define

respectively the direction perpendicular and passing through the points considered.

A

(6] X, X

Fig. 1 System under consideration
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The fact that the velocities are perpendicular mutually implies v,-v, =0, i.e
v, -e, =0, which yields the following non-holonomic constraint

X, cos @+ y, cos =0, (H

where a dot stands for differentiation with respect to time 7.
Further, as the velocity of Point 2 is given by

vV, =V, +pe, + pge, 2

the second non-holonomic constraint is obtained by projecting Eq. (2) to the direction of
e:

—x, sin@+ y, cosp+ pp=0. 3)

By using Eq. (3), the kinetic energy of the system can be written down in the form
I (. |
T:Em(x]2 +y]2)+5mp2. C))

The potential energy corresponds to the potential energy of the spring and is given by

V= a+1 |p |“+" )
where [ stands for the length of the underformed spring.
By expressing the non-holonomic constraints (1) and (3) as
fi =%~ ppsing=0, (6)
Jo =+ ppcosp=0, ©)
Lagrange’s equations with unknown multipliers A, (i=1, 2)
iB_T_a_T v Q z af (8)

dt g dq aq

where g€ {x, N p,(p} and Qq are non-conservative generalised forces, have the form

mx, = A, ©)

my, =4,, 10)
mp+ksgnlp—1,)-|p—1,|" =0, (11
0= A, psing— A, pcos ¢. (12)

Equation (11) yields the following first integral
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. k
—mp* +——|p-1|" =c, (13)
a+

where ¢, is a constant.
Equations (12), (9), (10), (6) and (7) lead another first integral

po=c,. (14)

where c, is a constant.

Since the position of the system is defined by four generalised coordinates and there
are two non-holonomic constraints, the system has two degrees of freedom. On the other
hand, six initial conditions need to be specified and they are chosen to be:

%(0)=0. y,(0)=0. p(0)=4,+4, p(0)=0. ¢(0)=0. ¢(0)=¢,. (15a-D
where A is a real non-zero constant ( A # 0 ). Due to the physical limitation related to the
compressed spring, the initial amplitude has to be smaller than [,. It is also assumed
that the initial extension is not longer than this length, which, all in all, yields |A| <l,.
Besides this, ¢, and ¢, are also constants, where the latter one in conjunction with Eq.
(14) yields ¢, =c, /(I, + A).

By introducing the following non-dimensional variables

~ t
x]:—, y]:—, p:ﬁ, T=—, (]6a'f)

I I, I, \/Z ‘(1 )1—7a
0

Egs. (11), (14), (6) and (7) can be written down as

P +sgn(p—1)-|p-1" =0, (17)
Py =0, (18)

X, =C,sing, (19)

y; =—C, cos @, (20)

where primes denote differentiation with respect to the non-dimensional time 7and

Ezzcz\/%‘(lo)_azﬂ =¢0(10+A)\/Z‘(10)‘T. 1)

It is of interest here to find the motion of Point 1, i.e. to determine x, (z’) and y, (1') To
that end, Eq. (17) needs to be solved first and then Eq. (18) integrated to find (p(r). This

can be used further to obtain the equation of motion of Point 1 and its trajectory. The
procedure yielding these results is presented in the following section.
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3. ANALYTICAL AND NUMERICAL ANALYSIS

By introducing the substitution # = p—1, Eq. (17) can be represented in the form

i”+sgn(it)-i]* =0, (22)
with the initial conditions
u(()):lﬁzix, u’(0)=0. (23)
0

For o=1, the model (22) corresponds to a harmonic oscillator and for o #1 governs
truly/purely non-linear oscillators [8]. Despite the fact that this equation has an exact
solution in the form of the special Ateb(h) function [9], this function is not suitable for
further analytical considerations. A more suitable form can be written down by using the
fact that the exact period of oscillations for the oscillator (22) can be calculated [10],

[11] as follows
A / A [ la
Tex:4f(1—u:4 OH].[ du _ | 87 a+1 |Z|2, (24)
0|M’| 2 0\/|Ao“H |...a+] (0(+1) a+3
—u| I
2a+1)

where I' is the Euler Gamma function [12]. Assuming that the response corresponds to
harmonic oscillations with the period 27, the angular frequency is related to this period
by w=27x/T, . Then, the approximate solution for motion can be expressed as [11]

( a+3 j
ii = Acos wr, wzc(a)wT, cla)= 7r(0:2+1) 2(0!1”) . (25a-c)
e

Figure 2 shows how the angular frequency defined by Eqs. (25b,c) changes with the
power of non-linearity .

w
2.0
15[
1.0 — O
o T pRREy B2
........................... |A| =L
, . . .!.A| =1/4
1 2 ’ ¢ ’
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Fig. 2 Change of the angular frequency, Eqgs. (25b,c) with the power & for several values

of the parameter |Z|

Given the fact that |A| <1, the angular frequency &« decreases as the power ¢ increases.
For under-linear oscillators (& < 1), the angular frequency « is higher than the angular
frequency of the linear oscillator and is smaller for higher values of the parameter |A| .

For over-linear oscillators (& > 1), the opposite is true.
Now, Eq. (18) can be considered to obtain how the angle ¢ changes with time. To
that end, the integrand [ = l/ (1+Acos a)r) is approximated by the following Fourier

series expansion

1,,, =ay +a, cos T +a, cos 207 + a, cos 3w, (26)

where the Fourier coefficients are

(27a-d)

a; =——=

= +—= = — + [T
A0-4) Al-4) iz -

Figure 3 displays how the values of these coefficients change with A . It is seen that
their values and the way how they compare with each other, and especially with the free
term a,, point out the importance of the first and the second harmonic as well as the

fact that they all diverge as |A| approaches unity from below.

4%

Fig. 3 Change of the Fourier coefficients given by Eqgs. (27a-d) with the parameter A
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To confirm the validity of the overall approximation, the comparisons of the graphs
representing the integrand / and its approximation [, are shown in Fig. 4 for the
under-linear spring (@ =1/3) and the over-linear spring (=3). It is confirmed that

the approximate values I agree well with the values of I .

app

This leads to the solution for ¢

0=35,| ayr+Zsin wr + 22 sin 207 +~2-sin 307 | (28)
w 20 3w
In Fig. 5, the corresponding solution ¢/¢, (thicker red dashed line) is plotted together

with the numerical solution of Eq. (18) with Eq. (25a-c) (blue solid line) for the same
power of non-linearity as in Fig. 4. These solutions coincide and indicate that ¢@/c,

oscillates around the straight line ¢/ ¢, = a,7 , shown as a green dotted line in Fig. 5.

) b)

A

13 L I
]ap Iapp
12 12
1.1 1.1
1.0 1.0
0.9 0.9
| PR ¥ S| — PR———1 I>‘[ 1 1 1 L

Fig. 4 Change of the integrand I (blue solid line) and its approximation

5 10 15 20

1020 30 40 50 60

(thicker

app

red dashed line) given by Eq. (26) for A=1/4 and: a) @=1/3;b) a=3
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a) A b) A
10 30 )
25
8 ~
[ @20
C, G515 ;
4 i
2 5 x_,»’ ;
5 7 68 10" 57075 20 25 300

Fig. 5 The approximate solution for ¢/c, (thicker red dashed line) given by Eq. (28),
the numerical solution of Eq. (18) with Eq. (25a-c) (blue solid line) and the solution
@1, =a,t (green dotted line) for p(0)=0, A=1/4 and: a) @ =1/3;b) =3

By introducing the complex variable z, =—y, +ix, [13] and by using Eqgs. (19) and
(20), the velocity of Point 1 is found to be

3
. ~ bt ib, sinnwt
y=c,e " Ile R (29)

n=1

where b, =¢, a, and b, =¢, a, /(nw) . Further, the use can be made of the following

Fourier series approximation
phisinnor ‘IO(bn)+ J, (bn)' (einwr_e—inwr)+ Jz(bn)‘ (eiZna)r +e—i2nwr)+
13 (bn ) (eiSnwr _e—iSnwr),
where the coefficients are represented by means of the Bessel function of the first
kind J (bn), J=0,1,2,3 [12]. For the sake of brevity, the notation J, (bn)z J;, will be

used in the following text. After keeping only the approximations with the first, second
and third harmonics included, Eq. (29) is integrated, taking into account the initial
conditions (15a,b). The following solution is derived:

(30)

7 =2 (1)-20), 31
where
_ je™" l-ei(bﬂ—w)r l-ei(bu+w)r l-ei(bu—w)f
g (T)Zcz K, +K,, +K,, + K, +
b, by —w b, +w b, —2w -
l-ei(bﬂ+2w)r iei(bﬂ—Scz))T iei(bﬂ+3w)r (32)
sz +K,, + K%p s
b, +2w by -3w by +3w
and:

90



On the Motion of a Two-Blade System with a Non-Linear Spring

Ko:_Joz(JmJoz —211313]),

m=dodudy Tl vt I v 3y v 3 3 o0 5

K, ==JpJnu+IuIntn I atnln —Jodudn tIndndn T ulnds

om =Jod s Il idn = Il —Jnduda =200 375, (33a-h)
2 = oIt 0wt —Jnd el +2J,J 305,

Ky, ==JunJn ol ol s + ol s

sz :_103111112 _101102]13 _Jozjozjzr

>~

> X

Given the definition for the variable z,, the following approximate parametric equations
are derived for the motion of Point 1:

0 0 0

(=7, {%cos(both s s, o))+ cos(s, + o)+

K
Kon cos((b, — 20)t) + ; +2”2m cos((b, +2m)t)+

b, -2m o
K % (34)
ﬁcos((bo -30))+ bo 3”30) cos((b, +3w)r) -
Koy K K | Kow | Koy | K | K ,
by b,—® by+® b,-20 by,+20 b,-30 b,+3w
and
31(0)= | K0 in(b,7) + K gin (b, —)t) + —2—sin((b, + o)) +
b, b, - b, +®
K,, . K .
. _220) sin((b, — 2w)t)+ . +2”2 msm((bo +20)1)+ (35)
K , LEI
s in, 30+l +3m)t)}.

At this point, one can recognize the problem of ‘small denominators’ [14]: it is seen that
the values of the coordinates x, and y, can become unbounded if the denominators that

depend on b, and « are equal to zero. This yields the corresponding resonant values

of the constant ¢, :

o+l

Y , N=123... . (36)

Zas) F(z@i)) F

2 1 4
I
a+l

a-1 |...,
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One should note that although Eqs. (34) and (35) imply the existence of an unbounded
solution for N =1, 2 and 3 only, this value actually corresponds to any natural number,
as indicated in Eq. (36). This stems from the fact that the series expansion in Eq. (26)
contains an infinite number of harmonics, as a result of which the part of the final
solution (31) can be presented as

)

~|dy g | = d, i(by-Naw)r d, i(by+ Noo)e
— -9 (L' ° —+ _— 0 N 37
ale)= e e e ) 37

where d,,, d, and d~n are constants.
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il
1.5
1.0
0.5

2 4\f 8 \\1}1 12 1471
-0.5!

M

2f 4Y6 |8 lv 147
-0.5
Xy

) -

1.0

Fig. 6 Trajectory of Point 1 for & =1/3, A=1/4 and: a) &, =0.75¢, ;b) &, =1.5¢,;

c) E; =1;d) E; =2 . Numerical solutions (blue solid line), approximate analytical
solutions (thicker red dashed line), Eqs. (34) and (35)
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1.5
1.0]
05
7

20 W 60 W 100 120

Fig. 7 Trajectory of Point 1 for & =3, A=1/4 and: a) &, =0.75¢, ;b) &, =1.5¢,;¢)
¢, =1;d) &, =2. Numerical solutions (blue solid line), approximate analytical
solutions (thicker red dashed line), Eqs. (34) and (35)
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To check the accuracy of the approximate solutions for motion of Point 1 given by Eqgs.
(34) and (35), this solution is compared with the numerical solutions of Eqs. (17)-(20)
with the corresponding initial conditions. The time interval of interest is the one from
the initial moment until the moment when Point 1 returns to the initial position. These
solutions are plotted in Fig. 6a, b for ¢ =1/3 and in Fig. 7a, b for ¢ =3 in terms of
time-history diagrams and the corresponding trajectories for two non-resonant values of
the constant ¢, .

A reasonably good match between the solutions is seen. In addition, Fig. 6¢c, d and
Fig. 7c, d show numerically obtained time responses of these oscillators for two resonant

values of the constant ¢, , which confirm the conclusion about the unbounded response.
The resonant value of the parameter ¢, given by Eq. (36) is plotted in Fig. 8 as a

function of |Z| Given the initial values, one has |Z|e (0,1). The excluded values

|Z| =0 and |Z| =1 are shown in this figure as black dotes. The cases corresponding to

N=1=I1 and three different values of the power of the spring corresponding to under-

linear, linear and over-linear springs are presented. It can be concluded that the use of
under-linear springs can be beneficial as it increases the resonant value of the constant

¢, , which is important as this value puts the limitations on the system parameter
values, as seen from Eq. (21).

Fig. 8 Resonant value of E; , Eq. (36) a) as a function of the parameter |A| for different

values of the power & and N =—1 (thicker lines), when ¢, <0, as well as for N =1

when ¢, >0
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4. CONCLUSIONS

In this paper, a system that comprises two particles of equal masses moving in a
horizontal plane, connected with a purely non-linear power-form spring, has been
studied. Each of the particles is placed on a blade, so that their velocities are
perpendicular mutually. This has also yielded the existence of two non-holonomic
constraints. Four generalised coordinates have been assigned to the system, which due to
the number of non-holonomic constraints, has two degrees of freedom. Two differential
equations of motion have been solved approximately to obtain first how the distance
between the points, i.e. the length of the spring, changes with time, and then to derive
analytically the angle between the direction passing through these two points and the
horizontal as a function of time. It has been demonstrated that the length of the spring
oscillates with the angular frequency @ that decreases as the power of the non-linear
spring increases. The influence of the initial deflection on this angular frequency has
been shown to be different for under-linear and over-linear springs. Further, it has been
derived that the angle between the direction passing through the points and the
horizontal oscillates around the value defined by the corresponding constant angular
velocity, which depends on the system parameter values, the initial angular velocity and
the initial deflection of the spring. These oscillations are multi-frequency oscillations
whose angular frequencies are positive whole-number multiplications of the afore-
mentioned angular frequency @. These results have been used then together with the
non-holonomic constraints to obtain approximations for motion of one of the points
considered. The corresponding oscillatory response has been derived in terms of
harmonics whose coefficients have been expressed by means of the Bessel function of the
first kind and are characterized by the existence of the denominators that can have zero
values. The condition when this happens and when the corresponding trajectory is
consequently unbounded has been found. All of the analytical results obtained have been
verified numerically. Finally, it has been shown that the use of under-linear springs can
be beneficial as it increases the value of the parameter that yields an unbounded
trajectory.
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O KRETANJU SISTEMA SA DVA SECIVA I NELINEARNOM
OPRUGOM

Ivana Kovacié

U ovom radu je razmatran sistem koji se sastoji od dve materijalne tacke koje se krecu u
horizontalnoj ravni i povezane su nelinearnom oprugom. Svaka od materijalnih tacaka je
postavljena na secivo usled cega su njihove brzine medusobno upravnih pravaca i postoje dve
Jednacine neholonomnih veza. Dve diferencijalne jednacine kretanja su reSene pribliznim
metodama, a zatim je koris¢enjem jednacina neholonomnih veza dobijeno pribliZno analiticko
reSenje za kretanje jedne tacke, i odredena njena trajektorija. Analiticki rezultati su potvrdeni
numerickim putem. Osim toga, odreden je i uslov pod kojim trajektorija ove tacke nije
ogranicena. Utvrden je slucaj kada je u ovom smislu od koristi upotreba odredenog tipa
nelinearne opruge.

Kljucne reci: neholonomna veza, nelinearna opruga, frekvencija, trajektorija.
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Abstract In the present paper, the Preisach model of hysteresis, which was already
successfully implemented for solving problems of cyclic plasticity of axially loaded bar
and cyclic bending of elastoplastic beam, is extended to structural analysis of trusses
subjected to cyclic loading. It is also shown that damage effects can be included in
presented analysis by introducing basic concepts of continuum damage mechanics.
Using finite element method, equilibrium equations are obtained and algorithm for
numerical solution is defined. Some advantages of this approach are underlined,
compared with already existing procedures and shown on various numerical examples.

Key words: cyclic plasticity, Preisach model, trusses, damage

1. INTRODUCTION

Although there are numerous well known models of cyclic plasticity defined, in this
paper, it is shown that for uniaxial stress state, hysteresis can be defined, based on
experimental data, in one particular rigorously mathematical form and implemented in
finite element equations for trusses.

The hysteresis operator is a mathematical concept and it is not directly related to the
intrinsic physical causes of hysteresis. Since there are numerous examples of hysteresis
phenomena occurring in physical processes (hysteresis in continuum mechanics, in
ferromagnetism, in filtration through porous media etc.), appropriate modeling of
hysteresis is of great interest for engineers and physicists. One of the most powerful
scalar model of hysteresis, among those that are known so far, was proposed by the
physicist F. Preisach in 1935 [1] to represent scalar ferromagnetism. There are numerous
mathematical models that describe hysteretic behavior and some of them were used to
model hysteresis in solid mechanics (Prandt-Ishlikii, Bouc, Wen, Baber-Noori).
Application of the Preisach model to cyclic behavior of elasto-plastic material was
introduced in 1993 by ([Lubarda, Sumarac and Krajcinovic [2],[3]). One of the most
important properties of the Preisach operator is the so-called memory map [16], but in
addition it is shown in [2] that suggested (Preisach) model also possesses congruency
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and wiping out property, which makes this model [2],[3] appropriate to describe
hysteretic behavior of elasto-plastic material. It was also shown that Preisach model can
be defined in purely geometric terms[8], without any reference to analytical definition,
which is less attractive approach for engineers.

Using finite element method, equilibrium equations for structural analysis of trusses
are obtained and algorithm for numerical solution is defined in C++ code. Several
numerical examples will be presented and results obtained by suggested model are
compared with the already existing in the literature. The second and the third part of this
paper contains basic outline of the Preisach model and its application of modeling ductile
materials subjected to cyclic loading, as explained in [3][4] and [5]. In the fourth part,
finite element equations for static nonlinear analysis of trusses subjected to cyclic loading
are shown. It is also shown that damage effects can be included in elastoplastic analysis
by taking into account basic concepts of continuum damage mechanics. In the fifth part,
numerical examples are presented and results, obtained by this model, are analyzed and
compared with the results obtained by the Bouc-Wen model of hysteresis [13], [14], [15],
applied in SAP2000 [18], and results obtained by GP (Generalized Plasticity) model
explained in [20].

2. THE PREISACH MODEL OF HYSTERESIS

According to Mayergoyz [8], the Preisach model implies the mapping of an input u(t)
on the output f{7) in the integral form:

F@=[[P(0uB)G,gu(t)dadp, (1)

where G, 4is an elementary hysteresis operator given in Figure 1.a. Parameters o and f are
up and down switching values of the input, while P(q, f) is the Preisach function. i.e.a
weight (Green’s) function of the hysteresis nonlinearity to be represented by the Preisach
model. The domain of integration of integral (1) is right triangle in the , £ plane, with
o=/ being the hypotenuse and (o, fy= - ay) being the triangular vertex (Fig.1.b). History
of loading corresponds to staircase line L(z) which divides triangle into two parts
(Lubarda et al.[2]).

er,[su o
0l , (0, o)
A a4 . ( ) - %
D R A
A
B o . e
-
a b c (—0,Z0p)
(a) (b)

Fig.1 (a) Elementary hysteresis operator; (b) Staircase line in the Preisach triangle
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Maxima or minima of loading history are represented by the vertices with coordinates
(a,) on staircase line L(z) in such a way if the input at a previous instant of time is
increased, the final link of L(¢) is horizontal, and vice versa if it is decreased it is vertical.
Therefore, the triangle is divided into two parts with the positive and negative values of
G, sby the interface staircase line L(z). From formula (1) it is obtained:

£(0)= [ P(c.B)G,pu(r)dadB~ [[ P(0t.B)G,qu(r)dadp. @
A () A1)
Denoting the output value at u= f by f,, s from the limiting triangle, it follows that
Jup=tu =2 ( [P(o. B’)da’JdB’ , 3
BB

By differentiating expression (3) twice, with respect to a and f, the Preisach weight
function is derived in the form

19
2 dodf

P(a.B)

The Preisach model explained above possesses two properties: wiping out and
congruency properties. Those properties and much more about Preisach model is
explained in the Lubarda et al. [2] and [3].

“

3 THE PREISACH MODEL FOR CYCLIC BEHAVIOR OF DUCTILE MATERIALS

One dimensional hysteretic behavior of elasto-plastic material can be successfully
described by the Preisach model. Ductile material is represented in various ways by a
series or parallel connections of elastic (spring) and plastic (slip) elements Lubarda, at al.
[2]. These results have advantage in comparison with classically obtained Iwan, [7],
Asaro, [10] because of simplicity and strict mathematical rigorous procedure. Parallel
connection of elastic and slip elements, Series connection of elastic and slip elements are
discussed elsewhere Sumarac and Stosic, [4], Lubarda, at al. [2]. Here we will consider a
three element unit.

Elastic-linearly hardening material behavior, characterized by the stress-strain curve
shown in Fig. 2a. (E and E, are elastic and hardening moduli respectively), can be
modeled by a three-element unit shown in Fig. 2b.

Elastic element of length / and modules Ej is connected in a series with a parallel
connection of elastic and slip element, of length L modulus A, and yield strength Y. It
then follows that E =Ey(ly+Ly)/l, and E, =Eh(E+h), where h=hy(ly+Ly)/Ly. Since in this
paper, displacement-based finite element method is used where displacement (strain) is
unknown variable, only three-element units connected in parallel will be used to model
material.
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Figure 2 (a) Elastic-linearly hardening stress-strain behavior with elastic modulus E,
initial yield stress Y and hardening modulus E};(b) Three-element unit reproducing the
stress-strain behavior in (a)

3.1. A Three-Element Unit Connected in Parallel

In this case the Preisach function can be determined from the hysteresis nonlinearity
shown in Fig.2a again, taking into consideration that strain is input and stress is output.
The Preisach function in this case has support along the lines a@—#=0 and a—=2Y/E,
i.e.it is given by

P(on,B)zg{ﬁ(a—BHE;E”S(a—B—ZY/E)} 5)
The expression for stress as a function of applied strain is, consequently,
E| % E-E) =
6(t)=_|: J Got,otg(t)doc_u _[ Goc,og—zy/lsg(t)d(x:l~ (6)
2 —€, 2Y/E-¢,

The first and second term on the right-hand side of (6) are elastic and plastic stress,
respectively. For a system consisting of infinitely many of three-element units, connected
in a parallel and with uniform yield strength distribution within the range Y,,;,<Y<Y,,
the total stress is

E|% E-E 1
6(;):—{ G, .£(t)da— t——|| G, s(t)dadﬁ] (7
2 —‘[‘, 2 Ymax _Ymin JJ P

In (7) the integration domain A is the area of the band contained between the lines
a—f=2Y,,/E and a—f=2Y,,./E in the limiting triangle, shown in Fig.3.b.

3.2. Comparison with experimental results for the strain control uniaxial loading

Stress-strain behavior of material model in plastic domain presented in Fig.3.a is
considered to be consisted of two parts, linear and nonlinear.
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Fig.3 (a)Stress-strain behavior of material modeled by parallel connection of infinite
number of three  element units; (b) Set A*(¢) of Preisach triangle subdivided into N
trapezes.

Nonlinear part of this curve is determined by appropriately adopting stress limits Y,
and Y, in addition to elastic modulus E and hardening modulus E;, that defines slope of
linear part of strain hardening. By analyzing experimental curve, these parameters could
be obtained.

For results obtained in experiment of cyclic loading of material in stable cycle loop,
published in the paper [9], analytical solution was determined based on model, presented
in this paper, of parallel connection of infinitely many elements given in Fig.2b. In this
experiment, sample of Titanium alloy was subjected to strain controlled cyclic loadings
&+ 1.2% and stable hysteretic curves were obtained. By analyzing shape of this
hysteresis, parameters for material behavior defined in (7) could be determined by
considering geometry of experimental curve in Fig.4. Slope of the curve in elastic loading
and reloading segments defines modulus of elasticity £=114GPa and linear part of strain
hardening gives hardening modulus E;,=17.2MPa.

6 [MPa]
E=114GPa
E: =17.2GPa 8007
Yon =450MPa
Yo =999MPa

Specil;ne'n Ti 4
e=10"s
e=+1.2%

€ [%]

2 Yumin
‘ E

2 Ymax
E

I
Fig. 4 Results of experiment of cyclic loading of alloy of Tittanium published in [9] and
determination of parameters for the Preisach model
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If Preisach triangle (Fig.3.b) is analyzed, it can be seen that elastic part of curve's
reloading segment always defines constant strain value of 2Y,,,/E, while the elastic and
nonlinear plastic part of curve's reloading segment give constant strain value of 2Y,,,./E.
Hence, stress limits Y,,;,=450MPa and Y,,,=999MPa are defined. Experimentally
obtained stable cycle loop was in excellent agreement with one obtained using model of
parallel connection of infinitely many elements as shown on Fig.5.a.

In all numerical examples, presented in this paper, the same material of truss structure
is taken and compared with the results obtained by the Bouc-Wen model of hysteresis,
one of the most recognizable and probably the model that had the largest application in
structural analysis. Therefore parameters for Bouc-Wen hysteresis operator are also
determined based on the same experimental results.

Detailed formulation and definition of the Bouc ~-Wen model and its parameters can
be found in [13] [14] and [15]. In presented examples, uniaxial case, with no additional
possibilities such as degradation and pinching

——————————————— BW o =2
——BWa=3
Preisach model BWa=4

—+-— Experiment 800 e | +— Experiment 8001

stress[MPa]

stress[MPa s
[MPa] Py

5 10
strain[%]

5 1.0
strain[%])

(a) (b)

Fig. 5 (a) Comparison of experimentally obtained loop ([9]) with the loop obtained by
suggested model of hysteresis; (b) Determination of parameters for the Bouc-Wen model
of hysteresis for the best fitting of experimentally obtained loop [9]

effects modeling, is used. All parameters for this model could be determined from
experimental results, but the exponent for transition zone was varied to achieve the best
approximation of experiment (a=3 gave the best fitting), and results were presented in
Fig.5.b.

In addition, results from numerical examples are compared with results obtained by
GP finite element [19] based on generalized plasticity material model developed by [20].
GP model has both yield function and limit function and therefore smooth transition
between elastic and plastic states is achieved. Material parameters for GP model are also
defined from experimental results [9].
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4. FINITE ELEMENT EQUATIONS FOR TRUSSES SUBJECTED TO CYCLIC LOADING IN PLASTIC
DOMAIN

Using principle of virtual displacements, equations for finite element procedures can
be obtained. If only truss elements are considered, (body forces and surface forces are
zero), only concentrated loads at nodes, as externally applied load are possible. In the
finite element analysis we approximate the structure (in this case truss) as the assemblage
of the discrete finite elements interconnected at the nodal points on the element
boundaries. The expression for principle of virtual displacements then becomes:

z J’ g(/71)7‘(’(/71)61‘/(/71) :zﬁlTRé , (8)
) i

m ym

where o represents stresses in equilibrium with applied loads, R denotes concentrated

forces on point i of applied loads, i'denotes virtual displacements, # corresponding
virtual strains and m= 1,2...k, where k is the number of elements (bars). If only one
element m of structure is analyzed, substituting equation (7) into (8), it is obtained:

4 Y -Y

max min

& £ [ 6, .e()da|av - [er| EEED 1 G, sedadp |dv =", - ()
v 2 ’ v e

—£

It was demonstrated in [3] and [4] that for corresponding strain limits &,=Y,,;,/Eand
&=Y,.../E, Preisach triangle is formed as presented in Fig.3.(b). It is shown in [2] and [3]
that the first part of the expression in Eq.(7) represents elastic stress of axially loaded
bars. The second part of the expression in Eq.(7) defines plastic stress, when strain in
material exceeds elastic limit (€ >¢,) and by geometric interpretation it is shown in [2]
and [3], that it actually represents difference of integrals over positive and negative area
A*(t) and A'(2) in the Preisach triangle. It is obvious that area A*(z) is consisted of sum of
N trapezes whose vertices have coordinates equal to past input extrema [2], and therefore
it represents function of predominant input strain data values (&, &)(Fig.3.b):

N
A=Y [(e,ﬁ, -g ) (e, el +el -8/ 2} : (10
t=1

Considering that displacement-based finite element method is used, it is necessary to
exchange strain variable £ with bar length change Au, and because of Eq.(10), A*(z) will
therefore represent function of predominant input bar length change data values Au.
Second part of the equation (10) then becomes:

[[Gupxe)xdadB = [[G, 5 xAu(t)xdTdB =A" (1)~ A" (1) = %XM,,, =€, (11)

)J Yap
A A

where &, and u, represent differences of positive and negative sets in the Preisach
triangles where strain and bar length change are used as input functions, respectively. L
represents bar length. Substituting Eq.(11) in (9), (12) is obtained:

T pi
v [ =u""Re.(12)
;

E(m)T J‘ B(m)TEB(m)dV(m) E(m)_’;(m)T J‘ B(m)T E(E—Eh) 1
v o A ) (1)

)
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It is considered that this problem would not require large displacement and large
strain analysis, and if strain displacement matrix B is introduced, expressions in brackets
of first and second part of (12) are actually defining elastic stiffness matrix and plastic
stiffness matrix respectively:

Kel(m)lj(m) _ Kpl(m) 'u;)lzl) — Ré . (13)
For the finite element assemblage, expression in Eq.(11) becomes
KU-K,U,=R. (14)

It is important to emphasize that elements of vectors U represent nodal displacements
of the global system while elements of vector U, represent differences of positive and
negative sets A*(z) and A'(¢) in corresponding Preisach triangle, transformed in global
system. For solving problem of nonlinear static analysis, iterative procedure using
Newton-Raphson initial stress method can be applied:

Ke,AU(i) — t+AtR_ t+AtF(i—l)
r+ArU (i) = r+ArU (i—=1) + AU (i) (]5)
1+AL (i) _ t+Ary 7(i) 1+A (i)

FO=K," U +K," U "

Procedure for iteration i in Eqs.(15) is repeated until convergence is achieved.
According to defined procedures for numerical analysis from Eqgs.(13) to (15), algorithm
for elastoplastic analysis of trusses subjected to cyclic loading was defined in C++ code.
During every step and iteration in expressions (13) to (15), in every bar of truss structure,
plastic part from Eq.(15) is being calculated according to current state of corresponding
bar and then assembled in global matrix in Eq.(14). For assigned material properties,
corresponding stress-strain behavior obtained by the Preisach model can be presented as
shown in Fig.3.a, where &, is elastic strain limit of material, &, is plastic strain limit at the
onset of linear hardening and & is optional maximum strain limit of material. In static
analysis, if material has very small or no strain hardening (E;~0), in order to provide
some indication of when both the displacements and the forces are near their equilibrium
values, it is recommended [6] that convergence criteria should be based on energy
tolerance condition as shown in Eq.(16). In every iteration increment of internal energy is
compared to initial internal energy increment:

AU(i)T(1+A1R _1+A1F(i—]))SeE (AU(])T(1+A1R _F )) (16)

4.1. Modeling of damage

In presented analysis basic concepts of macroscopic damage is introduced. Simple
isotropic damage theory is implemented by introducing scalar damage measure in form of
scalar variable @that evolves from O (undamaged material) to 1 (fully damaged
material):

o=(1-w)6, (17)
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where & represents effective stress of undamaged body (in case of elastic or elastoplastic
analysis) and orepresents actual stress caused by damage. Effective strain of undamaged
body £ is considered to be equal to effective strain of damaged body & Since in
presented paper, uniaxial stress state is analyzed, with homogenous behavior of each
element (bar) of structure (truss), local damage definition is sufficient and well suited for
implementation since it is considered that damage is constant throughout each element of
truss structure. Algorithm for elastoplastic analysis including damage can be defined as
explained in [23]:

d6=D"-d¢ (18)
do=(1-w) D" -de—d®-6 19
o) = gt +(1_ g )Del)(i+1) de—dw-6% 20)
Dep(H]) de = (G(HI) _ 6(!)) , (21)

where D represents elastoplastic matrix of material in multiaxial stress state or tangent
modulus in presented unixial case. Hence D?de represents elastoplastic stress
increment. Note that 6" and 6" represents effective stress of undamaged body in
elastoplastic analysis at time increments i+/ and i respectively, and they can be
determined as presented in paragraphs 3.1. and 4.

Ductile damage variable @ can be defined as function of damage history parameter
&' and and it grows from zero to one as the parameter K grows from threshold «; to

its ultimate value %, Damage evolution can be defined as function that limits
elastoplastic behavior in stress space and determines initiation of damage:

fi=8-«, (22)

where measure £ can be adopted as equivalent plastic strain. The damage growth
function governs damage variable evolution and it can be determined experimentally [24]
in linear, power law or exponential form. In following numerical analysis, modified
power law form of damage variable evolution is used:

o NP/ Y
m(K")=1—(sz (—‘;:‘:J (23)

where 7, [ represent material parameters.

5. NUMERICAL EXAMPLES

In all numerical examples, material properties for all truss bars are taken from
experimental results [9], shown in paragraph 3.2. In order to outline the advantages of the
Preisach hysteresis operator, results from presented model were compared to the results
of the Bouc-Wen and GP model.
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Fig. 6 (a) Geometry and loading R(?) of truss structure for the first numerical example
(b) Moving load V in the second numerical example

5.1. Quasi-static analysis of two-span truss without damage

In the first example, truss structure shown in Fig.6.a is analyzed under two types of
load (Fig.6.a and Fig.6.b). The first load case (R(?)) has cyclic character and its input
function is shown in Fig.11.b, while in the second case truss was subjected to moving
load pattern of two concentrated forces 2xV (V=8000kN). Structure consists of two types
of bars. Horizontal bars with length of 6m, and cross section areas Ap,= 0.02m’ and
diagonal bars with cross section areas A ;,= 0.01 5m’.

In the first case of loading, all bars of structure, which undergo plastic deformation,
have stable hysteretic loops and resulting stress-strain diagram for some of characteristic
bars (29, 31) are presented in Fig.7.

Preisach Preisach
P 1000+ BAR 29 P

rrrrrrrrrr BWa=3 ~BWe =3
stress[MPa] /
01 0,02 4
strain -0,01 0 0",' straino 01

(@ (b)

Fig. 7 Stress strain hysteresis curves for the first numerical example: Comparison of the

Preisach model, GP model and the Bouc-Wen model (a=3) for bar 29 (a) and bar 31 (b)
respectively

Although in the second case applied moving load pattern 2xV doesn’t have cyclic

character, bars will be subjected to load reversals, since these concentrate forces move
across two span of continuous truss structure. Structure is subjected to five consecutive
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cycles of moving load pattern (Fig.6.b). Note that bars whose position is symmetrical
around midpoint of structure should have identical response, according to position of
load, in case of elastic analysis. However, all bars of the structure are being plastically
deformed gradually and therefore symmetrical bars have different deformed state at same
instant of time of loading and therefore different strain history. Results according to
different models are presented in Fig.8, where maximum absolute vertical displacement
during each cycle and residual maximum vertical displacement after each cycle are
presented and compared. When results obtained using the Preisach model are analyzed, it
can be seen that loading after first cycle doesn't increase deformation significantly. In
summary, after the second and all subsequent cycles, identical and stable deformation is
observed and there is no further significant increase of plastic strain as it is shown in
Fig..

Preisach residual displacement
Preisach absolute max. displacement
BW «=4 residual displacement

BW «=4 absolute max. displacement
BW «=3 residual displacement

BW «=3 absolute max. displacement
BW «=2 residual displacement

BW «=2 absolute max. displacement
GP absolute max. displacement

10 )
- (;

0,84

0,6

of right midspan [m]

0.4

Vertical displacement

024 /| /

0,0 T

Number of cycles

Fig. 8 Maximum absolute vertical displacement of the right midspan of truss during each
cycle and residual maximum vertical displacement after each cycle in the second
numerical example obtained using different models

After 1st cycle
- — After 2nd+ cycle

scale factor 40

Figure 9 Deformed shape of structure for the second numerical example, obtained by

suggested model, (scale factor = 40) after first cycle and after 2" and all subsequent
cycles

The most obvious difference between Preisach model and the Bouc-Wen model, can
be seen when form of resulting hysteresis is analyzed. While resulting loops obtained by
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the Preisach model are decreased significantly after first cycle, providing elastic
shakedown behaviour, that is not the case with corresponding results of the Bouc Wen
and GP model. Hence, when results of the Bouc-Wen and GP model of hysteresis are
compared, it can be seen that stabilization of plastic deformation in second numerical
example occurred in higher number of cycles and higher strain values as shown in Fig.9.

5.2. Quasi-static analysis of two-span truss with damage

Results of elastoplastic analysis obtained using Preisach model without damage in
first and second numerical example are compared to results of the same model that
includes damage. Evolution law for damage variable is adopted in modified power law
form (23) and parameters for damage variable @are adopted as follows: &, = 0.01, x, =
0.1, = 0.2 while coefficienty is varied. Results obtained in the first numerical example
are presented on the Figure 10.

no damage BAR 29 no damage
rrrrrr —y=02 CL ey = 0.2 ; 900, BARS1
——y=05 L =05 e
stress[MPa] oy stress[MPalggg | /7 7

o

00  ¢o1” 002 003 7
strain -0,02 /70,01’,/ Oyé Odyain 0,02

/

[¢8)
[

D
S

(a) (b)

Fig. 10 Stress - strain hysteresis curves for the first numerical example: Comparison of
the Preisach model without damage , Preisach model with damage ()=0.2), Preisach
model with damage ()=0.5) for bar 29 (a) and bar 31 (b) respectively

By analyzing change of the tangent modulus on stress-strain curves, degradation of
elastic and hardening modulus can be observed. In second numerical example, there is
also stabilization of deformation occurred in models that included damage of material. It
can be seen that resulting behavior is dependent form parameter ¥ and appropriate
attention should be made for determination of damage parameters. Function of vertical
displacement of right midspan, obtained using different models, is analyzed throughout
all cycles and presented on Fig.11.

110



Analysis of cyclic plasticity of trusses using the Preisach model of hysteresis

no damage
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Fig.11 (a) Vertical displacement of right midspan for the second numerical example:
Comparison of Preisach model without damage , Preisach model with damage (7=0.05),
Preisach model with damage (7=0.2) ; (b) Time history of loading R(?) for the first
numerical example

6 CONCLUSIONS

In the present paper it is shown that the Preisach model of hysteresis can be
successfully applied in structural analysis of trusses, besides previously shown advanced
application in the case of uniaxial cyclic loading of bar [2],[3] and cyclic bending of
beam [4],[5]. Program in C++ code using finite element procedure is made for analyzing
static and dynamic problems of trusses subjected to cyclic loading in the plastic range.
The procedure leads to Newton-Raphson initial stress method. Damage can be included
in presented algorithm by introducing scalar damage variable and basic concepts of
continuum damage mechanics. It is also shown that the Preisach model can be defined in
purely geometric terms, without any reference to analytical definition.

Results obtained by this model were compared with the result from the Bouc-Wen
and the GP (Generalized Plasticity) models for several numerical examples. Even the
agreement of obtained results is excellent, this model has several advantages. Analytical
solution in closed form provides mathematical rigor of the Preisach model, while its
absolute equivalent geometric interpretation enables numerical effective solution and less
computational cost. Considering all possibilities that Preisach model poses, this type of
analysis in finite element procedures is yet to be applied.
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ANALIZA CIKLICNE PLASTICNOSTI RESETKASTIH NOSACA

KORISTECI PRAJZAKOV MODEL HISTEREZISA

Z. Perovi¢, D. Sumarac

Abstract U ovom radu, Prajzakov model histerezisa, koji je ve¢ uspesno primenjen za
reSavanje problema ciklicne plasticnosti aksijalno napregnutih stapova i ciklicnog
savijanja elastoplasticne grede, je primenjen u strukturnoj analizi reSetkastih nosaca
koji su izloZeni ciklicnom opetrecenju. Takode je prikazano da se efekti oStecenja mogu
ukljuciti u prikazanu analizu uvodenjem osnovnih principa mehanike ostecenja u
kontinuumu. Koriste¢i metodu konacnih elemenata, jednacine ravnoteZe i algoritam za
numericko resavanje je definisan. Neke prednosti ovakvog pristupa su naglasene,
uporedene sa veC postojecim postupcima za reSavanje, i prikazane na razlicitim
numerickim primerima.

Kljuéne reci: ciklicna plasticnost, Prajzakov model, reSetkasti nosaci, ostecenje
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ABSTRACT. Crack that lies between the two elastic isotropic materials can continue to propagate
along the interface or it can kink out from it and continue to propagate in one of the two
materials. The "competition" between the crack kinking out from the interface and propagation
along it can be estimated by comparing the energy release rate needed for the crack kinking from
the interface G, and energy release rate needed for the crack propagation along the interface G.
The in-plane stress parallel to the interface affects the energy release rate for the crack that is
kinking out from the interface and can significantly change the conditions under which the crack
would kink out. In this paper is presented dependence of the energy release rates ratio GJ/G on
in-plane stresses. Results presented here enable comparison of the interface toughness to
toughness of material without interface, in order to determine whether the crack would kink out
from the interface or would it continue to propagate along it. This is significant in design of
Jjoints between the two materials, for instance in composite materials between fibers and substrate
and for coatings over the substrates.

Key words: Interfacial crack, Crack kinking, In-plane stress

1. INTRODUCTION

The crack most frequently appears at the interface between the two materials, since
the interface toughness is smaller than toughness of materials that are forming the
interface. However, in some cases, the crack can appear in one of the materials, in such
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a way that it can be parallel to the interface (the so-called subinterfacial crack) or it can
attack the interface at a certain angle. Also, in some other cases a crack that propagates
along the interface can kink out from it and it can G and G, respectively. Those "driving
forces" depend on intensity of the applied load, ratio of opening mode load and the shear
mode load and on elastic constants. The "competition" between crack kinking out and
propagation along the interface also includes fracture toughness of materials I" and of
interface I';. Roughly speaking, the tough interface would prevent the crack to propagate
along it. The crack kinking out from the interface is possible if the following holds, He
and Hutchinson (1989):
G, T

> — 1
¢’T (1

There exist several papers where the problems related to crack kinking out from the
interface were analyzed. The crack kinking out from the interface between the two
elastic isotropic materials was analyzed by He and Hutchinson (1989) and Veljkovic
(2005). Wang et al. (1991) and Nikoli¢ et al. (2010) were considering crack kinking out
from the interface between the two anisotropic materials. Behavior of an interfacial
crack in conditions of the in-plane stresses parallel to the interface is the subject of this
work.

2. PROBLEM FORMULATION

The problem considered is presented in Figure 1.the main crack lies at the interface
between the two different semi-infinite elastic bodies, in the plane strain conditions. The
straight-line crack, of length a kinks out at angle ® into the material below the interface,
material 2. It is assumed that the length of the crack that kinks out from the interface, a,
is small in comparison to length of the main crack and that the asymptotic problem of
the semi-infinite main crack is being analyzed.

#1 *

(a) ()

Fig. 1. Geometry of the considered problem:
(a) crack at the interface; (b) kinked crack.

The stress field prior to crack kinking is a singular field of an interfacial crack,
which is characterized by the complex stress intensity factor, K = K, +iK, with addition
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of the stress o, parallel to the interface, which exists within the material into which the
crack is kinking, Figure 1. (a). The stress field at the tip of a crack that has kinked from
the interface is characterized by the combination of the standard intensity factors for
Mode I and Mode II of crack propagation, K; and Kj, respectively, Figure 1. (b).
Analysis should establish the relation between stress intensity factors K; and Kj; for the
crack that has kinked from the interface and stress intensity factors K; and K, for the
crack at the interface in terms of the angle ® and elastic moduli of the two materials.
The energy release rate for the crack that has kinked from the interface is compared to
the energy release rate for the interfacial crack.

The complex stress intensity factor represents the characteristic of the interface. This
factor has the general form, Rice (1988):

K=YTJLL®™, )

where T represents intensity of stress due to the load applied to a sample, L is the
characteristic length (crack length or layer thickness, etc.), Y is the dimensionless real
positive variable,  is the phase angle of KL, but it is often called "the phase angle of
the complex stress intensity factor" or "the phase angle of applied load". Variables, Y
and y both depend on applied load and generally on ratio of the elasticity moduli and
the characteristic sizes of the cracked body.

When the stress o, exists in the material below the interface, which acts parallel to
the interface, Figure 1. (a), regardless whether the matter is residual stress or applied
load, the additional dimensionless parameter is being introduced:

ooa

= 3
cosh e /E.G
where E- is determined by the expression:
2 1 1
P 4)
E. E E

where: E,- :Ei/(l—vf)for the plane strain conditions, E; (i = 1, 2) is the Young's

modulus of elasticity, v; is the Poisson's ratio, while indices 1 and 2 refer to materials
above and below the interface, respectively.

Parameter € is called the bielastic constant or the oscillatory index; it is the
characteristics of the interfacial crack, and it is determined as, Rice (1988):

_ 1 [1=B
8_2n1n(1+[3J’ )

where B is one of the two Dundurs parameters, defined with:

o & DG +D o (G —D - (K, -1

k) - 5 6
W, (xk, + D)+, (x, +1) W, (x, +1) +u, (x, +1) ©
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where: W; is the shear modulus, while k; = 3 — 4 v; for the plane strain conditions.
Energy release rate for the interfacial crack is being determined based on expression,
Hutchinson and Suo (1992):

G= 1<,+l+1<2+1 KZK . )
My W, )16ch”(em)

The stress field for the semi-infinite interfacial crack (a = 0) has the form determined
by the following equation:

o, = [ Re (Kr*)ol,(6,6)+Im (Kr*)oly (8,€) |, ®)

Y A2Tr
1,11

where G, (8,€) are the angular functions which correspond to tensile tractions and in-
plane shear tractions across the interface, Nikolic and Djokovic (2011). Thus, tractions n
the interface, ahead of the crack tip, at a distance r have the form:

) (K, +iK,)r"
(G +i0, )y = — =

&)

2nr

The stress field at the tip of a crack, which has kinked from the interface into the
material 2, is the common stress field with the usual stress intensity factors K; and Ky,
determined by equations:

c,, =K,Qnr)"?, c,=K,Qnr)" . (10

The relation between stress intensity factors for the crack that has kinked and the
main crack at the interface can be written as:

K} +iK} = cKa® +d Ka™ +bc,a , (11)

where (_) denotes the complex conjugate value, ¢, d and b are the complex functions of

o, o and B.

Coefficient b = by + ib, is being determined based on procedure defined by He and
Hutchinson (1988) for coefficients ¢ and d. For approximate determination of
coefficients ¢ and d one can use the approximate expressions proposed in Veljkovic

(2005):
i0 3i0
(=1 1P (e'z +e_2]

2\V1+a

i0 3i0 )
=+ 178 B(e T e 2]
4\1-o

For approximate determination of coefficients b; and b, one can use the
approximation defined by Cotterell and Rice (1980):

(12)
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[2 [2
b, =2,|=sin’ o, b, = [=sin20. (13)
T T

In the case that B = 0 equation (11) can be written as:
K =(cy +d)K, —(c, +d,)K, +bc,\a

. (14)
K} =(c, —d)K, +(cy +d)K, +b,c,a.

The relation between the energy release rate G for the interfacial crack, which
propagates along the interface, and the stress intensity factor K is determined by
expression (7).

Energy release rate G, for the crack that is kinking out from the interface (a > 0),
can be determined based on Irwin's relation between the energy release rate for the
straight-line quasi-static crack growth and the stress intensity factor, i.e.

2 2
=Ktk (15)
E
Making use of equation (11) yields:
where is defined by equation:
2 — L= 2
G, =(G,)y 0+ Opa Re[b (cKa" +dKa )]+ 22% (b7 +5?) (16)
‘ ‘ E2 E2
where (G,),_, is defined by equation:
K, +1 — ;
(6o =2 (| +|a[ K K +2Re(cd K*a™)] (17)
My

and it represents the energy release rate for 6, = 0.
Finally, based on equations (7), (16) and (2), one obtains relation between the energy
release rates for the kinked and the main crack as:

G 1G=g¢" { [(|c +|d[")+2Re(cd e*¥)1+2nRe[b (ce™ +de™ )] +n* (B} +b22)} . (18)

where g = /(1-B*)/(1+a) , ¥=y+eln(a/L) and L is the characteristic length for the
interfacial crack problem when (a > 0).

3. RESULTS AND DISCUSSION

The role of the G, stress in competition whether the interfacial crack would continue
to propagate along the interface or would it kink out from it, is presented in Figures 2
and 3.

The ratio G,/G, calculated based on equation (18), is presented in Figure 2, in terms
of kink angle o for the case oo = B = 0. The main crack is in the mixed mode conditions,
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with equal shares of Mode I and Mode 1, i.e., for ¢ = 45°. The significant influence of
the oy stress on the energy release rate begins to appear when 1 = 0.1. For values | = +
0.25, ratio G,/G either increases or decreases for about 50 %, depending on the sign of
Op.

20

| I | | | g
0 20 40 60 80 100 120
o[°]

Fig. 2. Ratio G,/G as a function of the crack kinking angle  for different values of
parameter 1 and values of the load phase angle y=arctg(K, / K,)=45°and o= = 0.

Ratio G/G as a function of the load phase angle vy is presented in Figure 3. The role
of in-plane tension (n > 0) can be explained based on Figure 3. The ratio G/G is
determined based on the initial value of the crack length a and o,. The kinking out of a
crack from the interface is possible if inequality (1) is satisfied. If that was not the case,
the crack would continue to propagate along the interface, since the applied load is too
small to cause the crack kinking. For the case of the in-plane tension, if the crack has
kinked out from the interface, as it propagates so will 1 increase thus causing increase of
the driving force at the crack tip and the kinking becomes unstable. For the case of the
in-plane compression (M < 0), the behavior in the material below the interface is
completely different. The energy release rate G, decreases with increase of the kinked
crack length a, consequently the kinked crack will tend to close.

Influence of different characteristics of materials on the either sides of the interface
on ratio G/G is in Figure 3 shown via parameters o and 3. One can notice from Figure
3 that with increase of the relative compliance of a material into which the crack is
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kinking, the energy release rate for the crack kinking out also increases, thus enhancing
the tendency of a crack to kink into the material below the interface.

G/G

s

R =0.5
0.2 e 0=05,B=00 T imim = N
— 4=0.0,p=0.0 n=0.5
..... 0=-0.5, B=0.0
Il Il
0 10 20 30 40 50 60 70 80 90
v, [°]

Fig. 3. Ratio G/G as a function of the load phase angle y for different values of
parameter 1 and parameters o and .

4. CONCLUSION

The in-plane stresses impose a strong influence on the interfacial crack behavior,
especially the tensile ones. If the crack kinking out from the interface existed, the tensile
in-plane stresses would cause destabilizing of the interfacial crack and its further
kinking into the material below the interface and distancing from it. On the other hand,
the compressive in-plane stresses would stabilize the interfacial crack and would lead to
closing of the kinked crack.

Such a result is important for design of joints where either the reactive layer or the
coating are exposed to different stresses, as well as for fracture of fibers in composite
materials. Imposing compressive in-plane stresses would prevent propagation of the
kinked portion of interfacial cracks and thus eliminate possibility for coating
delamination from the substrate in the former case or fiber separation from the substrate
in the latter case.
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UTICAJ NAPONA U RAVNI NA
SKRETANJE PRSLINE SA INTERFEJSA

Jelena M. Djokovié¢, Ruzica R. Nikoli¢

Prslina koja leZi izmedju dva elasticna izotropna materijala moZe da nastavi da se Siri duZ
interfejsa ili moZe da skrene sa njega i da nastavi da se Siri u jednom od dva materijala.
"Takmicenje" izmedju skretanja prsline sa interfejsa i Sirenja dui njega moZe da se oceni
poredjenjem odnosa brzine oslobadjanja energije za skretanje prsline sa interfejsa G i brzine
oslobadjanja energije za prslinu na interfejsu G. Napon u ravni paralelan sa interfejsom utice na
brzinu oslobadjanja energije za prslinu koja skrece sa interfejsa i moZe znacajno promeniti uslove
pod kojima ce prslina skrenuti sa interfejsa. U ovom radu je prikazana zavisnost odnosa brzina
oslobadjanja energije Gy/G od napona u ravni. Rezultati prikazani u ovom radu daju mogucnost
uporedjivanja Zilavosti interfejsa sa Zilavo§éu materijala van interfejsa, a u cilju odredjivanja da
li ée prslina da skrene sa interfejsa, ili ¢e da nastavi dalje da se §iri duZ njega. Ovo je znacajno
za primenu u projektovanju spojeva izmedju dva materijala, na primer u kompozitnim
materijalima izmedju vlakana i matrice ili kod prevliaka na osnovnim materijalima.

Key words: Interfejsna prslina, Skretanje prsline, Napon u ravni.
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Abstract. The paper discusses the unsteady two-dimensional laminar
magnetohydrodynamic (MHD) thermal boundary layer of incompressible fluid. Outer
electric filed is neglected, magnetic Reynolds number is significantly lower then one
i.e. considered problem is in induction-less approximation, characteristic properties
of fluid are constant and body surface temperature varies with time. The boundary-
layer equations are generalized such that the equations and the boundary conditions
are independent of the particular conditions of the problem, and this form is
considered as universal. Obtained universal equations are numerically solved using
progonka method. Numerical results for the dimensionless velocity, temperature and
dimensionless friction factor in function of introduced sets of parameters are
obtained, displayed graphically and used to carry out general conclusions about
development of temperature MHD boundary layer..

Key words: MHD, magnetic field, similarity parameters, universal equations

1. INTRODUCTION

The problem of boundary-layer separation and control has attracted considerable
attention over several decades because of the fundamental flow physics and
technological applications. Some of the essential ideas related to boundary-layer
separation and the need to prevent the same from occurring have been addressed by
Prandtl [1]. The possibility to act on a fluid flow in a contactless way, offered by
magnetohydrodynamics (MHD), stimulated the imagination of aerodynamists and naval
engineers relatively early [2]. In the 1950s, a multitude of aerospace applications of
MHD flow control techniques has been envisioned using the fact that at high enough
speeds air gets ionised by the action of shock waves and frictional heating, and thus
becomes a conductor. Such high-speed conditions are typical for re-entry problems.
Resler and Sears [3] and Busemann [4] proposed, among others, to use magnetic fields
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to control heat transfer, to decelerate or to accelerate vehicles, and to prevent flow
separation. Although enthusiasm for the practical application of these ideas waned later
on, the topic is now again under investigation in connection with scramjets [5], heat
transfer mitigation [6] and electromagnetic braking [7]. Flow of an incompressible
viscous fluid over a surface [8] has an important influence on several technological
applications in the field of metallurgy and chemical engineering. For example, extrusion
of plastics in the manufacture of rayon and nylon, the purification of crude oils, the
textile industry, etc. In many process industries the cooling of threads or sheets of some
polymer materials is important in the production line. The rate of the cooling can be
controlled effectively to achieve final products of desired characteristics by drawing
threads, etc., in the presence of an electrically conducting fluid subjected to magnetic
field. Many MHD flow problems have important applications in the extrusion process.
The extrudate from the die is generally drawn and simultaneously stretched into a sheet
which is then solidified through quenching or gradual cooling by direct contact with
cooling fluid [9]. In these cases the properties of the final product depend to a great
extent on the rate of cooling which is governed by the conditions in the boundary-layer.

In this paper, for the sake of richness of mentioned research, mathematical model
of unsteady temperature two-dimensional laminar MHD boundary-layer of
incompressible fluid is studied, which is directly related with previously mentioned
physical models. The system of partial differential equations that describe the considered
problem can be solved for each particular case using modern numerical methods and
computer. In this paper, quite different approach is used based on ideas of generalized
similarity method given in papers [10-13], which is extended in papers [14-16]. The
boundary-layer equations are generalized such that the equations and the boundary
conditions are independent of the particular conditions of the problem, and this form is
considered as universal.

1.1. Mathematical model

Unsteady two-dimensional temperature laminar MHD boundary-layer of
incompressible fluid is considered. Magnetic field is function of longitudinal coordinate
and perpendicular to the surface, considered problem is in induction-less approximation
(magnetic Reynolds number is significantly lower then one) and electric field is
neglected. Characteristic properties of fluid are constant, and surface temperature is time
function. Described problem is mathematically presented with following equations:

%4'&:0; ey
ox dy

ou ou oJu JIU oU d0’u oB?
—tU—FVv—=—t U —+Vv———(u

ot ox dy of ox oy’

T T T AT u(ou) oB
—tU—tV—=— | — | + u
ot dx dy pc, 9y’ pc, \ dy pc, ¢,
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and corresponding boundary and initial conditions:
u=0,vy=0,T=T,(t) for y=0; u—U(x,1),T >T_ for y—oo;
u=uy(x,y),T=T,(x,y) fort =t,; u=ut,y),T=T(ty) for x=x,. 4)
In the given equations and in the boundary conditions the notations common in the
boundary-layer theory are used for different physical values. Here, x, yis longitudinal
and transversal coordinate respectively; f-time; u,v-longitudinal and transversal
velocity component respectively; U (x,7)- free stream velocity; v -kinematic viscosity
of fluid; o -fluid electrical conductivity; p -fluid density; B -magnetic induction; T -
fluid temperature; A-thermal conductivity, c,-specific heat capacity; L -dynamic
viscosity; 7, (¢) -body surface temperature; 7, -free stream temperature; u,(x,y) and
T, (x, y) -distribution of longitudinal velocity and fluid temperature in time moment
t=1, respectively; u,(x,y)and 7, (x,y)-distribution of longitudinal velocity and fluid
temperature in cross section x = x,.
For further consideration stream function, ‘P(x, y,t)is introduced with following
relations:
v v

- - 9 - = ; 5
ox Y dy . ©)

which satisfies equation (1) identically and transform momentum equation (2) into
equation:

Y 0¥ 'Y ¥ IY U oU 0¥ oB*[o¥
+— -—— =t —+V—F—-| —-U|; (6)
otdy dy dxdy Ox dy ot ox dy’ p Loy
and energy equation (3) into equation:
o 9w awar _ h T (W),
ot dy dx dx dy pc, 9y’ pc, 9y*
@)

) 2
+GB a_\P_U +i(a_U+Ua_UJ U_a_\P .
pc, \ dy c,\ ot ot dy
Boundary and initial conditions (4) are transformed into conditions:

W=0,0¥/dy=0, T=T, (1) for y=0; 9¥/dy > U (x,1);T —>T_ for y —oo;

oW/dy =uy(x,y), T =T,(x,y) fort=1,; 0¥/dy=u,(t,y), T =T,(t,y) for x=x,. (8)
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Equation (9) does not depend on the equation (10) and it can be solved
independently. Solution of equation (9) is used for solving of equation (10).

1.2 Universal equations

In order to analyze described flow problem following new variables are introduced:

DY s -
(x,yt) ;®(x,t,n):u; )

—;¢ ’t’ e —
() = G i o) T -T.

where D is normalizing constant, 1-dimensionless transversal coordinate, h(x,t) is
characteristic linear scale of transversal coordinate in boundary-layer, <I>(x,t,n)-
dimensionless stream function and @(x,z,n)-dimensionless temperature difference.

According to introduced variables, equations (6) and (7) are transformed in following

system:
, 3D ’?d (odY oD
D*Z—+f,|® | =1 +1 +(f0‘]+g]‘0) l—g +

o’ S
m gl M (10)
1 ' D
+—(FP+ —= +UzX (M; x);
y(Feme)5ie =5+ UX (o)
2 42 2.2 \? 2
D_a®_D2Er a¢2’ _Ergl() ]_aﬁ +(]_®)lla£+lnga_®_
B, o’ Lo U o am 2 7o an
0P 1 00 00
-E, (fo,1 +f]'0)(l—m]+5(F+2f]'0)¢>E: zE—UzY(x;n);
where for the sake of shorter expression, the notations are introduced:
n* 9z oB’ oz
:—’ :—, N:—; :N,F:U—;
v & ot p 8o ¢ ox
_au _zoU_ ,  z dT, .
ho=2g0 Ja =y YT -T. dr
o0 ’°® 9P I’P oD 00 0D IO
X (x33) = 2022 20Dy () = S0 2R 8,
dx, ondx, ox, dx,on dx, dx, dx, dx,
vpc U?
P = ” - Prandtl number; E, = —————— - Eckert number. (12)
¢ (T:v _Tw)

Now we introduce sets of parameters:
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i1 07U
Sfin = o z (k,n=0,1,2,...;k vn#0); (13)
gk,n—U“gkk]?;iV B (k,n=0,1,2,....;k 2 0); (14)
A =;‘Zf’zk, (k=1,2,..); where g=T,—T.; (15)
g= % = const. (16)

In previous equations f,, is dynamic parameter, g, -magnetic parameter, [, -
temperature parameter and g -cosntant parameter. It can be noticed that the first
parameters are already given in the equations (12). Introduced sets of parameters reflect
the nature of the change of free stream velocity, alteration characteristic of variable N
and the change of surface temperature, and a part from that, in the integral form (by
means of z and dz/dr) pre-history of flow in boundary layer.

Using, introduced sets of parameters (13-16) like new independent variables instead
of x and ¢, and following differentiation operators for x and :

P 3 0 for &
ai: ;k’" aa + gk’"aa SO 9 o @=xord (17)
= KT

parameter derivates along coordinate x and time ¢ are obtained by differentiation of
equations (13-16):

o, 1 1
B (U R R GO L R T e 9
o, 1 1
%:_{(k_l)fﬂ,lfk,n+(k+n)gfk,n+fk,n+l}:_Ek,n;
t Z Z
%0 zi{(k—l)f 8. H(k+n)Fg,  + g, }:LK, ;
ax UZ 1,08 k,n k,n k+1,n UZ k,n
agﬁzl{(k_l)fo]gk +(k+”)ggk + 8y 1}:lLk ;
al Z y Sn n sn+ Z n
aL:—kFl - —M,;
ox Uz Uz
a, 1 1
a_:zz{(kg_ll)lk+lk+l}:ZNk; (18)
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where Q, E, K, ;L. ,;MN,; areterms in curly brackets in obtained equations.

It is important to notice that O K sM s beside the parameters depend on value

Udz/ox=F. Using parameters (13-16), operator (17) and terms (18) system of
equations (10) and (11) is transformed into system:

] /;,n:()o ko anaﬂn k.n sJk,n k,n anagkn k.n s8kn) |°

i[Lk,n aaG) +K, Y(n g”)]

k,n

0 (19)

> 00
+Z|:Nk 5+MkY(ﬂ;lk )}’

> 00
3, = v,Z::o [Em .. +0.,Y (Tl fkn)‘|+

k,n:
kvn#0

k=1 k

where the following markings have been used for shorter statement: 3, -left side of
equation (10), 3, - left side of equation (11).

In order to make system (19) universal it is necessary to show that value which
appears in terms for Q, ; K, ;M ; can be expressed by means of introduced parameters.

k,n?

In order to prove mentioned we start from impulse equation of described problem:

i(US*)+i(U28**)+U(a—U+N)8 ~e g (20)
ot ox ox p
where:
= I(] —%jdy -displacement thickness; (1)
0
bl IZ] (1 —]dy -momentum thickness; (22)
0
Ju ..
T, (x,t)=p| — | -friction stress on the body. (23)
dy =0
Now we introduce dimensionless characteristic functions:
o 5 T h
H (x,t)=—; H" (x,t)=—; &(x,t)=—2—; 24
() =S 17 () =2 () =2 e

which, according to Egs. (9) and (21-23) , can be expressed in the following form:
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15 (e

6(x) = ng?m

(25)

After transition to new independent variables (introduced parameters) in terms (25)
values H*, H™ and & become functions of parameters f, ,, g,, [ and g.Now,

using parameters from impulse Eq. (20) after simple transformation next equation is
obtained:

F=— (26)
Q

where, for the sake of shorter expression following marks are used:

Pzé_fl,o(ZH +H )_(f(),1+gl,o+EgJH -

oH" oH™ oH™
- f f n +f'+ n g
inzfo{ afk,n ) HoTk afk,n . afk,n }

H*

aH**
- k=1) fi08cnt 8usin |13
o (TR

1 - oHY = oH™
Q0=—H"+ k+n)f,—+) (k+n)g.,—. 27
2 t"z:()o( ) - afk,n %( ) . agk,n

Last two equations define a value F' as a function of introduced parameters. Equation
system (19) is now universal system of equations of described problem. Boundary
conditions, also universal, are given with terms:

d>=0,aai)=0,®=0forn=0; ® —1,0 - 1forn— oo
mn
fin=0(k,n=012,..kvn#0)
8 =0(k,n=0,1,2,...k £0)
®=,(n),0=0,(n) for ; (28)
[, =0(k=0,1,2,..)
g=0

where Qo(n)-BlaSius solution for stationary boundary layer on the flat plate and

©,(n7) is solution of following equation:
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2 2 2 2
D> d’®, Er(d q>OJ LB 49 29)

H* 0 Ciﬂ

A universal system of equations (19) with boundary conditions (28) are accurate for
wide class of problems where z=Atr+C(x) (A is arbitrary constant and C(x) some
function of longitudinal coordinate). For other problems this equations are approximated
universal equations.

System of equations (19) is integrated in m-parametric approximation once for good
and all. Obtained characteristic functions can be used to yield general conclusions about
heat and mass transfer in boundary layer and to solve any particular problem.

Before integration for scale of transversal coordinate in boundary layer h(x,t)
some characteristic value is chosen. In this case /& =3" and accordingly to Eq. (24)
H” =1, H =8"/8" = H, and equality (26) now have form:

F=2{3‘f1,0(2+H) (f()]"'g]o"' gj ZEM z SNCY)
k,n=0 afkn k—] akn

kvn#0 n=0

Taking parameters f, , =0, g, , =0,g=0 first equation of system (19) is

simplified into form:

500
dn3 D

=0; 3D
0 Lfﬂz
and if D?=§&, then previous equation became well-known Blasius equation.
According to previous statement for normalizing constant D  value 0,47 must be
chosen. For selected value % equation (29) for determining variable &, became:

2 2(1) 2
LdG g% p 4P g (32)
Roav  Can

In this paper approximated system of equations (19) is solved in which influence of
parameters f, ., f,;» &, L, and g are detained and influence of parameters

Jou» I, derivatives are disregarded. In this way, Egs. (19) is simplified into following

form:
2 aZ
S =F X ; ) = -~
1 o (Tl f],o)+gfl,oanaflyo+ 810X (Tl g]()) ggl,oanagl’o
00
3, =FHfioY (Uﬁo)*’gfm 7 +Fg oY (n’g10)+ggloa ; (33)
1,0
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where function F in same approximation have form:

oH oH
—_— — . 34
af]p 8810 (34

F=2 E;_f],o(2+H)_(f0,1+g1,0+lg)H_gfl,o 3
81,0

2

Boundary conditions, which coincide to previous system of equations are:
o
<I>=0,a—=0,®=0forn=0; D —>1,0 > 1forn — oo
gl

; (35)

= 0’ = 07 :0
®=d,(n).0=0,(n) for {f]’o Joa 810 }

[,=0,g=0

which is obtained from conditions (28), using same simplifications like for system of
equations. First equation of system (32) is four-parametric once localized approximation
and second is five-parametric twice-localized approximation of second equation of
system (19).

2 RESULTS AND DISCUSION

In this section, part of results obtained with numerical integration (using tridiagonal
algorithm) of equation system (32) with boundary conditions (34) is given. All results
are given for P =1.0, E.=0.3 and g=-0.013. Figure 1 presents the variations of
quantities F and & in function of dynamic parameter Jfio for different values of
magnetic parameter g, ;. It may be noted that with increase of magnetic parameter value
& (dimensionless friction) also increase. This remark lead to conclusion that distance
between front stagnation point and boundary layer separation point increase with
increase of magnetic field intensity.

It is interesting to note decreasing of function F with increase of magnetic
parameter. This result confirms the delay of boundary layer separation and greater
postponement is achieved with increasing of magnetic parameter g, ;. Figure 1 is given
for the case of accelerated free stream (f;; =0.01), however the same conclusion is
obtained for the case of free stream deceleration (fy; <0).

The effect of magnetic parameter g,, on ratio of boundary layer displacement

thickness and momentum thickness H in function of dynamic parameter is shown in
Figure 2. The Figure presents the case of accelerated outer flow(fy; >0). It is

interesting to note decreasing of function H with increase of magnetic parameter and
also with increase of dynamic parameter. This result confirms the delay of the boundary-
layer separation and greater postponement is achieved with increasing of magnetic
parameter. Figures also show that increasing the magnetic field decreases the velocity
boundary layer thickness due to its damping effect.
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Figure 3 presents the variations of F and & in function of dynamic parameter for

different values of unsteadiness parameter. It may be noted that function F decrease
with increase of dynamic parameter. Function F have higher values for the case of
decelerated free stream outer flow (fy; <0), and lower for the acceleration case in

relation to stationary outer flow.
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Figure 3. Variationsof F and & in Figure 4. Variations of H in function
function of dynamic parameter f, , for of dynamic parameter f,, for different
different values of unsteadiness parameter values of unsteadiness parameter f

Jos

Figure 4 shows the ratio of boundary layer displacement thickness and momentum
thickness H in function of dynamic parameter for different values of unsteadiness
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parameter, while magnetic parameter is set to g, =0.08. This ratio decrease with

increase of dynamic parameter. It may be noted also that for the same value of dynamic
parameter ratio is higher for the case of decelerated free stream and lower for the case of
acceleration. According to derived conclusions, it may be observed that free stream
acceleration have positive influence on boundary layer developmentFree stream function
& (dimensionless velocity) is shown in the Figures 5 and 6 in function of dimensionless
transversal coordinate m for different values of magnetic and unsteadiness parameter.

From Figure 5, we observe that with increase of magnetic parameter this ratio also
increase and the minimal value is obtained for the case of non-conducting fluid or for

the case of magnetic field absence.
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Figure 5. Effect of magnetic parameter
81,0 on dimensionless velocity
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Figure 7. Temperature profiles for different
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Figure 8. Temperature function for different
values of temperature parameter /,
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This analysis indicates the significant influence of magnetic field on increasing
velocity in boundary-layer. The results clearly show that the magnetic field tends to
delay or prevent separation. Velocity distribution is given on figure 6 for cross-section,
which coincides to dynamic parameter f,,=-0.02 and decelerated, stationary and

accelerated free stream. It may be noted that velocity in boundary layer faster tends to
the free stream velocity for the case of accelerated free stream and slower for the case of
decelerated flow compared with stationary outer flow. Same conclusion is valid for other
cross-sections of boundary-layer and for all values of dynamic and magnetic parameter.
In Figure 7 the variation of dimensionless temperature in function of value n

for different values of magnetic parameter is given. Figure presents the results obtained
for cross-section which coincide to value of dynamic parameter f,, =0.01. It may be

noted that the highest temperature value is obtained for the case of non-conducting fluid
or for the case of outer magnetic field absence, and increase of magnetic parameter
results in temperature decreasing.

Figure 8 describe temperature distribution in function of dimensionless
transversal coordinate m for different values of temperature parameter. Solid line

presents the case of constant body surface temperature. With increasing of temperature
parameter (/, >0) dimensionless temperature also increase and in the case for body

surface temperature decreasing dimensionless temperature also decrease. Figures 9 and
10 presents the temperature distribution in function of dimensionless transversal
coordinate for different values of unsteadiness parameter and dynamic parameter. It may
me noted that temperature faster tends to value on outer edge of boundary layer for the
case of decelerated free stream.
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Figure 9. Temperature profiles for different Figure 10. Temperature profiles for
values of unsteadiness parameter f different values of dynamic parameter f,
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CONCLUSION

In this paper unsteady two-dimensional MHD boundary-layer on the body whose

temperature varies with time is considered. This problem can be analyzed for each
particular case, i.e. for given free stream velocity. Here is used quite different approach
in order to use benefits of generalized similarity method and universal equations of
observed problem are derived. These equations are solved numerically in some
approximation and integration results are given in the form of diagrams and
conclusions. The obtained results can be used in drawing about general conclusions of
boundary-layer development and in calculation of particular problems.
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NESTA CIONARNI MAGNETNO HIDRODINAMICKI PRENOS
MASE I TOPLOTE NA TELU CIJA SE TEMPERATURA MENJA
TOKOM VREMENA

Dragi$a Nikodijevié¢, Zivojin Stamenkovié

U ovom radu se razmatra nestacionarni dvodimenzionalni temperaturski magneno
hidrodinamicki granicni sloj nestisljivog fluida. Spoljasnje elektricno polje je zanemareno,
magnetni Reynolds-ov broj je znatno manji od jedinice tj. problem se razmatra u bezindukcionoj
aproksimaciji. Karaktersiticna fizicka svojstva fluida su konstantna dok se temperature tela
menja tokom vremena. Jednacine i granicni uslovi koji opisuju problem prenosa mase i toplote u
granicnom sloju uopsteni su tako da ne zavise od partikularnih uslova razmatranog problema, i u
tom smislu one se smatraju univerzalnim. Dobijene univerzalne jednacine reSene su
primenommetode progonka. Numericki rezultati za bezdimenionu brzinu, temperaturu i trenje u
Sfunkciji od uvedenih parametara predstavljeni su graficki i iskoriséeni za donoSenje generalnih
zakljucaka o razvoju posmatranog temperaturskog MHD granicnog sloja.
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INFLUENCE OF THE REYNOLDS NUMBER ON THE
STATISTICAL AND CORRELATION-SPECTRAL PROPERTIES
OF TURBULENT SWIRL FLOW
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Abstract. Average velocity distributions of the turbulent swirl flow for four Reynolds
numbers, obtained with one-component laser Doppler anemometry (LDA) and stereo
particle image velocimetry (SPIV) behind axial fan in the pipe, has been reported in
this paper. The highest levels of turbulence are observed in the vortex core region as
well the non-Gaussian values for skewness and flatness factors. Additional
information on turbulent structure physics were obtained on the basis of
experimentally determined autocorrelation functions and time integral scale for
circumferential velocity.

Key words: swirl flow, turbulence, SPIV, LDA.

1. INTRODUCTION

Turbulent swirl flow investigation attracts attention of numerous researchers, but
behind the axial fan in the circular pipe, by use of modern measuring techniques, is
thoroughly studied in Leci¢ (2003), Oro et al. (2008) with hot-wire anemometry (HWA),
in Proti¢ et al. (2010) with one-component LDA and stereo PIV, while in Cantrak
(2012) with one- and two-component laser Doppler anemometry (LDA) and stereo
particle image velocimetry (SPIV) with low and high speed cameras and lasers.

Investigation of the turbulent swirl flow behind axial fan in the circular pipe, which
generates Rankine swirl, has been reported in this paper. Average total velocity fields for



. CANTRAK, N. JANKOVIC

various Reynolds numbers are given, as well average velocity fields for all three
components. Reynolds numbers were generated by changing the fan rotation speed. Four
flow regions, characteristic for Rankine swirl, are identified. Influence of the Reynolds
number on these average characteristics is obvious in the intensity, but not in the
velocity distribution characters. Level of turbulence is the highest, for all cases, in the
vortex core region. Skewness and flatness factors with time integral scale reveal some of
the turbulent mechanisms.

2. EXPERIMENTAL TEST RIG AND MEASURING METHODS

2.1. Experimental Test Rig

The test rig is 27.74:D long, where D=0.4m is inner average pipe diameter (Fig. 1.).
Measuring section for both measuring techniques is in the position x/D=3.35, where x is
the axial coordinate along a pipe axis and measured from the test rig inlet.

Fig. 1 Experimental test rig: 1-DC motor, 2-profiled inlet nozzle, 3-axial fan and 4-LDA
and SPIV measuring section.

The fan rotation speed was precisely regulated. Each obtained Reynolds number
correspond to the regime defined with rotation number, i.e. n=1000, 1500, 2000 and
2500rpm correspond, respectively, to the Re=182602, 277018, 369612 and 469612,
calculated on the basis of average axial velocity U, (Table 1.).

Axial fan with nine blades, impeller diameter D,=0.399 m and the dimensionless
ratio D/D,=0.5, where D; is the hub ratio, designed by ProtiéT, is the Rankine swirl
generator. The blade angle at the impeller diameter is 5,=30°.

2.2. Laser Doppler Anemometry

One-component LDA system was used for measuring all three velocity components
subsequently in points on 10mm distance along the vertical diameter in position
x/D=3.35 (Fig. 1., pos. 4). Used LDA system is the Flow Explorer Mini LDA, Dantec
with the BSA F30 signal processor and adequate software for data acquisition and
processing. Transit time was used as the weighting factor. Recording time was 10 s for
all measurements. Sampling frequency and data validation varied along the diameter.
Flow is seeded by the Antari Z3000II thermal fog generator which produced quality
seeding for LDA and PIV at the same time. Corrections of the measuring volume
position are discussed in Risti¢ et al. (2012).
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2.3. Stereo Particle Image Velocimetry

SPIV measurements have been performed in the vertical cross-section in defined
position (x/D=3.35, Fig. 1, pos. 4), in target plane X-Y of approximate size 200x90 mm.
The target origin is on the pipe axis and target coordinate system for software
nomenclature is given (Fig. 2., pos. 4).

Fig. 2 SPIV measuring arrangement in the measuring section: 1-left camera, 2-right
camera, 3-Nd:Yag laser, 4-illuminated pipe cross-section, 5-swirl generator and 6-
profiled inlet nozzle.

Dual head Nd:Yag laser (max power: 30mJ/pulse, wavelength 532 nm, 15 Hz), was
used for flow illumination, while two 12-bit CCD cameras with the resolution of
1660x1200 pixels and 32fps were in Scheimpflug setup. The INSIGHT 3G TSI software
was used for data acquisition and processing. Results are obtained by averaging 400
pictures obtained with laser frequency of 2Hz. Image processing was performed using
the central difference image correction (CDIC) deformation algorithm combined with
the FFT correlator (Cantrak et al., 2012).

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. Integral Flow Characteristics

Distribution of all three time-average velocities is presented in Fig. 3. Angle ¢=90°
denotes the upper part (above-pipe axis) of the vertical diameter, while ¢=270° the lower
part (under-pipe axis). Circumferential velocity was measured in both planes from both
sides due to the LDA laser optics technical specification and there is points overlapping
in the vortex core region.
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Fig. 3 Distribution of the time averaged velocities in measuring section 1: a) axial, b)
circumferential and c) radial.

Similarity of axial and circumferential velocity profiles for all Reynolds numbers is
obvious in Fig. 3.a,b. The minimum of axial velocity is in position #/R=0, where r is
radial distance form pipe axis and R=D/2. The reverse flow is evident in the vortex core
region up to r/R=0.1. Maximum of non-dimensional axial velocity is (U/U,,)u.~1.2 for
all regimes. Circumferential velocity maximum, approximately for all cases
(W/U,)max=1.6, is reached in the point #/R=0. The distribution of circumferential and
axial velocity is almost symmetric with respect to the pipe axis. Linear increase of
circumferential velocity is characteristic for solid body flow region, what is obvious in
the vortex core region. Additional characteristic flow region for generated Rankine swirl
is in the sound flow region rW=const (Fig. 3b). In Fig. 3c is also evident finite value of
radial velocities, with minimum value V=-2.53 m/s for n3=1500rpm.

Volume flow rate is calculated on the basis of axial velocity distribution, while average
circulation and swirl number on the basis of axial and circumferential velocities as
follows

1
Iszde, a-2 (1)
0 RT

2p3
(0] ’ F:4TCR

1
=2nR* [ kUdk, U =
e -([ R’n 0]
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where k=7/R is the dimensionless radius. Obtained data are presented in Table 1.
Calculation of these integral values involved assumption of flow axis-symmetry, what
doesn't generate significant error, what is proved with calculation in both meridian
planes =90° and ¢=270°.

Table 1 Calculated integral flow values.

speiznn“[’r‘bm] U, [m/s] 0 [ms] Re T [m/s] Q
1000 6.68 0.86 182602 541 0.79
1500 10.13 1305 277018 7.91 0.81
2000 13.52 1741 369612 10.51 0.82
2500 17.17 2212 469612 13.12 0.83

Average circulation increases with the increase of axial and radial velocities, while swirl
number defined as in eq. (1) remains almost constant for all Reynolds numbers.

Total velocity vectors are presented in Fig. 4 for all four regimes. Vortex core region is
visible in all directions, while the maximum position is /R=0.4, what belongs to the
sound flow region. It is obvious that minimum of the total velocity average field is not
on the pipe axis what is in accordance with diagrams in Fig. 3, where distributions are
slightly off the pipe axis.

¢ [m/s]

c)

Fig. 4 Velocity vectors in measuring pipe cross-section for all four regimes from n=1000
rpm till 2500 rpm, respectively.

Velocity components are recalculated to the polar-cylindrical coordinate system and
presented in Fig. 5. They are obtained by section of velocity profile with the plane
X=Xyc. Reverse flow is more intensive as the Reynolds number is higher (Fig. 5a). In
Fig. 5b occur negative circumferential velocities due to the recalculation on the target
with center on the pipe axis, while real center of the vortex core is not on the pipe axis.
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Fig. 5 Velocity components for all four regimes: a) axial and b) circumferential.

3.2. Turbulence Statistics
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Reynolds normal stresses and level of turbulence are calculated as follows

')j’ N, =55

2

o.
and —=-+—

U U
z tk m m
k=0

where 7 is transit time of the j-th particle crossing the measuring volume and u;=u,v,w
are fluctuating velocities in axial (x), radial (r) and circumferential (¢) directions
respectively. Here will be discussed turbulence statistics for circumferential velocity,
very important velocity component, and also due to the obtained highest data sampling
rates and validations with accent on the plane ¢=270° till position /R=0.88. Wall region
is omitted due to technical reasons in the wall vicinity. Character of distribution of
turbulence levels is similar for all Reynolds numbers, except in the case for the highest
Reynolds number in the shear layer (Fig. 6).
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Fig. 6 Turbulence levels for circumferential velocity in the plane ¢=270°.
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Normalized central moments for all three velocity components of the third S;
(skewness), and the fourth order F; (flatness), where u;= u,v,w, are calculated by
introducing the weighting factor (1;):

S, =u’/c?, F,=u'lc’ 3)

Skewness and flatness factors for circumferential velocity in the plane ¢=270° are
presented in Fig. 7.
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Fig. 7 Normalized central moments for circumferential velocity in plane ¢=270°: a)
skewness and b) flatness factors.

All skewness and flatness factors differ from the values for normal distribution S;=0 and
F;=3. Negative skewness factors indicate that large velocity fluctuations are negative. All
extremes are obtained for the highest Reynolds number. Positive and negative values of
the coefficient S, reveal various processes of turbulent diffusion, as well complex
interactions of fluctuating and deformation fields. The minimum skewness value is
Symin=-1.92 in position /R=0.23 which belongs to the shear layer. In the same position
is the maximum flatness factor F,,,,,=10.52. Flatness factors for F;>3 indicate great
probability of small fluctuations. All this reveals the swirl flow nature (Cantrak, 1981).

3.3. Correlation and Spectral Analysis

Coefficients of the time autocorrelation function for circumferential fluctuating velocity
(R, (1)) are presented in Fig. 8. Points are representative for three various flow regions
in the plane ¢=270° i.e. //R=0.1 in vortex core region, #/R=0.23 in shear layer and

r/R=0.63 in the main flow region. They are calculated till 100ms, but presented here till
40ms.
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Fig. 8 Coefficients of the time autocorrelation function for circumferential fluctuating
velocity (R,,, (1)) in various positions in plane ¢p=270° for all four Reynolds numbers: a)
r/R=0.1, b) r/R=0.23 and c¢) #/R=0.63.

Characters of the experimentally determined correlation curves point out various
dynamics of the circumferential fluctuating velocity field in various points of the pipe
cross-section. Changes of the correlation coefficients are significant, i.e. significantly
high with time increase for higher Reynolds numbers in all represented points. It can be
observed the regime with Re=277018. It is obvious that the steepest correlation curve is
in the point #/R=0.63 in main flow region. This means that in this point high frequency
components play the most important role. Character of the correlation curves in the
vortex core region for this regime point out the dominant role of the low frequency
fluctuations in the wide spectral density of circumferential fluctuating velocities. The
situation is similar for other Reynolds numbers.

In Fig. 9 are presented correlation curves for each second point in the plane ¢=270° for
Reynolds number Re=277018 in the time intervals till 100ms and afterwards 20ms.
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Fig. 9 Coefficients of the time autocorrelation function for circumferential fluctuating
velocity (R,,, (1)) in various positions in plane ¢=270° for all Reynolds number
Re=277018 in time interval: a) 100 ms and b) 20 ms.

In Fig. 9 is obvious that correlation curves R,,(t) change sign numerous times,
asymptotically approaching zero value. Hierarchical distribution of the curves till
1=3ms, from the pipe axis till position /R=0.58, is obvious in Fig. 9b. Afterwards there
is opposite process till final position #/R=0.88. It is now proved, on higher number of
points, that high frequency components play the most important role in the main flow
region, while in the vortex core low frequency fluctuations have a dominant role. Time
7o denotes time interval till the first R,,,(1o)=0. It is related to the dominant frequency of
circumferential fluctuating velocities, when the maxima of the spectral density occur.

Significant structural parameter is time integral scale T, defined as follows
1 -
Tp, =5 [ R (de=[ R, ()de “)

It denotes average mean time duration of correlated turbulent disorders, i.e. mean
duration of existence of turbulent eddies. Therefore, the calculated values of integral
time scale of the turbulent eddies 7%, characterizes various eddy scales and structural
properties in the regions of vortex core, shear layer and the main flow (Cantrak, 2012).
Radial distributions of the time integral scale in plane ¢=270° for four Reynolds
numbers and all points are presented in Fig. 10. Here is time integral scale calculated in
the interval [0, 1¢], i.e. on the basis of the equation (4) where 1, is the upper integral
limit and correlation curves.
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Fig. 10 Distribution of the time integral scale Tk, in plane ¢=270° for various Reynolds
numbers.

In the point #/R=0.04, closest to the pipe axis and which belongs to the vortex core
region, time integral scale Tp, has maximum values for three Reynolds numbers.
Hierarchy occurs for the whole domain and for three Reynolds numbers Re=277018,
369612 and 469612 has following maximum values: Tgy,n.,=2.78, 1.99 and 1.77 ms.
This indicates the presence of large eddy structures in the core zone. Similar situation is
for the lowest Reynolds number in the vortex core region and shear layer. On the
contrary to these distributions, there is a significant increase afterwards in the main flow
region starting from the /R=0.53. This curve reaches its maximum Tgy,;,,=9.95 in the
point #/R=0.88.

Time integral scale physically represents time of turbulence disturbance existence, what
leads to the correlation of T, with distribution of statistical moments. The highest
values T, correspond to the lowest values of flatness factor F,, (Fig. 7b). These results
show that the probability of the small velocity fluctuations in the circumferential
direction in point 7/R=0.04 is very small, as well that in this zone exist eddies of various
scales, even the biggest, what is the reason why T, reaches its maximum values. Time
integral scale for all three Reynolds numbers have extremely negative gradient in the
vortex core region, while it is kept almost constant in the main flow region. There is an
increase in the wall vicinity for all Reynolds numbers which is the most distinguished in
the case of the lowest Reynolds number.

4. CONCLUSIONS

Turbulent swirl flow behind axial fan has been investigated in this paper by use of one-
component LDA and SPIV measurements. The Rankine swirl structure is detected for
all Reynolds numbers at the axial fan outlet on the basis of circumferential velocity
profile. It is shown that velocity profiles of axial and circumferential velocities are
almost identical in the non-dimensional form for all Reynolds numbers. Average
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circulation is increased by increasing the Reynolds number, while swirl number stays
almost constant for all Reynolds numbers.

SPIV measurements have reveled total velocity structure in the domain of approximate
size 200x90mm. SPIV measurements proved non-axisymmetry and the Rankine vortex.
The whole vortex core region is captured with linear distribution of the circumferential
velocity. Also radial velocity existence has been revealed with both measuring
techniques.

Level of turbulence is great and reaches its maximum in the vortex core region for all
Reynolds numbers. Skewness and flatness factors for circumferential velocity differ
from normal distribution values. Correlation analysis has revealed various vortex
structures along the pipe radius and the highest amount of the energy is distributed for
lower frequencies.

Autocorrelation function for circumferential fluctuating velocities, based on the obtained
experimental results, point out that in various domains of cross-section exist different
scales vortex structures. Important relations between time integral scale and correlation
moments of the higher order have been established. Time integral scale Tf, for
circumferential velocity has maximum values for all Reynolds numbers on the pipe axis,
i.e. in the vortex core region, with exception for the lowest Reynolds number where the
maximum value is reached in the position /R=0.88. It was shown that the highest
values Tg,,mqx correspond to the lowest values of F,,,,;,, what implies that the probability
of the small velocity fluctuations in the circumferential direction on pipe axis is very
small what indicates the biggest eddies. It was also shown that the time integral scale for
all three Reynolds numbers have extremely negative gradient in the vortex core region,
while it is kept almost constant in the main flow region and with increase in the wall
vicinity. All these conclusions allow a closer look into the physics of turbulent swirl
flow.
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TYPBYJEHTHOI' BUXOPHOI' CTPYJABA

‘Bophe C. UanTpak u HoBuna 3. Jankosuh

YV oxeupy oeoe pada cy npuxazama ocpeorwena nosa Op3une mypOYIEeHMHOZ BUXOPHOZ
cmpyjara 3a yemupu 8pedHocmu Pejrnonocosoz bpoja, dobujenux ca jeonokomnonenmuum JIJA
(nacep [Honnep anemomempuja) cucmemom u cmepeo IIHUB (particle image velocimetry (PIV))
MEpHOM MeXHUKOM HAa NOMUCY akcujannoe eenmunamopa y yesu. Hajeehu nusou mypoynenyuje
cy youenu y 6pmaodcHom jesepy. Ha ocrnogy excnepumenmannux pesyamama ymsphene cy genuxe
8peoHOCmU  CIMAMUCMUYKUX MomeHama mpefiee u uyemepmoz peda U HUX08A 3HAYAJHA
oocmynara 00 Iaycose pacnooene y mepuum npeceyuma. Jfooamue unpopmayuje, y 6esu ca
Guzuxom mypoynenyuje, cy dobujene Ha 6a3u eKCNEPUMEHMATHO 0OpeleHUX aymoKopenayuoHux
@ynxyuja u unmezpanne pemencke pasmepe mypoyienyuje 3a 00uUMcKy Op3umy.
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Abstract. In this paper, the class of linear uncertain discrete-time descriptor systems
with time-varying exogenous disturbance are considered. By combining Lyapunov-
like approach and matrix inequality technique, some sufficient conditions of the
finite-time boundedness for this kind of systems is presented by a set of feasible
problems involving linear matrix inequalities (LMIs). The effectiveness of the
approach proposed in this paper is presented by a numerical example.

Key words: finite-time boundedness, uncertain discrete-time systems, descriptor
systems, exogenous disturbance

1. INTRODUCTION

In many practical applications, it could be required that the state of a system does not
exceed a certain bound during a specified time interval for given bound on the initial
state. For this purpose, the concepts of the finite-time stability (FTS) and practical
stability are used. While the concept of the Lyapunov stability is used for the analysis of
the system behavior on infinite time interval, the concept of FTS is defined on a finite
(or very short) time interval. A system is said to be finite-time stable if, once a time
interval is fixed, its state does not exceed some bounds during this time interval. Some
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early results on FTS can be found in the 1960s [1,2]. In [3-7], the authors studied the
FTS problem for continuous-time or discrete-time linear systems and proposed some
criteria for the design of a controller such that the resulting closed-loop system is finite-
time stable. The concept of FTS is also extended to finite-time boundedness (FTB) by
introducing an exogenous input and sufficient conditions for FTB are also given in [4,
8]. Sufficient conditions for the existence of state feedback laws, which guarantee FTB
of a closed-loop system, are given for linear continuous-time systems [3,4,8] and for
linear discrete-time systems [4].

Singular systems, which are also referred to as descriptor systems, generalized
state-space systems or semi-state systems, have been extensively studied in the last few
decades because this class of systems is more appropriate to describe the behavior of
some practical systems like electrical systems, mechanical systems, and chemical
systems [9-10]. In general, the singular representation consists of differential and
algebraic equations, and therefore is a generalized representation of the state-space
system. Numerical solution of singular systems is more difficult compared to regular
models, due to the existence of linear and non-linear algebraic equations and due to
discontinuities in the algebraic variables over the independent variable space. The large
number of fundamental concepts and results based on the theory of the normal state-
space systems has been extended to singular systems [11-12]. In recent years, the
stability problems for singular systems have been investigated by many researchers, for
example [13-16].

It is noted that all the above-mentioned works about the stability of singular systems
are focused on Lyapunov asymptotic stability. A small number of articles have appeared
on the subject of the FTS and FTB analysis of singular systems. Some results on FTS
and FTB can be found in [11, 17-27]. In [22-23], the authors introduced the concept of
FTS into linear time-varying singular systems. Robust finite-time stabilization problem
was studied for linear singular systems with parametric uncertainties and exogenous
disturbances in [24], and a sufficient condition in terms of LMIs was obtained for robust
finite-time stabilization via state feedback. It should be noticed that all the FTS and
FTB-related literatures for singular systems mentioned above were developed in the
context of continuous singular systems while very little attention has been paid to the
discrete case.

In this paper, we extend the concepts of FTB to the uncertain discrete-time descriptor
systems. Using LMI approach, novel sufficient conditions for the FTB are derived. A
numerical example has been provided to show the advantage of developed results.

The following notations will be used throughout the paper. Superscript “T” stands
for matrix transposition. R" denotes the n-dimensional Euclidean space and R™" is the
set of all real matrices of dimension nxm. X >0 means that X is real symmetric and
positive definite, and X >Y means that the matrix X —Y is positive definite. In
symmetric block matrices or long matrix expressions, we use an asterisk (¥*) to

represent a term that is induced by symmetry. Matrices, if their dimensions are not
explicitly stated, are assumed to be compatible for algebraic operations.
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2. PROBLEM FORMULATION
Consider the uncertain linear discrete-time descriptor systems with time-varying
exogenous disturbance described by:
Ex(k+1)=(A+AAk)) x(k) +(G + AG(k)) z(k),

1
x(0) = x, o

where x(k)e R" is a state vector, x(0) is vector of the initial conditions and

z(k)e R" is a time-varying exogenous disturbance which satisfied

(k)z(k)< &, Yke{l,---,N}. 2)

E, A and G are known real constant matrices of appropriate dimensions, where E may

be singular and we assume that rank E=r<n. AA(k) and AG(k)are unknown and

possibly time-varying matrices representing norm-bounded parameter uncertainties and
are assumed to be of the following form

AA(t)=MF(k)N,, AG(t)=MF(k)N, 3)

where M, N,and N, are known constant matrices, and G(k) is an unknown matrix

function satisfying:
F()F"(k)<1I (€))
The parameter uncertainties AA(k) and AG(k) are said to be admissible if both (3)

and (4) hold.
The nominal discrete-time descriptor systems of (1) can be written as:

Ex(k+1)=Ax(k)+Gz(k),
x(0) =x
For the linear singular discrete systems (1) and (5) we present the following

definition that will be used in the proof of the main results.
Definition 1. [12] The matrix pair(E,A) is said to be regular if det (zE—A) is not

identically zero.

®)

Definition 2. [12] The matrix pair (E,A) is said to be causal if
deg(det(zE—A))=rank(E)=r.

The regularity and causality of the matrix pair (E,A) ensure the existence,
uniqueness and causality of solution of the system (5) for k =1,2,3,---.
Lemma 1. [28] Suppose the pair (E,A) is regular and impulse free, then the solution to
(5) exists and is impulse free and unique on (0,00).
Definition 3. The linear discrete descriptor systems (1) and (5) with z(k) =0 is finite-
time stable (FTS) with respect to {a, 8,N}, a< f if:

x"(0)ETEx(0)<a (©6)
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implies:

x" (K)ETEx(k)< B, Vke{l,---,N} @)
Definition 4. The linear discrete descriptor systems (1) and (5), subject to exogenous
disturbances, is finite-time bounded (FTB) with respectto { &, 5, N}, o< 8, if:

x"(0)E"Ex(0) <« ®)
implies:
x" (k)E"Ex(k)< B, Vke{l,--,N} ©
when:
(k)z(k)< e, Vke{l,--,N} (10)

The following lemma is employed to handle the time-varying structured uncertainties
in the system.

Lemma 2. Given matrices A=A", H, E and R=R" of appropriate dimensions,
A+HFE+E"F'"H" <0
for all F satisfying F™F <R, if and only if there exists some A >0 such that
A+ AHH" + A'E"RE <0

3. MAIN RESULT

In this section, some finite-time boundedness criteria for nomimal and uncertain
discrete-time descriptor systems (5) and (1) are presented.
Theorem 1. The nominal linear discrete descriptor system (5) is regular, causal and FTB
with respect to { &, B, N}, a < B, if there exist a scalar ¥ >1, positive scalars 4, 4,
and 4,, two symmetric positive definite matrices Pe R, Qe R™" and matrix

Se R such that:

—yE"PE+A"RS" +SR"A SR'G A'P

Q= * -0 G'P|<0 (1)
% % _P
AL<P< I, 0<Q< Al (12)
—pA+ay' A, +ep A, <0 (13)
where:

N_
py =L (14)

y—1

and Re R™"” is any full-column rank matrix satisfying:
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E'R=0 15)
Proof. First, we prove the regularity and causality of the system. By Schur

complement, (11) is equivalent to

T T T T T
- YE'PE+A RS  +SR'A SR' G <0 (16)
* -0
i.e.
—yE"PE+ATRST +SRTA<0 (17)
Whereas ¥ > 1, we have
Y=—E"PE+A"RST +SR"A<0 (18)
Now, we choose two nonsingular matrices M and N such that:
Ir 0 N A]] A]Z
E =MEN = 0 , A=MAN=| _ N
AZ] AZZ (]9)
B, P
P=M"pPM" {”T A”} (20)
R, Py
S
S=N"s=|"! 1)
S,
N ” 0 N )
R=M"R=| .|, ReR"7"" R=0 (22)
RZ
Then:
S=N'SN=—E"PE+A"RS" +SR"A<0 (23)
From (23) we get
@Tﬁg{’r OH h Pn“’r OHPH 0} 24)
0 0 ]2T })22 0 0 0 0
§ﬁTA_[§1‘|[O kT}[A]] A]2‘|_[Slk; 1 S]]/é’ZrZAZZ‘| (25)
- ~ 2 ~ ~ - A AL A ACAg A
SZ A‘Z] AZZ SZR;A'Z] SZR;A'ZZ
A A A T A A A T
, (SRA,) (S,R5A,) o6
I PN & n min AT
(SRLA,)  (S,R7A,)

~ A A A A A A T
+SRIA, +(SRIA, )
27)
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i.e.
S,RTA, + ALR,ST <0 (28)
From (28), we obtain that Azz is nonsingular and from

det(z E— A) = det(M ") det(zE — A)det(N ")

= det(M ")det(N ") x det ﬂzlr ~Ant AsAn Ay _f‘” U 29)
0 _Azz
= det(M ™)det(N ™) det(~A,) xdet (2, = (4, - 4,4,/ 4,)))
we get
det(zE—A) =0, degdet(zE—A) =r (30)

which implies that (E, A) is regular and causal.

Next, we will show that the nominal linear discrete descriptor system (5) with
exogenous disturbances is FTB. Choose a Lyapunov-like function as follows:

V(x(k))=x" (k)E" PEx(k) @31
A difference of V (x(k)) along the trajectories of the system (5) is:
AV (x(k)) =V (x(k+1)) =V (x(k)
=[Ax(k)+G z(k)] P[Ax(k)+Gz(k)]

(32)
—x" (K)ET PEx(k) +2x" (k + D ET RS x(k)
=& (k)Te (k)
where
T T T T T T T
£k = x(k) P A'"PA-E'PE+A'RS' +SR'A A'PG+SR'G (33)
Z(k) * GTPG
From (16) and (32) we have:
T
AV(x(k)):fT(k)ff(k):fT(k)£r+{(}/_])0E PE gDE(k) (34)
If (11) (i.e. (16)) is satisfied, then (34) reduces to:
AV (x(k))<(y-Dx" (k)E"PE x(k)+z" (k)Qz(k)
(35)
=(y-DV (x(k))+z" (k) Qz(k)
S0, we obtain:
V(x(k+1)) <V (x(k))+2" (k)Qz(k) (36)
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Applying iterative procedure on (36), we obtain:
k-1

V(x(k) <AV (x(0)+ Y A T ()0z () @7

Jj=0

Furthermore:
V(x(k)) <y x" (0)E"PEx(0)+ €A, (Q) p
<P A (P57 (0) ETEx(0) 42 A (Q) 4 (38)

On the other hand:

Ain (P) X" (K)ETEx(k)<V (x(k)) (39)
Combining (38) and (39), yields:
X (k) ETEx(k) <[ 1 @ Ay (P)+€ A (Q) P |/ A (P) (40)
If the following condition is satisfied:
V"0 Ay (P)+ Pyl (Q) < By (P) (41
then from (40) follows:
x" (K)ETEx(k)< B, Vke{l,--,N} (42)
Accordingly, from Definition 4, we conclude that the system is FTB with respect to
{a, B, N}, a<B.
Let

0 < 21 < ﬂ'min (P)’ 2'2 > ﬂmax (P)’ ﬂ‘? > ﬂmax (Q)
Then
Al<P<Al, 4>0, 0<Q<Al (43)
and from (41) we get (13). The proof is completed.
Theorem 2. The uncertain linear discrete descriptor system (1) is regular, causal and
FTB with respect to { &, 5, N}, o< g, if there exist a scalar ¥ >1, positive scalars
A, A4 A, n, 6, p and o, two symmetric positive definite matrices Pe R™",

Qe R™" and matrix e R such that:
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[Q, SR'G AP SR'M SR'™M 0 0 |
* Q, G'P 0 0 0 0
* * P 0 0 PM PM
Q=| * * ) | 0 0 0 |<0
* * * * -5 0 0 @9
% % % % % _IUI 0
% % % % % % _01
Q, =—yE'PE+A"RS" +SR"A+(n+ )N N,, Q,, =—0+(5+0)N/N,
Al<P< I, 0<Q< Al (45)
A +ay' A, +ep, A, <0 (46)
where:
N
Py = yy__ll “7)

and Re R™"” is any full-column rank matrix satisfying E'R=0.
Proof. Replacing A and G in (11) with A+MF(k)N, and G+MF(k)N,;,
respectively, we get:

[—yE"PE+ATRST +SR"A SR"(G+MF(k)N;) (A+MF(k)N,)" P
Q= * -0 (G+MF(k)N;)" P
% % —P
- (48)
N} SR"™M
+ 0 [FTW[M"RS" 0 0]+ 0 [F([N, 0 0]<0
0 0
Using Lemma 1 and Schur complement we find that (48) is equivalent to:
~YE"PE+A"RS" +SR"A+nN.N, SR'G (A+MF(k)N,)'P SR'M
* -0 (G+MF(k)N,)'p 0
* * . 0
% % % —
71w
0 SR™M

T
+ 1\8 F'(k)[M"RS" 0 0 0]+ 8 F()[0 N, 0 0]<0

0 0
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[—yE" PE+ ATRST SR'G ATP SR™M SR™M |
+SR"A+nNiN,
* -Q+3N;N; (G+MF(k)N,)' P 0 0 1,
* * -P 0 0
% % % _7]] 0
% % % % _5[
NT 0
0 0
+ 0 FT(k)[O 0 M'P 0 0]+ PM |F(k)[N, 0 0 0 0]<0 (50
0 0
0 0
[—yE" PE+ ATRS” SR'G A'P SR"™M SR'M 0 |
+SRTA+(m+u)NiN,
* -Q+0N,N, G'P 0 0 0
* * -P 0 0 PM
* * ) 0 0
% % % % _51 0
* * * * * —,UI (&2))]
o F o0
N 0
+ 8 FT(k)[o 0 M'P 00 0]+ Pg” F(k)[o N; 0 0 0 0]<0
0 0

Finaly, from (51) follows (44).

4. NUMERICAL EXAMPLE AND SIMULATION

Example 1. Consider the following linear discrete-time descriptor systems with
exogenous disturbance z(k):
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Ex(k +1) = (A+AA(k)) x(k) + (G +AG(k)) z(k)
AA(k)= MF(k)N,, AG(k)=MF (k)N

1 00 0.7 0.1 02 0.1
E=/0 1 0}, A=|05 1.1 04|, G=|0.1
000 02 0 08 0.2
(52)
0.1 0.02 0.1
M=N,=| 01 0.1 01|, N;=0.1
0.02 0.1 0.1

x(0)=[2 1 -05],
z(k)=5, Vk>0, z(0)=0
We will give two examples to demonstrate the effectiveness of the approach proposed
in this paper.
First, we consider the nominal system with AA(k)=0 and AG(k)=0. Fig. 1 shows
time histories of the state trajectories of the nominal system (52) with the initial
condition x(0)=[2 1-0.5]" and z(0)=0. Time dependent of norm of the state

trajectories is illustrated on Fig. 2. Obviously, the observed system is not asymptotically
stable. However, in the rest of the paper we will show that this system is FTB, for certain
values of the parameters @, £ and N . In this sense, it is necessary to investigate FTB

with respect to (6,469,10) . For given matrix E we choose R =[001]" such that (15)
is satisfied. Solving LMlIs (11)-(13) for fixed y=1.42, we obtain the following feasible
solution:

226.12 2043 -8.65 -157.59
P=| 2043 16843 276 |, 0=1043, S =|-112.31],
-8.65 276 163.18 —-185.66

A =16191, A,=233.82, A4 =10439

This demonstrates that the system (52) is causal, regular and FTB with respect to
(6,469,10) . For given numerical values ¢ =6 and N =10, the maximum allowed

value for parameter f is =/, =469 (see Fig. 2). From Fig 2, the actual values of
parameter B, B, , is estimated from the norm of the state vector and its value is
B, =224.
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40

301

201

10+ "":.....: i

0 L -

-10 : '
0 5 10 15

Fig. 1. The initial response of the system (52) with the initial condition
x(0)=[2 1-0.5]".

Finally, we consider the uncertain system with given matrices M, N, and N,.
Based on Theorem 2, we obtain the following feasible solution for =6, =120,
N =5 and fixed y=1.66:

1367.6 585 —5.67 -1165.3
P=| 585 13532 -224|,Q0=13262,S =| -892.8 |,
-5.67 -2.24 13535 -1567.4

A, =13509, 4,=13719, A, =1327.1
n=1046.3, 5=1424.0, ©=24027, o0 =32683

700
600
500 ﬂm .

400+

S00r g =224

2001
100+

P |

x(k)TETEx(k)

Fig. 2. The norm x" (f)E" Ex(t) of the state trajectories.

5. CONCLUSION

In this paper, the finite-time boundedness for linear uncertain discrete-time
descriptor systems with time-varying exogenous disturbance is discussed. New stability
criteria are derived in terms of LMIs using Lyapunov-like approach and matrix
inequality technique.
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OGRANICENOST DISKRETNIH DESKRIPTIVNIH SISTEMA SA
PRISUTNIM NEODREDENOSTIMA I VREMENSKI
PROMENLJIVIM SPOLJASNJIM POREMECAJEM NA
KONACNOM VREMENSKOM INTERVALU

Sreten B. Stojanovic, Dragutin Lj. Debeljkovic, Goran Simeunovic,
Nebojsa Dimitrijevic

U radu je proucavana klasa linearnih, diskretnih, deskriptivnih sistema sa prisutnim
neodredenostima i vremenski promenljivim spoljasnjim poremecajem. Kombinovanjem metode
slicne Ljapunovoj metodi i tehnike linearnih matricnih nejednacina, izvedeni su dovoljni uslovi
ogranicenosti sistema na konacnom vremenskom intervalu u obliku sistema linearnih matricnih
nejednakosti. Efikasnost predloZenog pristupa prezentovana je jednim numerickim primerom.
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THE BIOGRAPHY OF BOZIDAR D. VUJANOVIC

Bozidar D.Vujanovi¢ was born in the city of Smederevo (Serbia) in 1930. After
finishing the elementary school, music school and Gyimnazium, he graduated at the
Department of Mechanics at the University of Belgrade 1956., and his doctorate was
conferred to him at the same University at 1963. The title of the doctorate is :“The
Geometrization of Motion and Disturbances of Nonconservative Dynamical Systems*
from the area of mechanics. He was employed at the Mechanical Engineering Faculty as
an Assistent of Mechanics at the University of Belgrade from 1957 to 1963. Since then
he has been at the University of Novi Sad — Department of Theoretical and applied
Mechanics at the Faculty of Technical Sciences and spent there all the time until he
retired as a Full Professor at 1995. Between 1967 to 1969 he visited the USA as a
Research Associate at the University of Kentucky, Lexington KY at the Department of
Theoretical and Applied Mechanics. From 1977 to 1978 he has been a Visiting
Professor at the Institute of Electronics and Information Sciences at the University of
Tsukuba, Japan. At 1984 he spent six months at the Institute of Engineering and
Material Sciences as a Visiting Professor at the Vanderbilt University in Nashville,



GUEST EDITORS

Tennessee, USA. The scientific interest of Professor Vujanovi¢ is Theoreticaland
Applied Mechanics, Variational Principles and their applications to conservative and
nonconservative dynamical systems, the heat conduction theory, optimal control theory,
nonlinear oscillations with dissipative elements etc.

In 1990 he was elected as a Corresponding Member of the Academy of Sciences and
Arts of Vojvodina in Novi Sad, and after the fusion of this Institution with the Serbioan
Academy of Sciences and Arts in Belgrade he has been adopted as a Member of the
same rank. At 2000 he has been elected as a Full Member of the Sebian Academy of
Sciences and Arts in Belgrade. At 2009 he has been elected as a Foreign Member of the
Academy of Sciences in Turin, Italy (Accademia delle Scienze di Torino , Classe di
Scienze fisiche, matematiche e naturali).

Professor Vujanovi¢ scientific and university activities have been recognized by a
numeruos awards. To mention just a few, he obtained ,,The October’s Prize of the City
of Novi Sad for Science” 1970, The University of Novi Sad “Golden Memorial
Award”1996, The Golden Placard of the Faculty of Technical Sciences 1990, for the
distinguished contribution to the field of Mechanics, the Golden Placard of the Society
of the University Professors of Serbia, 1996 etc. He was Commissioned A “Kentucky
Colonel” from the Governor of the State Kentucky W.G. Wilkinson, 1990.The Silver
Placard “Antico Segillio della Cita di Torino” 1984. For more than forthy years he is
Reviewer of the Journals: Zentralblatt fur Mathematik und ihre Grenzgebite (Berlin,
Germany) and Mathematical Reviews (Ann Arbor, USA). From 1986-1988 and 1988-
2000 he was the President of the Yugoslav Society of the Theoretical and Applied
Mechanics. He is the Member of the American Mathematical Society, The Tensor
Society (Japan), he is the member of the American Scientific Society “Sigma Ksi” etc.

A BRIEF DESCRIPTION OF THE SCIENTIFIC WORKS

The scientific activity of Professor Vujanovi¢, as mentioned above, is concentrated to the
several area of theoretical and applied mechanics, frequently called Analytical
Mechanics. This areas, roughly speaking are: Geometrization of motion nonconservative
dynamical systems, Variational Principles of Mechanics which can be used in the study
of Irreversibile dynamical systems with the finite and infinite degrees of freedom.
Generalization of the Hamilton-Jacobi theory and its applications to nonconservative
systems. Variational description of the heat transfer theory through the solids including
the change of phase, the Study of the Conservation Laws of the conservative and
nonconservative dynamical systems with the finite number of the degrees of freedom etc.
Generally speaking the most important works of Professor Vujanovi¢ can be devided
into following three groups:

1. Many years, Professor Vujanovi¢ devoted to the study of Conservation Laws of
conservative and nonconservative dynamical systems (linear and nonlinear) with the
finite number of degrees of freedom. It is well known that the Conservation laws play a
very important role in physics and engineering from both theoretical and practical
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standpoint. One or more conservation laws can considerably simplifly the integration of
the differential equations of motion. It is also beloved that the conservation laws, in
some specific way reflect the physical mechanism acting in the dynamical system.
Probably the best-known and most popular modern method for finding conservation
laws is based upon the study of the invariant properties of the Hamilton action integral
with respect to infinitesimal transformations of the generalized coordinates, described
the position of the system and time. This traditional approach is based on the famous
Emmy Noether theorem which states: For every given infinitesimal transformation of
the generalized coordinates and time, which lives the Hamilton action integral absolute
or gauge-invariant, there exists a conservation law of the dynamical system. Since the
Noether theorem does not offer any suggestions as to how to find the infinitesimal
transformations that leave the Hamilton action integral unchanged. Professor Vujanovié¢
studied the question of finding the aforementioned infinitesimal transformations and
corresponding conservation laws. It is shown that the solution of this problem leads to to
a system of first-order partial differential equations which he named the generalized
Killing’s equations. It is obvious that the classical Noether theorem is valid only to the
Lagrangian- type dynamical systems. In order to generalize the theory to the purely
nonconservative dynamical systems. Vujanovi¢ started to study the transformation
properties of the D’ Alambert differential variational principle which is equally valid for
conservative (Langrangian) and nonconservative dynamical systems, and succeeded to
enlarge the finding of conservation laws to the purely nonconservative systems. In
addition, the further study showed that as the starting point for finding conservation
laws can be based also to the Gauss and Jourdain differential variational principles.

2. The next part of his research interest, Prof. Vujanovi¢ devoted to the variational
principles suitable for the study of irreversible phenomena whose physical
manifestations are described by means of partial differential equations and appropriate
initial and boundary conditions. The effort to find an appropriate variational principle
suitable for a nonconservative physical field is entirely pragmatical. In fact, the merit
and efficiency of each variational formulation is tasted for the possibility of obtaining
information about the behaviour of the physical systems in questions by applying the
direct methods of variational calculus. As a matter of fact for almost all of the important
processes of irreversible physics, the exact Lagrangian function of the problem in the
sense of classical mechanics does not exist. For example, the transient parabolic
differential equation of heat conduction in solids, even in the linear one-dimensional
case, does not have any classical Langrangian function. Thus in order to give
irreversible phenomena some variational characteristics, especially in the sense of
Hamilton’s variational principle, Vujanovi¢ has been compelled to modify some of the
basic rules of the classical variational calculus, whose structure has an exclusively
potential character. The main characteristic of this new variational approach is based
upon the so called the “Variational principle with a vanishing parameter”. The essence
of this approach is that the Hamilton principle generates more complex field than the
relevant differential equations of the physical process. The differential equations thus
obtained, contain a parameter that is let tends to zero after the finishing the process of
variation. Doing this, one arrives at the correct differential equations of the process. It is
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important to note, that in the realm of heat transfer theory the “vanishing parameter”
has a clearly specified physical interpretation that is related to the finite velocity of
propagation of the thermal disturbance which is based upon the Cataneo hyperbolic heat
conduction theory. From this point of view, the principle with a vanishing parameter
represents a transition from the generalized (hyperbolic) heat transfer theory to the
classical (parabolic) heat transfer mechanism of the Fourier type, which has an infinite
velocity for the propagation of the thermal signal. The variational principle with a
vanishing parameter is employed as a starting point for obtaining approximate solutions
in two physical area that have a remarquable nonconservative nature: linear and
nonlinear transient heat transfer in slids and the theory of laminar boundary layer of the
fluid flow.It should be noted that the variational principle with a vanishing parameter is
profoundly different than the variational formulations of Glansdorff-Prigogine, Bateman
and Biot. Another variational approach introduced by Vujanovi¢ is called the
“variational principle with uncommutative rules of variations”. In this variational
principle of Hamilton type are intoroduced the special rules for variation of velocity and
velocity of variations, which are not equal, as it is the case in the classical variational
calculus. These new rules represent the mausure of nonconservativity of a dynamical
systems and are equally applied to the dynamical systems with a finite and infinite
number of degrees of freedom. It is also shown that the applications of the Gauss
differential variational principle can be of use in obtaining the approximate solutions of
various irreversible processes by applying the direct methods of variational calculus.

3. It is well known that the famous Hamilton Jacobi method can be advantageously used
in many practical situations as an exact method for solving the canonical differntial
equations of motion. In addition, a variety of approximate solution can be built up, based
upon this method, for solving nonlinear problems for which an exact, complete solution
of the Hamilton-Jacobi nonlinear partial differential equation is not avaliable. However,
the method of Hamilton and Jacobi can be employed only with those dynamical systems
described by the Langrangian or Hamiltonian function, and purely nonconservative
(non-Hamiltonian) systems remain outside of the areas treated by this method.

The author introduced a field method suitable for finding the motion of conservative or
purely nonconservative dynamical systems, which is conceptually different than the
method of Hamilton and Jacobi. The basic supposition in this field method is that one of
the state variables (a generalized coordinate or generalized momentum) figuring in the
dynamical system can be interpreted as a field depending on time and the rest of the
state variables of the dynamical system. The resulting field equation, which the author
calls the basic equation, is a single quasy-linear partial differential equation of the first
order. If one is able to find a complete solution of this equation, the motion of the
dynamical system can be obtained without any additional integration. It is to be noted
that this field method can be used in solving conservative (Hamiltonian) dynamical
systems (for which the Hamilton-Jacobi method can be also applied) but in this case the
field method is not identical to the Hamilton-Jacobi method. An important advantage of
this field method is that one has to solve the quasy linear partial differential equation
which is much more menageable than to find a complete solution of the nonlinear
Hamilton-Jacobi equation. It is to be noted that one of the dynamical variables is
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interpreted as the basic field. Thus, the corresponding field equation is more intimately
connected with the dynamical problem in question than the Hamilton principal function,
which is not by itself a constituent of the dynamical problem. The field method
introduced by the author is succesefully employed in the linear and nonlinear boundary
value problems and also to the study of nonlinear vibration theory in which an
approximate method is introduced.

INVITED LECTURES

The scientific results of the author have attracted the interest of many universities,
scientific institutions, and interested researches and the author has been invited to
present his scientific results to some places of which, we list a few.

Carnegie-Mellon University, Pitsburg, 1968. Department of physics, Czechoslovakian
Academy of Sciences, Prague, 1971. Kings College, London 1972. Department of
Mechanics, Thechnical University Budapest, 1975. Instituto di Matemathica, Universita
di Torino, 1977. Instituto Matemathico "J.L.Lagrange" Universita di Torino, 1977.
Instituto Mathematico, "Ulise Dini", Universita di Firenza, 1977. Department of
Mathematics and Physics, Tokio University, 1978. Deprtment of Theoretical and
Applied Mechanics, University of Kyoto, Japan 1978. Summer School of Theoretical
and applied mechanics, Hiroshima, Japan 1978. Summer school of mechanics, Institute
of electonics and information sciences, Tsukuba University, Japan 1978. "Colloquia on
Mechanics" Department of Theoretical and Applied Mechanics, University of Kentucky,
Lexington, Ky 1984. Department of Mechanical and Material Engineering, Vanderbuilt
University, Neshville, TN 1984. Faculdad de Ciencias Fisicas, Departmento de Fisica
teoretica, Universidad Complutense de Madrid, 1988.

REFERENCES

The papers published in domestic journals

1. B. Vujanovi¢, Knoblauch's formulae and their application to the rolling of sphere
without sliding on the unmovable surface, Publikacije MasSinskog fakulteta u Beogradu,
1962, No. 5. str.51-58.

2. B.Vujanovi¢, Prilog geometrizaciji poremecenog kretanja holonomnih, skleronomnih
dinamickih sistema, Tehnika, avgust 1963, br. 8, str. 1411-1412.

3. B.Vuyjanovi¢, Jedan matri¢no-divektorski nacin za odredjivanje dinamickih sila u
epiciklicnim mehanizmima, Zbornik radova Masinskog fakulteta u Novom Sadu, br. 1,
Novi Sad, 1965, str.56-74

4. b. Byjanosuh, ['eomerpuzanuja kperama 1 nopemehaja HEKOH3EPBaTUBHUX JHHAMHYKIX
cucrema, Jloktopcka aucepranuja, [loceOHa m3nama, Hayuno neno, beorpax 1964. 32
cTp.

5. B.Vujanovi¢, Prilog teoriji oscilacija visko-elasticnih konstrukcija, Zbornik radova
Masinskog fakulteta u Novom Sadu, br. 2, Novi Sad, 1964. str.145-163

167



168

11.

12.

13.

14.

15.

GUEST EDITORS

B.Vujanovi¢, Singove poremecajne jednacine kao varijacioni problem i njihovi prvi
integrali, Zbornik radova Masinskog fakulteta u Novom Sadu, br. 1, Novi Sad, 1965,
str. 93-104.

B.Vujanovi¢, Hamiltonov varijacioni princip i njegova primena na provodenje toplote,
Zbornik radova Masinskog fakulteta u Novom Sadu, br. 5, Novi Sad, 1970, str.112 -
129.

B.Vujanovi¢, Provodenje toplote kroz polu-beskonacna tela sa varijabilnom
temperaturom na ¢eonoj povrsini, Zbornik radova Masinskog fakulteta u Novom Sadu,
br. 6, Novi Sad, 1971. str. 151-171.

B.Vujanovi¢, Prilog varijacionom proucavanju konvektivhog provodenja toplote
nestisljive tecnosti, Zbornik radova MasSinskog fakulteta u Novom Sadu, br. 6, Novi
Sad, 1971. str. 161-172.

B.Vujanovi¢, O nekim varijacionim aspektima optimalnog upravljanja u smislu
Pontrjagina, Zbornik radova Masinskog fakulteta u Novom Sadu, br. 6, Novi Sad,
1971. str. 173-188.

B.Vujanovi¢, D.buki¢, A variational principle of Hamilton's type for the laminar
boundary layers in incompressible fluids, Publications of Mathematical Institute -
Belgrade, Vol. 11 (25), 1971, str. 73-83.

B.Vujanovi¢, Koncept polja u nekonzervativnoj mehanici i njegove primene u teoriji
nelinearnih oscilacija, Zbornik radova Matematickog instituta u Beogradu, Nova serija,
tom 4 (12), 1984, str. 223-231.

B.Vujanovi¢, Conservation laws of nonconservative dynamical systems via Hamel's
variational principle, Bulletin T.CXI de L'Academie Serbe des Sciences et des Arts,
Classe des Sciences Mathematiques et naturelles, 21, 31-46, 1996.

B.D.Vujanovi¢: The bilinear canonical forms of variational principles in heat conduction
theory, Bulletin, T.CXVIII, Classe des sciences mathematiques et naturelles, sciences
mathematiques No 24, Beograd 1999, str. 1-18.

Bozidar D. Vujanovic, A Variational Principle with Uncommutative Rules, Inaugural
Lectures of Newly-Elected Full Members of the Academy, Extraid du Bulletin T.
CXXIV de 1 Academie serbe des sciences et des arts,Classe des sciences mathematiques
et naturelles, No. 40, Beograd 2003, str.108-124,.

The papers presented at the meetings

16.

20.

B.Vujanovic, Dj.Djukic, A.M.Strauss, A new varitaional principle for irreversible
phenomena, XIII International Congress of Theoretical and Applied Mechanics
(IUTAM), Moskva, 1972. Book of abstracts, Moscow, SSSR, Nauka, p.108.

. B.Vujanovi¢, On some variational principles for the conduction of heat, First Heat

Transfer Conference, Vol. 1, str. 262-272, 1973, Iasi, Romania.

. B.Vujanovi¢, O jednom varijacionom principu mehanike, XII Jugoslovenski kongres

teorijske i primenjene mehanike, Ohrid, 1974. [1neHapro caommureme, Kiura panosa ca
Konrpeca, Cekmja A, crp.1-10.(JyrocnoBeHCKO ApPYHITBO 332 TEOPHjCKY U IPHMEECHY
MEXaHHKY)

. B.Vujanovi¢, B.Bacli¢, O direktnim metodama zasnovanim na Gausovom principu

najmanje  prinude, XIII  Jugoslovenski  kongres teorijske i primenjene
mehanike, Sarajevo, 1976. 07.-11.06.1976. A opsta mehanika, Al1-9, (10
strana), Izdanje: Jugoslovensko drustvo za mehaniku, 11 000 Beograd Kneza Milosa 9/1
B.Vujanovié, T.M.Atanackovi¢, O primeni Zurdenovog principa u nelinearnoj mehanici,
XII Jugoslovenski kongres teorijske 1 primenjene mehanike, Sarajevo, 07.-



21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

ACADEMICIAN BOZIDAR D. VUJANOVIC (1930 - 2014)
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nauka, 1995.
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International Projects
1. On the application of variational principles, conservation laws and the field-

momentum method in nonconservative phenomena. Serbian Academy of
Sciences and Arts, (1982. -1986. ).
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2. Utilization of variational methods in nonlinear and irreversible engineering
problems. Bilaterar Yugoslavia — U.S.A. (1988. - 1991.). Finacialy supported
by National Science Foundation, Washington D.C.

Note: Main body of this text and list of references are based on the autobibliography
written by academician BOZIDAR D. VUJANOVIC.

AKAJEMHUK BOKUIAP . BYJAHOBHWHh
(1930 - 2014)

Axkanemnk BOXKHNIAP I. BYJAHOBUR
(Cenmemobap 8, 1930 - Mapm 11, 2014

OCHOBHU BUOT POACKH MOJALN

Boxxunmap JI. ByjanoBuh pohen je 8. cemremOpa 1930. rogune y CmenepeBy on oua
Hparyruna u majke Kocape pohene Matuh. ¥ CMmeznepeBy je 3aBpIIHO OCHOBHY ILKOJIY,
MY3UYKy ILIKONy, TUMHa3ujy. Jumiaomupao je 1955. rommne Ha ['pynu 3a MexaHUKY
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IMpuponHo marematuukor dakynrera y beorpany rae je u gokropupao 1963 ropune. Of
1958. mo 1963. romune OMO je acHCTEHT Ha IpeaMeTHMa MeXaHHKe Ha MalIMHCKOM
¢axynrery y beorpany. On 1963. rogune 3amocnuo ce Ha MammHCKOM (akynrery y
HoBom Cany kao noueHT 3a MexaHHMKy. Ha oBOM (QakynTery je mpomiao cBa Hay4Ha
3Bama W u3abpaH je 3a peaoBHor npodecopa 1972. rommne. Ha PDakynrery (xoju je
KacHHje MpoMeHno uMme y daxynrer TeXHUUKUX Hayka, y pasbeM Tekcty @TH) paxuo je
no neHsuoHucamwa 1995. roaune. Y mepuoay on 1967. mo 1969. romuHe pammo je kao
uctpaxuBay (Reserch Associate) Ha JlemapTMaHy 3a MeXaHHMKY YHHBEp3UTETa Y
Kentakujy, CAJl (Lexington, KY) y Tpajamy o 1Be roinHe, TIe je OCUM UCTPAKHBaHba
y obmact BapujanmMoHMX NpUHIMIA MEXaHHKE INPEAaBa0 KypceBe U3 AMHAMHKE U
Teopuje ocumnanyja. [octoBao je kao mpodecop mo mo3uBy (Visiting Professor) Ha
VYuusep3urery Tcykyba y Janany 1978.-1979. rogune y Tpajamby O jefiHE TOIUHE Ha
WHcTuTyTy 3a €NneKTOHUKY W uHpopMaione Hayke. Ha oBom MHctuTyry pammo je Ha
yorTey XaMUITOH — JakoOujeBe MEeTOe y HEKOH3EPBAaTHBHO] TEOPHUjH 10Jba, KOja je
o (yHIAMEHTATHOr 3Hayaja y UWHOOPMALMOHMM HaykamMa W TMpeAaBao je Ha
MOCIEIUIIOMCKAM  cTyndjama Teopujy ontumanHor ympassbawa (Optimal Control
Theory). Takohe je TrToctoBao kao  Visiting Professor Ha  BanpmepOunt
Vuusepsurery (Vanderbilt University, Nashville, Tennessee) Ha Jlemaprmany 3a
MAIIMHCKYy TEXHUKY M MaTepHjaje TokoM 1984. romunHe, TIe je mpeaaBao Ha
MOCIEAUIUIOMCKMM ~ KypceBHMa M IOCTaBHO Kypc 13 ONTUMAJIHOT  yHpaBibama
JMHAMUYKUM CHCTEMHMa Ca KOHLIEHTPHCAHUM U pacropeheHuM napamMeTpuMa.

Job6uo je Okrobapcky Harpany rpaga Hosor Canx 3a Hayky 1970. rogune, Harpany 3a
,»KuBoTHO zieno” 1997. ronune on Yapyxema YHUBEP3UTETCKUX Mpodecopa U HaAydIHUKa
CpOwuje, 3natHy ruakery YHuep3urera y HoBom Cany 1996. ronune u 3naTHy IUiakety
®TH-a 1990. rogune. JJoouthuk je [ToBesbe Yuuepsautera y HoBom Cany 1 ®TH-a 3a
,3mseran pompuHoc pa3Bojy Pakynrera 2005. romume”. JlobutHuk je CBeTocaBCKe
noesbe rpaga Cmenepera 3a 2009. roauny. Jlobuo je takohe 3naTtHy miakery ,,Kentucky
Collonel* 1990. romune, m3naty on ['yBepuepa CaBazne apkase Kentaku, kao mpu3Hame
3a ycnemHy capaawy usMel)y YHuBep3urera y HoBom Cany u VYHuBepsutera y
Kentakujy. [JloOutHuk je makere ,,Antico Sigillio della Cita di Torino del Sec.
XVII* rpana Topuna 3a ycneniHy BUILIETOAUIIY cpaamy Katenpe 3a mexanuky ®TH-a
u ,Istituto di Fisica Matematica ,,J.-Louis Lagrange* Universita di Torino* 1983.
ronuHe. Jlyroroamiimu je  perieHseHT PedepentHux kypHana: Zentralblatt fur
Mathematik und ihre Grenzgebite (Berlin) u Mathematical Reviews (USA) 3a obnacr
MexaHuke. Y nepromay ox 1986.-1988. n 1988.-1990. ouo je [pencennuk JyrocioBeHCKOT
IpymrTBa 3a TeopHjcKy U MpUMEmhEeHy MEXaHUKy. UnaH je aMepuyKor HayqHOT APYIITBa
woigma Ksi“ (1970- ), uman je eBpONCKOr JpyliTBa 3a MeXaHuky Euromech wu
aMepHUYKOr MAaTeMaTH4KOI APYHITBA. YUnmaH je jamaHcKor APYIITBA 32 INPUMEHEHY
reometpHjy Tensor Society. Unan je pemakuuonor ombopa uacomuca Theoretical and
Applied Mechanics koju u3naje JyrocnoBencko (caga Cpricko) IpyIITBO 3a TEOPH|CKY U
NpUMereHy MexaHuky u vacomuca Facta Universitatis koju u3gaje YHuUBEp3HWTET y
Humry.

Jonucuu ynan BojBohancke akaneMuje Hayka U yMeTHOCTH mocTao je 1990. roaune, a 3a
norcHor wiaHa CAHY npumiben je 1991. rogune. 3a penosnor ywiana CAHY uzabpan
je 2000. romuHe.3a WHOCTpPAaHOI 4WIaHa TOPUHCKE AKajeMHja Hayka u3a0paH je
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jennornacHo 13.maja 2009. ronqune (Accademia delle Scienze di Torino, Classe di
Scienze Fisiche, Matematiche e Naturali).

buo je menrop 11 HOKTOPCKMX AucepTalMja U OpOJHAX MAarucTapckux Te3a Koje Cy
OpambeHEe Ha BUILIEC YHHUBEpP3UTETa Yy JyrociaBuUju M JBE y MHOCTPAHCTBY (XEJNCHHKH U
Xajnepaban).

HAYYHA JEJATHOCT

Hayuna [lenataoct boxwunapa JI. ByjaHoBuha (y massem tekcry b.JI.B.), omHocu ce Ha
HEKOJIMKO O00JIaCTH CaBpEMEHE TEOPHjCKE M TPUMEHCHE MeXaHHKe (AHAIUTHYKE
Mmexanuke). Te obmactu cy: ['eomeTpu3aimja KpeTamba HEKOH3EPBATUBHUX JUHAMUUKHX
CHUCTEMA. Bapl/ljaHI/IOHI/I NPUHIUIIK MEXAaHHUKE IIOrOJAHH 3a NPOy4YaBarmkbe€ HETIOBPATHUX
JMHAMHYKHX TIpolieca ca KOHAYHUM M OecKoHayHuM OpojeM cremeHd ciodone,
VYonmrewe XaMunroH-JakoOHjeBe METO/Ie Y HEKOH3epBaTHBHO] MEXaHUIH, BapujaiioHo
ONNCHBamke¢ HENMHEApHHX, HECTAllMOHAPHHWX TepMHYKHMX mporeca, Cryanja 3akoHa
KOH3€pBallije IMHAMHUYKHX CHCTeMa ca KOHauHMM OpojeM creneHu ciobdonae u ap. ['pybo
roBopehu, Baxkuuju pesyaratu b.JI.B. mory ce pa3Bpcrau y cnenehe tpu rpyme:

1. VY CB0jOj [AyroroAuimkOj AaKTHBHOCTH Y TMpOydYaBamy 3aKOHA KOH3EpBallyje
KOH3EpBATUBHMUX M HEKOH3EPBATUBHMX IMHAMHMYKHX CHCTEMa ca KOHAYHHM OpojeM
crenienn cnobone B.JI.B. je paguo Ha mnpommpeny Teopeme Emmy Noether. Oga
TeopeMa (kJpydyHa  Teopema AQHAIINTUYKE  MEXaHHKE) TBpAU ma  3a
CBaKy 3aJaTy MHOUHHUTE3UMallHy  TpaHCGOpMalHdjy  NPOCTOPHUX W BPEMEHCKE
IIPOMEHJBMBE KOja OCTaBJba XAaMIITOHOBO JIEjCTBO AaIlCOMYTHO MM TPaJujeHTHO
WHBApUjaHTHUM, CIEAM HEKH 3aKOH KOH3eBallMje 3aJaTor AMHAMHYKOr cucteMma. [IpBu
MyT je TOKa3aHO Kako Ja ce Hal)y mHpHHUTE3uMallHe TpaHCcPopMalmje KOje OCTaBIbajy
WHBapUjaHTHUM (AICIOyTHO WIM TPagUjeHTHO) XaMMITOHOBO J€jCTBO, O 4YeMY
Teopema Noether He rosopu. [lokazaHo je na ce HallaXKemhe OBHX MHOUHUTE3MMATHHX
TpaHcopMmalMja TpPoOJEeM CBOIM Ha HAAKEHE pelIekha CUCTEMa MapliyjaTHuX
midepeHIrjaiHuX  jeHaYMHa,  KOje Y  ClOy4dajy =~ NpOCTOr  Kperama 0
uHepuUju noctajy KuiauHroBe jeaHaunHe mo3Hate y Au(EpeHINjallHO] TeOMETpUjH. Y3
to, B.JI.B. je Kkao moma3Hy OCHOBY NpOy4aBao HHBapujaHTHOCT JlamamGepoBor
JuepeHIrjaTHOr BapHjalliOHOT NpuHOMNA, a kacHuje u [aycoBor m JKypaeHosor
BapUjalliOHOT NPHHIMIA, Ha je TaKo YCNELIHO NPOIIMPEH METOA HaJaXKemha 3aKOHa
KOH3€pBalldje HEKOH3epPBaTHBHHX JMHAMHUYKHX cucTemMa o udemy Teopema Noether,
Takohe He TOBOPH.

2. 3naraH Jneo wucrapxkuBama b.J[.B. je TmoOCBeTHO BapHjallMOHOM OIHCHBAHY
JMCHUTNATUBHUX W HENOBPATHUX MpOIeca, a MOCeOHO BaPUjallMOHOM NPHHLIHILY
XaMIWITOHOBOT THIIA y JHMHEAPHOM M HEJIMHEAPHOM IPOBO)CHY TOIUIOTE y YBPCTUM
TenmuMa, yKJbydyjyhu mpomeHy (asze, TEOpHjU TPaHHYHOr CIIOja y XHIPOJHUHAMHIN H
ci. JIoOpo je mo3HaTO Ja HECTALMOHAPHU JIMHEApHH NpoOJieMH MpOoBOheHma TOILIOTE,
onmucaHu MapaboNuYHUM jenHauynHama @OypHjeoBOr THNA HE JOMYIITajy BapHjallMOHO
OIMMCHBAKE Y CMUCITY Hallaxkema oaroBapajyhe Jlarpamxkese ¢ynkuuje. b.J1.B. je npBu
MOKa3a0 Jia Ce Ta4yaH aKIMOHM MHTErpal MOKe Hahu 3a clly4aj TeHepalMcaHe TeopHje
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npoBohema TOIUIOTEe Kaja je Op3uHa TEPMUYKOI CHI'Haja KOHauyHa. Bapupamem oBor
UHTErpala M IyIITambeM Ja BpeMe TepMHUKe pelakcaldje TeXd HylIH, A0Ja3Hu ce
nocpenHo o kinacuuHe PypujeoBe Teopuje  HeCTalMOHapHOr mpoBohewma. OBako
(dbopMysHcaH BapUjallMOHM TNPUHIMI MOXE C€ Ca BEIMKOM IpeAHOIINY KOPUCTHTH 3a
JoOujambe pelliemha JIMHEAPHUX M HEIMHEeapHHUX NpobOiieMa npoBohema, KOMOMHOBAHEM
Pa3HUX AMPEKTHUX METOJa BapUjalliOHOT pauyHa Kao Ha mpuMmep Metoa Puna nnm meron
napuyjanHe uHTerpainmje. OBa npoyuyaBama JoBena Cy 0 (opmynanyje OpUHLIUIA ca
umue3aBajyhum napamerpom. KopumihemeMm CTpyKTypHE aHallOrHje OBaj BapHjallIOHU
IPUHLUI [IPUMEEH je Ha OpojHe mpobiieMe Teuema (uIynaa Kako BYTHOBCKOI TaKo H
HEHBYTHOBCKUX (ayuaa. JIpyrd BapujaloOHM NpWIa3 Y HENOBPAaTHUM IpoOieMuma
MEXaHHUKE TIOCTUTHYT je bopmynanujom T3B. Bapwujarmonor [IPUHLIUIA
ca HeKOMYTAaTHBHUM  OPABWIOM  Bapupama. KapakrepucTuka OBOT  BapHjal[MOHOT
NPUHIIMIIA je 3aCHOBaHa Ha yBohemwy moceOHe Kiiace JOMyCTHBUX BapHjalja Kol KOjuX ,,
Bapujanuja u3Boma o BpeMeHy HHUje jeiHaKa M3BOAY IO BpeMy BapupaHe QyHKIHje y
cllydajy Ia je IUMHAMHUYKH CHUCTEM CTpOro HemoBpaTaH (HeKoH3epBaTHBaH). OBaj
BapPIjaHPIOHI/I IPUHLMUII TI0Ka3ao C€ HE CaMO YCIICIIHUM Yy JUCHUNIATUBHHUM CHCTEMHUMa
TUIIa TpoBOhema Tomiore, Beh M y noOujamy peliema AMHAMHYKHX CHCTEMa ca
KOHauHUM OpojeM cTelleHa ci1000/e, MpoHalaKehy aaujabaTCKUX HHBAapHjaHaTa, TEOPHjU
HEJMHEApHUX OCHWIalMja W JAp. BapujallMoHMM TpHHIMNNAMA OWIMHEAPHOT THIIA
noceheHa je Takohe Berka maKmba.

3. obopo je mo3HaTo Aa je XaMunToH-JakoOojeBa METOAA HajOIIITH]H U HajyCHEIIHI]H
MeTol MHTerpanuje JlarpamkeBux Wi XaMWITOHOBHX JMHaMHUUYKuUX cucrema. OBa
MohHa W dYyBeHa MeToa He MO)XKE Ce€ NPHMEHUTH Yy JUHAMUIN HEKOH3EPBATHBHHX
cucrema. ¥ cBom pany, b.JI.B. je pa3Buo jenan napanensaH MeToJ] KOjU je €KBUBaJCHTAaH
XamMHuITOH-JaK000jeBOM METO/Y alli Ce Off Hhera CyIIACTBEHO Pa3JIMKyje YakK U y Ciiydajy
XaMWITOHOBUX IHUHAMHUYKUX CHCTeMa. Y IOMEHYTO] METOIH, NPETIOCTaBJba Ce Ja ce
jenaH o TeHepaJuCcaHnX UMITylIca (MOMEHaTa)MOXKe MPEeICTAaBUTH Kao I0JbE KOje 3aBUCH
O BpeMeHa, I'eHepalICaHuX KOOpAWHATa M OCTAJMX IeHepalucaHnx uMmmynica. Ha Taj
HauWH, J0ja3d Cce /O jeoHe KBasu-JHHEapHe mapuujajgHe audepeHIurjaaHe
jennauune. [Toka3zaHo je, Ja YKONMKO CMO y CTalkby na HaheMo jemaH TOTIyHH
MHTETpajl OBE jeqHAuYMHE, Taja 0e3 J0o/aTHE MHTErpalyje, T0Ja3|uMo JI0 OMIITEr pelieha
HEKOH3€pPBaTHBHOI  JuHamMu4ykor  cucrema. OBaj Meron, KOjU  je  ayTop
Ha3Bao MeToJ HoJba TeHepaslCaHOr UMIYIICA YCTIENIHO jeé IpUMEmeH Yy OpojHHM
npobiaeMyMa HHTErpalyje HEKOH3epBAaTUBHHMX IUHAMHUYKUX CHCTEMa, TEOPHjH
HEJIMHEAPHHX OCLIWIALMjA U TCOPUjU ONMTUMAITHOT YIIPABJbAbA.

Pe3ynratatu HayuHor paza b./1.B. 1 meroBux capagHuka OPUBYKIH Cy NaXKbY OpOjHHX
UCTPaKUBAYKHX LIEHTapa Koju ce OaBe CIMYHOM mpobiematukoM, ma je b.JI.B. ompxkao
OpojHa IpeiaBama 1o NO3UBY , O] KOjHX MOMHUEEMO CaMO HeKa:

Carnegie-Mellon University, Pitsburgh, 1968. Onememe 3a (U3MKY UBPCTOr CTama
UexocnoBauke akagemuje Hayka, [Ipar, 1971. lenaprman 3a Mexanuky, Kings college,
London, 1972. Katenpa 3a mexanuky Texnuukor YHuBep3utera y bymummneniru, 1975.
Istituto di Matematica Universita di Torino, 1977. Istituto Matematico ,,J.L..Lagrange,
Universita di Torino, 1977. Istituto Matematico ,,Ulise Dini“, Universita di Firenza,
1977. JenapTMaH 3a MaTeMaTUKy U Gu3uky, YHusep3urer y Tokujy, 1978. denaptman
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3a MexaHuKy YHuBesureT y Kjoro-y, Jaman, 1978. Summer School of Theoretical and
Applied Mechanics, Xupommma, Jaman 1978. Institute of Information Sciences and
Electronics Summer School, University of Tsukuba, Japan, 1978. ,Colloquia on
Mechanics* Department of Engineering Mechanics, University of Kentacky, Lexington,
Ky, 1984. Department of Mechanical and Material Engineering, Vanderbilt University,
Neshville, Tennessee, 1984. Faculdad de Ciencias Fisicas, Departmento de
Fisica Teoretica, Universidad Complutense de Madrid, 1988.
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Fig.1 Nikola N.Saltykov (May 24, 1872-2961)

The name of N. N. Saltykov, who was the Academician of the Serbian Academy of
Sciences and Arts, is widely known in Serbia. He was one of the founders of the Serbian
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Mathematics. His scientific activity in Serbia is reflected in the sixth volume of the ten-
volume edition, dedicated to Serbian scientists [1, p. 43—-71]. However, the information
about his pre-revolutionary activity in Russia is almost absent. The objective of this
article is to fill this gap and provide a Serbian reader with the information about the life
and scientific research of Academician Nikolai Saltykov. The sources of our research:
few publications about N. N. Saltykov, mostly from the Kharkov National University [2—
4], and the National Technical University "Kharkov Polytechnic Institute" [5; 6], where
he worked, as well as the materials of regional archives of Kharkov (Ukraine) and
Tomsk (Russia) [7; 8].

N. N. Saltykov was born in May 24, 1872 in Vishny Volochyok of Tver province in a
family of an engineer-technologist. In 1891 he graduated from the Kharkov high school
and entered the Mathematics Department of Physics and Mathematics Faculty of
Kharkov University. It was one of the first universities of Russian Empire that later
became famous for its high level of teaching of Mathematics and Mechanics. It got the
most success in Mathematics and Mechanics at the end of XIX and early XX centuries.
The world-famous academicians of Kharkov University are: V. G Imshenetsky, A. M.
Lyapunov, V. A. Steklov, K. A. Andreev, S. N. Bernstein, D. M. Sintsov, professors 1.
D. Sokolov, D. M. Delarue, V. P. Alekseev, M. A. Tihomandritsky, A. B. P. Psheborsky
and many other scientists [2, p. 280-282; 6, p. 38-56]. They were the teachers and
colleagues of N. N. Saltykov at the university. Two outstanding scientists influenced him
greatly: Aleksandr Mikhailovich Lyapunov (1857-1918) — a graduate of St. Petersburg
University, a student of P. L. Chebyshev. He was a great mathematician and engineer,
the founder of the Stability of Motion theory, the Academician of the Petersburg
Academy of Sciences (since 1902). The Lyapunov’s sense of life was his devotion to
science. He was the first who outlined a specification for Mechanics tasks in their
mathematical formulation to be solved with accuracy, or the evaluation of the accuracy
of approximate solutions to be defined constantly. Lyapunov delivered Mechanics
courses at the Kharkov University (1885-1902) and the Technological Institute (1887-
1893).

Vladimir Andreevich Steklov (1863-1926) — a Kharkov University graduate, a
student of Lyapunov. He delivered Mechanics at the Kharkov University (1891-1906)
and at the Institute of Technology (1893-1906). In 1912 he was elected as an
Academician of the Petersburg Academy of Sciences (corresponding member since
1902). In 1919-1926 — he is a Vice-President of the Academy of Sciences of the USSR.
In 1921, Steklov organized and managed the Institute of Physics and Mathematics, on
the base of which the Mathematical Institute was created in 1934. Now the
Mathematical Institute of the Russian Academy of Sciences got the name of Steklov.

While a student, Nikolai Saltykov published his first scientific paper on the
integration of the Lauserbracht’s equation in Paris in 1894 («Integration de I’equation
de Lauserbracht», L'intermedieur de mathematicians. — Paris, 1894, t. II) [1, p. 50, 60].
This gifted young man attracted the attention of teachers and was invited to work at the
university to accomplish professorship. Since January 1896 Saltykov was awarded with
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the scholarship of the Ministry of Education in the Department of Abstract Mathematics
of the Kharkov University, and the training period for him was elongated to three years.
Nicholai Saltykov successfully defended the dissertation "On the Integration of Equation
with Partial First Derivatives of One Unknown Function" at the Academic Council of
the Kharkov University in December 5, 1899 and was awarded with a Master's degree in
Abstract Mathematics.

In January 1900 the Ministry of Education assigned Saltykov with a scientific
mission to study the methods of teaching of Theoretical Mechanics at the Western
Europe famous universities. He interned in France and Germany. After return he was
invited by the Council of the Tomsk Technological Institute (TTI) to occupy a position
of the chief of the Theoretical Mechanics Department. In August 1, 1901 Nicholai
Saltykov was appointed as an extraordinary professor of that department. In Tomsk, he
delivered lectures in Theoretical Mechanics to the 1st year students of all departments (2
hours per week) and students of the 2nd year of Mechanical and Civil Engineering
departments (3 hours per week), conducted practical skill classes. In the first half of
1903/04, during the Professor Nekrasov’s assignment, Saltykov also delivered a course
of lectures and practical classes in infinitesimal calculus to the students of the Ist course
of the Mining and Chemistry Departments. In 1901-1902 he occupied a position of a
Secretary (Deputy Dean) of the TTI Mining Department.

Despite the hard academic assignment, N. N. Saltykov constantly improved upon his
scientific level. So during the summer vacation from May 15 to September 1, 1902,
when he was abroad, he aimed to continue his research in the field of the theory of
integration of canonical differential equations as well as equations in partial derivatives.
During this trip he worked at the libraries of Paris (Sorbonne) and Leipzig universities
and the Paris Academy of Sciences. The results of the study were performed at the Paris
Mathematical Society as well as at the Paris Academy of Sciences (partially). At the
University of Paris a young scientist attended lectures of professors G. Hadamard and E.
Picard, studied their works on the theory of differential equations, function theory,
number theory and astronomy. He performed scientific reports about the current
development of the celestial mechanics at the Kassel Congress in Germany. He also
attended Leipzig and Gottingen Universities, perceived the courses of lectures in
Theoretical Mechanics of F. Klein as well as the research of the Norwegian
mathematician Sophus Lie, established professional contacts with professors A. Mayer
and F. Engel. He took part in the congress of German naturalists and physicians [7, p.
126, Op. 2. u Mts. 1921, 1553, 1842, p. 194, Op. 6a, ed. Mts. 11, 113].

In March, 1904 N. N. Saltykov was transferred to Kiev Polytechnic Institute (KPI) as
extraordinary professor. There he continued his scientific research with differential
equations with partial derivatives. The professor of the Kiev University and the KPI,
corresponding member of the St. Peterburg Academy of Sciences V. P. Ermakov (1845-
1922) influenced his scientific research greatly. He mainly focused on the differential
equations with partial derivatives. His both dissertations were devoted to the above
mentioned subject [9]. In 1906, Nikolai Saltykov defended his doctoral thesis for the
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Doctor of Abstract Mathematics Degree: "The Research on the Theory of Partial
Derivative Equations of the First Order of an Unknown Function." After the defense,
Saltykov became a professor in ordinary of the Applied Mathematics Department of the
KPI.

Saltykov hadn’t to work long in Kiev. In 1906, his teacher Steklov moved to St.
Petersburg, and Saltykov returned to his alma mater. It was in February 5, 1907, when
he was appointed as a professor in ordinary of Mechanics at the Kharkov University. To
maintain a high level of teaching Mechanics at the university, that had been developed
by Lyapunov and Steklov before, Nikolai Saltykov payed much attention to
methodological issues. In addition to obligatory courses, he delivered an optional course
"Mechanical Principles of Airplane Flight", conducted the scientific seminars on
differential equations of Mechanics and the History of Mechanics. Within the study of
Theoretical Mechanics, students were offered more complicated problems on the
dynamics of gyroscopes and systems of points, three-body problem, variational
problems, the problem of small oscillations, problems of the stability of the elastic rod
systems and stability of the motion [2, p. 281]. Among the issues Saltykov was interested
in at that period was the question of mathematical education in secondary schools. He
conducted seminars at the University in order to harmonize teaching in secondary and
high schools. Understanding the importance of the Theoretical Mechanics course for
secondary school teachers, N. N. Saltykov did his best to perform it at the University.

In 1906-1908 Saltykov also delivered lectures at the Kharkov Practical Institute of
Technology (now the National Technical University "Kharkov Polytechnic Institute"),
where the courses in Theoretical and Analytical Mechanics were delivered by Lyapunov
and Steklov before. Here he and P. V. Shepelev have developed new courses on these
subjects on the basis of the generalized experience of A. M Lyapunov and V. A. Steklov.
These courses have been agreed with the teaching of other disciplines of mechanical
course and Mathematics. Statics and basis of Kinematics and Dynamics were delivered
to the first course. The main attention was focused on the elucidation of the mechanical
and geometrical issues of the concepts, phenomena and laws introduced. This course
comprised three hours a week during a year. It was developed as a complete object and
fully satisfied the requirements of the Chemical Department. After sufficient knowledge
in Mathematical Analysis on the second course (two hours per week) were obtained, the
Dynamics of points system and the basis of Analytical Mechanics were delivered. This
program was focused on the students of Mechanical Department [6, p. 48—49]. At the
beginning of XX century, the name Saltykov acquired fame. 53 of his works were
published before 1918, 27 were published in Paris, 14 in Kharkov, four in Moscow and
Kiev, two in St. Petersburg and one in Rome and Cambridge. He was a member of the
Mathematical Societies of Kharkov, Kiev, Moscow, Paris, Berlin and Palermo [1, p. 60—
63].

In politics Nikolai Saltykov was a liberal. In 1905-1906, in Kiev he was a member of

the "Union of Professors." From 1917 he was a member of the Constitutional
Democratic Party (Party of National Freedom), and joined the department of the Russian
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national center when it was organized in July, 1919 in Kharkov. Moreover he was
elected to the board of this department. He got in the city council on the list of the
national-democratic union, headed by cadets during the local elections in Kharkov in
October 1919, and later he was elected as a mayor. Heading the municipal government
in such a critical moment, Saltykov demonstrated remarkable personal qualities —
optimism, responsibility, commitment to a difficult and thankless work for the good of
the city. During the Revolution and the Civil War N. N. Saltykov didn’t keep out of the
events. When in summer 1919 Volunteer Army came to Kharkov, he was elected as a
mayor of the city. As the head of the city government, Saltykov demonstrated his
personal qualities — optimism, responsibility, did his best for the city. In this difficult
time Nikolai represented the sample of honesty and integrity. In particular, he didn’t
obey the decision of the National Center about the alliance with the Black Hundreds, the
Russian nationalist organization [4]. At the end of June 1919 the Chief of the Armed
Forces of South Russia, Lieutenant-General Anton Denikin visited Kharkov. The
reception ceremony was organized by Mayor of Kharkov, N. N. Saltykov [10]. Denikin
attended the special prayer service dedicated to the city liberation which took place in
the square in front of St. Nicholas Cathedral. He was presented with bread and salt on a
special dish. Later this dish was captured (looted) by the Red Army during the Denikin's
army retreat, and now it is kept in the Central Museum of the Armed Forces of Russia
[11].

Fig.2 The meeting of general A.I.Denikin in Kharkov
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12.02.1934, N. N. Saltykov was elected as a corresponding member of the Serbian
Royal Academy of Natural Sciences department. In accord with the Ministerial Council
decision of 22.11.1941, N. N. Saltykov was sent into retirement. During the war, the
septuagenarian scientist was imprisoned in a concentration camp Banjica near Belgrade.
After the camp liberation he was reinstated as a full-time professor of the Philosophical
Department of the Belgrade University by decision of 22. 11. 1945. 02.03.1946 N. N.
Saltykov was elected as an active member on the Natural-Mathematical department by
the Serbian Academy of Sciences and Arts. In April 1946 the Mathematical Institute of
the Serbian Academy of Sciences in Belgrade was founded and here Nikolai Saltykov
became a research assistant. In 1955, being already a retiree, he continued his work
there as an honorary researcher. The scientific research to which N. N. Saltykov devoted
almost 70 years, (taking into account his first publication in 1894), became the main
devotion of his life. His bibliography includes 181 scientific papers, comprising several
monographs. A complete list of publications is given in [1, p. 60-71].
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The fundamental direction of Professor Saltykov’s scientific activity was the study of
partial differential equations of the first order. Lagrange suggested the beginning of
general studies of the mentioned above equations. Later, they were developed by 1. Pfaff,
C. Jacobi, A. Cauchy, J. Bertrand, J. Liouville, A. N. Korkin and many others. In 1870s
the scientific papers of Adolf Meyer and Sophus Lie appeared. These studies became the
starting point for further research of V. P. Ermakov in this field [9, p. 35-45].
Undoubtedly, the Ermakov’s research influenced greatly the N. N. Saltykov’s work. The
basic tenets of the theory of partial differential equations of the first order and Lee’s
simplified summary of this study were considered in Saltykov’s master thesis from a
classical point of view. He critically analyzes and develops the theory of Lee in his
doctoral thesis. His official opponent D. M. Sintsov in a review denotes the connection
between Liouville’s and Lee’s scientific papers that was proved by Saltykov. The
correlation of the Lee’s theory with the classical research of Liouville and Jacobi and
other mathematicians is considered to be one of the major Saltykov’s merits. More
details about the content of the theses of Nikolai Saltykov can be found in the essay of I.
A. Naumov "Mechanics in Kharkov" [2, p. 280-282]. Saltykov was dealing with the
problem of partial differential equations of the first order during his entire life. The most
important of his works, that were published between the World Wars were the works
published in Paris [1, p. 64, 65] — "On the theory of partial differential equations of the
first order with one unknown function» («Sur la theore des equations aux derivees
partielles du premier ordre d'une seule fonction inconnue», Bui. Des Sc. Math. 2 ser. T.
XLIX , Juillet — Paris, 1925);

— "Classical methods for the integration of equations in partial derivatives of the first
order» («Methodes classique d'integration des equations aux derivees partielles du
premier ordre», Memoriales des Sciences Mathematiques, 1931, fasc. L. — Paris);

— "Modern methods for the integration of differential equations with partial
derivatives of the first order for one unknown function" («Methodes modernes
d'integration des equations aux derivees partielles du premier ordre a une fonction
inconnue», Memoriales des Sciences Mathematiques, 1933, fasc. LXX. — Paris).

The last two papers were published in one of the most prestigious collections of
monographs, where the works of the most famous French and foreign mathematicians of
the time were published. Apart from Saltykov, among Yugoslav mathematicians, only
professor of the Belgrad University, Academician Mikhail Petrovich (1868—1943) was
awarded with this honor [1, 50-51]. A detailed analysis of N. N. Saltykov’s contribution
to the theory of differential equations development was performed in monograph [1, 50—
57]. The result of his research activities was a monograph "Methods of integrating the
differential equations of the first order with one unknown function", published in
Belgrade by Serbian Academy of Sciences and Arts in Serbian [12]. It is an encyclopedia
of this branch of Mathematics.

Working in Belgrade, Saltykov devoted part of his publications to the reform of the
mathematics education in high school and wrote a textbook on Analytical Geometry
[13]. A special place in the scientific work of N. N. Saltykov belongs to the history of
mathematics. Historical research goes through all his work that distinguishes his works
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from of other scientists. But apart from this he has many works of historical direction.
First of all, the works dedicated to the study of differential equations of Jacobi, Jean
d'Alembert, and other mathematicians of the past. Saltykov studied unpublished
memoirs on differential equations of the mathematician of XVIII century Charpy as well
as revealed its scientific value. He wrote essays about life and activities of the French
mathematicians Poincaré and Cartan, Yugoslav mathematicians M. Petrovic and M.
Getaldi, Russian mathematician, expat D. F. Selivanov, as well as articles about
Archimedes and Descartes as creators of mathematical methods. Among his
achievements is the Russian mathematics history to Western auditory. His last papers
were published in 1962—-1963, after the author's death.

Being a person with active citizenship, N. N. Saltykov took an active part in the
Russian academic team in Belgrade and in the Russian Scientific Institute, which
brought together Russian scientists — emigrants of different scientific fields. He
published his works in the "Notes" of the Institute. Saltykov participated in various
activities related to the Russian emigration: 4th Congress of the Russian academic
organizations abroad (Belgrade, 1929), the International Congress of Mathematicians
(Zurich, 1932), as a delegate from the Russian academic group in Yugoslavia, during
the 1st Congress of Mathematicians of the Slavic countries he represented the Russian
Scientific Institute in Belgrade. He delivered lectures on inter-Balkan Mathematical
Congress (Athens, 1934). His activity to promote the achievements of Russian scientists
was of great importance. During 15 years N. N. Saltykov was invited to deliver a series
of lectures on various areas of the theory of differential equations in a number of French
(Paris and Strasbourg) and Belgium (Brussels, Liege, Leuven and Ghent) universities
before World War II. During the postwar period, he delivered lectures at the University
of Brussels and the Poincaré Institute in Paris [1, p. 47]. N. N. Saltykov was awarded
with a medal by the University of Brussels. Nikolai Saltykov was an active member of
the Society of mathematicians, physicists and astronomers of People's Republic of
Serbia, as well as the Union of mathematicians, physicists and astronomers of
Yugoslavia. During his scientific career N. N. Saltykov participated in international
conferences in Rome, Cambridge, Amsterdam, Nancy, Beche and Belgrade.

Nikolai Saltykov created the scientific school of the theory of differential equations
in Yugoslavia. Among his students are Professor D. Mihnevich, L. Shchedrin, K. Orlov
and M. Stojadinovic. The name of Saltykov is connected with the establishment and
progress of Yugoslavia and, in particular, the Serbian mathematics. His merits were
estimated pro vita — by the Decree of the Chairman of the Federal People's Republic of
Yugoslavia, Josip Broz Tito on 03.30.1956, N. N. Saltykov was awarded with the Order
of the I degree. Nicholai lived a long life. He died in September 28, 1961 in Belgrade.
Despite the fact that since that time it's been 50 years, the memory about him is still
alive, not only in Serbia but also in Ukraine, and in particular in Kharkov — the town
which Nikolai Saltykov devoted his best years to.
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L and Hamil G
Applications to Analytical Mechanics

Monograph titled: “Lagrangian and Hamiltonian Geometries. Applications
in Analytical Mechanics” authored by Radu Miron**, academician of Romanian
Academy of sciences contain new approach to Analytical Mechanics on the basis of new
knowledge in Lagrangian and Hamiltonian Geometries.

Monograph contain the following Parts:

Part I. Lagrange and Hamilton Spaces (pp. 1-102) includes:

* The geometry of tangent manifold (the manifold TM , semisprays on the
manifold 7M , Nonlinear connections, /N -Linear connections, Parallelisms, Structure
equations) ;

* Lagrange spaces (Variation problem, Euler-Lagrange equations, Canonical
semispray, Hamilton-Jacobi equations, Metrical N -linear connections, The
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electromagnetic and gravitational fields, The almost Kdhlerian model of a Lagrange
space, Generalized Lagrange spaces);

* Finsler spaces (Finsler metrics, Geodesics, Cartan nonlinear connection,
Cartan metrical connection);

* The geometry of cotangent manifold (congruent bundle, Variational problem,
Hamilton-Jacobi  equations, Nonlinear connections, N -Linear connections,
Parallelisms, paths and structure equations );

* Hamilton spaces (...Generalized Hamilton space GH", The almost
Kihlerian model of a Hamilton space, ...);

* Cartan spaces (...., Cartan metrical connection of C", The duality between
Lagrange and Hamiltion spaces).

Part II. Lagrangian and Hamiltonian Spaces of higher-order (pp. 103-148)
includes: * The geometry of manifolds, *Lagrange space of higher-order, * Higher-order

Finsler space, * The geometry of k -cotangent bundle).

Part I11. Analytical Mecjanics of Lagrangian and Hamiltonian Mechanical
Systems (pp. 149-244) includes:

* Riemannan mechanical systems (Reimannian mechanical systems, Examples
of Reimannian mechanical systems, The evolution semispray of the mechanical system,
The nonlinear connection, The canonical metrical connection, The electromagnetism in
the theory of the Reimannian mechanical systems, The almost Hermitian model of the
Reimannian mechanical systems);

* Finslerian mechanical systems (Semidefinite Finsler spaces, The notion of
Finsled Mechanical system, The evolution semispray of the Finsler spaces, The
canonical nonlinear connection of the Finsled Mechanical system, The dynamical
derivative determined by the evolution nonlinear connection N , Metrical N -linear
connection of Finsler spaces, The electromagnetism in the theory of the Finsler
mechanical systems, The almost Hermitian model of the tangent manifold of the
Finslerian mechanical systems);

* Lagrangian mechanical systems (Lagrange spaces, Lagrangian mechanical
systems, The evolution semispray of Lagrangial space, The evolution nonlinear
connection of Lagrangial space, Canonical N -metrical connection of Lagrangial space,
Structural equations, FElectromagnetic field, The almost Hermitian model of the
Lagrangian mechanical systems, Generalized Lagrangian mechanical systems.);

*  Hamiltonian and Cartanian mechanical systems (Hamilton spaces,
Hamiltonian mechanical systems. Cartanian mechanical systems);

* Lagrangian, Finslerian and Hamiltonian mechanical systems of order k > 1
(Lagrangian mechanical systems of order k >1, Canonical k -semispray of mechanical
system, Canonical nonlinear connection of mechanical system, Canonical metrical

N connection, The Reimanian (k—l)n almost contact model of the Lagrangian

mechanical systems of order k , Classical Reimanian mechanical systems with external
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forces damping on the higher-order accelerations, Finsler mechanical systems of order
k , Finslerian mechanical systems of order k > 1).

In opinion of author, academician Rdu Miron, the aim of the present
monograph is twofold:

1* to provide a Compendium of Lagrangian and Hamiltonian geometries;

2* to introduce and investigate new analytical Mechanics: Finslerian,
Lagrangian and Hamiltonian.

Some sequences in monograph suggest, also Rimanian analytical mechanics
and etc.

The fundamental equations (or evolution equations) on the Mechanics are
derived from variational calculus applied to the integral of action and these can be
studied by using methods of Lagrangian and Hamiltonian geometries.

More general, the notions of higher-order Lagrange or Hamiltonian spaces
have been introduced by Radu Miron, the present author, and developed by means of two
sequences of inclusions similarly with those of the geometry of the order 1. The
applications leads to the notion of Lagrangian or Hamiltonian Analytical Mechanics of
order k.

In short presentation, in this monograph author radu Miron aim to solve some
difficult problems:

* the problem of geometrization of classical nonconservative mechanical
systems;

* the foundations of geometrical theory of new mechanics: Finslerian,
Lagrangian and Hamiltonian;

* to determine the evolution equations of the classical mechanical systems for
whose external forces depend on the higher-order accelerations.

The Monograph is based on the theory and and important remarks taken from
numerous cited books and references prese4nted in the List of the 258 References.

Clarify; the classical Lagrange equations are not valid for all mechanical
systems with different types of constraints. In the last part of the monograph Radu
Miron present the solution of the problem for considered class of the mechanical
systems.

Finally, answers to question: What is new in this presented monograph? New
are:

* A solution of the problem of geometrization of the classical nonconservative
mechanical systems, whose external forces depend on velocities, based on the
differential geometry of velocity space;

* The introduction of the notion of Finslerian mechanical system;

* The definition of the Cartanian mechanical system;

* The study of the Lagrangian and Hamiltonian mechanical systems by means
of the geometry of tangent and cotangent bundles;

* The geometrization of the higher-order Lagrangian and Hamiltonian
mechanical systems;
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* The determination of the fundamental equations of the Reimaninan
mechanical systems whose external forces depend on the higher-order accelerations.

Monograph contains Index on the three pages.

Monograph is presented on the 266 pages.

With pleasure, I recommend to read this unique and original monograph as
very useful for scientists, researchers and Ph. D student in area of mechanics as well as
in mathematics

Katica R. (Stevanovi¢) Hedrih

**Professor Radu Miron, doctor of sciences (born on Sctober 3, 1927) is a
Member of Romanian Academy of Sciences and of the Academy of Sciences of Moldava
Republic.He is Doctor Honoris Causa of Universities from Craiova, Constanta, Oradea,
Galati, Bacau and Brasov, Romania and Kishinev. Moldava. He is awarded by the
Romanian Academy with “CH.Titeica” Prize and by Romanian Ministry of Education
with the “Opera Omnia” Prize.

Professor Radu Miron discovered the Geometries of Lagrange and Hamilton
spaces, as well as the Lagrange and Hamilton geometries of higher-order. He difined
and studied for the forst time the notions of Lagrangian and Hamiltonian Mechanical
Systems, which are the basic in Analytical Mechanics.
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