Seminar for Geometry, education and
visualization with applications
PROGRAM
MATEMATIČKI INSTITUT SANU
Seminar geometriju, obrazovanje i vizualizaciju sa primenama
PLAN RADA ZA JUN 2013.
ČETVRTAK, 13.06.2013. u 17 sati, sala 301F, MI
Djordje Baralic (Matematicki Institut, SANU)
TEMA: TOTALNO KOSA ULAGANJA KVAZITORUSNIH MNOGOSTRUKOSTI NAD HIPERKOCKOM
Apstrakt: Kvazitorusne mnogostrukosti su topoloska generalizacija
torusnih varijeteta. Ova interesantna klasa mnogostrukosti, ima svojstvo
da im je prostor orbita desjstva torusa prost politop, a da im se
kohomoloski prsten lepo opisuje pomocu kombinatornih svojstva koje
imaju. To nam omogucava da dobro razumemo njihove interesantne osobine.
U nedavnom radu arXiv:1304.5924 konstruisana je kvazitorusna
mnogostrukost nad kockom koje imaju ostre granice za totalno kosa
ulaganja u R^n. Ove mnogostrukosti su novi primer takvih kompleksnih
mnogostrukosti koje se razlikuju od dosada poznatog primera kompleksnog
projektivnog prostora.
ČETVRTAK, 13.06.2013. u 18 sati, sala 301f, MI
Ljubica Velimirovic ( Faculty of Science and Mathematics,
University of Nis, Serbia)
PROMENA OBLIKA PRI MALIM DEFORMACIJAMA
(VARIATION OF SHAPE UNDER SMALL DEFORMATIONS)
Abstract: Variation of geometric magnitudes play an important
role in description of surfaces under infinitesimal bending.
It is known that the magnitudes depending on the first fundamental form
are stationary under infinitesimal bending. Variation of the area and
volume of the surfaces were discussed. The importance of checking the
curvature of the surface was underline. The variation of the Willmore
energy under infinitesimal bending of the surface is studied .
Many procedures in science, engineering and medicine produce data in the
form of geometric shapes. Shape analysis of surfaces is important in
biometrics, graphics, civil engineering, modern architecture.
ČETVRTAK, 20.06.2013. u 17 sati, sala 301f, MI
Marian Ioan Munteanu (University "Al.I. Cuza" of Iasi)
SOME RESULTS ON MAGNETIC CURVES IN SASAKIAN AND COSYMPLECTIC MANIFOLDS
Abstract: We investigate the trajectories of charged particles moving in a space
modeled by the 3-space M2(c) R under the action of the Killing
magnetic fields. We explicitly determine all magnetic curves
corresponding to the Killing magnetic fields on the 3-dimensional
Euclidean space (c=0). See [1].
We give the local description of the magnetic trajectories associated to
Killing vector fields in S2 R, providing their complete classification
(c=1). Moreover, some interpretations in terms of geometric properties
are given. See [2].
We try to explain the geometry of magnetic curves in a Sasakian and a
cosymplectic manifold of arbitrary dimension. See [3].
References:
[1] S.L. Druta-Romaniuc, M.I. Munteanu, Magnetic curves corresponding
to Killing magnetic fields in E3, J. Math. Phys. 52 (11) (2011), art. no. 113506.
[2] M.I. Munteanu, A.I. Nistor, The classification of Killing magnetic
curves in S2 R, J. Geom. Phys. 62 (2) (2012), 170 - 182.
[3] S.L. Druta-Romaniuc, J. Inoguchi, M.I. Munteanu, A.I. Nistor,
Magnetic curves in Sasakian and cosymplectic manifolds, submitted.
ČETVRTAK, 27.06.2013. u 17 sati, sala 301f MI SANU
Elaine Beltaos, MacEwan University, Edmonton, Canada
D-branes of WZW models
Abstract: In string theory, a string is a finite curve of approximately
the Planck length. Modern string theories contain both open and closed
strings. The endpoints of open strings are attached to higher
dimensional membranes called D-branes. D-branes possess charges,
analogous to electrical charges in particle physics. In this talk, we
discuss D-brane charges for WZW models (string theories on compact Lie
groups), which form a finite abelian group. We also present a new
charge group.
Sednice seminara odrzavaju se u zgradi Matematickog instituta SANU,
Knez-Mihailova 36, na trecem spratu u sali 301f.
Rukovodilac Seminara dr Stana Nikcevic