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Preface

This outline of the spectral theory of graphs based on the signless Laplacian
has come out from the papers [26], [27], [28] with the common title ”Towards
a spectral theory of graphs based on the signless Laplacian”. Texts from the
previous papers of mine and of my coauthors on the same subject [14], [15],
[23], [24] have been used as well. The intention when writing this report
was to produce a summary of rapid developments in the area of the signless
Laplacian eigenvalues as soon as possible.

The weakness of this report is that several important results of other
authors are only briefly mentioned.

My initiative from [14] to build a spectral theory of graphs based on the
signless Laplacian was motivated by the following three facts:

– computational results [31] have shown that spectral uncertainties are
smaller in the signless Laplacian than in the adjacency matrix or the Lapla-
cian;

– there is a simple connection between the signless Laplacian eigenvalues
and spectra of line graphs implying that the existing well developed theory
of graphs with least eigenvalue −2 [22] can help in building the new theory;

– apart for sporadic results almost nothing has been published on the
signless Laplacian eigenvalues till that time.

I have presented the paper [14] at the 20-th British Combinatorial Con-
ference in Durham in July 2005 and have been advocating the study of the
subject in my talks on several occasions.

This text is put on Internet and thus is available to all interested re-
searchers. The text might be revised and extended in the future.

The production of papers on the signless Laplacian eigenvalues in recent
years was astonishingly high; the number of published papers is recently
approaching one hundred.

January 2010 Author
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Note on the second draft

The second draft of ”Spectral theory of graphs based on the signless Lapla-
cian” contains some improvements of the previous text and several additions.

The main additions are the following:

– Subsections 3.1, 3.4, 3.7 and 3.9 are extended,
– Subsection 3.2 is rewritten and extended,
– a proof of Theorem 3.6.2 is formulated,
– Appendix 2 is created,
– some references are updated and several new ones are added.

April 2010 Author
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1 Introduction

The idea of spectral graph theory (or spectral theory of graphs) is to exploit
numerous relations between graphs and matrices in order to study problems
with graphs by means of eigenvalues of some graph matrices, i.e. matrices
associated with graphs in a prescribed way. Since there are several graph
matrices which can be used for this purpose, one can speak about several
such theories so that spectral theory of graphs is not unique. Of course, the
spectral theory of graphs consists of all these special theories including their
interactions.

By a spectral graph theory we understand, in an informal sense, a theory
in which graphs are studied by means of the eigenvalues of some graph matrix
M . This theory is called M–theory. Hence, there are several spectral graph
theories (for example, the one based on the adjacency matrix, that based on
the Laplacian, etc.). In that sense, the title ”Towards a spectral theory of
graphs based on the signless Laplacian” of papers [26], [27], [28], indicates
the intention to build such a spectral graph theory (the one which uses the
signless Laplacian without explicit involvement of other graph matrices).

Recall that, given a graph, the matrix Q = D + A is called the signless
Laplacian, where A is the adjacency matrix and D is the diagonal matrix of
vertex degrees. The matrix L = D −A is known as the Laplacian of G.

In order to give motivation for such a choice we introduce some notions
and present some relevant computational results.

Graphs with the same spectrum of an associated matrix M are called
cospectral graphs with respect to M , or M–cospectral graphs. A graph H
cospectral with a graph G, but not isomorphic to G, is called a cospectral
mate of G. Let G be a finite set of graphs, and let G′ be the set of graphs in
G which have a cospectral mate in G with respect to M . The ratio |G′|/|G|
is called the spectral uncertainty of (graphs from) G with respect to M (or,
in general, spectral uncertainty of the M–theory).

The papers [31], [57] provide spectral uncertainties rn with respect to
the adjacency matrix A, sn with respect to the Laplacian L and qn with
respect to the signless Laplacian Q of sets of all graphs on n vertices for
n ≤ 11 (see [7] for n = 12):

n 4 5 6 7 8 9 10 11 12
rn 0 0.059 0.064 0.105 0.139 0.186 0.213 0.211 0.188
sn 0 0 0.026 0.125 0.143 0.155 0.118 0.090 0.060
qn 0.182 0.118 0.103 0.098 0.097 0.069 0.053 0.038 0.027

We see that numbers qn are smaller than the numbers rn and sn for
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n ≥ 7. In addition, the sequence qn is decreasing for n ≤ 12 while the
sequence rn is increasing for n ≤ 10. This is a strong basis for believing that
studying graphs by Q–spectra is more efficient than studying them by their
(adjacency) spectra.

Since the signless Laplacian spectrum performs better also in comparison
to spectra of other commonly used graph matrices (Laplacian, the Seidel
matrix), an idea was expressed in [31] that, among matrices associated with
a graph (generalized adjacency matrices), the signless Laplacian seems to
be the most convenient for use in studying graph properties.

This suggestion was accepted in [14] where it was also noted that almost
no results in the literature on the spectra of signless Laplacian existed at that
time. Moreover, connection with spectra of line graphs and the existence of
a well developed theory of graphs with least eigenvalue −2 [22] were used as
additional arguments for studying eigenvalues of the signless Laplacian.

Only recently has the signless Laplacian attracted the attention of re-
searchers. As our bibliography shows, several papers on the signless Lapla-
cian spectrum have been published since 2005 and we are now in a position
to summarize the developments. In the first part [26](Part I) of our three
part paper we have mentioned 15 papers (in particular, [10], [15], [24], [33],
[41], [45], [46], [73], [83], [85], [88], [89], [91], [92], [105], where the signless
Laplacian is used explicitly) in addition to our previous basic papers [14],
[23]. In Part II [27] we have added the following 11 references: [1], [5], [47],
[48], [49], [50], [68], [74], [96], [101], [103]. In Part III the following 16 pa-
pers [3],[29], [37], [38], [44], [52], [53], [56], [59], [60], [76], [86], [90], [93], [97],
[102] have been recorded as published or in the process of publication at
that moment. Together with [26], [27] and [28], there were in this moment
about 50 papers on the signless Laplacian spectrum published since 2005.
Several others have been published afterwards.

We are now in position to summarize the current development. We
shall, in fact, outline a new spectral theory of graphs (based on the signless
Laplacian), and call this theory the Q–theory.

The rest of the report is organized as follows. Section 2 presents the
main spectral theories, including the Q–theory, and their interactions. In
this way, the Q–theory is composed in part from several patches borrowed
from other spectral theories. Section 3 contains several comparisons of the
effectiveness of solving various classes of problems within particular spectral
theories with an emphasis on the performance of the Q–theory.
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2 Q-theory and relations to other spectral theories

In 2.1 we list existing spectral theories including A–theory and L–theory as
the most developed theories. in Subsection 2.2 we survey basic properties
of Q-eigenvalues. In the rest of the section we show how the Q–theory can
be composed using various connections to other theories:

• equivalence with A–theory and L–theory for regular graphs (Subsec-
tion 2.3),

• equivalency with L-theory for bipartite graphs (Subsection 2.4),

• general analogies with A–theory (Subsection 2.5),

• analogies with A–theory via line graphs (Subsection 2.6),

• analogies with A–theory via subdivision graphs (Subsection 2.7).

This fragmentation appears in this presentation because the Q–theory
has attracted the attention only after other theories had already been devel-
oped. It is quite possible to present the Q–theory smoothly if it is a primary
goal.

We consider also the notions of enriched and restricted spectral theories
(Subsection 2.8).

2.1 Particular theories

We shall start with some definitions related to a general M–theory.
Let G be a simple graph with n vertices, and let M be a real symmetric

matrix associated to G. The characteristic polynomial det(xI −M) of M
is called the M–characteristic polynomial (or M–polynomial) of G and is
denoted by MG(x). The eigenvalues of M (i.e. the zeros of det(xI −M))
and the spectrum of M (which consists of the n eigenvalues) are also called
the M–eigenvalues of G and the M–spectrum of G, respectively. The M–
eigenvalues of G are real because M is symmetric, and the largest eigenvalue
is called the M–index of G.

In particular, if M is equal to one of the matrices A, L and Q (asso-
ciated to a graph G on n vertices), then the corresponding eigenvalues (or
spectrum) are called the A–eigenvalues (or A–spectrum), L–eigenvalues (or
L–spectrum) and Q–eigenvalues (or Q–spectrum), respectively. Through-
out the paper, these eigenvalues will be denoted by λ1 ≥ λ2 ≥ · · · ≥ λn,
µ1 ≥ µ2 ≥ · · · ≥ µn and q1 ≥ q2 ≥ · · · ≥ qn, respectively. They are the
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roots of the corresponding characteristic polynomials PG(x) = det(xI −A),
LG(x) = det(xI − L) and QG(x) = det(xI − Q) (note, PG(x) stands for
AG(x)). The largest eigenvalues, i.e. λ1, µ1 and q1, are called the A–index,
L–index and Q–index (of G), respectively.

Together with Q–theory we shall frequently consider the relevant facts
from A–theory and L–theory as the most developed spectral theories and
therefore useful in making comparisons between theories.

We shall mention in passing theories based on the matrix L̂ = D−
1
2LD−

1
2 ,

the normalized (or transition) Laplacian matrix2; (see [13]) and on the Seidel
matrix S = J − I − 2A (see, for example, [17]).

Since the eigenvalues of the matrix D are just vertex degrees, the D–
theory is not, in practice, a spectral theory although it formally is. This
example shows that the study of graphs by any sequence of structural graph
invariants can be formally represented as a spectral theory.

As usual, Kn, Cn and Pn denote respectively the complete graph, the
cycle and the path on n vertices. We write Km,n for the complete bipartite
graph with parts of size m and n. The graph Kn−1,1 is called a star and is
denoted by Sn.

A unicyclic graph containing an even (odd) cycle is called even-unicyclic
(odd-unicyclic). The union of disjoint graphs G and H is denoted by G ∪ H,
while mG denotes the union of m disjoint copies of G. The subdivision graph
S(G) of a graph G is obtained from G when each edge of G is subdivided by
a new vertex. L(G) denotes the line graph of G. Coalescence of two rooted
graphs is the graph obtained by identifying the roots.

2.2 Basic properties of Q-spectra

Let G be a graph on n vertices, having m edges and let R be its vertex–edge
incidence matrix. The following relations are well–known:

RRT = D +A, RTR = A(L(G)) + 2I, (1)

where A(L(G)) is the adjacency matrix of L(G), the line graph of G. Since
the non–zero eigenvalues of RRT and RTR are the same, we immediately
get that

PL(G)(x) = (x+ 2)m−nQG(x+ 2). (2)

Basic facts on the signless Laplacian belong to mathematical folklore.
Relations (1) and (2) can be found in many papers and books; we have
included in the list of references only the items which contain a little more.

2Here we assume that G has no isolated vertices

8



In this section we present basic results arranged in accordance with our
needs.

In virtue of (1), the signless Laplacian is a positive semi-definite matrix,
i.e. all its eigenvalues are non-negative.

Let G be a graph with Q-eigenvalues q1, q2, . . . , qn (q1 ≥ q2 ≥ · · · ≥ qn).
The largest eigenvalue q1 is called the Q-index of G.

When applying the Perron-Frobenius theory of non-negative matrices
(see, for example, Section 0.3 of [17]) to the signless Laplacian Q, we obtain
the same or similar conclusions as in the case of the adjacency matrix. In
particular, in a connected graph the largest eigenvalue is simple with a
positive eigenvector. The Q-index of any proper subgraph of a connected
graph is smaller than the Q-index of the original graph, an observation which
follows from Theorems 0.6 and 0.7 of [17].

Concerning the least eigenvalue we have the following proposition.

Proposition 2.2.1 The least eigenvalue of the signless Laplacian of a con-
nected graph is equal to 0 if and only if the graph is bipartite. In this case 0
is a simple eigenvalue.

Proof. Let xT = (x1, x2, . . . , xn). For a non-zero vector x we have Qx = 0 if
and only if RTx = 0. The later holds if and only if xi = −xj for every edge,
i.e. if and only ifG is bipartite. Since the graph is connected, x is determined
up to a scalar multiple by the value of its coordinate corresponding to any
fixed vertex i.

Remark. Assuming that the reader is familiar with the theory of graphs
with least eigenvalue −2, the above proof can be rephrased as follows. By
Theorem 2.2.4 of [22], the multiplicity of the eigenvalue −2 in L(G) is equal
to m−n+ 1 if G is bipartite, and equal to m−n if G is not bipartite. This
together with formula (2) yields the assertion of the proposition.

Corollary 2.2.2. In any graph the multiplicity of the eigenvalue 0 of the
signless Laplacian is equal to the number of bipartite components.

We shall also consider the eigenvectors (see [15]).

Proposition 2.2.3. The eigenspace of the Q-eigenvalue 0 of a graph G
determines sets of vertices and bipartitions in bipartite components of G.

Proof. Let xT = (x1, x2, . . . , xn). For a non-zero vector x we have Qx = 0
if and only if xi = −xj for every edge (as in the proof of Proposition 2.2.1).
If the graph is connected (and then necessarily bipartite), x is determined
up to a scalar multiple by the value of its coordinate corresponding to any
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fixed vertex i. If G is disconnected, at least one component is bipartite. If a
vertex i belongs to a non-bipartite component, then xi = 0. Using Corollary
2.2.2 we determine the number of bipartite components as the multiplicity
of eigenvalue 0. For each bipartite component we have an eigenvector with
non-zero coordinates exactly for vertices in this component. Now, vertex sets
of bipartite components are determined by non-zero coordinates in vectors
of a suitably chosen ortogonal basis of the eigencpace of 0. The sign of these
coordinates determines colour classes within bipartite components.

The least eigenvalue of the signless Laplacan is studied in [40] as a mea-
sure of non-bipartiteness of a graph and Proposition 2.2.1 was obtained there
as a corollary of a more general theorem (see Subsection 3.9).

Remark. In general, the Q-polynomial still does not contain information on
the bipartiteness. It does if the graph is connected but we cannot recognize
a connected graph from its Q-polynomial.

It is interesting to note that the Q-polynomial together with the informa-
tion on one of the properties in question (connectedness and bipartiteness)
enables us to recover the information on the other property: if we know the
number of components we can decide whether the graph is bipartite and if
we know whether the graph is bipartite we can find if it is connected.

Note also that for Laplacian eigenvalues it is known that the multiplicity
of the eigenvalue 0 is equal to the number of components.

The proof of the following proposition can be found in many places (see,
for example, [54]).

Proposition 2.2.4. In bipartite graphs the Q-polynomial is equal to the
characteristic polynomial of the Laplacian.

One can formulate it more generally (see [15]):

Proposition 2.2.5. The Q-polynomial of a graph is equal to the character-
istic polynomial of the Laplacian if and only if the graph is bipartite.

Proof. Suppose that the graph G is bipartite, with parts U and V . Consider
the determinant defining QG(x). Multiply by −1 all rows corresponding to
vertices in U and then do the same with the corresponding columns. The
transformed determinant now defines the characteristic polynomial of the
Laplacian of G.

The multiplicity of the eigenvalue 0 in the Laplacian spectrum is equal to
the number of components, while for the signless Laplacian, the multiplicity
of 0 is equal to the number of bipartite components. Therefore in non-
bipartite graphs the two polynomials cannot coincide.
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However, this proposition is of limited use: since we cannot establish
from the Q-polynomial of a graph G whether the graph is bipartite, we do
not know whether QG(λ) really equals the characteristic polynomial of the
Laplacian of G.

Having in mind the above facts for a graph G it seems reasonable to
prescribe, along with the Q-polynomial of G, the number of components
of G. (In most situations we would normally consider connected graphs.)
Then we can decide (using Proposition 2.2.1) whether G is bipartite and go
on to calculate PL(G)(λ) using (2).

The following proposition can be useful.

Proposition 2.2.6. The number of edges of a graph G on n vertices is
equal to −p1/2 where p1 is the coefficient of λn−1 in the Q-polynomial of G.

Proof. The trace of the signless Laplacian is equal to the sum of vertex
degrees of G.

Two graphs are said to be Q-cospectral if they have the same polyno-
mial QG(λ). By analogy with the notions of PING3 and cospectral mate
we introduce the notions of Q-PING and Q-cospectral mate with obvious
meaning.

The graphs K1,3 and K3 ∪ K1 represent the smallest Q-PING and no
other Q-PINGs on 4 vertices exist. There are two Q-PINGs on 5 vertices:
one is provided by the graphs K1,3 ∪K1 and K3 ∪ 2K1 and the other by the
graphs numbered 014 and 015 in Table 1 in the Appendix.

Note that the smallest PINGs (consisting of the graphs K1,4 and C4∪K1

on 5 vertices and the well known PING of two connected graphs on 6 vertices
[17, p. 157]) are not Q-PINGs. The paper [57] provides an example of
two non-isomorphic (non-regular, non-bipartite) graphs on 10 vertices which
are both cospectral and Q-cospectral (and, in addition, are cospectral with
respect to the Laplacian, and have cospectral complements).

Two graphs are called L-cospectral if their line graphs are cospectral.

Proposition 2.2.7. If two graphs are Q-cospectral, then they are L-cospectral.

Proof. Since Q-cospectral graphs have the same number of vertices and the
same number of edges, their L-cospectrality follows from formula (2).

However, two L-cospectral graphs need not be Q-cospectral. This is
because two cospectral line graphs need not have the same number of vertices

3PING is an abbreviation for the “pair of isospectral non-isomorphic graphs”.
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in their root graph. Such an example of cospectral line graphs is given in
Fig. 1.
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Fig. 1: Cospectral line graphs

Example. Cospectral line graphs of Fig. 1 have the characteristic polyno-
mial λ(λ2 − λ − 4)(λ − 1)(λ + 1)2. The root graph of the first graph has 7
vertices with the Q-polynomial λ(λ − 1)(λ − 2)(λ − 3)(λ2 − 5λ + 2) while
in the second case we have 8 vertices and the Q-polynomial λ2(λ − 1)(λ −
2)(λ− 3)(λ2 − 5λ+ 2).

The PING of Fig. 1 also shows that we cannot in general decide whether
a graph is bipartite from the spectrum of its line graph while theQ-polynomial
contains more information about that.

This example suggests that the polynomial QG(λ) is more useful than
PL(G)(λ). On the other hand, very few relations between QG(λ) and the
structure of G are known. Since we have just the opposite situation with
eigenvalues of the adjacency matrix, we would still like to use PL(G)(λ) in
spite of the fact that L(G) usually has more vertices than G.

However, we have seen that PL(G)(λ) contains less information on the
structure of G than QG(λ). This disadvantage can be eliminated if, in addi-
tion to PL(G)(λ), we know the number of vertices of G. Then our information
about G is the same as that provided by QG(λ), since QG(λ) can be calcu-
lated by formula (2), and either of the two polynomials can be considered.

In this way we can eliminate another uncertainty. Namely, by Theorem
4.3.1. of [22] a regular line graph could be cospectral with another line
graph for which the root graph has a different number of vertices, and this
fact would cause additional problems if the polynomial PL(G)(λ) alone were
given.

Example. The graph L(K6) has the Q-polynomial (λ−16)(λ−10)5(λ−6)9

while the graph K10,6 has the Q-polynomial (λ−16)(λ−10)5(λ−6)9λ. The
line graph of either of these two graphs has the characteristic polynomial
(λ− 14)(λ− 8)5(λ− 4)9(λ+ 2)45.
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Now we see that for a graph G one should prescribe either (a) QG(λ)
and the number of components of G or, equivalently, (b) PL(G)(λ) together
with the number n of vertices of G and the number of components of G.

See Subsection 2.8 for a formalization of this requirement.

2.3 Regular graphs

An important characteristic of a spectral theory is whether or not regular
graphs can be recognized within that theory. Such a question is answered for
a broad class of graph matrices in [31]. The answer is positive for matrices
A, L and Q, but it is negative for the Seidel matrix S.

In particular, for the signless Laplacian we have the following proposition
[23].

Proposition 2.3.1. Let G be a graph with n vertices and m edges, and let
q1 be its largest Q-eigenvalue. Then G is regular if and only if 4m = nq1. If
G is regular then its degree is equal to q1/2, and the number of components
equals the multiplicity of q1.

The proof is carried out in the same way as in the case of the adjacency
matrix (cf. [17], Theorems 3.8, 3.22 and 3.23). In fact, one should compare
the value of the relevant Rayleigh quotient for the all-one vector with the
value of q1.

In regular graphs it is not necessary to give explicitly the number of
components since this can be calculated from QG(λ) using Proposition 2.3.1.

The following characterization of regular graphs, known in the A–theory
(cf. [17], p. 104), can be formulated also in the Q–theory.

Proposition 2.3.2. A graph G is regular if and only if its signless Laplacian
has an eigenvector all of whose coordinates are equal to 1.

Of course, for regular graphs we can express the characteristic polynomial
of the adjacency matrix and of the Laplacian in terms of the Q–polynomial
and use them to study the graph. Thus for regular graphs the whole exist-
ing theory of spectra of the adjacency matrix and of the Laplacian matrix
transfers directly to the signless Laplacian (by a translate of the spectrum).
It suffices to observe that if G is a regular graph of degree r, then D = rI,
A = Q− rI and we have

PG(x) = QG(x+ r).

If LG(λ) is the characteristic polynomial of the Laplacian L of G, we
have
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LG(x) = (−1)nQG(2r − x)

since L = 2D −Q = 2rI −Q.
The mapping φ(q) = q− r maps the Q–eigenvalues to the A–eigenvalues

and can be considered as an isomorphism of the Q–theory of regular graphs
to the corresponding part of the A–theory.

Example. We shall give hereA–eigenvalues, L–eigenvalues andQ–eigenvalues4

for two representative classes of regular graphs: complete graphs and cir-
cuits. Provided one kind of eigenvalues is known, the other two kinds can
be calculated by above formulas.

complete graph Kn (n ≥ 2):
A: n− 1, (−1)n−1

L: 0, nn−1,
Q: 2n− 2, (n− 2)n−1.

cycle Cn (n ≥ 3):
A: 2 cos π

2nj (j = 0, 1, . . . , n− 1)
L: 2− 2 cos π

2nj (j = 0, 1, . . . , n− 1)
Q: 2 + 2 cos π

2nj (j = 0, 1, . . . , n− 1).

For regular graphs many existing results from the A–theory can be re-
formulated in the Q–theory.

Proposition 2.3.3. Let G be a regular bipartite graph of degree r. Then
the Q–spectrum of G is symmetric with respect to the point r.

This symmetry property is an immediate consequence of the well-known
symmetry about 0 of the adjacency eigenvalues in bipartite graphs. Thus q
is a Q–eigenvalue of multiplicity k if and only if 2r−q is also a Q–eigenvalue
of multiplicity k; moreover, the eigenvalues 0 and 2r are always present.

We can go on and reformulate in the Q–theory, for example, all results
from Section 3.3 of [17] and several related results for regular graphs.

2.4 Bipartite graphs

For bipartite graphs we have LG(x) = QG(x) (cf. Proposition 2.2.5). In this
way, the Q–theory can be identified with the L–theory for bipartite graphs.

Hence, for non–regular and non–bipartite graphs the Q–polynomial re-
ally plays an independent role; for other graphs it can be reduced to either
PG(x) or LG(x), or to both.

4Superscripts are used to denote the multiplicities of eigenvalues.
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Unlike the situation with the regularity property, the problem here is
that bipartite graphs cannot always be recognized by the Q–spectrum. This
difficulty can be overcome by requiring that always, together with the Q–
spectrum of a graph, the number of components is given, as explained in
Subsection 2.2.

Among many results on bipartite graphs in the L–theory, let us mention
a theorem from [65] (and [46]) saying that no starlike trees5 are cospectral.
(It was known before that the same statement holds also in the A–theory
[66].) Now this statement holds also in the Q–theory.

Although the Q–theory looks to be identical with the L–theory for bi-
partite graphs, the following remarks seem to be interesting.

Given the L–spectrum (or the Q–spectrum what is the same) of a tree, in
the L–theory we can recognize from the spectrum that the graph in question
is a tree (by establishing that the graph is connected and has the number of
edges smaller by 1 than the number of vertices), while in the Q–theory we
cannot be sure whether the graph is connected (which opens the possibility
that in the case of non-connectedness it is not bipartite). Hence, for trees the
L–theory is superior although in both theories trees have the same spectra.

Recall that the second smallest L–eigenvalue is called the algebraic con-
nectivity of a graph. This important graph parameter has been treated
extensively in the literature. An interesting question arises when trying
to establish an analogous quantity for the Q–spectrum. Since in bipartite
graphs the two spectra coincide, one could think that the second smallest
Q–eigenvalue plays the role of algebraic connectivity. However, in regular
graphs the second largest A–eigenvalue λ2 is mapped into the second small-
est L–eigenvalue r− λ2 and to the second largest Q–eigenvalue q2 = r+ λ2.
Hence, one should think that the second largest Q–eigenvalue plays the role
of algebraic connectivity! The question remains whether q2 really has in
general the properties analogous to those of the algebraic connectivity.

2.5 Analogies with A–theory

The results which we survey in this and in the next two subsections are
obtained by applying to the signless Laplacian the same reasoning as for
corresponding results concerning the adjacency matrix.

We consider graphs in general with special emphasis on the non-regular
case. The results which we survey are of three types:

– results of type a are obtained by applying to the signless Laplacian
5A starlike tree is a tree with exactly one vertex of degree greater than two.
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the same reasoning as for corresponding results concerning the adjacency
matrix (Subsection 2.5),

– results of type b are obtained indirectly via line graphs (Subsection
2.6), and

– results of type c are obtained indirectly via subdivision graphs (Sub-
section 2.7).

First we shall give an interpretation of eigenvectors of Q.
From the relations (1) we see that if x is an eigenvector for the eigenvalue

q of A+D, then the vector u = RTx is an eigenvector for the eigenvalue q−2
of AL. It is convenient to consider coordinates of u as weights of edges of
G. Let xT = (x1, x2, . . . , xn) and uT = (u1, u2, . . . , um). If the edge k of G
joins vertices i and j, then from the relation u = RTx we have uk = xi + xj
and

(q−2)us =
∑
t∼s

ut (s = 1, 2, . . . ,m), qus = 2us+
∑
t∼s

ut (s = 1, 2, . . . ,m),

where ‘∼’ denotes the adjacency relation for vertices of L(G) and for edges
of G. This is analogous to the well known relations for coordinates of eigen-
vectors of the adjacency matrix (‘the eigenvalue equations’).

Next we consider the enumeration of walks.

Definition. A walk (of length k) in an (undirected) graph G is an alternat-
ing sequence v1, e1, v2, e2, . . . , vk, ek, vk+1 of vertices v1, v2, . . . , vk, vk+1 and
edges e1, e2, . . . , ek such that for any i = 1, 2, . . . , k the vertices vi and vi+1

are distinct end-vertices of the edge ei.

Such a walk can be imagined as an actual walk of a traveller along the
edges in a diagrammatic representation of the graph under consideration.
The traveller always walks along an edge from one end-vertex to the other.
Suppose now that we allow the traveller to change his mind when coming
to the midpoint of an edge: instead of continuing along the edge towards
the other end-vertex, he could return to the initial end-vertex and continue
as he wishes. Then the basic constituent of a walk is no longer an edge;
rather we could speak of a walk as a sequence of semi-edges. Such walks
could be called semi-edge walks. A semi-edge in a walk could be followed by
the other semi-edge of the same edge (thus completing the edge) or by the
same semi-edge in which case the traveller returns to the vertex at which he
started. A formal definition of a semi-edge walk is obtained from the above
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definition of a walk by deleting the word “distinct” from the description of
end-vertices. Hence we have the following definition.

Definition. A semi-edge walk (of length k) in an (undirected) graph G is an
alternating sequence v1, e1, v2, e2, . . . , vk, ek, vk+1 of vertices v1, v2, . . . , vk+1

and edges e1, e2, . . . , ek such that for any i = 1, 2, . . . , k the vertices vi and
vi+1 are end-vertices (not necessarily distinct) of the edge ei.

In both definitions we shall say that the walk starts at the vertex v1 and
terminates at the vertex vk+1.

The well known theorem concerning the powers of the adjacency matrix
[17, p.44] has the following counterpart for the signless Laplacian (see [23]).

Theorem 2.5.1. Let Q be the signless Laplacian of a graph G. The (i, j)-
entry of the matrix Qk is equal to the number of semi-edge walks of length
k starting at vertex i and terminating at vertex j.

Proof. For k = 1 the statement is obviously true. The result follows by
induction on k just as in the proof of the corresponding theorem for the
adjacency matrix.

Remark. The proof can also be carried out by applying the theorem con-
cerning the powers of the adjacency matrix to the multidigraph D(G) ob-
tained by adding di loops to the vertex i for i = 1, 2, . . . , n, where di is the
degree of the vertex i. Concerning the multidigraph D(G) see the end of
this subsection.

Let Tk =
∑n

i=1 q
k
i (k = 0, 1, 2, . . . ) be the k-th spectral moment for the

Q-spectrum. Since Tk = trQk, we have the following corollary.

Corollary 2.5.2. The spectral moment Tk is equal to the number of closed
semi-edge walks of length k.

Corollary 2.5.3. Let G be a graph with n vertices, m edges, t triangles and
vertex degrees d1, d2, . . . , dn. We have

T0 = n, T1 =
n∑
i=1

di = 2m, T2 = 2m+
n∑
i=1

d2
i , T3 = 6t+ 3

n∑
i=1

d2
i +

n∑
i=1

d3
i .

Proof. The formulas for T0 and T1 are obvious. In T2 the first term counts
the semi-edge walks based on one edge while the second term counts those
consisting of two semi-edges. In T3 the terms are related to walks around
a triangle, walks along one edge and one semi-edge, and walks consisting of
three semi-edges.
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Remark 1. Recall that trMN = trNM for any two feasible matrices M,N .
The formula for T2 follows from trQ2 = tr(A + D)2 = trA2 + trD2, since
trAD = 0. We have T3 = tr(A + D)3 = trA3 + 3trA2D + 3trAD2 + trD3.
Since trAD2 = 0, we obtain the above formula. Compare also the formula
for T1 with Proposition 2.2.6.

Remark 2. Expressions for the spectral moments from Corollary 2.5.3 can
be used to determine vertex degrees if we know that vertex degrees can
take only a limited number of values. In particular, suppose that a graph
has ni vertices of degree ei for i = 0, 1, 2, 3 and no other vertices. If we
specify e0, e1, e2, e3, the corresponding numbers of vertices n0, n1, n2, n3 can
be determined from the system of equations (provided the spectral moments
T0, T1, T2, T3 are known)

3∑
i=0

ni = T0 = n,
3∑
i=0

niei = T1 = 2m,

3∑
i=0

nie
2
i = T2 − 2m,

3∑
i=0

nie
3
i = T3 − 6t− 3(T2 − 2m).

Interesting conclusions could be made in the case e0 = 0, e1 = 1, e2 =
2, e3 = 3.

Such a situation occurs in graphs with vertex degrees at most 3. These
graphs are of interest in chemical applications of graph theory. If such a
graph is bipartite, we have t = 0 and vertex degrees are determined in
terms of spectral moments by the above system. If the graph is connected,
we have n0 = 0 and we can treat non-bipartite case as well. (The first three
equations suffice to determine vertex degrees and, in addition, the fourth
equation yields the number of triangles t).

The following statement and its proof is analogous to an existing result
related to the adjacency spectrum [17, Theorem 3.13]. The proof is taken
from [15].

Theorem 2.5.4. Let G be a connected graph of diameter D with e distinct
Q–eigenvalues. Then D ≤ e− 1.

Proof. By Theorem 2.5.1 the (i, j)-entry q
(k)
i,j of Qk is the number of semi-

edge walks of length k from i to j. By the definition of the diameter, for
some vertices i and j there is no semi-edge walk of length k connecting i and
j for k < D, whereas there is at least one for k = D. Hence we have q(k)

i,j = 0
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for k < D and q
(k)
i,j > 0 for k = D. The minimal polynomial of the matrix

Q is of degree e(G) = e and yields a recursive relation connecting e + 1
consecutive members of the sequence q(k)

i,j , k = 0, 1, 2, . . . . The assumption

D > e−1 would cause that all members of the sequence q(k)
i,j , k = 0, 1, 2, . . .

are equal to 0 what is impossible. The obtained contradiction proves the
theorem.

Let G be a connected graph with n vertices and m edges and let

QG(λ) =
n∑
j=0

pjλ
n−j = p0λ

n + p1λ
n−1 + · · ·+ pn

be the Q-polynomial of G.
A spanning subgraph of G whose components are trees or odd-unicyclic

graphs is called a TU-subgraph of G. Suppose that a TU -subgraph H of G
contain c unicyclic graphs and trees T1, T2, . . . , Ts. Then the weight W (H)
of H is defined by W (H) = 4c

∏s
i=1(1+ |E(Ti)|). Note that isolated vertices

in H do not contribute to W (H) and may be ignored.
We shall express coefficients of QG(x) in terms of the weights of TU -

subgraphs of G.

Theorem 2.5.5. We have p0 = 1 and

pj =
∑
Hj

(−1)jW (Hj), j = 1, 2, . . . , n,

where the summation runs over all TU -subgraphs Hj of G with j edges.

Proof. We shall need the formula

P
(k)
G (x) = k!

∑
Sk

PG−Sk
(x) (3)

where the summation runs over all k-vertex subsets Sk of the vertex set of
G. (For k = 1 the formula is well-known [17, p.60], and then we obtain (3)
by induction, as noted in [55].)

Starting from (2) and using the Maclaurin development we have

QG(x) = xn−mPL(G)(x− 2)

= xn−m
m∑
k=0

P
(k)
L(G)(−2)

xk

k!

= xn−m
m∑

k=m−n
xk

1
k!
P

(k)
L(G)(−2)
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since the eigenvalue −2 of L(G) has multiplicity6 at least m− n. Applying
(3) we obtain

QG(x) = xn−m
m∑

k=m−n
xk
∑
Sk

PL(G)−Sk
(−2) . (4)

All subgraphs L(G) − Sk are, of course, line graphs and have −2 as an
eigenvalue unless all components of L(G)− Sk are line graphs of trees or of
odd unicyclic graphs (see Corollary 2.2.5 of [22]).

The root graph of L(G) − Sk is then a TU -subgraph Hm−k of G with
m− k edges. We have that (−1)|E(Z)|PL(Z)(−2) is equal to 4 if Z is an odd-
unicyclic graph and is equal to 1 + |E(Z)| if Z is a tree (see, for example,
[22], p. 181). Hence, we have

PL(G)−Sk
(−2) = (−1)m−kW (Hm−k) .

Now the formula (4) reduces to

QG(x) = xn−m
m∑

k=m−n
xk(−1)m−k

∑
Hm−k

W (Hm−k),

where in the second sum the summation runs over all TU -subgraphs Hm−k
of G with m− k edges. By substituting j for m− k we obtain

QG(x) =
n∑
j=0

xn−j(−1)j
∑
Hj

W (Hj).

This completes the proof.

This result appeared first in [39]; the proof given here stems from [23].

For j = 1 the only TU -subgraph H1 is equal to K2 with W (H1) =
W (K2) = 2 and we readily obtain p1 = −2m, thereby recovering Proposition
2.2.6. For j = 2, the possible TU -subgraphs H2 are 2K2 and K1,2,. Since
W (2K2) = 4 and W (K1,2) = 3 we have p2 = 4a+ 3b where a is the number
of pairs of non-adjacent and b the number of pairs of adjacent edges in G.
Since a+ b = m(m−1)

2 , we have the following result.

Corollary 2.5.6. p1 = −2m and p2 = a + 3
2m(m − 1), where a is the

number of pairs of non-adjacent edges in G.
6Here we assume that G is not a tree. However, the proof remains valid also for trees

since in that case the term for k = −1 in the last sum does not exist.
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The following theorem is a direct reformulation of a well-known theorem
from the Perron-Frobenius theory concerning relations between the largest
eigenvalue and the row sums of non-negative matrices (cf., e.g., [51], vol. II,
p. 63, or [17], p. 83).

Theorem 2.5.7. Let G be a graph on n vertices with vertex degrees d1, d2, . . . , dn
and largest Q-eigenvalue q1. Then

2 min di ≤ q1 ≤ 2 max di.

For a connected graph G, equality holds in either of these inequalities if and
only if G is regular.

However, stronger inequalities can be derived using the very same result
from the theory of non-negative matrices (see Subsection 2.6).

For other examples of analogies with A–theory, see also Theorems 3.3.5
and 3.3.5’.

Let G be a graph on n vertices with vertex degrees d1, d2, . . . , dn. Let
D(G) be the (multi-)digraph obtained from G by adding di loops to the
vertex i for each i = 1, 2, . . . , n. It was noted in [23] that the proof of
Theorem 2.5.1 can be carried out by applying the theorem on powers of the
adjacency matrix to the digraph D(G).

This observation can be generalized. In fact, the Q–theory of graphs
G is isomorphic to the A–theory of digraphs D(G). In this way we have a
useful tool in establishing analogies between the Q–theory and A–theory.

We shall provide some examples.
The interlacing theorem in its original form can be applied in a specific

way in Q–theory. It is sufficient to use digraphs D(G) instead of graphs G
[26].

Theorem 2.5.8. The Q–eigenvalues of a graph G and the A–eigenvalues
of any vertex deleted subdigraph D(G)− v of D(G) interlace each other.

The same applies to the divisor concept (see [17], Chapter 4). The theory
of divisors anyway deals with multidigraphs. Hence we have the following
theorem [26].

Theorem 2.5.9. The A–polynomial of any divisor of D(G) divides the
Q–polynomial of G.

This theorem was implicitly used in [92] (cf. Lemma 5.6. from that
paper). For some related questions concerning graph homomorphisms see
[33].
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2.6 Line graphs

Let G be a graph on n vertices, having m edges. As we know, the following
formula holds

PL(G)(x) = (x+ 2)m−nQG(x+ 2). (5)

Therefore it follows that

q1 − 2, q2 − 2, . . . , qn − 2, and − 2m−n (6)

are the A–eigenvalues of L(G); note, if m−n < 0 then qm+1 = · · · = qn = 0
and thus the multiplicity of −2 is non–negative.

The results which we survey in this subsection are obtained indirectly
via line graphs using formula (5) and results from A–theory.

This method can be used to calculate Q–eigenvalues of some graphs.

Example. TheA–eigenvalues of L(Pn) = Pn−1 are 2 cos πnj (j = 1, 2, . . . , n−
1) and by (6) the Q–eigenvalues of Pn are 2 + 2 cos πnj = 4 cos2 π

2nj (j =
1, 2, . . . , n). Alternatively, one can say thatQ–eigenvalues of Pn are 4 sin2 π

2nj
(j = 0, 1, . . . , n− 1).

Example. The A–eigenvalues of L(Km,n) are m+n− 2, (n− 2)m−1, (m−
2)n−1,−2(m−1)(n−1) and were obtained in [17], p. 175, via the sum of graphs.
By formula (6) we see that Q–eigenvalues of Km,n are m+ n, nm−1,
mn−1, 0.

A specific form of the interlacing theorem for Q–eigenvalues was es-
tablished in [23] and a proof using line graphs was given in [24]. In this
version we delete edges instead of vertices. We have an interlacing of the Q-
eigenvalues of a graph with the Q-eigenvalues of an edge-deleted subgraph.
This can be seen by considering the corresponding line graph, for which the
ordinary interlacing theorem holds, and shifting attention to the root graph.
In fact, we have the following theorem.

Theorem 2.6.1. Let G be a graph on n vertices and m edges and let e
be an edge of G. Let q1, q2, . . . , qn (q1 ≥ q2 ≥ · · · ≥ qn) and s1, s2, . . . , sn
(s1 ≥ s2 ≥ · · · ≥ sn) be Q-eigenvalues of G and G− e respectively. Then

0 ≤ sn ≤ qn ≤ · · · ≤ s2 ≤ q2 ≤ s1 ≤ q1.

Proof. We shall prove the assertion in the case that both G and G− e are
connected and m ≥ n + 1. In other cases the argument remains valid with
some technical modifications.
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By formula (6) the eigenvalues of L(G) and L(G − e) are q1 − 2, q2 −
2, . . . , qn − 2,−2m−n and s1 − 2, s2 − 2, . . . , sn − 2,−2m−1−n respectively.
Since L(G − e) is an induced subgraph of L(G) the (ordinary) interlacing
theorem yields

q1 − 2 ≥ s1 − 2 ≥ q2 − 2 ≥ s2 − 2 ≥ · · · ≥ qn − 2 ≥ sn − 2 ≥ −2

and the result follows.

Suppose that G′ is obtained from G by splitting a vertex v: namely if
the edges incident with v are vw (w ∈ W ) then G′ is obtained from G − v
by adding two new vertices v1 and v2 and edges v1w1 (w1 ∈ W1), v2w2

(w2 ∈W2), where W1 ∪W2 is a non–trivial bipartition of W .
The following theorem from [26] is analogous to a theorem for A–index,

proved in [80] (see also [21] p. 56).

Theorem 2.6.2. If G′ is obtained from the connected graph G by splitting
any vertex then q1(G′) < q1(G).

Proof. We first note that L(G′) is a proper (spanning) subgraph of L(G).
Thus λ1(L(G′)) < λ1(L(G)). Then the proof follows from (2).

Theorem 2.6.3. Let G be a graph on n vertices with vertex degrees d1, d2, . . . , dn
and largest Q-eigenvalue q1. Then

min (di + dj) ≤ q1 ≤ max (di + dj),

where (i, j) runs over all pairs of adjacent vertices of G. For a connected
graph G, equality holds in either of these inequalities if and only if G is
regular or semi-regular bipartite.

Proof. The line graph L(G) of G has largest eigenvalue q1−2. Consider an
edge u of G which joins vertices i and j. The vertex u of L(G) has degree
di + dj − 2. Hence we have

min (di + dj − 2) ≤ q1 − 2 ≤ max (di + dj − 2),

which proves the theorem.

This theorem is taken from [23] and a version of it appears in [95].
Theorem 2.5.7 can be classified as a result of type a while Theorem 2.6.3 is
of type b.

The paper [69] contains a new and shorter proof of the fact (previously
known in the literature) that the multiplicity of the A-eigenvalue 0 in line
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graphs of trees is at most 1. Having in mind formula (1) one can say that
the multiplicity of the Q-eigenvalue 2 in trees is at most 1.

Remark. Such a transformation of a result concerning the adjacency matrix
to one concerning the signless Laplacian need not always to be successful.
We give an example.

Example. Let χ(G) and χ′(G) be the chromatic number and the edge chromatic
number of a graph G.

Let λ1 and λn be the largest and the least eigenvalue of a graph H. Then (see
Theorems 3.16 and 3.18 of [17])

1 +
λ1

−λn
≤ χ(H) ≤ 1 + λ1.

Let G be a connected graph containing an even cycle or two odd cycles, and let
q1 be the largest Q-eigenvalue of G.

By Theorem 6.11 of [17] the line graph L(G) of G has least eigenvalue −2. By
formula (2) L(G) has largest eigenvalue q1 − 2. Since χ(L(G)) = χ′(G), we have

1 +
q1 − 2

2
≤ χ′(G) ≤ 1 + (q1 − 2),

from which the following assertion follows:

1
2
q1 ≤ χ′(G) ≤ q1 − 1

.
This assertion, a result of type b, is very weak although the initial inequalities

are known to be good. In fact, we have dmax ≤ χ′(G) ≤ dmax + 1 where dmax is
the maximal vertex degree; these bounds are much better than those obtained from
the assertion in conjunction with Theorem 2.5.7 (a result of type a).

See also Subsection 3.1 for further examples of using line graphs to derive
results in the Q–theory.

2.7 Subdivision graphs

Let G be a graph on n vertices, having m edges. Let S(G) be the subdivision
graph of G. As noted in [24], the following formula appears implicitly in the
literature (see e.g., [17, p. 63] and [104]):

PS(G)(x) = xm−nQG(x2). (7)

Therefore it follows that

±√q1,±
√
q2, . . . ,±

√
qn, and 0m−n (8)
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are the A–eigenvalues of S(G) (with the same comment as with (2) if m−n <
0).

It is worth mentioning that formulas (5) and (7) provide a link between
A–theory and Q–theory (and corresponding spectra, see (6) and (8)). While
formula (5) has been used in this context in [23], first results in using (7)
have been obtained in [15].

Here we first have the following observation [26].

Theorem 2.7.1. Let G be a connected graph with A-index λ1 and Q-index
q1. If G has no vertices of degree 1, then q1 < λ2

1. If G is a cycle, then
q1 = λ2

1 = 4. If G is a starlike tree, then q1 > λ2
1.

The proof of the theorem is based on the behaviour of the A-index when all
edges are subdivided (see, [62], or [17] p. 79). Subdividing an edge which
lies in the path appended to the rest of a connected graph increases the A–
index, otherwise decreases except if the graph is a cycle. Since the A–index
of S(G) is equal to

√
q1 we are done.

Let deg(v) be the degree of the vertex v. An internal path in some graph
is a path v0, v1, . . . , vk+1 for which deg(v0),deg(vk+1) ≥ 3 and deg(v1) =
· · · = deg(vk) = 2 (here k ≥ 0, or k ≥ 2 whenever vk+1 = v0).

The following two theorems are also taken from [26].

Theorem 2.7.2. Let G′ be the graph obtained from a connected graph G by
subdividing its edge uv. Then the following holds:

(i) if uv belongs to an internal path then q1(G′) < q1(G);

(ii) if G 6= Cn for some n ≥ 3, and if uv is not on the internal path then
q1(G′) > q1(G). Otherwise, if G = Cn then q1(G′) = q1(G) = 4.

Proof. Assume first that uv is on the internal path. Let w be a vertex
inserted in uv (to obtain G′). Then S(G′) can be obtained from S(G)
by inserting two new vertices, one in the edge uw the other in the edge wv.
Note that both of these vertices are inserted into edges belonging to the same
internal path. But then λ1(S(G′)) < λ1(S(G)) (by the result of Hoffman
and Smith from A–theory). The rest of the proof of (i) immediately follows
from (8).

To prove (ii), assume that uv is not on the internal path. Then, if
G 6= Cn, G is a proper subgraph of G′ and hence, q1(G′) > q1(G). Finally,
if G = Cn, then q1(G′) = q1(G) = 4, as required.

A direct proof of the above theorem has recently appeared in [45].
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Theorem 2.7.3. Let G(k, l) (k, l ≥ 0) be the graph obtained from a non-
trivial connected graph G by attaching pendant paths of lengths k and l at
some vertex v. If k ≥ l ≥ 1 then

q1(G(k, l) > q1(G(k + 1, l − 1)).

Proof. Consider the graphs S(G(k, l)) and S(G(k + 1, l − 1)). By using

the corresponding result of [67] for the A-index, we immediately get that
λ1(S(G(k, l))) > λ1(S(G(k + 1, l − 1))). The rest of the proof immediately
follows from (8).

We continue to exploit this link between the A–theory and Q–theory.
The A–indices of all graphs topologically equivalent (or homeomorphic)

to some fixed graph, say G are examined in [62]. Since the A–index of S(G)
is greater than or equal to the infimum of the A–indices of the graphs as
considered above, by using the relevant result from [62] (which is reproduced
in [17], p. 79), we arrived in [27] at:

Theorem 2.7.4. Let di be the degree of the vertex i in a connected graph
G having at least one vertex of degree greater than 2. Let fi be the number
of vertices of degree 1 adjacent to i. Then for any vertex i of degree greater

than 2, the quantity (a
1
2 + a−

1
2 )2, where a = 1

2(di − 2 +
√
d2
i − 4fi), is a

lower bound for the Q–index of G.

For graphs with no vertices of degree 1 we have fi = 0 for any i and so
we arrive at the following corollary.

Corollary 2.7.5. Let G be a connected graph without vertices of degree 1,
with maximum degree ∆ and the Q–index q1. Then

q1 ≥ ∆ + 1 +
1

∆− 1
.

Equality holds if and only if G is a cycle.

Equality cannot hold if ∆ > 2 since Q–eigenvalues should be either
irrational numbers or integers. However, in this case q1 could be arbitrarily
close to the bound which follows from the considerations on limit points
of the A–index of graphs which are the iterated subdivisions of some fixed
graph.

The bound in the last corollary is an improvement for graphs without
vertices of degree 1 of a known lower bound (see Subsection 3.2): q1 ≥ ∆+1
with equality if and only if G is a star.

Some other results of the same type will be considered in Subsection 3.3.
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2.8 Enriched and restricted spectral theories

Let M be a graph matrix and consider the corresponding spectral M–theory
of graphs. The theory can be enriched by assuming that for any graph G,
together with eigenvalues of M , some other graph invariants are given.

An M–theory of graphs can be restricted by considering within that
theory not all graphs but a restricted class of graphs.

Finally, a theory can be both enriched and restricted by combining these
two definitions.

To be more precise, we introduce the following notation.
The M–theory, enriched by a family E of graph invariants and restricted

to the set G, will be denoted by ME(G). If E = ∅, we shall omit the subscript
and write M(G). If G is the set of all graphs, we shall write ME . The M–
theory, without any enrichment or restriction, would be the union over all
positive integers n of theories M(Gn), where Gn is the set of graphs on n
vertices. If the family E consists of a single element a, we shall write Ma(G).

For example, the A–theory can be enriched by graph angles [21].
The Q–theory is usually enriched by the number of components c, as

recommended at the end of Subsection 2.2 (see also [23]). This minor en-
richment strengthens considerably the theory. The Q–PING, consisting of
the graphs K1,3 and C3 ∪K1 on 4 vertices, is no longer a PING in the en-
riched theory Qc. In particular, bipartite graphs can be recognized in theory
Qc [14], [23]: this is important because in the case of bipartite graphs the
Q–theory is reduced to L–theory (see Subsection 2.4).

This enrichment was exploited to prove in [15] the following theorem
concerning graphs with the Q–index not exceeding 4. By Proposition 6.1
of [23] components of such graphs are paths (including isolated vertices),
cycles and stars K1,3.

Let us introduce the following notation:
v – the number of isolated vertices.
p – the number of (non-trivial) paths,
e – the number of even cycles,
t – the number of triangles,
u – the number of of odd cycles of length greater or equal to 5,
s – the number of components isomorphic to the star K1,3.
Let ni be the number of vertices of degree i and kq the multiplicity of

the Q-eigenvalue q.
The following relations connecting these parameters with the spectrum:

k0 = b, k4 = e+ t+ u+ s.
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Next, we have some relations connecting these parameters with quanti-
ties n0, n1, n2, n3:

v = n0, p =
n1 − 3n3

2
, s = n3,

Note also that b = v + p+ e+ s and c = b+ t+ u.
¿From all these relations it is easy to derive the following equation:

2n0 + n1 − 3n3 = 2c− 2k4.

Previous equations for n0, n1, n2, n3 (see Remark 2 to Corollary 2.5.3)
read now

n0 + n1 + n2 + n3 = T0 = n, n1 + 2n2 + 3n3 = T1 = 2m,

n1 + 4n2 + 9n3 = T2 − 2m, n1 + 8n2 + 27n3 = T3 − 6t− 3(T2 − 2m).

Using the above equations we can determine vertex degrees and, in par-
ticular, numbers of components of each type, provided the Q-spectrum and
the number of components c are known. In fact, the first four out of these
five equations are independent and yield unique values for n0, n1, n2, n3 and
the fifth equation yields t. Then gradually all other parameters can be
calculated.

Hence, we have proved the following theorem [15].

Theorem 2.8.1. Let the Q–spectrum and the number c of components
of a graph with the Q–index not exceeding 4 be given. Then the numbers
v, p, e, t, u, s, defined above, are uniquely determined.

However, all this is not sufficient to determine the graph up to isomor-
phism.

Example. Graphs C4 ∪ 2P3 and C6 ∪ 2K2 are Q–cospectral. This is the
smallest of the following family of Q–PINGs: C2k ∪ 2Pl and C2l ∪ 2Pk for
k, l ≥ 2, k 6= l, what can be verified since the Q–spectra of cycles and paths
are known [23].

This example shows that although the numbers of components of each
type are determined, the distribution of vertices between components (in
these cases between paths and even cycles) is not unique. The Q–PING,
consisting of the graphs K1,3 and C3 ∪ K1 shows that the conclusion of
Theorem 2.7 does not hold unless the Q–theory is enriched.
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The result that no starlike trees are Q–cospectral can be stated in the
following way: The spectral uncertainty (as defined in Section 1) of the Q–
theory restricted to starlike trees is equal to 0.
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3 Treating problems within Q–theory

Our survey in [26], [27] and [28] shows that several important developments
concerning the Q-theory have recently taken place.

Remarkable results have been obtained in finding extremal graphs for the
Q-index in various classes of graphs (graphs with given numbers of vertices
and edges, in particular, trees, unicyclic and bicyclic graphs, with various
additional conditions, such as prescribing the values of diameter, the number
of pendant edges, independence number, etc.) The basic tool is a lemma
(Lemma 3.3.3) describing the behaviour of the Q-index under edge rotation.
Another important tool is Theorem 3.3.5 saying that extremal graphs are
nested split graphs.

Spectral characterizations of graphs and classes of graphs, together with
the phenomenon of cospectrality, have been studied extensively.

The subject of Q-integral graphs has also attracted attention of re-
searchers.

The technique of reducing problems from Q-theory to A-theory using
subdivisions of graphs appears to be very fruitful as demonstrated in all
three parts [26], [27] and [28] .

The divisor technique (see Theorem 2.5.9) has been used in various oc-
casions for computing Q-eigenvalues (see, for example, [50], [74], [93]).

Some of the results obtained in the Q–theory have been already used to
derive new results.

In particular, this applies to the characterization of graphs with maxi-
mal Q–index among graphs with a fixed number of vertices and edges (see
Subsection 3.3). As shown, such graphs are nested split graphs. An upper
bound for the Q–index has been derived for a class of graphs in [1] in such
a way that a known bound for the A–index has been applied to line graphs
of nested split graphs.

The next example is even more suggestive. In [5] the problem of find-
ing necklaces with maximal A–index has been reduced to the search for a
caterpillar with maximal Q–index since necklaces are line graphs of cater-
pillars. In this way the Q–theory starts to be helpful to the A–theory: so
far the help has been going only in the other direction! See also the way of
reasoning in Theorems 3.3.10 and 3.3.11: a result from A–theory has been
transformed into Q–theory using subdivisions (Theorem 3.3.10) and then
back into A–theory (Theorem 3.3.11).

The long derivation of the lower bound for the least eigenvalue of the
signless Laplacian of a non-bipartite graph in [10] appears to be without a
parallel in the A–theory and other spectral theories. It was necessary to
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prove a lot of lemmas on eigenvectors of the least eigenvalue without any
paradigm before the proof of the main result was achieved.

One should also note the first case of a statement not involving eigen-
values which has been proved using Q–eigenvalues (Q–spectral techniques).
The following proposition has been proved in [15].

Proposition 3.1. The subdivision of a tree with m edges has a matching
of size m.

Proof. If T is a tree on n vertices formula (1) yields PS(T )(x) = x−1QT (x2).
Let η(G) be the multiplicity of the eigenvalue 0 in the spectrum of a graph
G. Since T is a bipartite graph QT (x) has a simple root 0 and we have
η(S(T )) = 1. The quantity η(T ) is an important parameter of a tree T
since it determines the size of the maximal matching. By Theorem 8.1 of
[17], the size of the maximal matching of a tree T on n vertices is equal to
1
2(n− η(T )) and we are done.

Of course, Proposition 3.1 can be proved easily without the use of eigen-
values (by induction on the number m of edges, using a pendant edge).

It would be interesting to find other problems where Q-spectral tech-
niques could help.

Although the Q–theory has a smaller spectral uncertainty than other
frequently used spectral theories (as can be expected by the computational
results from [31] – see Section 1), it seems that we do not have enough tools
at the moment to exploit this advantage. Results presented in this section
support such feelings.

The subsections of this section treat the following problems:
– graph operations,
– inequalities for eigenvalues,
– the largest eigenvalue,
– characterizations by eigenvalues,
– cospectral graphs,
– graph angles,
– integral graphs
– enumeration of spanning trees, and
– miscellaneous problems.
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3.1 Graph operations

There are very few formulas for Q–spectra of graphs obtained by some op-
erations on other graphs. This is quite different from the situation with
A–spectrum (see, for example, [17], where the whole Chapter 2 is devoted
to such formulas). Even with the L–spectrum the situation is better than
in the Q-spectrum.

First, in common with many other spectral theories, the Q-polynomial
of the union of two or more graphs is the product of Q–polynomials of the
starting graphs (i.e. the spectrum of the union is the union of spectra of
original graphs). In other words, the Q–polynomial of a graph is the product
of Q–polynomials of its components.

Formula (5) connects theQ–eigenvalues of a graph with theA–eigenvalues
of its line graph, while formula (7) does the same thing with respect to its
subdivision graph.

If G is a regular graph of degree r, then its line graph L(G) is regular of
degree 2r− 2 and we have QL(G)(x) = PL(G)(x− 2r+ 2). Formula (5) yields

QL(G)(x) = (x− 2r + 4)m−nQG(x− 2r + 4).

Thus if q1, q2, . . . , qn are the Q–eigenvalues of G, then the Q–eigenvalues of
L(G) are q1 + 2r− 4, q2 + 2r− 4, . . . , qn + 2r− 4 and 2r− 4 repeated m− n
times. We see that in line graphs of regular graphs the least Q–eigenvalue
could be very large.

We do have a useful result in the case of the sum of graphs (for the
definition and the corresponding result for the adjacency spectra see, for
example, [17], pp. 65-72).

Let G1, G2 be graphs with adjacency matrices A1, A2, degree matrices
D1, D2 and signless Laplacans Q1, Q2, respectively. We have Q1 = A1 +
D1, Q2 = A2 +D2.

It is known that A1 ⊗ I2 + I1 ⊗ A2 is the adjacency matrix of the sum
G1 + G2 of graphs G1 and G2. Here I1, I2 are identity matrices with the
same order as G1, G2 respectively. If λ(1)

i , λ
(2)
j are eigenvalues of G1, G2,

then the eigenvalues of G1 +G2 are all possible sums λ(1)
i + λ

(2)
j .

In a quite analogous manner, (A1 + D1) ⊗ I2 + I1 ⊗ (A2 + D2) = Q1 ⊗
I2 + I1⊗Q2 is the signless Laplacian of the sum G1 +G2 and if q(1)

i , q
(2)
j are

Q-eigenvalues of G1, G2, then the Q-eigenvalues of G1 +G2 are all possible
sums q(1)

i + q
(2)
j , as noted in [15].

Example. The Q-eigenvalues of a path have been determined in Subsection
2.6. The sum of paths Pm + Pn has eigenvalues 4(sin2 π

2m i + sin2 π
2nj) (i =
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0, 1, . . . ,m− 1, j = 0, 1, . . . , n− 1).

For the product we have the following interesting formula [26]

QG×K2(x) = QG(x)LG(x) = LG×K2(x). (9)

The formula is easily obtained by elementary determinantal transforma-
tions. Therefore it follows that

q1, q2, . . . , qn and µ1, µ2, . . . , µn

are the Q–eigenvalues (and as well the L–eigenvalues) of the graph G×K2.
In particular, we have that the Q–indices of G and G×K2 are equal (as is
the case for A–indices of these graphs; see [17], p. 69).

While for the L–polynomial there is a formula involving the complement
of the graph (see, for example, [17], p. 58), no similar formula for the Q–
polynomial seems possible.

Let G be a graph rooted at vertex u and let H be a graph rooted at
vertex v. GuvH denotes the graph obtained from disjoint union of graphs
G and H by adding the edge uv. Let G+ v be obtained from G by adding
a pendant edge uv and let H + u be obtained from H by adding a pendant
edge vu. Then the following formula holds [26]

QGuvH(x) =
1
x

(QG+v(x)QH(x) +QG(x)QH+v(x)− (x− 2)QG(x)QH(x))

(10)
This formula is derived by applying to the line graph L(GuvH) the well–

known formula for the A–polynomial of the coalescence of two graphs (see,
for example, [17], p. 159).

Another expression for QGuvH(x) has been found in [96].
If we put H = K1, we get a useless identity for QG+v(x), indicating

that no simple formula for QG+v(x) could exist (in contrast to the formula
PG+v(x) = xPG(x) − PG−u(x), see, for example, [17], p. 59). However, if
we take H = K2, we obtain QGuvH(x) = (x− 2)QG+v(x)−QG(x), which is
analogous to the mentioned formula in the A–theory.

We shall need the formula

P
(k)
G (x) = k!

∑
Sk

PG−Sk
(x), (11)

where the summation runs over all k-vertex subsets Sk of the vertex set of G.
For k = 1 the formula is well-known [17, p. 60] and says that the first deriva-
tive of the A–polynomial of a graph is equal to the sum of A–polynomials
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of its vertex deleted subgraphs. We can obtain (10) by induction, as noted
in [23]. If we apply (11) to the line graph L(G) of a graph G and use (5),
we immediately obtain

Q
(k)
G (x) = k!

∑
Sk

QG−Uk
(x), (12)

where the summation runs over all k-edge subsets Uk of the edge set of G.
In particular, the first derivative of the Q–polynomial of a graph is equal to
the sum of Q–polynomials of its edge deleted subgraphs. The last statement
is of interest in reconstruction problems presented in Subsection 3.9.

The next theorem (see, for example, [17], p. 62) shows that a rela-
tion between PG(x) and PL(G)(x) can be established for certain non-regular
graphs.

Theorem 3.1.1. Let G be a semi-regular bipartite graph with n1 mutually
non-adjacent vertices of degree r1 and n2 mutually non-adjacent vertices of
degree r2, where n1 > n2. Then

PL(G)(x) = (x+ 2)β
√(
−α1

α2

)n1−n2

PG(
√
α1α2)PG(−

√
α1α2),

where αi = x− ri + 2 (i = 1, 2) and β1r1 − n1 − n2.

We apply now this theorem to semi-regular bipartite graphs (see, for
example, [22], p. 15, for the source).

Theorem 3.1.2. If G is a semi-regular bipartite graph with parameters
n1, n2, r1, r2 (n1 > n2) and if λ1, λ2, . . . , λn2 are the first n2 largest eigen-
values of G, then

PL(G)(x) = (x− r1 − r2 + 2)(x− r1 + 2)n1−n2(x+ 2)n1r1−n1−n2+1

×
n2−1∏
i=2

((x− r1 + 2)(x− r2 + 2)− λ2
i ).

Proof. It is easy to see that λ1 =
√
r1r2 and that the spectrum of G contains

at least n1 − n2 eigenvalues equal to 0. Having in mind that the spectrum
of a bipartite graph is symmetric with respect to 0, we get Theorem 3.1.2
from Theorem 3.1.1 by a straightforward calculation.

In addition, we obtain a formula for the Q–polynomial of a semi-regular
bipartite graph [27].
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Theorem 3.1.3. If G is a semi-regular bipartite graph with parameters
n1, n2, r1, r2 (n1 > n2) and if λ1, λ2, . . . , λn2 are the first n2 largest eigen-
values of G, then

QG(x) = x(x− r1 − r2)(x− r1)n1−n2

n2−1∏
i=2

((x− r1)(x− r2)− λ2
i ).

Proof. Apply formula (5) to Theorem 3.1.2.

A formula for the Q–polynomial of the join of two regular graphs has
been obtained in [50].

The complete product or join of graphs G1 and G2 is the graph G15G2

obtained from G1∪G2 by joining each vertex of G1 with every vertex of G2.
Henceforth, 1j and 0j are the vectors of order j with all elements equal to

1 and 0, respectively, and 0j, k denotes the j× k all zeros matrix. Moreover,
we denote the j × j all ones matrix by Jj , and the j × k all ones matrix by
Jj, k.

Theorem 3.1.4. For i = 1, 2, let Gi be a ri-regular graph on ni vertices.
Then, the characteristic polynomial of the matrix Q(G1 5G2) is

QG15G2(x) =
QG1(x− n2)QG2(x− n1)

(x− 2r1 − n2)(x− 2r2 − n1)
f(x),

where f(x) = x2 − (2(r1 + r2) + (n1 + n2))x+ 2(2r1r2 + r1n1 + r2n2).

Proof. For i = 1, 2, let Gi be a ri-regular graph with ni vertices. Then,
the signless Laplacian matrix of G1 5G2 can be represented as follows

Q = Q(G1 5G2) =
[
Q(G1) + n2In1 Jn1,n2

Jn2,n1 Q(G2) + n1In2

]
.

Note that 1ni is a Q-eigenvector of Gi associated to 2ri, i = 1, 2. If v is

orthogonal to 1n1 and satisfies Q(G1)v = qv, then w =
[

v
0n2

]
is such that

Qw = (q+n2)w. Analogously, if u is an eigenvector of Q(G2) orthogonal to

1n2 , associated to an eigenvalue q, then z =
[

0n1

u

]
satisfies Qz = (q+n1)z.

Now, for a, b ∈ R, w =
[
a1n1

b1n2

]
is an eigenvector of Q corresponding

to an eigenvalue λ if and only if w′ =
[
a
b

]
is an eigenvector of the matrix
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M =
[

2r1 + n2 n2

n1 2r2 + n1

]
associated to λ. Since the characteristic poly-

nomial of M is f(x) = x2−(2(r1 +r2)+(n1 +n2))x+2(2r1r2 +r1n1 +r2n2),
the result is proved. �

Note that M is the adjacency matrix of a divisor of D(G1 5 G2) (cf.
Theorem 2.5.9).
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3.2 Inequalities for eigenvalues

There are several ways to establish inequalities for Q–eigenvalues. This area
of investigation is very promising as is the case of the other spectral theories.

Recall from Theorems 2.5.7 and 2.6.3 that the following statements hold.
Let G be a graph on n vertices with vertex degrees d1, d2, . . . , dn and

largest Q-eigenvalue q1. Then

2 min di ≤ q1 ≤ 2 max di.

For a connected graph G, equality holds in either of these inequalities if and
only if G is regular.

With the same notation we have

min (di + dj) ≤ q1 ≤ max (di + dj),

where (i, j) runs over all pairs of adjacent vertices of G. For a connected
graph G, equality holds in either of these inequalities if and only if G is
regular or semi-regular bipartite.

Some basic inequalities can be obtained from the following well-known
inequality for the Rayleigh quotient

qn ≤
xTQx
xTx

≤ q1

which holds for any non-zero vector x of the corresponding dimension.
Equality holds for relevant eigenvectors.

Note that if xT = (x1, x2, . . . , xn), then

xTQx =
∑

i∼j, i<j
(xi + xj)2.

We also have

q =
∑

i∼j, i<j
(xi + xj)2

if x is a normalized eigenvector belonging to eigenvalue q of Q.
Let us label vertices of a graph G on n vertices so that vertex 1 has

maximal degree ∆, and vertices 2, . . . ,∆ + 1 are the neighbours of vertex
1. Now consider the Rayleigh quotient xT ((D + A)x)/xTx, where x =
(∆, 1, . . . , 1, 1, 0, . . . , 0)T , with ∆ entries equal to 1. Since each vertex has
degree at least 1, this quotient is at least (∆(∆2+∆)+∆(∆+1))/(∆2 + ∆) =
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∆ + 1. When equality holds, vertices 2, . . . ,∆ + 1 have degree 1 and so G is
a star. Hence we have proved

q1 ≥ ∆ + 1

with equality if and only if G is the star Sn.
This inequality has been derived in [24] and confirms Conjecture 4 from

that paper. For an improvement see Corollary 2.7.5.
Let us now label vertices of the graph G so that vertex 1 has minimal

degree δ. The value of the Rayleigh quotient for the vector x = (1, 0, . . . , 0)
is equal to δ and we arrive at the following inequality, noted in [37],

qn ≤ δ.

The well known Courant-Weyl inequalities (cf. [17], pp. 51-52) are useful
in our context.

Let λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X) be the eigenvalues of a real symmetric
matrix X. If A and B are real symmetric matrices of order n and if C =
A+B, then

λi+j+1(C) ≤ λi+1(A) + λj+1(A),

λn−i−j(C) ≥ λn−i(A) + λn−j(B),

where 0 ≤ i, j, i+ j + 1 ≤ n. In particular we have

λi(A) + λn(B) ≤ λi(C) ≤ λi(A) + λ1(B),

λ1(C) ≤ λ1(A) + λ1(B).

Paper [24] is devoted to inequalities involving Q–eigenvalues. It presents
30 computer generated conjectures in the form of inequalities forQ–eigenvalues.
Conjectures that are confirmed by simple results already recorded in the
literature, explicitly or implicitly, are identified. Some of the remaining con-
jectures have been resolved by elementary observations; for some quite a
lot of work had to be invested. The conjectures left unresolved appear to
include some difficult research problems.

One of such difficult conjectures (Conjecture 24) has been confirmed in
[10] by a long sequence of lemmas. The corresponding result reads:
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Theorem 3.2.1. The minimal value of the least Q–eigenvalue among
connected non–bipartite graphs of prescribed order is attained for the odd–
unicyclic graph obtained from a triangle by appending a hanging path.

By the Interlacing Theorem (see Theorem 2.6.1) it is clear that such
an extremal graph is an odd-unicyclic graph, and so one should discuss the
least eigenvalue in odd-unicyclic graphs. The extremal graph is a lollipop
graph. Lollipop graphs are characterized by their Q-spectra (see Subsection
3.4).

Many of the inequalities contain eigenvalues of more than one graph
matrix. In particular, largest eigenvalues λ1, µ1 and q1 of matrices A,L and
Q, respectively, satisfy the following inequalities:

µ1 ≤ q1, 2λ1 ≤ q1,

with equality in the first place if and only if the graph is bipartite. The first
inequality was derived in [77], [79] while the second one stems from [12].

To derive the first inequality recall that

q1 =
∑

i∼j, i<j
(xi + xj)2

if x = (x1, x2, . . . , xn)T is a normalized eigenvector belonging to eigenvalue
q1 of Q. In a similar way we have

µ1 =
∑

i∼j, i<j
(wi − wj)2

if w = (w1, w2, . . . , wn)T is a normalized eigenvector belonging to eigenvalue
µ1 of L. The inequality follows from the obvious relation

∑
i∼j, i<j

(wi − wj)2 ≤
∑

i∼j, i<j
(|wi|+ |wj |)2 ≤

∑
i∼j, i<j

(xi + xj)2.

Moreover, equality could hold only if (wi−wj)2 = (|wi|+ |wj |)2 for each
edge ij. Equivalently, we have wiwj < 0 for each edge ij and the graph is
bipartite. In other direction, we have by Proposition 2.2.5 that in bipartite
graphs µ1 = q1.

The inequality 2λ1 ≤ q1, is obtained by applying the Courant-Weyl
inequalities to the matrix Q represented as the sum Q = 2A + (D − A) =
2A+ L.
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The above inequalities imply that any lower bound on µ1 is also a lower
bound on q1 and that doubling any lower bound on λ1 also yields a valid
lower bound on q1. Similarly, upper bounds on q1 yield upper bounds on µ1

and λ1. Paper [73] checks whether known upper bound on µ1 hold also for
q1 and establishes that many of them do hold.

For example, we have the following result from [71] concerning the largest
eigenvalue µ1 of the Laplacian matrix: µ1 ≥ ∆+1, with equality if and only
if ∆ = n− 1. As we have seen, the same upper bound holds for q1 but note
that the case of equality for the signless Laplacian is more restrictive than
that for the Laplacian.

In the next theorem we use Theorem 3.3.5’ to provide an analogue of
Hong’s inequality from A–theory (see [63]) in Q–theory. This theorem ap-
peared in [26].

Theorem 3.2.2. Let G be a connected graph on n vertices and m edges.
Then

q1(G) ≤
√

4m+ 2(n− 1)(n− 2).

The equality holds if and only if G is a complete graph.

Proof. Recall first that

λ1(M) ≤ max
1≤i≤n

{
n∑
j=1

mij},

holds for any non–negative and symmetric n × n matrix M = (mij). In
addition, the equality holds if and only if all–one vector is an eigenvector
for the M–index of M .

By Theorem 3.3.5’ we may assume that G is a nested split graph. Con-
sider the matrix Q2(= (D+A)2 = D2 +DA+AD+A2). Let di the degree
of a vertex i of G. Consider next a multigraph G2 corresponding to matrix
Q2. Then, for the vertex i in the G2 we have

n∑
j=1

(Q2)ij = (d2
i ) + (

∑
j∼i

dj) + (d2
i ) + (

∑
j∼i

(dj − 1) + di),

or
n∑
j=1

(Q2)ij = 2[d2
i +

∑
j∼i

dj ].
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Assume now that di < dk. By the definition of nested split graphs we now
have:

d2
i +

∑
j∼i

dj < d2
k +

∑
l∼k

dl,

since this is equivalent to

d2
i − di +

∑
j∈Γ̄(i)

dj < d2
k − dk +

∑
l∈Γ̄(k)

dl,

where Γ̄(v) stands for the closed neighbourhood of v (observe also that
Γ̄(i) ⊂ Γ̄(k) in our situation.

Let s be a vertex of G of maximum degree (= n − 1). such a vertex
exists since G is a nested split graph. Then we have (for any vertex i)

n∑
j=1

(Q2)ij ≤ 2[d2
s +

∑
t∼s

dt] = 4m+ 2(n− 1)(n− 2),

and thus
q1(G)2 ≤ 4m+ 2(n− 1)(n− 2),

as required.
The equality can hold only if G is a nested split graph (indeed, any

other graph has the Q–index strictly less than some nested split graph). In
addition, this nested split graph should be regular (otherwise, all–one vector
is not its eigenvector of Q2 for q2

1; note q2
1 = 2(d2

i +
∑

j∼i dj) should hold for
each i). The only graph G with these properties is a complete graph.

This completes the proof.

Next we prove an inequality relating the algebraic connectivity (the sec-
ond smallest L–eigenvalue) and the second largest Q-eigenvalue of a graph.

Theorem 3.2.3. Let a be the second smallest L–eigenvalue and q2 the
second largest Q–eigenvalue of a graph G with n (n ≥ 2) vertices. We have
a ≤ q2 + 2 with equality if and only if G is a complete graph.

Proof. Since 2A = Q − L, the Courant–Weyl inequality for the third
eigenvalue of 2A yields 2λ3 ≤ q2 − a, i.e. a ≤ q2 − 2λ3. It was proved in
[9] that for graphs with at least four vertices the inequality λ3 ≥ −1 holds
with equality if and only if G = Kp,q ∪ rK1. Now we obtain a ≤ q2 + 2 but
equality holds only for Kn. Namely, if p, q ≥ 1 we have by direct calculation
that a ≤ n − 2 and q2 = n − 2. (In this case Q–eigenvalue 0 of G has the
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multiplicity at least 2 with an eigenvector x orthogonal to all–one vector.
The vector x is an eigenvector of q2 = n−2 in G). For n = 2, 3 the theorem
trivially holds.

Theorem 3.2.3 appears in [26] and confirms Conjecture 19 of [24].
Also Conjecture 20 of [24] was treated in a similar way in [26].

Theorem 3.2.4. Let a be the second smallest L–eigenvalue and q2 the
second largest Q–eigenvalue of a non–complete graph G with n (n ≥ 2)
vertices. We have a ≤ q2.

Proof. The inequality a ≤ q2 − 2λ3 immediately confirms the statement of
the theorem for graphs with λ3 ≥ 0. It was proved in [9] that for graphs
with at least four vertices the inequality λ3 < 0 holds if and only if the
complement of G has exactly one non-trivial component which is bipartite.
The case G = Kp,q ∪ rK1 from the previous theorem is excluded here. Hence
G contains a subgraph isomorphic to P3 whose Q–eigenvalues are 3, 1, 0.
By the interlacing theorem the Q–index of G is at least 3. As in the proof
of previous theorem we have q2 = n− 2 while a ≤ n− 3.

The question of equality (a = q2) in Theorem 3.2.4 remains unsolved.
Graphs for which equality holds are among the graphs with λ3 = 0. To
this group belong the graphs mentioned with Conjecture 20 in [24] (stars ,
cocktail–party graphs, complete bipartite graphs with equal parts). We can
add here regular complete multipartite graphs in general (cocktail–party
graphs and complete bipartite graphs with equal parts are special cases).

Paper [37] settled completely the question of equality in Theorem 3.2.4.
The same paper confirmed the lower bound of Conjecture 14 together

with Conjectures 15, 22 and 23. This was achieved using the following lower
bound for the second largest Q-eigenvalue in terms of vertex degrees:

q2 ≥
∆1 + ∆2 −

√
(∆1 −∆2)2 + 4
2

,

where ∆1 is the largest vertex degree and ∆2 is the second largest vertex
degree. This inequality was proved by applying the interlacing theorem to
matrix Q and its 2 × 2 principal submatrix corresponding to vertices of
degrees ∆1 and ∆2.

A consequence of the last inequality is the inequality q2 ≥ ∆2−1, which
is weaker but useful.

Conjectures 6,7 and 10 from [24] have been confirmed in [49].
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Crucial to the resolution of these conjectures was the following result
related to the largest Q-eigenvalue q1 of a graph G.

Theorem 3.2.5. Let G be a connected graph with n vertices and m edges.
Then

q1(G) ≤ 2m
n− 1

+ n− 2

with equality if and only if G is K1,n−1 or Kn.

The inequality of Theorem 3.2.5 is better than the bound in Theorem
3.2.2. The two bounds are equal only for complete graphs. The best upper
bound for q1 in terms of n and m is implicitly given by Theorems 3.3.5 and
3.3.5’.

In order to prove Theorem 3.2.5, the authors of [49] derive first the bound

q1(G) ≤ max{dv +mv|v ∈ V (G)} (13)

where dv is the degree of the vertex v and mv the average degree of neighbors
of v.

The key observation in proving inequality (13) is that in the matrix
D−1QD the row sums are equal to di + mi for i = 1, 2, . . . , n. By the
Perron-Frobenius theory of non-negative matrices the largest eigenvalue is
bounded above by the maximal row sum and we obtain (13) since the largest
eigenvalue of D−1QD is equal to q1(G).

As noted, paper [73] checks whether known upper bounds on largest
Laplacian eigenvalue µ1 hold also for q1 and establishes that many of them
do hold, in particular inequality (13). However, the authors of [73] claim
that (13) was implicitly proved in [34]. Actually, the bound (13) was derived
explicitly in [37].

To complete the proof of Theorem 3.2.5 the authors of [49] use another
inequality by K.Ch. Das [35]:

max{dv +mv|v ∈ V (G)} ≤ 2m
n− 1

+ n− 2.

Some results related to Conjecture 7 can be found in [1].

At the moment the following conjectures of [24] remain unconfirmed:
parts related to upper bounds in Conjectures 8, 9, 11, 14 together with
Conjectures 17, 18, 21, 25, 26. See Appendix 2 for a detailed survey on the
current status of the conjectures.

The paper [3] discusses the same set of conjectures and presents some
new ones.
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A new set of conjectures involving the largest Q–eigenvalue appears in
[59]. The Q-index is considered in connection with various structural invari-
ants, such as diameter, radius, girth, independence and chromatic number,
etc. Out of 152 conjectures, generated by computer (i.e. the system AGX),
many of them are simple or proved in [59], so that only 18 remained un-
solved. An additional conjecture of this type has been resolved in [60]; it is
proved that q1(G) ≤ 2n(1 − 1/k), where k is the chromatic number, thus
improving an analogous inequality for the A-index (cf. [17], p. 92).

Recall that the total graph of G, denoted by T (G), is the graph with
vertex set corresponding to union of vertex and edge sets of G, with two
vertices of T (G) adjacent if the corresponding elements in G are adjacent
or incident. It is also well known that T (G) = S(G)2 (see [61]), where S(G)
is a subdivision of G, while square stands for the 2-power graph (so H2 has
the same vertex set as H, with two vertices being adjacent if their distance
in H is ≤ 2). The above relation implies that

Q(T (G)) = A2(S(G)) +Q(S(G))

where A(H) and Q(H) denote the adjacency matrix and the signless Lapla-
cian of the graph H respectively. Therefore by using the Courant-Weyl
inequalities we get that

q1(T (G)) ≤ λ1(A2(S(G))) + q1(S(G)) = λ2
1(S(G)) + q1(S(G)).

Since λ1(S(G)) =
√
q1(G) (see (8)), we arrive at the following result [28].

Theorem 3.2.6. Let S(G) and T (G) be the subdivision and total graph of
G. Then

q1(T (G)) ≤ q1(G) + q1(S(G)).

This inequality is best possible since equality holds for cycles Cn (n ≥ 3).

Some further inequalities for other eigenvalues can be obtained in the
same way.

Inequalities involving the clique number, independence number and the
signless Laplacian eigenvalues are obtained in [68].
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3.3 The largest eigenvalue

When applying the Perron-Frobenius theory of non-negative matrices (see,
for example, Section 0.3 of [17]) to the signless Laplacian Q, we obtain
the same or similar conclusions as in the case of the adjacency matrix. In
particular, in a connected graph the largest eigenvalue is simple with a
positive eigenvector. The largest eigenvalue of any proper subgraph of a
connected graph is smaller than the largest eigenvalue of the original graph,
an observation which follows from Theorems 0.6 and 0.7 of [17].

The following proposition was proved in [23].

Proposition 3.3.1 Let q1 be the largest Q-eigenvalue of a graph G. The
following statements hold:

(i) q1 = 0 if and only if G has no edges,
(ii) 0 < q1 < 4 if and only if all components of G are paths,
(iii) for a connected graph G we have q1 = 4 if and only if G is a cycle

or K1,3.

Proof. (i) is trivial. In this case, of course, all Q-eigenvalues of G are equal
to 0.

The eigenvalues of L(Pn) = Pn−1 are 2 cos πnj (j = 1, 2, . . . , n−1) and by
(2) the Q-eigenvalues of Pn are 2+2 cos πnj (j = 1, 2, . . . , n). Hence for paths
we have q1 < 4. For cycles and for K1,3 we have q1 = 4. By the interlacing
theorem these graphs are forbidden subgraphs in graphs for which q1 < 4,
and this completes the proof of (ii).

To prove the sufficiency in (iii) we use the strict monotonicity of the
largest Q-eigenvalue when adding edges to a connected graph. First, G
cannot contain a cycle without being itself a cycle. If G does not contain a
cycle, it must contain K1,3 since otherwise G would be a path and we would
have q1 < 4. Finally G must be K1,3 since otherwise we would have q1 > 4.

This completes the proof.

Several elementary inequalities forQ-eigenvalues are given in [12]. Among
other things, it is proved that the Q-index q1 of a connected graph on n ver-
tices satisfies the inequalities

2 + 2 cos πn ≤ q1 ≤ 2n− 2.

The lower bound is attained for Pn, and the upper for Kn. The first fact is a
consequence of Proposition 3.3.1 while the other follows from the mentioned
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behaveour of the largest eigenvalue. Q-spectra of Pn and Kn have been
determined in Subsections 2.3 and 2.6.

By Proposition 3.3.1, the graphs with Q–index not exceeding 4 have, as
components, paths (including isolated vertices), cycles and stars K1,3. The
authors of the paper [96] managed to obtain results in the range up to 4.5.
We first give some definitions.

Following [99], an open quipu is a tree with maximal vertex degree 3
such that all vertices of degree 3 lie on a path. A closed quipu is a connected
graph with maximal vertex degree 3 such that all vertices of degree 3 lie on
a cycle, and no other cycle exists. A dagger is obtained from the star K1,3

by attaching a hanging path at its central vertex.
The following theorem stems from [96].

Theorem 3.3.2. Let G be a connected graph whose Q–index lies in the
interval (4, 4.5). Then G is an open or a closed quipu.

This theorem follows from the corresponding result in A–theory from
[96] which says that a connected graph whose A–index lies in the interval
(2,3

2

√
2) is an open or a closed quipu, or a dagger. Daggers are eliminated

by the Corollary to Theorem 2.7.5 and the rest immediately follows by the
use of formula (8). Note that (3

2

√
2)2 = 4.5.

The paper [96] contains several refinements of Theorem 3.3.2. The
interval (4, 4.5) is subdivided by points τ = 2 +

√
5 ≈ 4.24 and ε =

2 + 1
3((54 − 6

√
33)

1
3 + (54 + 6

√
33)

1
3 ) ≈ 4.38 into intervals (4, τ ], (τ, ε] and

(ε, 4.5). In the interval (4, τ ] we have only open quipus with exactly one
vertex od degree 3 and this vertex has two neighbours of degree 1. In the
interval (τ, ε] appear only some of the open quipus with at most 3 vertices
od degree 3 while in the interval (ε, 4.5) we encounter only open or closed
quipus. The results are obtained by considering limit points of the Q-index
of graphs in question.

We shall consider now the behavior of the largest eigenvalue q1 of Q
under some graph perturbations. We have

q1 = sup
x∈IRn\{0}

xTQx
xTx

= max
||x||=1

xTQx. (14)

(see, for example, [21]). The equality holds here if and only if x is an
eigenvector of G for q1. Generally, it is natural to expect that q1 changes
when G is perturbed, and we can ask whether q1 increases or decreases if
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G is modified. Here we consider how q1 changes when some edges of G are
relocated.

Let G′ be a modification of G, and let Q′ be the corresponding signless
Laplacian A′ + D′, with largest eigenvalue q′1. In what follows, we assume
(without loss of generality) that G is connected, and we take x to be the
principal eigenvector of G (that is, the unit positive eigenvector correspond-
ing to q1). From (14) we obtain:

q′1 − q1 = max
||y||=1

yTQ′y − xTQx ≥ xT (A′ −A)x + xT (D′ −D)x, (15)

with equality if and only if x is also the principal eigenvector for Q′.
On basis of this observation, we obtain [23]:

Lemma 3.3.3. Let G′ be a graph obtained from a connected graph G (on n
vertices) by rotating the edge rs (around r) to the position of a non-edge rt.
Let x = (x1, x2, . . . , xn)T be the principal eigenvector of G. If xt ≥ xs then
q′1 > q1.

Proof: From (15) we immediately obtain

q′1 − q1 ≥ 2(2xr + xs + xt)(xt − xs).

Since xr, xs and xt are positive and xt ≥ xs we obtain q′1 ≥ q1. Equality
holds only if x is an eigenvector of G′ for q′1 = q1. But then, from the
eigenvalue equations applied to the vertex t (or s) in G′ and G we find
(q′1− q1)xt = xr +xt (or (q′1− q1)xs = −xr−xs), and this is a contradiction.
This completes the proof.

Lemma 3.3.3 appeared in a bit different form also in [64].

In addition, we can prove [23]:

Proposition 3.3.4. Let G′ be a graph obtained from a graph G by a local
switching of edges ab and cd to the positions of non-edges ad and bc. Let
x = (x1, x2, . . . , xn)T be a principal eigenvector of G. If (xa−xc)(xb−xd) ≥ 0
then q′1 ≥ q1, with equality if and only if xa = xc and xb = xd.

Proof: From (15) we have

q′1 − q1 ≥ 2(xa − xc)(xb − xd),

and the first assertion follows. The second assertion follows from the eigen-
value equations for G and G′.
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The following two theorems have been proved in [23], [24] in the same
way as the corresponding results in A-theory (Theorems 2.4 and 2.4’ from
[82]).

Theorem 3.3.5. Let G be a graph with fixed numbers of vertices and edges,
with maximal largest Q-eigenvalue. Then G does not contain, as an induced
subgraph, any of the graphs: 2K2, P4 and C4.

Moreover, we also have

Theorem 3.3.5′. Let G be a connected graph with fixed numbers of vertices
and edges, with maximal largest Q-eigenvalue. Then G does not contain, as
an induced subgraph, any of the graphs: 2K2, P4 and C4.

The proof of these theorems is given in the following two lemmas.
Assume now that G is a graph whose Q–index is maximal among all

graphs with n vertices and m edges (m > 0).

Lemma 3.3.6. Under the above assumptions, either G is a connected graph
or G has exactly one non-trivial component.

Proof: Let C be a component of G with index µ1 = µ1(G). Suppose,
by the way of contradiction, that G has another non-trivial component C ′.
Then G has an eigenvector x = (x1, x2, . . . , xn)T corresponding to µ1 such
that xi > 0 for all i ∈ V (C) and xi = 0 for all i 6∈ V (C).

Now let t be a vertex of C and let rs be an edge in C ′. Consider the
graph G′ obtained from G by replacing rs with the edge rt. Since xt > 0
and xr = xs = 0, Equation (14) shows that q1(G′) > q1, what represents a
contradiction.

In view of this lemma, it suffices to consider the unique non-trivial com-
ponent of G, and so we now assume further that G is connected.

Lemma 3.3.7. The graph G does not contain P4, 2K2 or C4 as an induced
subgraph.

Proof. Let u be a vertex of G corresponding to a maximal coordinate of
the principal eigenvector. The vertex u has degree n− 1 for if there were a
vertex v, non-adjacent to u, by rotating an edge vw to the position vu and
applying Lemma 3.3.3 we would force a contradiction.7

7This observation, communicated to us by B.-S.Tam, has shortened the original proof
of this lemma from [24].
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Now suppose, by the way of contradiction, that G contains a graph F ∈
{P4, 2K2, C4} as an induced subgraph. Let x be the principal eigenvector
of G, and let r, s, t, w be the vertices of F . Without loss of generality,
xs = minv∈V (F ) xv. Additionally, the structure of F allows us to assume
that r is a neighbour of s but not of t. Now let G′ be the graph obtained
from G by rotating the edge rs (around r) to the non–edge position rt.
By Lemma 3.3.3, we have q1(G′) > q1(G). Since G′ is connected, this is a
contradiction and we are done.

In order to explain these results we need the following definition.

Definition. A nested split graph with parameters n, q, k; p1, p2, . . . , pk;
q1, q2, . . . , qk, denoted by NS(n, q, k; p1, p2, . . . , pk; q1, q2, . . . , qk), is a graph
on n vertices consisting of a clique on q vertices and k cocliques S1, S2, . . . , Sk
of cardinalities p1, p2, . . . , pk respectively; vertices in these cocliques have
q1, q2, . . . , qk neighbors in the clique respectively, the set of neighbors of Si+1

being a proper subset of the set of neighbors of Si for i = 1, 2, . . . , k − 1.
We have also an equivalent definition.

Definition. A graph G with the edge set EG is called a nested split graphif
its vertices can be ordered so that jq ∈ EG implies ip ∈ EG whenever i ≤ j
and p ≤ q.

This definition is used in [21], where the graphs in question were called
graphs with a stepwise adjacency matrix. Some other definitions and terms
are used in the literature, e.g. degree maximal graphs, threshold graphs.
Note that graphs with a stepwise adjacency matrix are exactly the nested
split graphs. Moreover, S.Simić et al. [82] have recently proved the following
proposition. Alternatively, it follows immediately from the stepwise nature
of an adjacency matrix.

Proposition A. A graph is a nested split graph if and only if it does not
contain as an induced subgraph any of the graphs P4, 2K2, C4.

Since the set of forbidden subgraphs in this proposition, namely {P4, 2K2, C4},
is closed under the operation of complementation the following proposition
is straightforward.

Proposition B. The complement of a nested split graph is also a nested
split graph.

From Theorems 3.3.5 and 3.3.5′ we see that a graph G with maximal
largest Q-eigenvalue is a nested split graph in the first case and a nested
split graph with possibly some isolated vertices added, in the second.
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Theorems 3.3.5 and 3.3.5′ have been announced in [23] and complete
proofs appear in [24]. The result has been repeated independently in [92]. In
particular, by Theorem 3.3.5′ we easily identify the graphs with maximal Q–
index within trees, unicyclic graphs and bicyclic graphs (on a fixed number
of vertices). Namely, each of these sets of graphs has a unique nested split
graph (see [24]).

Theorem 3.3.8. Let G be a graph with maximal Q–index among connected
graphs with n vertices and m edges.

(i) If m = n− 1 then G is the star Sn = K1,n−1.

(ii) if m = n then G is the graph S+
n obtained from Sn by adding an edge;

(iii) if m = n + 1 then G is the graph obtained from Sn by adding two
adjacent edges.

The result for bicyclic graphs has again been independently rediscovered
in [41].

Thus Theorem 3.3.8 identifies the trees, the unicyclic graphs and the
bicyclic graphs of order n with maximal Q-index. In particular, we can
confirm the upper bounds in Conjectures 2 and 3 from [24]: the only tree
which is a nested split graph is a star and the only unicyclic graph which
is a nested split graph is a star together with an additional edge. The
lower bounds in Conjectures 1 and 2 are confirmed by Proposition 3.3.1:
the graphs with minimal Q-index among trees and among unicyclic graphs
are the path and the cycle respectively.

Next we shall compare the considered problem with the corresponding
one in A-theory. For that purpose we define some special nested split graphs.

A pineapple with parameters n, q (q ≤ n), denoted by PA(n, q), is a
graph on n vertices consisting of a clique on q vertices and a stable set on
the remaining n−q vertices in which each vertex of the stable set is adjacent
to a unique vertex of the clique.

A fanned pineapple of type i (i = 1, 2) with parameters n, q, t (n ≥ q ≥
t) , denoted by FPAi(n, q, t), is a graph (on n vertices) obtained from a
pineapple PA(n, q) by connecting a vertex from the stable set by edges to t
vertices of the

1) clique, with 0 ≤ t ≤ q − 2, for i = 1,
2) stable set, with 0 ≤ t < n− q, for i = 2.
We have FPAi(n, q, 0) = PA(n, q) for i = 1, 2.
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LetH(n, n+k) be the set of all connected graphs with n vertices and n+k
edges, and let Gn,k and Hn,k be the graphs defined in [20]. These graphs are
fanned pineapple graphs of types 1 and 2 respectively: using above notation
we have Gn,k = FPA1(n, d, t) and Hn,k = FPA2(n, 1, k + 1).

It was proved in [20] that for given k and sufficiently large n the graph
Hn,k has maximal A-index among graphs in H(n, n + k). Otherwise, the
graph Gn,k can play this role. It was conjectured in [2] that for all n, k the
extremal graph is either Gn,k or Hn,k or both.

Generally, we know that extremal graphs for the problem of maximizing
the A-index among graphs with fixed numbers of vertices and edges have a
stepwise adjacency matrix (cf. [21], pp. 60–74).

We see that both the A–index and Q–index attain their maximal values
for nested split graphs. The question arises whether these extremal nested
split graphs are the same in both cases. For small number of vertices this
is true as existing graph data show. However, among graphs with n = 5
vertices and m = 7 edges there are two graphs (No. 14 and No. 15 in Table
1 in Appendix) with maximal Q–index while only one of them (No. 14)
yields maximal A–index. In fact, for any n ≥ 5 and m = n + 2 there are
two graphs with a maximal Q–index [92].

Papers [11] and [93] further elaborate these problems.
Explicit expression for the characteristic polynomial of the signless Lapla-

cian of a nested split graph (or threshold graphs) in terms of vertex degrees
is derived in [93]. In addition, it was proved that q1(Gn,k) < q1(Hn,k) for
3 ≤ k ≤ n − 3 what is quite different from the situation in A-theory. It is
announced in [11] that with the same limitation the graph Hn,k has maximal
Q-index among graphs in H(n, n+ k). Graphs which maximize the Q-index
among graphs in H(n, n+ k) are completely determined for k = 0, 1, 2, 3.

The announced result indicates that the problem of maximizing the index
in H(n, n + k), although very difficult in both cases, is easier in Q-theory
than in A-theory.

Next we present a result in Q-theory which is analogous to a result in
A-theory from [67]. According to [27] we have

Theorem 3.3.9. Let u, v be the adjacent vertices of a connected graph G,
both of degree at least two. Let G(k, l) (k, l ≥ 0) be the graph obtained from
G by attaching pendant paths of lengths k and l at u and v, respectively. If
k ≥ l ≥ 1 then

q1(G(k, l)) > q1(G(k + 1, l − 1)).
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Proof. Let S1 = S(G(k, l)) and S2 = S(G(k + 1, l − 1)). Then u and v are
in the latter two graphs the vertices of degree at least three and at distance
2, having pendant paths at u and v of lengths 2k and 2l, respectively (in
S1), and of lengths 2k+ 2 and 2l−2, respectively (in S2). Observe also that
S2 can be obtained from S1 by relocating the last two edges from the path
of length 2l to the path of length 2k. But then, see Theorem 7 [67], we have
that

λ1(S1) > λ1(S2)

and consequently

q1(G(k, l)) > q1(G(k + 1, l − 1)),

as required.

Similarly, we can use a result for θ–graphs from [81] to get an analogous
result for the Q–index. Let Θ(m1,m2, . . . ,mk) be graph obtained from k
paths of lengths m1,m2, . . . ,mk, by identifying the end vertices of each path
with two fixed vertices. (Note, without loss of generality we can assume that
m1 ≥ m2 ≥ · · · ≥ mk−1 ≥ 2; in contrast mk ≥ 1). Now we have [27]:

Theorem 3.3.10. Let Θ(m1,m2, . . . ,mk) be a θ–graph defined as above,
and let Θ(m′1,m

′
2, . . . ,m

′
k) be a θ–graph obtained from the former one by

taking m′i = mi + 1, m′j = mj − 1 and m′p = mp for p 6= i, j. Then,
whenever mj −mi > 1, we have

q1(Θ(m′1,m
′
2, . . . ,m

′
k)) > q1(Θ(m1,m2, . . . ,mk)).

Proof. Let G = Θ(m1,m2, . . . ,mk) and G′ = Θ(m′1,m
′
2, . . . ,m

′
k). Consider

the graphs S(G) and S(G′). Using Theorem 1 from [81] (see also [21] p.
64) we get that λ1(S(G′)) > λ1(S(G)). Note, we have now to move in
two steps one vertex from the longer path to the shorter one, in order to
apply the corresponding result for the A–index. The rest of the proof follows
immediately.

Remark. Similar reasoning can be used for some other classes of homeo-
morphic graphs. For example, we can consider graphs homeomorphic to the
graph consisting of several loops at a single vertex (see [81] for the corre-
sponding result for the A–index).

There is also a possibility of exploiting further the above ideas, now
going back to the A–theory via line graphs. Let L(m1,m2, . . . ,mk) be the
line graph of the θ–graph Θ(m1 + 1,m2 + 1, . . . ,mk + 1).
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Then, since λ1(L(G)) = q1(G)− 2, we immediately get [27]:

Theorem 3.3.11. Let L(m1,m2, . . . ,mk) be a graph defined as above, and
let L(m′1,m

′
2, . . . ,m

′
k) be a graph obtained from the former one by taking

m′i = mi + 1, m′j = mj − 1 and m′p = mp for p 6= i, j. Then, whenever
mj −mi > 1, we have

q1(L(m′1,m
′
2, . . . ,m

′
k)) > q1(L(m1,m2, . . . ,mk)).

A bicyclic graph is a connected graph on n vertices and n+ 1 edges. Let
Bn be the set of all bicyclic graphs on n vertices.

Our next aim is to identify in Bn the graph(s) whose Q–index is minimal
(further on denoted by B̂).

First we have that the minimum vertex degree of B̂ is greater than
1, for otherwise we can delete any such vertex from B̂ (this reduces the Q–
index), and then insert that vertex into the reduced subgraph by subdividing
some edge belonging to a cycle (this again reduces the Q–index by Theorem
2.7.2). Thus we get a graph from Bn with a smaller Q–index, a contradiction.
Therefore, B̂ has one of the following forms:

(i) Θ(a, b, c), where a+ b+ c = n+ 1 (θ–graph);

(ii) Cd · Ce, where d+ e = n+ 1 (coalescence of two cycles);

(iii) D(f, g, h), where f +g+h = n+ 1 (cycles Cf and Ch joined by a path
of length g).

Since q1(G) = λ2
1(S(G)) (for any G) we can, in order to identify B̂,

consider the A–spectrum of the subdivisions of the graphs from (i)–(iii), i.e.
the graphs Θ(2a, 2b, 2c), C2d · C2e and D(2f, 2g, 2h).

As observed in [81] the minimal A–index of graphs of type (i) is less
than the minimal A–index of graphs of type (ii). So B̂ cannot be of type
(ii). From [80] (see Corollary 1) we have that λ1(D(a + b, a + b, 2c)) <
λ1(D(2a, 2b, 2c)) whenever a 6= b. In addition we have that λ1(Θ(a+ b, a+
b, 2c) = λ1(D(a+ b, a+ b, 2c)), as can be seen by comparing the eigenvalue
equations (for indices) of the latter two graphs. Using Theorem 1 from [81],
we easily get that λ1(Θ(2a, 2b, 2c) is minimal if either 2a = 2b = 2c(= 2k)
or 2a = 2b(= 2k), 2c = 2k ± 2. Hence B̂ is one of the graphs Θ(k, k, k) and
D(k, k, k), or Θ(k, k, k ± 1) and D(k, k, k ± 1), depending on n. So we have
arrived at the following result [27]:
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Theorem 3.3.12. Let Bn be the set of bicyclic graphs on n vertices. If
B̂ ∈ Bn is a graph with minimal Q–index, then B̂ is either of the graphs

Θ(p, p, n+ 1− 2p), D(p, p, n+ 1− 2p),

where p is an integer chosen so that n
3 ≤ p ≤

n+2
3 .

The study of the largest Q-eigenvalue remains an attractive topic for re-
searchers. In particular, the extremal values of the Q-index in various classes
of graphs, and corresponding extremal graphs, have been investigated.

The maximal signless Laplacian spectral radius of graphs with given
diameter has been determined in [48].

The maximal signless Laplacian spectral radius of graphs with given
matching number has been determined in [101].

In [47] the class of unicyclic graphs with a given number of pendant ver-
tices or given independence number was considered. Graphs with maximal
Q-index are determined.

Independently, the same results have been obtained in [102], in a more
general setting. Graphs with maximal Q-index in the class of graphs with
given vertex degrees are determined and these results are applied to unicyclic
graphs.

In [44] the class of bicyclic graphs with a given number of pendant ver-
tices was considered. Graphs with maximal Q-index are determined.

A graph G is a quasi-k-cyclic graph if it contains a vertex (say r, the
root of G) such that G− r is a k-cyclic graph, i.e. a connected graph with
cyclomatic number k (= m − n + 1, where n is the number of vertices and
m the number of its edges). For example, if k = 0, the corresponding graph
is a quasi-tree. In [52] quasi-k-cyclic graphs having the largest Q-index are
identified for k ≤ 2.

The task of finding maximal Q-index in various classes of graphs has
been considered also in the references [8], [42], [100] (see the titles of these
papers to identify the classes considered).
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3.4 Characterizations by eigenvalues

A graph G is said to be characterized by its spectrum in M–theory (or with
respect to the matrix M) if any graph H, which is M–cospectral to G,
is also isomorphic to G. This definition is extended in an obvious way to
enriched and restricted spectral theories. Instead of the traditional phrase
“characterized by the spectrum”, the authors of [31] launched recently the
term “determined by the spectrum” (abbreviated DS). We shall extend it
to an M–DS notation.

There are many spectral characterization results in A–theory and slightly
fewer in L–theory. Since Q–theory has a low spectral uncertainty, one can
expect many such results in this theory. We shall survey results which can
be formulated using connections with A–theory and L–theory. There are
also some new results specific to Q–theory.

Given the Q–spectrum of a graph G, one can immediately determine the
number n of vertices and the number m of edges. Then we immediately get
that graphs determined by n and m are also characterized by Q–spectrum.
In particular, graphs without edges (m = 0) and complete graphs (m =

(
n
2

)
)

are Q–DS. In addition, the same holds for m = 1 and for m =
(
n
2

)
− 1.

Let e(G) be the number of distinct Q-eigenvalues of a graph G.
If e(Q) = 1 then obviously G is a graph without edges.
If e(Q) = 2 then the minimal polynomial of Q has the form x2 + ax+ b,

and so A2 +AD+DA+D2 + aA+ aD+ bI = O. For distinct i, j this gives
a

(2)
ij + (dj + di + a)aij = 0, and so there are no vertices i, j at distance 2.

Hence G = Kn .
Alternatively, by Theorem 2.5.4 , the diameter D of G is bounded above

by e(Q)− 1, and if e(Q) = 2 it follows that D = 1 what means that G is a
complete graph.

This statement has been obtained in [24] (cf. Conjecture 27) and also
earlier in [30].

The path Pn, and, more generally, the union of paths is Q–DS. The proof,
given in [31], is longer than necessary. It is sufficient to refer to Proposition
3.3.1 which says that in graphs with Q–index smaller than 4 all components
are paths.

Note that in A–theory the interval of reals containing all eigenvalues of
paths (i.e. the interval (−2, 2)) contains the spectra of some other graphs
[18]. Due to this fact, it is not true8 that the union of paths is A–DS, as

8Nevertheless, the assertion becomes true if one excludes trivial paths P1 from consid-
eration.
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wrongly stated in [31]. For example, P5∪P1 and K1,3∪K2 form an A–PING.
Hence, the Q–theory is more efficient if we restrict ourselves to the union of
paths .

Characterizations of regular graphs in A–theory are transferred imme-
diately to Q–theory. This is because regular graphs can be recognized in
Q–theory and we may use the isomorphism with A–theory.

In particular, this applies to regular graphs of degree r = 0, 1, 2 and
n − 1, n − 2, n − 3 (n is the number of vertices). All graphs mentioned are
DS in all three theories considered.

There is a theorem that summarizes many of the results in the theory
of graphs with least A–eigenvalue −2 (see [16]). It remains literally in the
same form when translated from A–theory to Q–theory: only the word “A–
spectrum” is replaced by the word “Q–spectrum” [27].

Theorem 3.4.1. The Q–spectrum of a graph G determines whether or not
it is a regular, connected line graph except for 17 cases. In these cases G has
the spectrum of L(H) where H is one of the 3–connected regular graphs on 8
vertices or H is a connected, semi-regular bipartite graph on 6 + 3 vertices.

The situation becomes more complicated if we consider non-regular graphs.
Starlike trees are DS in the L–theory [75], while this is not proved for

the A–theory [98]. Recently the paper [76] has appeared where it is proved
that T–shape trees (starlike trees with maximal degree equal to 3) are Q-
DS except for K1,3 and an infinite series of T -shape trees. One can verify
this assertion by reducing the problem via subdivision graphs to A–theory
and then using results of [98]. Indeed, the subdivision graph of a T–shape
tree is again a T–shape tree and A–cospectral mates, described in [98],
yield the corresponding Q–cospectral mates from [76]. Hence, our method
of using subdivision graphs and results from [98] proves these results in a
much simpler way. 9

9As a curiosity we quote related paragraphs from [27] and [28].
Part II: Concerning the Q–theory, a private communication of G.R. Omidi is cited in

[32] by which T–shape trees (starlike trees with maximal degree equal to 3) are DS except
for K1,3. We can verify this assertion by reducing the problem via subdivision graphs to
A–theory and then using results of [98]. Indeed, the subdivision graph of a T–shape tree
is again a T–shape tree and an A–cospectral mate, described in [98], is not a subdivision
graph except for K1,3.

Part III: Recently the paper [76] has appeared. Contrary to his previous private com-
munication, mentioned above, G.R. Omidi proves now that not only K1,3 but an infinite
series of T -shape trees which are not DS does exist. When confirming the original pri-
vate communication we made a mistake. The mistake was that the A–cospectral mate,
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The content of this example can be formulated more generally (cf. also
[97]):

Proposition 3.4.2. (i) If the subdivision graph S(G) is A–DS, then the
graph G is Q–DS.

(ii) If any graph A-cospectral to S(G) is not a subdivision of some graph,
then the graph G is Q–DS.

(iii) If the graph G is Q–DS and if any graph A-cospectral to S(G) is a
subdivision of some graph, then S(G) is A-DS.

Here we need some caution. Namely, if a bipartite graph is proved to
be L–DS, this does not mean that it is Q–DS since it could be cospectral
to a non-bipartite graph. The situation is especially curious in trees. As
pointed out in Subsection 2.4, given the L–spectrum (or the Q–spectrum,
which is the same) of a tree, in L–theory we can recognize that it is a tree,
while in the Q–theory we cannot be sure whether the graph is connected
(which opens the possibility that in the case of non-connectedness it is not
bipartite).

The lollipop graph (a cycle with a path attached by an end-vertex) was
considered in [103]. It was proved that the lollipop graph is determined
by its Q–spectrum. Note that the lollipop graph is determined by its A–
spectrum, as proved in [6] and [58] before, so that characterization with
Q-spectrum follows immediately by Proposition 4.3.2,(i), since the subdivi-
sion of a lollipop graph is again a lollipop graph. However, this technique
was not known at the time when [103] was written so that the problem is
solved within the Q-theory. Nevertheless, it seems that this proof is much
shorter than the corresponding one in A-theory and [103] is still important.
Unfortunately, the proof cannot be carried out to A-theory via subdivision
graphs since a subdivision graph could be A-cospectral to a graph which is
not a subdivision graph. (This remark provides a negative solution to the
Problem 3.1 from [97]).

Remark. With our own modification a sketch of the proof that the lollipop
graph is determined by its Q–spectrum could look as follows.

By Theorem 2.6.3 we have q1 < 5 for a lollipop graph H. If we delete an
edge from the cycle incident to the vertex of degree 3 of H and apply the
Interlacing Theorem (see Theorem 2.6.1), we get q2 < 4.

mentioned above, is still a subdivision graph yielding the Q-cospectral mate found in [76].
Hence, our method of using subdivision graphs and results from [98] do confirm the results
from [76]. In fact our method proves these results in a much simpler way.
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Given the spectrum of a lollipop graph H, the inequality q1 ≥ ∆+1 from
Subsection 3.2 yields ∆ ≤ 3 for any graph G with such a spectrum. Now we
can apply equations from Remark 2 in Subsection 2.5 to determine vertex
degrees of G. The case n0 > 0 leads to a contradiction and with n0 = 0 we
get vertex degrees of H.

If G is disconnected, a cycle would appear as a component and we would
get q2 ≥ 4, a contradiction. Hence G is connected. If qn = 0, G is a lollipop
graph with an even cycle and the girth is determined by Proposition 3.9.2.
In the remaining case we apply the formula from the proof of Proposition
3.9.5. to determine the girth.

Hence G is a lollipop graph.

Graphs consisting of two cycles with just a vertex in common are called
∞-graphs in [97]. It is proved that∞-graphs without triangles are character-
ized by their Laplacian spectra and that all ∞-graphs, with one exception,
are characterized by their signless Laplacian spectra.
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3.5 Cospectral graphs

Statistics on cospectral graphs, given in the introduction, indicates that
cospectral graphs are less frequent in the Q–theory than in the A–theory or
L–theory. In this subsection we shall document and partially explain this
phenomenon.

The basic Q–PING, consisting of the graphs K1,3 and C3 ∪K1 on 4 ver-
tices, is already mentioned. A Q–PING, consisting of connected graphs on
5 vertices, was identified in [23]. Five Q–PINGs, all consisting of connected
graphs on 6 vertices, were identified in [15]. All these PINGs can be found
in the Appendix.

Formulas (5) and (7) explain partially the fact that A–PINGs are more
frequent than Q–PINGs. Namely, for any Q–PING these formulas (as stated
in Proposition 3.5 of [15]) yield two A–PINGs whose graphs belong to re-
stricted classes of graphs (line and subdivision graphs).

Note that formula (7) immediately verifies

Proposition 3.5.1. Graphs G and H are Q-cospectral if and only if S(G)
and S(H) are A-cospectral.

This statement is a bit different from the corresponding statement for
line graphs based on formula (5) (cf. Proposition 2.2.7).

Various constructions of A–PINGs using formulas for the spectra of
graphs obtained by graph operations are known in the literature. As we saw
in Subsection 3.1, such formulas are not so frequent for the Q–polynomial.
Hence, many of the constructions of A–PINGs cannot be repeated for the
Q–polynomial, again supporting the idea that PINGs are less frequent in
the Q–theory.

The paper [105] provides spectral uncertainties rn with respect to the
adjacency matrix and sn = qn with respect to the Laplacian and the signless
Laplacian of sets of all trees on n vertices for 8 ≤ n ≤ 21:

n 8 9 10 11 12 13 14
rn 0.087 0.213 0.075 0.255 0.216 0.319 0.261
qn 0 0 0 0.0255 0.0109 0.0138 0.0095

n 15 16 17 18 19 20 21
rn 0.319 0.272 0.307 0.261 0.265 0.219 0.213
qn 0.0062 0.0035 0.0045 0.0019 0.0014 0.0008 0.0005

Again, spectral uncertainties qn are much smaller than rn but the opti-
mism expressed in [105] cannot be justified since it is known [70] that both
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rn and qn tend toward 1 when n tends to the infinity. It is interesting that
there are no (non-isomorphic) Q–cospectral trees on fewer than 11 vertices
while smallest A–cospectral trees have 8 vertices.

The next example also illustrates the frequency of PINGs. The spec-
tral structure of graphs whose A–index does not exceed 2 (known as Smith
graphs) has been studied in [18]. Cospectral Smith graphs are very frequent
and they have been described by some algebraic means in the same paper.
Let S be the set of Smith graphs excluding cycles and the subdivision of
K1,3. It was proved in [85] that the set S essentially contains only three
graphs which are not DS in Q–theory. For PINGs containing cycles see
Theorem 2.9. and Example after it. The Q–index of the subdivision of K1,3

is approximately equal to 4.4142 and the characterization of graphs whose
Q–index lies around this value seems to be a hard problem.

The paper [76] provides an infinite series of pairs of Q-cospectral graphs,
one graph in each pair being bipartite and the other non-bipartite. The only
such pair of Q-cospectral graphs, previously noted in the literature, consists
of the graphs K1,3 and C3 ∪K1.

Assume that G is not DS. We shall say that G is minimal graph which is
not determined by its spectrum if removing of any subset of its components
implies that the remaining graph is DS. In what follows, only the minimal
graphs which are not DS will be considered, since any other such graph can
be easily recognized by the presence of some of minimal graphs.

We consider the class of graphs whose each component is either a path
or a cycle. We shall classify the graphs from the considered class into those
which are determined, or not determined, by their spectrum.

For signless Laplacian spectra the problem is implicitly solved in [27] (see
here Theorem 2.8.1 and the example after it) and explicitly in [29]. It follows
that C2k∪2Pl and C3∪K1 are minimal non-DS graphs. Using subdivisions of
graphs (which reduces the problem to usual spectrum), and having in mind
relations between the spectra, one can see that no other minimal non–DS
graphs exist. Moreover, these considerations solve also the problem for the
set of graphs whose largest signless Laplacian eigenvalue does not exceed 4
(cf. Theorem 3.3.1). The only additional connected non-DS graph is K1,3

which is cospectral to C3 ∪K1.
As shown in [29], where A-, L- and Q-eigenvalues are considered, in the

class of graphs whose each component is a path or a cycle, the cospectrality
as a phenomenon the most rarely appears in the case of signless Laplacian
spectrum.
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3.6 Q-theory enriched by angles

This subsection is completely written following the corresponding parts from
[27], [28].

Graph angles can be introduced for the signless Laplacian matrix in the
same way as for the adjacency matrix (see, for example, [21] p. 75).

The spectral decomposition of the matrix Q reads:

Q = κ1P1 + κ2P2 + · · ·+ κmPm,

where κ1, κ2, . . . , κm are the distinct Q–eigenvalues of a graph G, and P1,
P2, . . . , Pm the projection matrices (of the whole space to the corresponding
eigenspaces); so PiPj = O if i 6= j, and P 2

i = Pi = P Ti (1 ≤ i, j ≤ m). If
e1, e2, . . . , en are the vectors of the standard basis in IRn, then the quantities
γij = ||Piej ||, are called the Q–angles ; in fact γij is the cosine of the
angle between the unit vector ej (corresponding to vertex j of G) and the
eigenspace for κi. We also define the Q–angle matrix of G, i.e. an m × n
matrix (m is the number of its distinct eigenvalues, while n is the order of
G) as a matrix (γij). This matrix is a graph invariant if its columns are
ordered lexicographically.

If G is a regular graph of degree r, any eigenvector of the A–eigenvalue
λ is also an eigenvector of the Q–eigenvalue λ + r. Hence, eigenspaces of a
regular graph are the same in the A–theory and in the Q–theory and also
Q–angles coincide with A–angles.

We shall now consider the vertex eccentricities of a connected graph in
the context of the Q–angles. Let ecc(u) be the eccentricity of the vertex u.

Theorem 3.6.1. Let G be a connected graph and u an arbitrary vertex. If
m(u) is the number of non-zero entries in the u-th column (corresponding
to the vertex u) of the angle matrix, then

ecc(u) ≤ m(u)− 1.

Proof. Suppose by the way of contradiction that e ≥ m(u), where e =
ecc(u). From the spectral decomposition of the signless Laplacian of G we
have

Qk = κk1P1 + κk2P2 + · · ·+ κkmPm (k = 0, 1, 2, . . . ). (16)

Suppose that v is a vertex of G at distance e from u. Then the (u, v)–
entries of Qk for all k ∈ {0, 1, . . . , e − 1} are equal to zero (there are no
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semi-edge walks between u and v). Let xj (j = 1, 2, . . . ,m) be the (u, v)–
entry of Pj . Comparing the (u, v)–entries of matrices from both sides of (16)
(for k = 0, 1, . . . , e − 1) we obtain a system of e equations in m unknowns
x1, x2, . . . , xm, which reads

m∑
j=1

κkj xj = 0 (k = 0, 1, . . . , e− 1).

Note next that xj = (Pjeu)T (Pjev), which is zero if γju = 0. Accordingly,
the above system reduces to a system of e equations in m(u) unknowns.
The system consisting of the first m(u) equations has a Vandermonde de-
terminant, and so all the remaining xjs are also zero. From (16), we see
that the (u, v)–entry of Qk is zero for all k. Hence G is not connected, a
contradiction.

This completes the proof.

This theorem from [27] is quite analogous to a similar theorem proved
in the A–theory [87]. On the other hand, in literally the same way, we can
prove the analogous theorem for the L–theory. In the following example we
will show that neither theory offers the bound which is in the general case
the best possible (in other words they are incomparable). For this purpose
we will take three graphs which are contained in the computer package
Mathematica.

Example. The graphs considered will be named as in Mathematica. In the tables
below the first three (inner) rows correspond to upper bounds for vertex eccentric-
ities obtained by using matrices A, L and Q, respectively; the fourth row gives the
exact values of eccentricities (e stands for ecc). The (inner) columns correspond to
the vertices of the graph under consideration.

(i) We first give an example where A–theory is superior. Consider the Groetzsch-
Graph (or the MycielskiGraph[4] of chromatic number 4) – the smallest triangle-free
graph of chromatic number 4.

1 2 3 4 5 6 7 8 9 10 11
A 4 4 4 4 4 2 4 4 4 4 4
L 6 6 6 6 6 2 6 6 6 6 6
Q 6 6 6 6 6 2 6 6 6 6 6
e 2 2 2 2 2 2 2 2 2 2 2

(ii) We next give an example where L–theory is superior. Consider the graph called
the NoPerfectMachingGraph – the connected graph on 16 vertices without perfect
matching.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A 7 7 7 7 6 3 6 6 7 7 7 7 7 7 7 7
L 6 6 7 7 6 3 6 6 7 7 6 6 7 7 6 6
Q 7 7 7 7 6 3 6 6 7 7 7 7 7 7 7 7
e 6 6 5 5 4 3 4 4 5 5 6 6 5 5 6 6

(iii) Finally, we give an example where Q–theory is superior. Consider the graph
called the Uniquely3ColorableGraph – the triangle-free graph on 12 vertices, with
chromatic number 3 that is uniquely 3–colourable.

1 2 3 4 5 6 7 8 9 10 11 12
A 10 10 10 10 10 10 10 10 10 10 10 10
L 8 8 7 7 8 8 7 7 8 8 8 8
Q 5 5 5 5 5 5 5 5 5 5 5 5
e 2 2 2 2 2 2 2 2 3 3 3 3

It is worth noting that the diameters of the above graphs are: 2, 6, and 3,
respectively, while the bounds based on the number of distinct eigenvalues (equal
to m−1, see Theorem 2.5.4 for the Q–theory) are depending of spectra: 4, 6 and 6,
respectively in (i); 7, 7 and 8, respectively in (ii); 10, 8 and 5, respectively in (iii).
On the other hand, the best bounds for the diameter (for the same graphs) based
on angles are: 4, 7 and 5, respectively (so the same as former above – a surprising
fact).

Several other results on angles from A–theory can be imitated also in
the Q–theory. For example, the numbers of triangles, quadrangles and pen-
tagons can be determined from eigenvalues and angles in the Q–theory.

Let G be a graph rooted at vertex u and let G+ v be obtained from G
by adding a pendant edge uv.

Consider the characteristic polynomialsQG(x) = det(xI−Q) andQG+v(x)
as determinants. Let Q−u (x) be the (principal) minor of QG(x) obtained by
deleting the row and column corresponding to the vertex u. Although we
have that Q′G(x) =

∑
uQ
−
u (x), this formula is not very interesting since

Q−u (x) is not the Q–polynomial of vertex deleted subgraph G−u. Using the
same procedure as in A–theory (see, for example, [21], p 83), we can derive
the formula

Q−j (x) = QG(x)
∑
i

γ2
ij

x− κi
.

However, we have QG+v(x) = (x− 1)QG(x)− xQ−u (x) which together with
the previous formula yields

QG+v(x) = QG(x)(x− 1− x
∑
i

γ2
ij

x− κi
). (17)

63



This formula can be used to rewrite formula (10) and also independently,
for calculating QG+v(x). (Recall also from Subsection 3.1 that no simple
formula for QG+v(x) could exist.)

Example. Consider Kn + v, the graph obtained from Kn by adding a
pendant edge. The distinct Q–eigenvalues of Kn are 2n− 2 and n− 2. For

any vertex the corresponding angles are
√

1
n and

√
n−1
n (see, for example,

[21], p. 76). Applying (4) we get that the Q–eigenvalues of Kn + v are the
roots of the equation x2 − (2n − 1)x + 2(n − 2) = 0, n − 1 and n − 2 of
multiplicity n− 2.

Let G be a graph containing a vertex a, and let now G(a) be the graph
obtained from G by adding a pendant edge at vertex a. Vertices a and b of a
connected graph G are called M–cospectral if the graphs G(a) and G(b) are
non-isomorphic and M–cospectral. A graph having M–cospectral vertices
is called M–endospectral.

We found by computer search that the smallest Q–endospectral tree has
16 vertices and it is given on Fig. 1 as the tree T with cospectral vertices a
and b. There are no other Q–endospectral graphs on 16 or 17 vertices.
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u uu uu uuuu

uuu
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Fig. 1: The smallest Q-endospectral tree

By formula (10) the graphs TavH and TbvH are Q–cospectral for any
graph H rooted at the vertex v. This is an imitation of the well known
procedure for constructing cospectral graphs in A–theory by which it was
proved a long time ago that almost all trees have an A–cospectral mate. In
fact, the tree T was used in [70] to prove that also almost all trees have a Q–
cospectral mate. The difference between the two theories is that the smallest
A–endospectral tree has 9 vertices, many fewer than in the Q–theory. This
explains the data given in the previous subsection on spectral uncertainties
of trees. One should go well beyond 16 in order to get a high probability
that the tree T appears as a limb in a random tree which would then ensure
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that the spectral uncertainty starts to approach to 1.
One can also repeat the construction from A–theory of cospectral trees

with the same angles. By formula (17) we see that knowledge ofQG(x) allows
us to obtain the angles corresponding to a vertex u from the eigenvalues of
G(u), and vice versa. Hence Q–cospectral graphs G and H on n vertices
have the same angles if the collection of supergraphs G(i), i = 1, 2, . . . , n
can be mapped by a bijection f into the collection of supergraphs H(i), i =
1, 2, . . . , n in such a way that G(i) and f(G(i)) are Q–cospectral. Such a
pair of graphs is presented in Fig. 2.

Both graphs G and H in Fig. 2 are composed of four copies of the tree
T and an arbitrary but fixed graph F . Each copy is represented by an oval
and is attached at the rest of the graph by the vertex a or b. In all cases
related to this example, attaching a copy of T at vertex a instead of vertex
b, or vice versa, results in a Q–cospectral graph. Therefore, clearly, G and
H are Q–cospectral. To see that they have the same angles we provide the
function f mentioned above: vertices of a copy of T in G are mapped by f
to corresponding vertices of a copy of T in H which has the same type of
attachment to the rest of the graph.
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Fig. 2: Q–cospectral graphs with same angles

A consequence of the existence of the above construction is that almost
all trees have a Q–cospectral mate with the same angles.

The algorithm for constructing trees with given A–eigenvalues and an-
gles, described in [21], pp. 112-113, can be adapted to work also in the
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Q–theory.
We have considered in Subsection 2.8 the enriched theory Qc, the Q-

theory enriched by the number of components c. Now we consider the
enriched theory QΓ, the Q-theory enriched by the Q–angle matrix Γ.

The next theorem shows that the theory QΓ is at least as strong as the
theory Qc, i.e. everything that can be proved for a graph in Qc can also be
proved in QΓ [28].

Theorem 3.6.2. The number of components c of a graph can be determined
by Q-eigenvalues and Q-angles.

Proof. We need some definitions and a lemma.
A partition of the vertex set of G is called admissible if no edge of G

connects vertices from different parts; and subgraphs induced by parts of
an admissible partition are called partial graphs. (Thus a partial graph is a
union of components, and the components are induced by the parts of the
finest admissible partition.) The spectra and angles of these partial graphs
are called the partial spectra and partial angles corresponding to the original
partition.

Given a graph G, there is a uniquely determined admissible partition of
G such that (i) in each partial graph all components have the same index,
and (ii) any two partial graphs have different indices. This partition is called
index separating partition.

Lemma 3.6.3. Given the eigenvalues, angles and an admissible partition
of the graph G, the corresponding partial spectra and partial angles of G
are determined uniquely.

Proof. We know from formula (16) that the (j, j)-entry q
(k)
jj of Qk is∑m

i=1 γ
2
ijκ

k
i (j = 1, 2, ..., n). Let j ∈ Ṽ , where Ṽ is the set of vertices of

a partial graph G̃: then by Theorem 2.5.1 q
(k)
jj is the number of j-j semi-

edge walks of length k in G and hence also in G̃. The spectral moments
of G̃ are therefore

∑
j∈Ṽ q

(k)
jj (k ∈ IN), and these determine the spectrum

of G̃. Moreover q(k)
jj =

∑t
i=1 γ̃ij κ̃

k
i (j ∈ Ṽ ) where κ̃1, ..., κ̃t are the distinct

eigenvalues of G̃ and γ̃ij is the angle of G̃ corresponding to κ̃i and j. These
equations now determine γ̃1j , . . . , γ̃tj (j ∈ Ṽ ).

This completes the proof of the lemma.

Vertices belonging to components whose index coincides with the index
κ1 of G can be identified from the angle sequence for κ1: they are the vertices
j for which the angle γ1j is non-zero. The bipartition of G in which one part
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consists of these vertices is an admissible partition, and so we can apply
Lemma 3.6.3 to determine the corresponding partial spectra and partial
angles. In particular, we obtain the eigenvalues and angles of the subgraph
induced by the other part of the bipartition. We can now apply the above
arguments to this subgraph and repeat the procedure until we obtain the
index separating partition.

In each partial graph determined by the index separating partition the
number of components is equal to the multiplicity of its index. Hence we
obtain the number of components of the whole graph.

This completes the proof of Theorem 3.6.2.

The proof is carried out analogously to the proof of the corresponding
result for A-theory (see [21], Lemma 4.4.1, Theorem 4.4.3 and Remark 4.4.4).
In the proofs the walks are replaced by semi-edge walks.

In fact, the theory QΓ is much stronger than the theory Qc. As noted
before, the numbers of triangles, quadrangles and pentagons can be deter-
mined from eigenvalues and angles in the Q–theory. In addition, the vertex
degrees can also be determined in QΓ.

Next theorem, taken from [28], strengthens Theorem 2.8.1.

Theorem 3.6.4. Let G be a graph whose Q-index does not exceed 4. Then
G is characterized by its Q-eigenvalues and Q-angles.

Proof. If q1 < 4, all components are paths and the graph is uniquely deter-
mined by eigenvalues only. Otherwise, we can have among the components
some cycles and stars K1,3. The vertices belonging to these components
are identified by non-zero angles of the eigenvalue 4. We determine vertex
degrees and then the number of stars is equal the the number of vertices of
degree 3. The angle of the eigenvalue 4 in a cycle of length s is equal to
1/
√
s.

This completes the proof.

It would be interesting to investigate the case when the Q-index does
not exceed 4.5. If Q–index lies in the interval (4, 4.5) then the graph is an
open or a closed quipu (cf. Theorem 3.3.2 or [96]).
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3.7 Integral graphs

A graph is called M–integral if all its M–eigenvalues are integers.
Originally, only A–integral graphs have been studied. For a survey of

results see the paper [4].
A–integral graphs are very rare. Other kinds of integral graphs could be

more frequent. For example, out of 112 connected graphs on 6 vertices there
are only 6 A–integral graphs [4], while 37 are L–integral [71]; according to a
table of Q–eigenvalues of the 112 connected graphs on 6 vertices from [15],
just 13 are Q–integral.

The reason for the high number of L–integral graphs is, among other
things, the fact that the complement of an L–integral graph is also L–
integral. As we already noted, there are no corresponding formulas for the
A–polynomial and for the Q–polynomial which would preserve the property
of being integral and this is reflected in statistics for integral graphs.

By formula (5) a graph is Q–integral if and only if its line graph is
A–integral. If a graph is regular then it is at the same time A–integral,
L–integral and Q–integral.

A graph which is at the same time A–integral, L–integral and Q–integral
is called ALQ–integral.

It is established by a computer search [88], [89] that there are exactly 172
connected Q–integral graphs up to 10 vertices10. Among them there exists
exactly one graph which is ALQ–integral but not regular and not bipartite.
It has 10 vertices. There is another ALQ–integral graph (on 10 vertices)
which is bipartite (and not regular).

The problem of determining all connected, non-regular ALQ–integral
graphs was posed in [91], Problem AWGS.2-C. For a more tractable problem
we can require, in addition, that the graphs are non-bipartite.

The next proposition stems from [27].

Proposition 3.7.1. If G is an ALQ–integral graph, then the product G×K2

is a bipartite ALQ–integral graph.

The proof is based on formula (9) and the corresponding formula for
A–eigenvalues.

It was proved in [83] that there are exactly 26 connected Q–integral
graphs with maximum edge-degree at most four. Some partial results on
graphs with maximum edge-degree five are also obtained.

10There are exactly 150 connected A–integral graphs up to 10 vertices [4].
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Some infinite series of ALQ-integral graphs have been constructed in
[90]. In addition, semi-regular bipartite Q-integral graphs are considered
and this investigation is continued in [86].

All Q–integral complete split graphs have been identified in [50]. Several
infinite families of Q–integral graphs have been found in some related classes
of graphs using the join of regular graphs.

Next theorem gives a necessary and sufficient condition for the join of
two Q-integral regular graphs to be Q-integral.

Theorem 3.7.2. For i = 1, 2, let Gi is a ri-regular graph with ni vertices.
The graph G15G2 is Q-integral if and only if G1 and G2 are Q-integral and
((2r1 − n1)− (2r2 − n2))2 + 4n1n2 is a perfect square.

Proof. From Theorem 3.1.4, G1 5 G2 is Q-integral if and only if G1 and
G2 are Q-integral and the roots of f(x) = x2 − (2(r1 + r2) + (n1 + n2))x+
2(2r1r2 + r1n1 + r2n2) are integers. So, G15G2 is Q-integral if and only if
both graphs G1 and G2 are Q-integral and the roots

(2r1 + 2r2 + n1 + n2)±
√

(2r1 + 2r2 + n1 + n2)2 − 8(2r1r2 + r1n1 + r2n2)
2

are integers.
Since 2r1+2r2+n1+n2 and (2r1+2r2+n1+n2)2−8(2r1r2+r1n1+r2n2)

have the same parity, in order for f(x) to have integer roots it is only nec-
essary and sufficient that (2r1 + 2r2 + n1 + n2)2 − 8(2r1r2 + r1n1 + r2n2) =
((2r1 − n1)− (2r2 − n2))2 + 4n1n2 is a perfect square. �

If G1 and G2 are both r-regular Q-integral graphs, we have ((2r−n1)−
(2r − n2))2 + 4n1n2 = (n1 + n2)2. So, G1 5G2 is also a Q-integral graph.

Example. As a consequence of Theorem 3.7.2, for every n 6= 4 and 7, the
wheel graphs Wn = K15Cn−1 are not Q-integral, i.e. the wheel graph Wn

is Q-integral if and only if n = 4, 7.
Indeed, it is well known that the cycle Cn−1 is Q-integral if and only if n

= 4, 5 or 7. Therefore, from Theorem 3.7.2. Wn
∼= K15Cn−1 is Q-integral

if and only if ((2r1 − n1)− (2r2 − n2))2 + 4n1n2 = (n− 4)2 + 16 is a perfect
square. Consequently, the only Q-integral wheels are W4 and W7.

The corresponding Q-spectra are 6, 23 and 8, 42, 3, 22, 1, where exponents
denote multiplicities. �
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3.8 Enumeration of spanning trees

Let t(G) be the number of spanning trees in a graph G. Spectral techniques
are known to be efficient in enumerating spanning trees.

Proposition 1.3 of [17] gives t(G) in terms of L–eigenvalues while Propo-
sition 1.4 does this for regular graphs in terms of A–eigenvalues. The first
theorem yields the following formula

t(G) =
1
n

n−1∏
i=1

qi

for bipartite graphs G on n vertices, while on the basis of the second theorem
we have

t(G) =
1
n

n∏
i=2

(2r − qi)

for regular graphs G of degree r (also with n vertices). In view of Theorem
2.3.3, these formulas coincide for regular bipartite graphs.

Example. The Q–spectrum of Km,n was determined in Subsection 2.6 and
the first of these formulas yields t(Km,n) = mn−1nm−1. The Q–spectrum
of Kn was determined in Subsection 2.3 and the second of these formulas
yields t(Kn) = nn−2 (the Cayley formula).

Example. Similarly we have

t(Pm + Pn) = 4(m−1)(n−1)
m−1∏
i=1

n−1∏
j=1

(sin2 π

2m
i+ sin2 π

2n
j) .

The aforementioned Proposition 1.3 of [17] shows that t(G) = (−1)n−1

n L′G(0).
For a non-bipartite graph G formula (9) yields for the product G×K2 the
expression LG×K2(x) = LG(x)QG(x). Now we have

t(G×K2) =
(−1)2n−1

2n
(LG(x)QG(x))′|x=0 =

(−1)n

2
QG(0)t(G).

Since QG(0) = (−1)n detQ, we get an expression [27] for the determinant
of matrix Q

detQ = 2
t(G×K2)
t(G)

.
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Note that the coefficient theorem for QG(x) (see Theorem 2.5.5) gives for
detQ a much more complicated expression. Of course, we have detQ = 0 if
G is bipartite.

Example. For G = C2k+1 we have that G×K2 = C4k+2. Since t(C2k+1) =
2k + 1 and t(C4k+2) = 4k + 2, we have detQ = 4. The same result we get
also by Theorem 2.5.5.

Hence, a number of results can be derived nicely using Q–eigenvalues.
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3.9 Miscellaneous

Ad. 1. Studying graph reconstruction from collections of subgraphs of
various kind is a traditional challenge in the graph theory.

It was proved in [39] that the Q–polynomial of a graph G is recon-
structible from the collection of vertex deleted subgraphs G − v of G. The
same result for the A–theory is well known [94].

Next result involves edge deleted subgraphs.

Theorem 3.9.1. The Q–polynomial of a graph G is reconstructible from
the collection of the Q–polynomials of edge deleted subgraphs of G.

Proof. Given the Q–polynomials of edge deleted subgraphs of G, we can
calculate by formula (2) the A–polynomials of vertex deleted subgraphs
of the line graph L(G) of G. As is well–known, the A-eigenvalues of line
graphs are bounded from below by −2. By results of [84] the A–polynomial
of L(G) can now be reconstructed. Again by formula (2), we obtain the
Q–polynomial of G.

The reconstruction of the Q–polynomial of a graph G from the collection
of the Q–polynomials of edge deleted subgraphs of G corresponds to the
reconstruction of the A–polynomial of a graph G from the collection of the
A–polynomials of vertex deleted subgraphs of G. While the first problem
is positively solved by Theorem 3.9.1, the corresponding problem in the A–
theory remains unsolved in the general case. Therefore Theorem 3.9.1 says
much about the usefulness of the Q–theory.

Ad. 2. The Q–spectral spread sQ(G) = q1 − qn has been studied in [74]. It
was proved that, for a connected graph G other than K4 or C4, the inequality
sQ(G) < 2n− 4 holds.

The same problem appears in Conjecture 25 of [24]:
Over the set of all connected graphs of order n ≥ 6, q1 − qn is minimum

for a path Pn and for an odd cycle Cn, and is maximum for the graph
Kn−1 + v.

In fact the authors of [74] have derived a weaker upper bound for sQ(G)
but they believe that the best upper bound is as expressed in Conjecture
25.

Note that the calculation of the Q-spectrum of the extremal graph
Kn−1 + v has been carried out independently by different methods in [74]
(the graph divisor technique) and in Subsection 3.6 (using Q-angles) with
the same result.
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Another relaxation appears in [53], where the conjecture was confirmed
for unicyclic graphs.

Ad. 3. For a subset S of V = V (G), let emin(S) be the minimum number
of edges whose removal from the subgraph of G induced by S results in a
bipartite graph. Let cut(S) be the set of edges with one vertex in S and the
other in its complement V − S. Thus |cut(S)| + emin(S) is the minimum
number of edges whose removal from E(G) disconnects S from V − S and
results in a bipartite subgraph induced by S. Let ψ be the minimum over
all non-empty proper subsets S of V (G) of the quotient

|cut(S)|+ emin(S)
|S|

.

The parameter ψ was introduced in [40] as a measure of non-bipartiteness.
It is shown that the least eigenvalue qn of the signless LaplacianQ is bounded
above and below by functions of ψ. In particular, it is proved that, for a
connected graph,

ψ2

4dmax
≤ qn ≤ 4ψ,

where dmax is the maximal vertex degree.

Ad. 4. Next, for a graph G let p be the number of vertices of degree 1
and q the number of their neighbors. It is proved in [43] that the difference
p−q is equal to the multiplicity of the root 1 of the permanental polynomial
per(xI − Q) of the signless Laplacian of G. It is shown by examples that
such a result is impossible if we use the characteristic polynomial or other
graph matrices (the adjacency matrix or Laplacian).

Ad. 5. An upper bound on maximal entry of the eigenvector of the largest
Q-eigenvalue q1 of a graph has been obtained in [38].

Ad. 6. The quantity IE(G) =
∑n

1

√
qi is called the incidence energy of a

graph G in [56] (see also references cited therein). The incidence energy is
related to the well known quantity E(G) called the energy defined as the sum
of absolute values of A-eigenvalues of a graph. Having in view relations (8)
we have IE(G) = 1

2E(S(G)), where S(G) is the subdivision of G. Several
lower and upper bounds and Nordhaus-Gaddum type results are obtained
for the incidence energy in [56].
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Ad. 7. We write Γ(v) for the neighbourhood of v, and we call {v}∪Γ(v) the
closed neighbourhood of v. Vertices with the same neighbourhood are called
duplicate vertices; they necessarily induce a co-clique. Vertices with the same
closed neighbourhood are called co-duplicate vertices; they necessarily induce
a clique. The following two assertions have been proved in [24] (Conjectures
28 and 29).

(i) If G has k duplicate vertices (k > 1), with neighbourhood of size d,
then d is an eigenvalue of Q with multiplicity e(d) ≥ k − 1.

(ii) If G has k co-duplicate vertices (k > 1), with closed neighbourhood
of size d, then d− 1 is an eigenvalue of Q with multiplicity e(d− 1) ≥ k− 1.

Assertion (i) is true, because Q− dI has k repeated rows, and assertion
(ii) is true, because Q− (d− 1)I has k repeated rows. The validity of these
assertions follows also from a remark in [95].

Ad. 8. The theory of star complements of graphs is presented in the
book [22], Chapter 5. The paper [23] offers a few observations indicating
possibilities to extend the theory to signless Laplacians.

For a graph G we describe the relation between the eigenspaces EL(λ)
(λ 6= −2) of an eigenvalue λ of the line graph L(G) and the eigenspaces
ED+A(λ) (λ 6= 0) of the signless Laplacian D+A. (In each case, the remain-
ing eigenspace is found as an orthogonal complement.) The first part of the
following Proposition is well known.
Proposition 3.9.1. (i) The map x 7→ Rx is an isomorphism EL(λ) →
ED+A(λ+ 2) (λ 6= −2).
(ii) If P represents the orthogonal projection IRm → EL(λ) and P ′ denotes
the orthogonal projection IRn → ED+A(λ+ 2) (λ 6= −2) then RP = P ′R.
Proof. (i) See [21, Theorem 2.6.1].
(ii) Let y be an arbitrary element of IRm, say y = w + z, where w ∈
EL(λ) and z ∈ EL(λ)⊥. Then Py = w and RPy = Rw = P ′Rw, while
P ′Ry = P ′Rw + P ′Rz. It remains to show that P ′Rz = 0, equivalently
Rz ∈ ED+A(λ + 2)⊥. But if v ∈ ED+A(λ + 2) then v = Rx for some
x ∈ EL(λ), and we have vT (Rz) = xTRTRz = (λ+ 2)xT z = 0.

Ad. 9. We write Ue,f for the set of unicyclic graphs on e+ f vertices with
a cycle of length e. Ee,f is a unicyclic graph with e+ f vertices obtained by
a coalescence of a vertex in Ce with an end-vertex of Pf+1.

By the Interlacing Theorem (Theorem 2.6.1) we have

0 = qn(Pn) ≤ qn(Ee,n−e) ≤ qn−1(Pn), e = 3, 5, . . . , emax ≤ n.
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Hence
0 ≤ qn(Ee,n−e) ≤ 2

(
1− cos

π

n

)
= 4 sin2 π

2n
.

Having in mind Ad. 3, for an odd-unicyclic graph we have ψ = 1/n and
so we obtain the following double inequality :

1
12n2

≤ qn(Ee,n−e) ≤
4
n
.

We conclude that

1
12n2

≤ qn(Ee,n−e) ≤ 4 sin2 π

2n
≈ π2

n2
,

i.e. n2qn(Ee,n−e) = O(1).

The following proposition is easily obtained from Theorem 2.5.5.

Proposition 3.9.2. For a graph G on n vertices, with girth g, we have:

pn(G) = 0, (−1)n−1pn−1(G) = ng

if G is an even-unicyclic graph, and

(−1)npn(G) = 4, (−1)n−1pn−1(G) = ng + 4
∑

ti

if G is an odd-unicyclic graph, ti being the number of vertices of the tree
obtained by deleting an edge i outside the cycle.

We mention in passing that the girth can be determined from the Q-
eigenvalues in the case of even-unicyclic graphs but not in the case of odd-
unicyclic graphs. For (adjacency) eigenvalues we have exactly the opposite
situation. However, Laplacian eigenvalues perform best: the girth of a uni-
cyclic graph can be determined in all cases. (Then the coefficient of the linear
term in the characteristic polynomial is equal to −n times the number N
of spanning trees, and for unicyclic graphs, N is equal to the girth. Note
that results concerning such coefficients for some other classes of graphs, in
particular for trees, have been obtained in [72].)

The following lemma is a straightforward consequence of Proposition
3.9.2.

Lemma 3.9.3. Let G be an odd-unicyclic graph on n vertices. Let u be a
vertex of degree at least 3 and v a vertex of degree 1 in G. Let T be the tree
attached at u. Let G′ be the graph obtained by relocating the tree T from u
to v. Then

(−1)n−1pn−1(G′) > (−1)n−1pn−1(G).
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Using Lemma 3.9.3 repeatedly, we obtain:

Proposition 3.9.4. For G ∈ Ue,f , e odd, and G 6= Ee,f we have

(−1)n−1pn−1(Ee,f ) > (−1)n−1pn−1(G),

where n = e+ f .

In addition, we have the following observation.

Proposition 3.9.5. For n odd and e = 5, 7, . . . , n we have

(−1)n−1pn−1(E3,n−3) > (−1)n−1pn−1(Ee,n−e).

Proof: From Proposition 3.9.2 we have (−1)n−1pn−1(Ee,n−e) =

ne+ 4((n− e) + (n− e− 1) + · · ·+ 1) = 2e2 − (3n+ 2)e+ 2n2 + 2n,

and the maximum value of this function is attained when e = 3.

Now, for sufficiently small x, the equation QG(x) = 0 can be reduced to
pn−1(G)x+pn(G) = 0, whose solution −pn(G)/pn−1(G) could be considered
as an approximation for qn(G). By Propositions 3.9.2, 3.9.4 and 3.9.5, this
approximation value is minimal for the graph E3,n−3. These arguments were
quoted in [24] to support Conjecture 24 before it was proved in [10].

We note in passing that extremal results concerning the coefficients pi(T )
for a tree T have been obtained in [105]. In particular, it is proved that for
i = 3, 4, . . . , n − 1 the coefficient (−1)ipi is minimal in paths and maximal
in stars.
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Appendix 1

We present Q-spectra of graphs on up to 5 vertices (Table 1) and of graphs
on 6 vertices (Table 2).

TABLE 1: SPECTRUM AND Q-SPECTRUM OF CONNECTED
GRAPHS WITH n = 2, 3, 4, 5 VERTICES

The graphs are ordered in the same way as in the book [17] and are given
here in Fig. 1. For each graph Gi the first line contains the subscript i and
A-eigenvalues while Q-eigenvalues are contained in the second line.

This table stems from [23]

**********************************************************************
n = 2

**********************************************************************

001 1.0000 -1.0000
2.0000 0.0000

**********************************************************************
n = 3

**********************************************************************

002 2.0000 -1.0000 -1.0000
4.0000 1.0000 1.0000

003 1.4142 0.0000 -1.4142
3.0000 1.0000 0.0000

**********************************************************************
n = 4

**********************************************************************

004 3.0000 -1.0000 -1.0000 -1.0000
6.0000 2.0000 2.0000 2.0000

005 2.5616 0.0000 -1.0000 -1.5616
5.2361 2.0000 2.0000 0.7639
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006 2.1701 0.3111 -1.0000 -1.4812
4.5616 2.0000 1.0000 0.4384

007 2.0000 0.0000 0.0000 -2.0000
4.0000 2.0000 2.0000 0.0000

008 1.7321 0.0000 0.0000 -1.7321
4.0000 1.0000 1.0000 0.0000

009 1.6180 0.6180 -0.6180 -1.6180
3.4142 2.0000 0.5858 0.0000

**********************************************************************
n = 5

**********************************************************************

010 4.0000 -1.0000 -1.0000 -1.0000 -1.0000
8.0000 3.0000 3.0000 3.0000 3.0000

011 3.6458 0.0000 -1.0000 -1.0000 -1.6458
7.3723 3.0000 3.0000 3.0000 1.6277

012 3.3234 0.3579 -1.0000 -1.0000 -1.6813
6.8284 3.0000 3.0000 2.0000 1.1716

013 3.2361 0.0000 0.0000 -1.2361 -2.0000
6.5616 3.0000 3.0000 2.4384 1.0000

014 3.0861 0.4280 -1.0000 -1.0000 -1.5141
6.3723 3.0000 2.0000 2.0000 0.6277

015 3.0000 0.0000 0.0000 -1.0000 -2.0000
6.3723 3.0000 2.0000 2.0000 0.6277

016 2.9354 0.6180 -0.4626 -1.4728 -1.6180
6.1249 3.0000 2.6367 1.2384 1.0000

017 2.8558 0.3216 0.0000 -1.0000 -2.1774
5.7785 3.0000 2.7108 2.0000 0.5107
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018 2.6855 0.3349 0.0000 -1.2713 -1.7491
5.7785 2.7108 2.0000 1.0000 0.5107

019 2.6412 0.7237 -0.5892 -1.0000 -1.7757
5.4679 2.9128 2.0000 1.2011 0.4182

020 2.5616 1.0000 -1.0000 -1.0000 -1.5616
5.5616 3.0000 1.4384 1.0000 1.0000

021 2.4812 0.6889 0.0000 -1.1701 -2.0000
5.1149 2.7459 2.6180 1.1392 0.3820

022 2.4495 0.0000 0.0000 0.0000 -2.4495
5.0000 3.0000 2.0000 2.0000 0.0000

023 2.3429 0.4707 0.0000 -1.0000 -1.8136
5.3234 2.3579 1.0000 1.0000 0.3187

024 2.3028 0.6180 0.0000 -1.3028 -1.6180
4.9354 2.6180 1.5374 0.5272 0.3820

025 2.2143 1.0000 -0.5392 -1.0000 -1.6751
4.6412 2.7237 1.4108 1.0000 0.2243

026 2.1358 0.6622 0.0000 -0.6622 -2.1358
4.4812 2.6889 2.0000 0.8299 0.0000

027 2.0000 0.6180 0.6180 -1.6180 -1.6180
4.0000 2.6180 2.6180 0.3820 0.3820

028 2.0000 0.0000 0.0000 0.0000 -2.0000
5.0000 1.0000 1.0000 1.0000 0.0000

029 1.8478 0.7654 0.0000 -0.7654 -1.8478
4.1701 2.3111 1.0000 0.5188 0.0000

030 1.7321 1.0000 0.0000 -1.0000 -1.7321
3.6180 2.6180 1.3820 0.3820 0.0000
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Fig. 1: Graphs with up to 5 vertices

80



TABLE 2: Q-SPECTRA OF CONNECTED GRAPHS WITH 6
VERTICES

The graphs are ordered and labelled in the same way as in the paper
[19] and the reader is referred to this paper for drawings of the graphs.
(In fact, the graphs are ordered lexicographically by spectral moments of
the adjacency matrix.) Diagrams of these graphs can be found also in the
appendix of the book [25]. The number of edges m is also given.

The following 5 pairs of graphs form Q-PINGs: 5 6, 14 16, 53 56, 65 71,
82 88.

This table stems from [15].

m=15 001. 10.0000 4.0000 4.0000 4.0000 4.0000 4.0000

m=14 002. 9.4641 4.0000 4.0000 4.0000 4.0000 2.5359

m=13 003. 9.0000 4.0000 4.0000 4.0000 3.0000 2.0000

004. 8.8284 4.0000 4.0000 4.0000 3.1716 2.0000

m=12 005. 8.6056 4.0000 4.0000 3.0000 3.0000 1.3944

006. 8.6056 4.0000 4.0000 3.0000 3.0000 1.3944

007. 8.4495 4.0000 4.0000 3.5505 2.0000 2.0000

008. 8.2588 4.0000 4.0000 3.2518 3.0000 1.4894

009. 8.0000 4.0000 4.0000 4.0000 2.0000 2.0000

m=11 010. 8.2749 4.0000 3.0000 3.0000 3.0000 0.7251

011. 8.1355 4.0000 3.6532 3.0000 2.0000 1.2113

012. 7.9651 4.0000 3.7180 3.0000 2.0000 1.3169

013. 8.0000 4.0000 4.0000 2.0000 2.0000 2.0000

014. 7.7588 4.0000 3.3054 3.0000 3.0000 0.9358

015. 7.7913 4.0000 3.6180 3.2087 2.0000 1.3820

016. 7.7588 4.0000 3.3054 3.0000 3.0000 0.9358

017. 7.5616 4.0000 3.4384 3.0000 3.0000 1.0000

018. 7.5047 4.0000 4.0000 3.1354 2.0000 1.3600

m=10 019. 7.7264 3.8577 3.0000 3.0000 1.7093 0.7066

020. 7.5446 3.8329 3.0000 3.0000 2.0000 0.6224

021. 7.7588 4.0000 3.3054 2.0000 2.0000 0.9358

022. 7.5742 3.7337 3.6180 2.5076 1.3820 1.1845

023. 7.3723 4.0000 3.0000 3.0000 1.6277 1.0000

024. 7.4279 4.0000 3.3757 2.0000 2.0000 1.1965

025. 7.3919 3.7904 3.2106 3.0000 1.6815 0.9256

026. 7.1859 3.7200 3.3007 3.0000 2.0000 0.7933

027. 7.1190 4.0000 3.6180 2.5684 1.3820 1.3126

028. 7.2361 3.6180 3.6180 2.7639 1.3820 1.3820

029. 7.0839 4.0000 3.2132 3.0000 2.0000 0.7029

030. 6.8951 4.0000 3.3973 3.0000 1.7076 1.0000

031. 6.8284 4.0000 4.0000 2.0000 2.0000 1.1716
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032. 6.9095 3.6093 3.0000 3.0000 3.0000 0.4812

m=9 033. 7.2724 3.7245 3.0000 2.0000 1.3437 0.6594

034. 7.0604 3.6395 3.0000 2.4522 1.2270 0.6208

035. 6.9095 3.6093 3.0000 2.0000 2.0000 0.4812

036. 7.0000 4.0000 2.0000 2.0000 2.0000 1.0000

037. 7.4641 4.0000 2.0000 2.0000 2.0000 0.5359

038. 7.0839 3.2132 3.0000 3.0000 1.0000 0.7029

039. 6.7982 3.7904 3.0000 2.5025 1.3626 0.5463

040. 7.1156 3.6701 3.0971 2.0000 1.2393 0.8780

041. 6.7321 3.4142 3.2679 2.0000 2.0000 0.5858

042. 6.8284 3.6180 3.6180 1.3820 1.3820 1.1716

043. 6.9576 3.6180 3.1215 2.0000 1.3820 0.9209

044. 6.6458 4.0000 3.0000 2.0000 1.3542 1.0000

045. 6.6648 3.3011 3.0000 3.0000 1.5713 0.4628

046. 6.6058 3.7197 3.1897 2.4767 1.3225 0.6856

047. 6.4081 3.6180 3.2934 2.5573 1.3820 0.7411

048. 6.3234 4.0000 3.3579 2.0000 1.3187 1.0000

049. 6.4940 4.0000 3.1099 2.0000 2.0000 0.3961

050. 6.3419 3.5959 3.0000 3.0000 1.6324 0.4298

051. 6.0000 4.0000 3.0000 3.0000 1.0000 1.0000

052. 6.0000 3.0000 3.0000 3.0000 3.0000 0.0000

m=8 053. 6.9095 3.6093 2.0000 2.0000 1.0000 0.4812

054. 6.6728 3.4142 2.6481 2.0000 0.6791 0.5858

055. 6.3923 3.3254 2.0000 2.0000 2.0000 0.2823

056. 6.9095 3.6093 2.0000 2.0000 1.0000 0.4812

057. 6.4940 3.1099 3.0000 2.0000 1.0000 0.3961

058. 6.7494 3.1469 3.0000 1.4577 1.0000 0.6460

059. 6.4317 3.6180 2.7995 1.3820 1.2245 0.5443

060. 6.2422 3.5496 2.6524 2.0000 1.0855 0.4703

061. 6.6262 3.5151 2.0000 2.0000 1.0000 0.8587

062. 6.0000 4.0000 2.0000 2.0000 1.0000 1.0000

063. 6.1779 3.1905 3.0000 2.4204 0.7828 0.4284

064. 6.1159 3.7195 2.7379 2.0000 1.0648 0.3619

065. 5.8781 3.5834 3.0000 2.0000 1.2296 0.3089

066. 6.2491 3.4142 2.8536 2.0000 0.8972 0.5858

067. 6.0280 3.2953 3.0000 2.0000 1.2849 0.3918

068. 5.9452 3.6180 3.0856 1.3820 1.2963 0.6728

069. 5.7093 3.4142 3.1939 2.0000 1.0968 0.5858

070. 5.5616 4.0000 3.0000 1.4384 1.0000 1.0000

071. 5.8781 3.5834 3.0000 2.0000 1.2296 0.3089

072. 5.5887 3.5463 3.0000 2.4537 1.0000 0.4113

073. 6.0000 4.0000 2.0000 2.0000 2.0000 0.0000

074. 5.5616 3.0000 3.0000 3.0000 1.4384 0.0000

m=7 075. 6.4940 3.1099 2.0000 1.0000 1.0000 0.3961

076. 6.1563 3.4142 2.0000 1.3691 0.5858 0.4746

077. 5.9452 3.0856 2.6180 1.2963 0.6728 0.3820
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078. 5.8781 3.5834 2.0000 1.2296 1.0000 0.3089

079. 6.3723 3.0000 2.0000 1.0000 1.0000 0.6277

080. 5.6458 3.4142 2.0000 2.0000 0.5858 0.3542

081. 5.8154 3.0607 2.0000 2.0000 0.8638 0.2602

082. 5.4893 3.2892 2.0000 2.0000 1.0000 0.2215

083. 5.7217 3.5127 2.0000 1.3098 1.0000 0.4558

084. 5.0000 4.0000 2.0000 1.0000 1.0000 1.0000

085. 5.6597 3.1461 2.7357 1.3736 0.7772 0.3077

086. 5.3615 3.1674 2.6180 2.0000 0.4711 0.3820

087. 5.2647 3.5378 2.6491 1.2987 1.0000 0.2497

088. 5.4893 3.2892 2.0000 2.0000 1.0000 0.2215

089. 5.0664 3.2222 3.0000 1.3478 1.0000 0.3636

090. 5.5141 3.5720 2.0000 2.0000 0.9139 0.0000

091. 5.2361 3.0000 3.0000 2.0000 0.7639 0.0000

092. 5.0000 3.0000 3.0000 2.0000 1.0000 0.0000

093. 4.9032 3.4142 2.8061 2.0000 0.5858 0.2907

m=6 094. 6.2015 2.5451 1.0000 1.0000 1.0000 0.2534

095. 5.5344 3.0827 1.5929 1.0000 0.4889 0.3010

096. 5.2361 2.6180 2.6180 0.7639 0.3820 0.3820

097. 5.3839 2.7424 2.0000 1.0000 0.6721 0.2015

098. 4.9809 3.0420 2.0000 1.2938 0.4629 0.2204

099. 4.8422 3.5069 1.4931 1.0000 1.0000 0.1578

100. 4.6554 3.2108 2.0000 1.0000 1.0000 0.1338

101. 5.2361 3.0000 2.0000 1.0000 0.7639 0.0000

102. 4.8136 3.0000 2.5293 1.0000 0.6571 0.0000

103. 4.7321 3.4142 2.0000 1.2679 0.5858 0.0000

104. 4.5616 3.0000 2.0000 2.0000 0.4384 0.0000

105. 4.4383 3.1386 2.6180 1.1798 0.3820 0.2434

106. 4.0000 3.0000 3.0000 1.0000 1.0000 0.0000

m=5 107. 6.0000 1.0000 1.0000 1.0000 1.0000 0.0000

108. 5.0861 2.4280 1.0000 1.0000 0.4859 0.0000

109. 4.5616 3.0000 1.0000 1.0000 0.4384 0.0000

110. 4.3028 2.6180 2.0000 0.6972 0.3820 0.0000

111. 4.2143 3.0000 1.4608 1.0000 0.3249 0.0000

112. 3.7321 3.0000 2.0000 1.0000 0.2679 0.0000
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Appendix 2

The thirty AGX Conjectures from the paper [24]

The following 30 conjectures related to the Q-eigenvalues of a graph have
been formulated after some experiments with the system AGX. Almost all
the conjectures are in the form of inequalities which provide upper or lower
bounds for spectrally based graph invariants. The notation is as follows.

As above, Q denotes the signless Laplacian of a graphG and (q1, q2, . . . qn)
the spectrum of Q, where the eigenvalues are such that q1 ≥ q2 ≥ . . . ≥ qn.

Let L denote the Laplacian of a graph G and (µ1, µ2, . . . µn) the spectrum
of L, where the eigenvalues are such that µ1 ≥ µ2 ≥ . . . ≥ µn.

Let A denote the adjacency matrix of a graph G and (λ1, λ2, . . . λn) the
spectrum of A, where the eigenvalues are such that λ1 ≥ λ2 ≥ . . . ≥ λn.

Sometimes we shall use the notation qi = qi(G), i = 1, 2, . . . , n. Also, we
write a for µn−1, called the algebraic connectivity of G (see [17, p. 265]).

The double star DS(m,n) is obtained from two disjoint stars Km−1,1,
Kn−1,1 by adding an edge between their central vertices. The double comet
DC(n, r, s) is the graph of order n obtained from two disjoint stars Kr−1,1,
Ks−1,1 by adding a path (of length n − r − s + 1) between their central
vertices.

A complete split graph with parameters n, q (q ≤ n), denoted by CS(n, q),
is a graph on n vertices consisting of a clique on q vertices, a co-clique on
the remaining n − q vertices, and all q(n − q) possible edges between the
clique and the co-clique.

The conjectures apply to graphs with at least 4 vertices, and they are
classified according to the graph invariants involved.

Conjectures on the largest eigenvalue

Conjecture 1 :
If G is a connected graph of order n ≥ 4, then

2 + 2 cos
π

n
= q1(Pn) ≤ q1(G) ≤ q1(Kn) = 2n− 2

with equality if and only if G is the path Pn for the lower bound, and if and
only if G is the complete graph Kn for the upper bound.

Conjecture 2 :
If T is a tree of order n ≥ 4, then

2 + 2 cos
π

n
= q1(Pn) ≤ q1(T ) ≤ q1(Sn) = n
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with equality if and only if T is the path Pn for the lower bound, and if and
only if T is the star Sn for the upper bound.

Conjecture 3 :
Let S+

n denote the graph consisting of a star and an additional edge. If G is
a unicyclic graph of order n ≥ 4, then

4 = q1(Cn) ≤ q1(G) ≤ q1(S+
n )

with equality if and only if G is the cycle Cn for the lower bound, and if and
only if G is S+

n for the upper bound.

Conjecture 4 :
If G is a connected graph of order n ≥ 4 and maximum degree ∆, then

q1 ≥ ∆ + 1

with equality if and only if G is the star Sn.

Conjecture 5 :
If G is a connected graph of order n ≥ 4, with minimum, average and
maximum degree δ, d and ∆ respectively,

2δ ≤ 2d ≤ q1 ≤ 2∆

with equality in any instance if and only if G is regular.

Conjecture 6 :
If G is a connected graph of order n ≥ 4 and average degree d, then

q1 − 2d ≤ n− 4 + 4/n

with equality if and only if G is the star Sn.

Conjecture 7 :
If G is a connected graph of order n ≥ 5 and average degree d, then

2 ≤ q1 − d ≤ n− 1

with equality if and only if G is the cycle Cn for the lower bound, and if and
only if G is the complete graph Kn for the upper bound.

85



Conjecture 8 :
If G is a connected graph of order n ≥ 4, index λ1 and average degree d,
then

0 ≤ q1 − d− λ1 ≤ n− 2 + 2/n−
√
n− 1

with equality if and only if G is regular for the lower bound, and if and only
if G is the star Sn for the upper bound.

Conjecture 9 :
If G is a connected graph of order n ≥ 4, index λ1 with maximum Laplacian
eigenvalue µ1, then

1 ≤ µ1 + λ1 − q1 ≤
√
dn/2ebn/2c

with equality if and only if G is the complete graph Kn for the lower bound,
and if and only if G is the complete bipartite graph Kdn

2
e,bn

2
c for the upper

bound.

Conjecture 10 :
If G is a connected graph of order n ≥ 4 with maximum Laplacian eigenvalue
µ1, then

0 ≤ q1 − µ1 ≤ n− 2

with equality if and only if G is bipartite for the lower bound, and if and
only if G is the complete graph Kn for the upper bound.

Conjecture 11 :
If G is a connected graph of order n ≥ 4 and index λ1, then

0 ≤ q1 − 2λ1 ≤ n− 2
√
n− 1

with equality if and only if G is regular for the lower bound, and if and only
if G is the star Sn for the upper bound.

Conjectures on the second largest eigenvalue

Conjecture 12 :
If G is a connected graph of order n ≥ 4, then q2 ≥ 1, with equality if and
only if G is the star Sn.

Conjecture 13 :
Over all trees on n vertices (n ≥ 4), q2 is maximum for the graphs DS(1

2n,
1
2n)

and DC(n, 1
2n− 1, 1

2n− 1) if n is even (in which case q2 = 1
2n), and for the

graph DC(n, 1
2(n− 1), 1

2(n− 1)) if n is odd.
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Conjecture 14 :
If G is a connected graph of order n ≥ 7, then

−1 ≤ q2 − d ≤ n− 6 +
8
n

with equality if and only if G is the complete graph Kn for the lower bound,
and if and only if G is the complete bipartite graph Kn−2,2 for the upper
bound.

Conjecture 15 :
If G is a connected graph of order n ≥ 7, then

−1 ≤ q2 − δ ≤ n− 3

with equality if and only if G is the complete graph Kn for the lower bound,
and if and only if G is Kn−1 + e for the upper bound.

Conjecture 16 :
If G is a connected graph of order n ≥ 4, then ∆− q2 ≤ n− 2, with equality
if and only if G is the star Sn.

Conjecture 17 :
Over all connected graphs on n vertices (n ≥ 4), the graph H, described
below, minimizes ∆− q2.
If n is even, H is constructed as follows from two copies of Kn

2
. Delete an

edge uv from one copy and an edge u′v′ from the other; then add the two
edges uu′ and vv′.
If n is odd, H is constructed as follows from two copies of Kn−1

2
and an

isolated vertex w. Delete an edge uv from one copy of Kn−1
2

and an edge
u′v′ from the other; then add the four edges uw,vw, u′w and v′w.

Conjecture 18 :
If G is a connected graph of order n ≥ 9, then

1−
√
n− 1 ≤ q2 − λ1 ≤ n− 2−

√
2n− 4

with equality if and only if G is the star Sn for the lower bound, and if and
only if G is the complete bipartite graph Kn−2,2 for the upper bound.

Conjecture 19 :
If G is a connected graph of order n ≥ 9 and algebraic connectivity a, then

q2 − a ≥ −2

with equality if and only if G is the complete graph Kn.
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Conjecture 20 :
If G is a connected graph and not complete of order n ≥ 9 and algebraic
connectivity a, then

q2 − a ≥ 0.

The bound is attained by the star Sn, by the complement of a matching of
bn/2c edges and, if n is even, by the complete bipartite graph Kn

2
,n
2

.

Conjecture 21 :
Over all connected graphs on n vertices (n ≥ 4), the graph K, described
below, maximizes q2 − a.
If n is even, K is obtained from two copies of Kn

2
by adding a single edge

connecting the two cliques.
If n is odd, K is obtained from two copies of Kn−1

2
and an isolated vertex w

by adding two edges between w and each clique Kn−1
2

.

Conjecture 22 :
If G is a connected graph of order n ≥ 4, then

q1 − q2 ≤ n

with equality if and only if G is the complete graph Kn.

Conjecture 23 :
If T is a tree order n ≥ 4, then

q1 − q2 ≤ n− 1

with equality if and only if T is the star Sn.

Conjectures on the least eigenvalue

Conjecture 24 :
If G is of order n ≥ 4, connected and not bipartite then

qn ≥ qn(E3,n−3)

where Ee,f is a unicyclic graph with e+ f vertices obtained by a coalescence
of a vertex in Ce with an endvertex of Pf+1.

Conjecture 25 :
Over the set of all connected graphs of order n ≥ 6, q1 − qn is minimum for
a path Pn and for an odd cycle Cn, and is maximum for the graph Kn−1 +e.
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Conjecture 26 :
For any connected graph G of order n ≥ 4 with independence number α,

q1 + qn + 2α ≤ 3n− 2

with equality if and only if G is a complete split graph CS(n, n− α).
If G has m edges then q1 + q2 + · · · + qn = 2m, and so the conjecture is
equivalent to:

n−1∑
i=2

qi ≥ 2(m+ α+ 1)− 3n

with equality if and only if G is a complete split graph CS(n, n− α).

Conjectures related to the multiplicities of eigenvalues

Conjecture 27 :
Let e(Q) denote the number of distinct eigenvalues of the matrix Q and
m(qi) the multiplicity of the eigenvalue qi. Then

e(Q) = 2 ⇐⇒ m(q2) = n− 1 ⇐⇒ G ≡ Kn .

In this case, q2 = n− 2.

Conjecture 28 :
If G has k duplicate vertices (k > 1), with neighbourhood of size d, then d
is an eigenvalue of Q with m(d) ≥ k − 1.

Conjecture 29 :
If G has k co-duplicate vertices (k > 1), with closed neighbourhood of size
d, then d− 1 is an eigenvalue of Q with m(d− 1) ≥ k − 1.

Conjecture 30 :
If G is a connected graph of order n ≥ 4 with at least two dominating
vertices, then q2 = ∆− 1 = n− 2 with multiplicity at most dn/2e − 2.

Comments on the conjectures

Here we identify conjectures that are resolved, explicitly or implicitly. The
conjectures left unresolved appear to include some difficult research prob-
lems.

Conjecture 1. Several elementary inequalities for Q-eigenvalues are given
in [12]. Among other things, it is proved that the Q-index q1 of a connected
graph on n vertices satisfies the inequalities
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2 + 2 cos πn ≤ q1 ≤ 2n− 2.

The lower bound is attained in Pn, and the upper bound in Kn.
This double inequality is the content of Conjecture 1, which is therefore

confirmed as noticed in [24].

Conjectures 2 and 3 are resolved in [24]. Theorem 3.3.8 identifies the
trees, the unicyclic graphs and the bicyclic graphs of order n with maximal
Q-index. In particular, we can confirm the upper bounds in Conjectures
2 and 3: the only tree which is a nested split graph is a star and the
only unicyclic graph which is a nested split graph is a star together with an
additional edge. The lower bounds in Conjectures 1 and 2 are confirmed by
Proposition 3.3.1: the graphs with minimal Q-index among trees and among
unicyclic graphs are the path and the cycle respectively.

Conjecture 4 has been confirmed in [24] (see Subsection 3.2). Alter-
natively, we can confirm Conjecture 4 by using the inequality µ1 ≤ q1 (see
Subsection 3.2) and the following result from [71] concerning the largest
eigenvalue µ1 of the Laplacian matrix: µ1 ≥ ∆+1, with equality if and only
if ∆ = n− 1. We note that the case of equality for the signless Laplacian is
more restrictive than that for the Laplacian.

Conjecture 5. By theorem 2.5.7 we have the following statement.
Let G be a graph on n vertices with vertex degrees d1, d2, . . . , dn and

largest Q-eigenvalue q1. Then

2δ = 2 min di ≤ q1 ≤ 2 max di = 2∆.

If G is connected, then equality holds in either of these inequalities if and
only if G is regular.

Now let d be the mean degree of G, and recall that

q1 = sup
x∈IRn\{0}

xTQx
xTx

= sup
||x||=1

xTQx,

with equality if and only if x is an eigenvector of G corresponding to q1.
Taking x to be the all-1 vector, we see that q1 ≥ d, with equality if and only
if G is regular (cf. Proposition 2.3.1). The quoted facts confirm Conjecture
5 as noticed in [24].

Conjecture 6 and the upper bound in Conjecture 7 have been confirmed
in [49] using Theorem 3.2.5.
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Concerning Conjecture 7, the lower bound holds for graphs which are
not trees because we can take the all-1 vector in a Rayleigh quotient for Q
to obtain q1 ≥ d + 2. In fact, for d ≥ 2 by (the confirmed statement of)
Conjecture 5 we have q1 ≥ 2d ≥ d + 2 and equality holds if and only if
G is regular of degree 2. For trees of order n ≥ 5 we use (the confirmed
statement of) Conjecture 1 to obtain q1 ≥ 2 + 2 cos πn > 4− 2

n = d+ 2.
The upper bounds in Conjectures 6 and 7 may be regarded as upper

bounds for q1 as a function of m and n, where m is the number of edges;
in view of Theorem 3.3.5, it suffices to verify the bounds for nested split
graphs.

The lower bound in Conjecture 8 is also verified using (the confirmed
statement of) Conjecture 1: we have q1 ≥ 2λ1 ≥ λ1 +d, with equality if and
only if G is regular. The upper bound is not yet confirmed.

The lower bound in Conjecture 9 follows from (the confirmed statement
concerning) the lower bound in Conjecture 10, since 1 ≤ λ1 for graphs with
at least one edge. We note that the upper bound holds for bipartite graphs,
because then µ1 = q1 by Proposition 2.2.5. The upper bound is not yet
confirmed.

Conjecture 10. The following statement was proved implicitly in [79] (see
Subsection 3.2): We have µ1 ≤ q1 with equality if and only if G is bipartite.

This inequality confirms the lower bound in Conjecture 10.
The upper bound has been confirmed in [49] using Theorem 3.2.5.

Conjecture 11. The lower bound is confirmed by Theorem 3.4 of [12] (see
Subsection 3.2). The upper bound is not yet confirmed.

Conjecture 12 is verified by Theorem 3.2 of [12]. Note that equality
holds also for the graphK3. ( Theorem 3.2 of [12] contains also the inequality
q2 ≤ n−2 with equality if the graph is complete. Theorem 3.7 of [12] provides
an upper bound for q2 in the case of bipartite graphs, namely again n − 2,
which is attained solely for K2,n−2).

Conjecture 13 is resolved by results of [78](see also references cited
therein). The result is obtained in the context of the Laplacian spectrum
but in view of Proposition 2.2.5 it can be immediately reformulated for the
signless Laplacian. It turned out that there are three extremal graphs for n
even.

Conjecture 14. The lower bound has been confirmed in [37]. The upper
bound is not yet confirmed.
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Conjecture 15. has been confirmed in [37].

Conjecture 16 has been confirmed in [24]. Suppose first that ∆ ≤
n − 2. Since q2 ≥ 0, we have ∆ − q2 ≤ n − 2, with equality if and only if
q2 = 0 and ∆ = n − 2. However, if q2 = 0 then Proposition 2.2.1 provides
a contradiction. It remains to deal with the case ∆ = n − 1, when the
Conjecture reduces to: q2 ≥ 1 with equality if and only if G is a star. This
is just Conjecture 12, confirmed above.

Conjecture 17. remains unresolved.

Conjecture 18. remains unresolved.

Conjecture 19. has been confirmed by Theorem 3.2.3.

Conjecture 20. has been confirmed by Theorem 3.2.4 and the case of
equality in [37].

Conjecture 21. remains unresolved.

Conjecture 22. has been confirmed in [37].

Conjecture 23. has been confirmed in [37].
A few of the conjectures are related to the least Q-eigenvalue, and among

them is Conjecture 24. This conjecture has been confirmed in [10] (cf.
Theorem 3.2.1).

Conjecture 25 seems to be interesting and difficult to resolve. It is
related to the difference between the largest and the least eigenvalue which
is known as spectral spread (for any matrix). The corresponding conjecture
for eigenvalues of the adjacency matrix is identified in [2] as a hard conjecture
(also produced by AGX). It seems that we have enough evidence that system
AGX can produce difficult conjectures. Some related work is done in [74]
and [53] (cf. Subsection 3.9). the part related to the minimal value of
the spectral spread is confirmed while in general the conjecture remains
unresolved.

Conjecture 26. remains unresolved.
In contrast, we can deal easily with the conjectures concerning eigenvalue

multiplicities as noticed in [24]. First, one can confirm Conjecture 27
as follows. If e(Q) = 2 then the minimal polynomial of Q has the form
x2 + ax+ b, and so A2 +AD+DA+D2 + aA+ aD+ bI = O. For distinct
i, j this gives a(2)

ij + (dj + di + a)aij = 0, and so there are no vertices i, j at
distance 2. Conjecture 27 has also been confirmed in [30].
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More generally, the diameter of G is bounded above by e(Q) − 1 (see
Theorem 2.5.4).

Conjecture 28 is true, because Q− dI has k repeated rows, and Con-
jecture 29 is true, because Q− (d− 1)I has k repeated rows. The validity
of these conjectures follows also from a remark in [95].

Conjecture 30 is false, with Kn (n > 5) a counterexample since then
d−1 = n−2 with multiplicity n−1. (Note that the hypotheses are a special
case of those of Conjecture 29.)

As already said in Subsection 3.2, at the moment the following conjec-
tures of [24] remain unconfirmed: parts related to upper bounds in Conjec-
tures 8, 9, 11, 14 together with Conjectures 17, 18, 21, 25, 26.
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