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Coefficients of the
characteristic polynomial

Theorem 4.3.1 (p. 86)

Let A be a matrix of order n. Then

det(A + λI) =

n∑

p=0

λpcn−p,

where cn−p equals the sum of the principal minors
of order n − p of A.
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L is linear subdigraph with k loops.

There are 2k terms of the form

λ
p
aj1j1aj2j2 · · · ajk−pjk−p

.
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aj1j1 aj2j2 ajk−pjk−p

λ λ λ

j1 j2 jk−p

︸ ︷︷ ︸

p

L

L′

L′ is linear subdigraph of digraph D\the set of

p vertices.
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aj1j1 aj2j2 ajk−pjk−p

λ λ λ

j1 j2 jk−p

︸ ︷︷ ︸

p

L

L′

w(L) =
∑

λpw(L′),

where sum goes over all choices of p vertices.
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w(L) =
∑

λpw(L′),

where sum goes over all choices of p vertices.

Hence,

det(A + λI) =
n∑

p=0

λpcn−p,

where cn−p equals the sum of the principal minors
of order n − p of A.
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By replacing λ with −λ in Theorem 4.3.1 we
obtain the following corollary.

Corollary 4.3.2 (p. 86)

Let A be a matrix of order n. Then

det(A − λI) =
n∑

p=0

(−1)pλpcn−p,

where cn−p equals the sum of the principal minors
of order n − p of A.
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Definition 5.3.1 (p. 103)

Let D be a digraph with vertices 1, 2, . . . , n. Let
i and j be vertices of D.

We recall that a 1-connection D[i→ j] of vertex i

to vertex j is a spanning subdigraph of D consisting
of a path from i to j and a possibly empty collection
of pairwise vertex disjoint cycles having no vertex in
common with the path.
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Definition 5.3.1 (p. 103)

Let D be a digraph with vertices 1, 2, . . . , n. Let
i and j be vertices of D.

A quasi-1-connection D[i → j]∗ of vertex i to
vertex j is a spanning subdigraph of D consisting
of a walk from i to j of a length at most n and a
possibly empty collection of pairwise vertex disjoint
cycles, where the walk may intersect the cycles and
where the total number of edges in the walk and
cycles equals n.
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Thus a quasi-1-connection D[i→ j]∗ is a pair

D[i→ j]∗ = (γ, C),

γ – walk from i to j

C – collection of disjoint cycles.

i j

Richard Brualdi, Dragoš Cvetković ()A Combinatorial Approach to Matrix Theory (slides by Vladimir Baltić) 8 / 14
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Theorem 7.2.2 (p. 147–149)

(Cayley–Hamilton theorem)

Let A = [aij ] be a matrix of order n and let

pA(λ) =λ
n

− c1λ
n−1 + c2λ

n−2
− · · · +(−1)k

cn−kλ
k + · · ·+ (−1)n

cn

be the characteristic polynomial of A.

Then p(A) = O, that is,

A
n

− c1A
n−1 + c2A

n−2
− · · ·+ (−1)k

cn−kA
k + · · ·+(−1)n

cnIn = O.
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i j

quasi-1-connection D[i→ j]∗
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i j

quasi-1-connection D[i→ j]∗
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The coefficient cn−k of λk in the characteristic
polynomial equals the sum of all the determinants
of the principal submatrices of A of order n − k:

cn−k = (−1)n−k
∑

L

(−1)c(L)
w(L)

(summation extends over all linear subdigraphs of
the D∗(A) having n − k vertices).
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The entry in position (i, j) of Ak equals the sum
of the weights of all walks of length k from vertex i

to vertex j.
The entry in position (i, j) of (−1)n−kcn−kAk

equals

∑

D[i→j]∗
k

(−1)c(D[i→j]∗
k
)w(D[i → j]∗k)

(summation extends over all quasi-1-connections
whose walk γ from i to j has length k).
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The entry in position (i, j) of pA(A) equals

∑

D[i→j]∗

(−1)c(D[i→j]∗)w(D[i → j]∗)

(summation extends over all quasi-1-connections
from i to j).
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i j i j

w(D[i → j]∗′) = w(D[i → j]∗′′)

c(D[i → j]∗′) − 1 = c(D[i → j]∗′′)

−(−1)c(D[i→j]∗′) = (−1)c(D[i→j]∗′′)

(−1)
c(D[i→j]∗′)

w(D[i → j]
∗′

) + (−1)
c(D[i→j]∗′′)

w(D[i → j]
∗′′

) = 0

∑

D[i→j]∗

(−1)c(D[i→j]∗)w(D[i → j]∗) = 0

PA(A) = 0.
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