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Form and Symmetry: Art and Science
Buenos Aires Congress, 2007

EDITORIAL  II
FORMA, HARMONIA, AND SYMMETRIA (WITH AN 
APPENDIX ON SECTIO AUREA): A MIDDLE AND 

SOUTH AMERICAN CHALLENGE

1  SYMMETRIES IN MIDDLE AND SOUTH AMERICA

The International Symmetry Society (ISIS-Symmetry) has a tradition to visit various 
regions in the framework of our triennial congresses and exhibitions: we started in 
Europe (Budapest, �989), went to the Far East (Hiroshima, �993), then to North America 
(Washington, D.C., �995), which was followed by a trip to the Middle East (Haifa, �998), 
then to the South hemisphere, specifically to Australia (Sydney, 2001), and last time we 
returned to Europe (Tihany, �004), where the General Assembly decided in favor of  the 
current event (Buenos Aires, �007). In this way, we make possible for different groups 
of people to join our events, with a special emphasis of those who cannot travel very 
far. Although the internet made much easier the communications, it cannot fully replace 
the personal discussions. One may say that it is unusual to organize one-week events, 
but we made a tradition of this. Since our participants represent different scholarly and 
geographical fields, we need a longer time to find a “common language” (symmetric 
bridges) and to make possible the informal discussions (symmetric agora). Informality is 
a necessary condition for interdisciplinarity.

The current congress and exhibition is our first ever event in the Middle and South American 
region. This continent has exciting traditions that are related to the concept of symmetry 
directly or indirectly. Let us start by paying tribute to the native people of America. This is 
the reason that I do not use the expression “Latin America” at this point. The Maya people 
were especially skillful in recording numbers. They invented, independently of India, the 
place-value system and the zero (Sanskrit sunya, “empty”, Arabic sifr, Medieval Latin 
cipher, Modern zero).   Note that the international word cipher refers not only to zero, but 
also to secret writings, which is partly true for the Maya number writing, too. The Maya 
system, based on �0, was strongly associated with calendar making. Many archeological 
sites record dates of past events. The common starting point of the used cycles correspond 
to the year 3113 B.C. in our calendar. (It is much earlier than the traditional first date 
��56 B.C. in the Chinese Almanac.) The Maya symbol for zero is a complex drawing, 
slightly resembles an eye. (In Hungarian, cifra, a further derivative of cipher, refers to 
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ornamentation, originally to such patterns that are made with small circles.) Turning from 
numeration to ornamental art, we may observe another treasure-house of mankind in 
Middle and South America. These two are not definitely going together (for example, 
in Oceania there is a rich tradition of ornamental art without advanced numeration). We 
may suspect, however, an intuitive knowledge of some mathematical ideas in ornamental 
art, which we shall discuss later. The orientation and design of buildings and other large-
scale objects, including the Nazca lines, clearly required an advanced mathematical and 
astronomical background. The ancient forms of music, which survived in some regions 
in folk songs, are often pentatonic (having five tones). These are exciting topics for all 
people in the world. 
In fact, ISIS-Symmetry has an interest in these questions from the early beginnings. Thus, 
I invited Franz Tichy and Bert Zaslow to join our first congress in 1989 and to contribute to 
the very first issue of our journal in 1990, respectively. Tichy, a German geographer, dealt 
with the orientation of Middle American pyramids and temples, studied the calendars in the 
region, and edited a volume entitled Space and Time in the Cosmovision of Mesoamerica 
(for the distinguished German series of books “Lateinamerika-Studien”). His lecture 
for our first congress, entitled “Ancient Mexico, a world of order; but also a world of 
symmetry?” gave an interesting survey of his studies. Zaslow, an American chemist with 
a strong record of publications also in anthropology, discussed pre-Columbian patterns of 
Southwest United States and Middle America in our journal, claiming that the craftsmen 
formalized a unified theory of symmetry. Our first congress was concluded with a piano 
concert by Erzsébet Tusa, who is a well-known interpreter of Béla Bartók. Earlier the 
pianist wife of the composer invited her to perform Bartók’s four-hand pieces in concerts. 
Since Bartók and Kodály had a special interest in pentatonic music, which is also typical 
in traditional Hungarian folk songs, we had a further association with the ancient music 
of Middle and South America.
The local interest in symmetry is well represented by many interesting publications. 
Hermann Weyl’s book entitled Symmetry (Princeton University Press, �95�) – the “swan 
song” of a leading figure of mathematics – was first translated into Spanish in Buenos 
Aires: La Simetría (Nueva Vision, �958). Surprisingly, it was followed by two different 
translations into Spanish much later in Barcelona (Promoción Cultural, �974) and Madrid 
(McGraw-Hill, �990). K. L. Wolf and D. Kuhn’s Gestalt und Symmetrie: Eine Systematik 
der symmetrischen Körper (Niemeyer, Tübingen, �95�) had just one German edition, but 
four ones in Buenos Aires: Forma y simetría: Una sistemática de los cuerpos simétricos 
(Editorial Universitaria de Buenos Aires, 4th edition, �977). A very important Spanish 
document from the point of view of history of architecture (and also of mathematics) is 
Simon García’s work Compendio de architectura y simetría de los templos: Conforme 
a la medida del cuerpo humano, con algunas demostraziones de geometría, año de 
1681 (“Summary of Architecture and Symmetry of the Temples: In Accordance with 
the Measurement of the Human Body, with Some Geometrical Demonstrations, Year of 
1681”, Manuscript 8884, Biblioteca Nacional, Madrid). It is usually referred to by the 
modern edition in Valladolid in �99�, but it also has an earlier Mexican edition in �979. 
Last, but not least, we should also refer to the contributions written by scholars in South 
America. The “record-holder” from the point of view of the listed fields is G. M. Rohde’s 
monograph:  Simetria: generalidades sôbre simetria, geociências, biociências, ciências 
exatas, tecnologias e artes, filosofia (Symmetry: Generalities Concerning Symmetry 
–Geosciences, Biosciences, Exact Sciences, Technologies and Arts, Philosophy, in 
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Portuguese, Hemus, Sao Paulo, �98�). Let us remain in Brazil for a while.        

2  THE BIRTH OF ETHNOMATHEMATICS IN SOUTH AMERICA

The Brazilian mathematician Ubiratan d’Ambrosio initiated a new field that he called 
“ethnomathematics”. In education (and occasionally in research), we may use various 
ideas of the local culture, which are outside the scope of mathematics, but somehow 
related to this field. It is not surprising that ethnomathematics was born in South America, 
and also gained followers in Africa very quickly (P. Gerdes). When I spent a longer 
period at the University of the South Pacific – serving Fiji and twelve island countries in 
Oceania – I was both happy and unhappy that each mathematics textbook was decorated 
on its cover by a drawing of the Dutch artist M. C. Escher. Of course, I appreciate very 
much Escher’s world, which contains many pieces that excite mathematicians and 
crystallographers. His periodic drawings, which were initially influenced by the patterns 
of the Alhambra, became useful tools for educators to teach symmetry groups On the other 
hand, in Oceania we should turn to the especially rich tradition of the local ornamental 
art. It was not difficult to introduce such an approach into my courses. Later, I was joined 
by the American mathematician Don Crowe to study the patterns in Fiji and Tonga and 
to make “field works”, which were followed by two papers. This interest also led to 
a conference organized by ISIS-Symmetry together with the University of the South 
Pacific in 1993. In a talk at the Washington Congress in 1995, I also discussed wasan, the 
traditional Japanese mathematics, from the point of view of ethnomathematics. In fact, 
the results of mathematics are universal, but the style of thinking is not. Therefore it is 
essential to use the available ethnomathematical ideas in teaching. I illustrate this by a 
tragic-comic story. The birth of probability theory is strongly associated with tossing the 
dice in gambling: Chevalier de Méré put such questions to Pascal who, as a response, 
worked out the basis of this new field. (In some sense this was an ethnomathematical 
initiative, too.) As a consequence, most textbooks on probability theory introduce the 
topic by gambling. This strategy was also followed by a European professor in an African 
country. He did not realize that gambling is totally forbidden there. The students believed 
that he is not a real professor, but a provoker who is testing them, and during the break of 
the first lecture called the police…  After clarifying the misunderstandings, the professor 
explained that he is not speaking about real gambling, but it is just an example. Still, the 
students were not able to think in terms of gambling. Obviously, it is necessary to find 
an alternative approach based on the local culture. Ethnomathematics occasionally may 
help the research. An African mathematics student was able to replace the conjectured 
extremal configurations of the densest packing of equal circles on a sphere by better 
ones, in the case of some concrete numbers of circles, in a very strange way (Karabinta, 
�973). The original conjectures were based on simulations made by applying the best 
computers in the United States, while the student followed a spiral strategy preferred in 
an African game of fixing buttons on a ball. (Of course, the computers were not wrong, 
just the program of simulation was incomplete.) I believe that ethnomathematics – and in 
a larger scale ethnoscience – will have a growing importance in education. Remember, 
ethnomusicology, ethnomedicine, and ethnopharmacy are well-established fields with a 
special emphasis of the findings in Middle and South America. The people of this region 
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may apply their rich “ethnoscientific” traditions also in mathematics, design, and other 
fields.

3  FROM  FORMA  TO  MORPHOLOGIA  AND CHEESE

Let us turn to the actual title of the 7th congress and exhibition “Form and Symmetry”, which 
was proposed by the Argentine organizers, obviously thinking about the aforementioned 
book by Wolf and Kuhn, too. Forma is a Latin expression, which replaced two earlier 
Greek terms:

GREEK LATIN HISTORY OF AESTHETICS
morphê (visible form)

→ forma One expression, but five (or more) concepts 
eidos (conceptual form)

The Greek meanings are given here with some simplifications. Etymological dictionaries 
often claim that the origin of forma is unclear. I guess, however, that it was made by a 
simple “combinatorial” process: the letter m, o, r, and f (= ph) were put together in a 
different order. Incidentally, there is a related literary game (anagram), while a group of 
modern artists used a similar method to create new words (Dadaism). The statement that 
the modern expression covers five essential concepts and some less important ones in the 
history of aesthetics is due to W. Tatarkiewicz, the Polish philosopher and aesthetician (A 
History of Six Ideas, the Hague, �980, Chap. 7). As he elaborated, some of these concepts 
have ancient origins, while others were worked out later. Of course, if we consider not 
only aesthetics in a historic context, but have a broader outlook, we may see very many 
further interpretations of form. According to the theoretician of literature R. Wellek, there 
are hundreds of often contradicting definitions for “form” and “structure”, thus it is better 
not to use these (Concepts of Criticism, New Haven, �963). However, his advice is often 
ignored. 

First of all, let us see how forma became an international expression. It was adapted to 
most modern languages in the Western countries and also reached some other regions:

forma (without any change) Italian, Spanish, Polish, Russian, Hungarian, Turkish
form (deleting the ending) German, English, Swedish, Icelandic
forme (modified ending) French
fomu (larger modification) Swahili–other expressions: umbo, namna, aina, 

mavazi 

I did not use the term “Indo-European languages”, because the spread of the expression 
is not identical with this group. For example, forma does not exist in Classical Greek, 
although it was adapted to Modern Greek. In Hindustani there are different expressions 
for forma, including sakal and rup. On the other hand, forma is used in Hungarian and 
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Turkish, which do not belong to this group. In Swahili, which is widely used in East 
Africa, the expression “uniform” (yunifomu) helped the spread.  As we shall see, the 
expression did not reach the Far East.  

Turning to the past, we may observe that the translation of Greek terms into Latin led 
to various ambiguities. Different terms were translated by the same expression, as we 
have seen in connection with forma. Another problem was that various expressions 
were introduced to describe similar ideas. Thus, forma, figure, species had very similar 
meanings. This situation prompted Isidore, the Archbishop of Seville (ca. 560–636), to 
collect and differentiate the existing terms. According to him, forma is related to nature, 
figura occurs in art, while species is associated with shape (Differentiae, see PL 83). 
The adjective formosus meant for him “formful”, but later it was often used by others 
as “beautiful”. We may see such an interpretation, for example, at Robert Grosseteste 
(ca. ��75–��53), who also pointed out that forma has various meanings (De unica forma 
omnium, ed. Baur, pp. �08–�09). However, these confusions were later ignored and 
forma gained some popularity in art, especially in architecture. Thus, Andrea Palladio 
(�508–�580) paid a special attention to forme belle e regulate (the beautiful and regular 
forms). He influenced generations of architects. In France, the painter-scholar Nicolas 
Poussin (�594–�665) popularized classical theories and stated that the preparation for 
beauty consists of three things: order, mode, and form or species (Observations sur la 
peinture, ed. Jouanny, p. 495).  The expression “form” also played an important role in 
modern aesthetical theories. As an opposition to Hegel’s Ideenästhetik (idea-aesthetics), 
J. F. Herbart and his followers outlined a Formästhetik (form-aesthetics) or “formalism”. 
The musicologist E. Hanslick and the father of “golden sectionism” A. Zeising were also 
related to this school. Robert Zimmermann, a student of Herbart, wrote a monograph 
entitled Allgememeine Aesthetik als Formwissenschaft (General Aesthetics as Form-
Science, Wien, �865). Another topic that we should mention is the problem of form versus 
content of artworks, which attracted many works through the ages. Incidentally, German 
scholars in the fields of art and the humanities often made compound expressions using 
form: W. Worringer Formprobleme der Gotik (München, 1912), H. Wölfflin Italien und 
das deutsche Formgefühl (München, �93�; where Gefühl means “feeling”, “sensation“). 
In the �9�0s, the Bauhaus pioneered a new approach to design education and the program 
was divided into two major parts:
- Werklehre (Instruction in crafts),
- Formlehre (Instruction in form problems).
The latter was based on observation, representation, and composition. It is lesser known, 
but the similar Russian institution the Vkhutemas / Vkhutein (Higher Artistic-Technical 
Studios, later Institute) also had an emphasis on arkhitekturno-prostranst-vennaya forma 
(architectural-spatial form). In fact, the first chapter is devoted to this topic in the textbook 
written by the “rationalists” (V. F. Krinskii et al., Elementy arkhitekturno-prostranstvennoi 
kompozitsii, Moskva, �934). In the same time, French art historians often used the “naked” 
form, without making compound expressions:  H. Focillon Vie des formes (Paris, �934), 
André Chastel Fables, formes, figures (Paris, �978). The expression form became also 
popular in those works that approached the borders of art and science. A very exciting 
example is the German biologist and artist E. Haeckel’s Kunstformen der Natur (Leipzig, 
�899–�904), in the English edition Art Forms in Nature, in the Russian one Krasota form 
v prirode (The Beauty of Form in Nature). Christopher Alexander’s monograph Notes on 
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the Synthesis of Form (Cambridge, Mass., �964) is about architectural mathematics. An 
exhibition at the Smithsonian Institution in Washington D.C. and the related book written 
by P. C. Ritterbush used the following title: The Art of Organic Forms (Washington, D.C., 
�968). The expressions “art form” and “organic form” provide a possibility to characterize 
such properties that are beyond the geometrical form. 

Turning to science, we cannot see the same popularity of the expression “form”.  Euclid 
referred to the five regular polyhedra as schemata and did not use morphê or its derivatives. 
There are many specific expressions that are associated with form, but refer to concrete 
types: geometric figures, planetary configuration, astronomical constellations, solid bodies, 
and so forth. The German astronomer Johannes Kepler (�57�–�630), however, needs a 
special attention. He also studied snowflakes and postulated the facultas formatrix as the 
power that gives things shape (De Nive Sexangula, Frankfurt, �6��; bilingual edition The 
Six-Cornered Snowflake, Oxford, �966). According to L. L. Whyte, facultas formatrix 
derived directly or indirectly from Galen (ca. �30–�00 A.D.). Incidentally, Kepler also 
suggested a mathematical explanation of the hexagonal shape by considering the densest 
packing of equal balls. (The statement that the well-known hexagonal arrangement 
gives really the densest packing was called “Kepler-conjecture” until Tom Hales’ recent 
proof, combining synthetic geometry and extensive computer calculations, which was 
first presented at our Haifa Congress in 1998.) Obviously, the fact that “form” has many 
meanings discouraged scientists using this expression. Of course, there are exceptions 
even in the modern period. Thus, D’Arcy Thompson wrote a monumental biological 
book On Growth and Form (Cambridge, �9�7, �nd ed., �94�), which became popular 
among architects, designers, and mathematicians. (Biologists had some reservation with 
the book, since the author was against Darwin’s theory.)  The banker and scholar (a rare 
combination!) L. L. Whyte continued dealing with from in his two interdisciplinary 
books (Aspects of Form, London, �95�; Accent on Form, London, �955). Whyte was 
able to attract a remarkable group of people to contribute to his first book, including 
not only biologists (C. H. Waddington, J. Needham, K. Lorenz and others), but also 
the representatives of the humanities (R. Arnheim, E. H. Gombrich). The tendency 
that scientists avoid of using the expression “form” led to the more frequent usage of a 
German expression Gestalt. Remember, Wolf and Kuhn’s book is entitled Gestalt und 
Symmetrie and just the Spanish translation introduced Forma y simetría. In the case of 
Gestalt psychology, however, the expression is not translated. Sometimes the expression 
“form” is used with an adjective, for example, the algebraic form of a complex number, 
the ideal form of a crystal. A new interdisciplinary field is the study is pattern formation. 
Still, scientists do not speak about “form-science”, unlike Zimmermann’s aforementioned 
book on aesthetics. Instead of, they rediscovered the expression morphê and coined the 
new expression morphologia. A pioneer of this move was the German anatomist K. F. 
Burdach in �800. The new expression became widely known following its usage by 
the German writer (and scientist) Johann Wolfgang von Goethe in �8�7. However, the 
expression became soon a specialized term pointing to a division of biology and medical 
science: anatomy, histology and, in part, embryology and cytology. The specialization 
into this direction was so quick that in late �9th century Haeckel spoke about general 
morphology in order not to consider the expression in a narrow sense. He also coined the 
expression promorphology for the systematic study of organisms from the point of view 
of symmetry. In theoretical biology the study of morphogenesis became an important 
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field, which was more recently helped by topology and non-linear mathematics (R. 
Thom). The linguists made another specialization of morphology: for them it is a branch 
of grammar. The American astronomer F. Zwicky founded the Society for Morphological 
Research in �96�, but it does not survive. Luckily, some architects and designers defended 
the general meaning of the expression “morphology” as the interdisciplinary study of 
form.  Related topics became a part of basic design courses at various universities. The 
Hochshule für Gestaltung in Ulm played an important role for developing such courses. 
This school had an international influence, including Argentina (T. Maldonado), U.S.A. 
(W. S. Huff), Japan (S. Mukai), and India (S. Nadkarni). It is true, however, that there are 
relatively few institutions or organizations where the expression “morphology” is directly 
used. The informal Philomorph Association (from “philosophy” and “morphê”) at the 
Harvard–M.I.T. area in Cambridge, Massachusetts, the Morphological Research Group 
at the Technion in Haifa, and more recently the Sociedad de Estudios Morfologicos de la 
Argentina (SEMA) are among the few such organizations. ISIS-Symmetry is fortunate 
to have close connections with each of these three; moreover we “visit” them by our 
congresses.

The situation is different in the Far East. The Chinese and the Japanese   (hsing / katachi) 
represent a concept without those complicated philosophical and aesthetical associations 
that the Western concept forma has, while its meaning is similar: form, shape, figure, and 
appearance. On the other hand, the “visual etymology” of this character provides a rich 
set of associations:
-  (kata, left side) wooden frame, water well,
-   (chi, right side) ornament made with hair, pattern.
Thus, we have here natural objects and artificial structures alike, and a method of pattern-
formation with the repetition of a unit. In Japan, there are two related organizations that 
deal with the problems of katachi in a broad interdisciplinary context: Society for Science 
on Form and Society for the Culture of Form. ISIS-Symmetry organized two joint 
conferences with these organizations. (I feel that the official English translation of katachi 
no kagaku as “science on form” is not fortunate; I suggest either the well-established 
“morphology” or, if a new word is desired, “formology”.) As an interesting “symmetry”, 
I was able to facilitate the first ever meeting between the editors of the Japanese journal 
Forma (published in English) and of the Argentine periodical Cuadernos de la Forma 
(published in Spanish), who did not know about each other.

But what about cheese? The Italian and French peasants made this transformation: “forme 
à fromage”. The molten cheese can be poured into a given mould or, if you wish, a form, 
and thus we will have cheese with a nice shape: formaggio in Italian, fromage in French. 
We may continue this “formological” discussion during wine and cheese… 

4  FROM SHIP-CARPENTRY TO  HARMONIA  AND  
HARMONICS

Before turning to symmetria, it is interesting to discuss the “elder sister”: harmonia. The 
latter appears in one of the earliest surviving Greek literary works, specifically in Homer’s 
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Odyssey (ca. 700 B.C.). Odysseus builds a ship and uses “harmonies”, that is joints, to 
fix some elements. After two centuries, however, the expression harmonia became an 
important aesthetical term for the Pythagoreans (6th -4th c. B.C.). Unfortunately no work 
survives from Pythagoras and the early period of his school, which moved to Southern 
Italy and remained a secret and closed community, where scientific, artistic, and religious 
ideas were together. Therefore we should rely on a few fragments that are quoted by later 
authors. According to Philolaus (5th–4th c. B.C.), harmonia is “a unity of many mixed 
(elements)” – this quote survives in Nicomachus’ work (Arithmetica �, �9, p. ��5, � or 
VS 44 B �0). Philolaus’ interpretation of harmonia is much more general than the ship-
builder’s expression and, in fact, is very close to the modern understanding of harmony in 
a broad sense. It is also known from various sources that the Pythagoreans made musical 
experiments using the monochord, a one-string instrument (Gaudentius Harmonica 
introductio, ��, ed. Jan, p. 34�; Iamblichus Vita Pythagorica, ��5–���). They compared 
the pitches while dividing the string in different ways. The best “joinings” of two pitches 
were available in the cases of dividing the string according to ratios of small integers: �/�, 
2/3, and 3/4. (The later names are octave, fifth, and forth: these are associated with the 
Western convention that we fill the tonal space with eight tones, and refer to the eighth, 
the fifth, and the fourth of these, respectively.) This theory of harmonia became successful 
not only in music, but, with great probability, also influenced the canon of the sculptor 
Polyclitus (Polykleitos, 5th c. B.C.) and helped the formation of number theory as a field 
of mathematics. The Pythagoreans were looking for “order” elsewhere and described it 
by harmonies. The Greek expression kosmos means “order”, as well as “ornament” and 
“decoration”, which survives in the modern expression “cosmetics”. For the Pythagoreans, 
the kosmos referred to the “order” of the harmoniously constructed universe, which led 
to the birth of the idea of “cosmos” in the modern sense. Aristotle (4th c. B.C.) noted that 
the Pythagoreans “devoted themselves to mathematics” and considered the “numbers to 
be the elements of all things”, while the whole heaven (uranus) is “harmony and number” 
(Metaphysica, 985 b �3–986 a 3). In another work, Aristotle elaborated the latter in more 
details: “the movement of the stars produces harmony, i.e., that the sounds they make 
are concordant (symphonos)” (Aristotle De caelo, �90 b �� or VS 58 B 35). Later this 
theory was given an expressive name: the “harmony of the spheres”. A leading figure 
of the late period of the Pythagorean School was Archytas (ca. 4�8–350 B.C.). In a 
surviving fragment, he gave the definition of the arithmetic mean, the geometric mean, 
and the harmonic mean (Porphyrius In Ptolemaei Harmonica Commentarius, p. 93, 6–
�7 or Archytas VS 47 B �). The concept of harmonia spread widely and also reached 
philosophers outside the school. An important example is Heraclitus (ca. 535–475 B.C.). 
On the basis of a few surviving fragments, it is difficult to reconstruct Heraclitus’ views. 
There two fragments that state a similar understanding of harmonia: “harmony consists 
of opposing tension, like that of the bow and the lyre”, moreover “from things that differ 
come the most beautiful harmony” (Hippolytus Refutationes, 9, 9 = VS �� b 5� and 
Aristotle Ethica Nicomachea, ��55 b 5-6 = VS �� b 8). Heraclitus also stated that “the 
hidden harmony is stronger than the visible” (Hippolytus Refutationes, 9, 9 = VS �� 
b 54). These fragments attracted various discussions. Many scholars suggest that this 
concept of harmonia is qualitative, without sophisticated mathematical considerations. 
However, some mathematical backgrounds cannot be excluded. It is obvious, however, 
that Aristoxenus (4th c. B.C.), a pupil of Aristotle, rejected the importance of numbers 
and focused on such concepts as sensation (aesthêsis) and remembrance (mnêmê – see 
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Harmonica, �, 38–39). We may call him as a forerunner of the psychology of music. In the 
later musicological literature, strangely enough, the expression “harmonists” refers not to 
the Pythagoreans, but to the opposing group founded by Aristoxenus. The Pythagoreans 
are the “canonists” who explained the harmonies with numbers, while Aristoxenus and his 
followers are the “harmonists”.  On the other hand, harmonia became a central aesthetical 
concept for the Greeks in both understandings: 

Harmonia as beauty related to the order or regularity of the arrangement of parts

Pythagoreans, 6th c. B.C. (narrower sense) Order just with numbers and geometry
Aristoxenus, 4th c. B.C. (looser sense) Order without a mathematical 

emphasis
  
The looser understanding of harmonia is considered as the “grand theory” of ancient 
aesthetics. Incidentally, harmonia also became a goddess in the Greek mythology. I 
would not go into the details of her complicated life, just remark that Harmonia had at 
least two genealogies. She is often described as the daughter of Ares and Aphrodite, while 
others suggest that she is the child of Zeus and Electra. In the same time, the mathematical 
understanding of harmony also flourished in the circles of Plato (ca. 428–348 B.C.) and 
his followers. Plato emphasized that those who would like to become philosophers should 
study arithmetic, geometry, astronomy, and theory of harmony (Respublica, 5�� c–53� 
d). Perhaps this view also contributed to the idea of the quadrivium of medieval learning, 
since the same “four roads” are considered there.  Plato discussed questions related 
to harmonia in various works. Thus, he pointed out the relationship between musical 
harmonies and mathematics (Philebus, �7 c–e) and compared music with architecture 
and ship-building, emphasizing the importance of exact measurement for the latter ones 
(Philebus, 56 a–c). Plato’s text on how to create the world-soul using musical ratios is 
obscure (Timaeus, 35 a–36 b), and attracted various debates. In �959 B. Kytzler suggested 
a reasonable interpretation (Hermes, 87, pp. 393–4�4). Although not directly connected 
to harmony, Plato’s description of the five regular polyhedra (Platonic solids) became 
a corner-stone of geometrical modeling of the universe (Timaeus, 54 e–56 b). These 
polyhedra inspired from Kepler to Heisenberg, from Leonardo to Buckminster Fuller 
many scholars and artists through the ages. Until the 4th century B.C, the majority of 
events of our survey happened in Athens, with the obvious exception of the Pythagoreans 
who lived in Southern Italy. Both Plato’s Academy and Aristotle’s Lyceum flourished 
near Athens. From 33� B.C., however, an alternative center appeared: Alexandria, the city 
founded in Egypt by Alexander the Great. Musicology and the theory of harmony also 
attracted the interest of some of the greatest minds of this new center. Euclid (around 300 
B.C.), whose name became almost a synonym of ancient geometry and mathematics, also 
wrote a musicological work (Sectio canonis). The most comprehensive survey of ancient 
theory of harmony was given by Ptolemy (Claudius Ptolemaeus, ca 85–�65 A.D.), a great 
mathematician, astronomer, and geographer (Harmonica). He gave a detailed survey 
of the Pythagorean theory of harmony in exact mathematical presentation, made new 
contributions, and also accepted some ideas from the other side. The Neo-Pythagoreans 
(�nd c. B.C.–3rd c. A.D.) did not make relevant contributions, but summarized the 
surviving documents and legends on the Pythagoreans. Nicomachus’ (ca. 60–��0 A.D.) 
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“Arithmetic” (Arithmetica) and “Handbook of Harmony” (Enchiridium harmonices) 
served as important sources for the later generations. Both Ptolemy and Nicomachus’ 
influenced not only Western, but also Arabic scholars.

The Roman architect Vitruvius (�st c. B.C.), the author of the only surviving book on 
the Greek theory of architecture, including very many related fields, devoted a chapter 
to the theory of harmonia in music (De architectura libri decem, 5, 4). He remarked 
that it is a difficult topic, especially to those who do not speak Greek. Vitruvius also 
made clear that Aristoxenus’ works were his main source. He also discussed, however, 
the related mathematical ideas of the Pythagoreans, since he was a forerunner of applied 
mathematics. (In an earlier paper I discussed the differences between Euclidean versus 
Vitruvian mathematics.) In the next chapter, Vitruvius dealt with the calibration of the 
acoustical effects in a theatre by using vessels. The philosopher and mathematician 
Boethius (ca. 480–5�5) played a crucial role in the popularization of the Pythagorean 
theory of harmony. He wrote a detailed work on this subject using Ptolemy’s and 
Nicomachus’ books (De institutione musica). Boethius is often described as “the last 
of the Roman philosophers and the first of the scholastic theologians”. He significantly 
contributed to the fact that music became an important part of the quadrivium, the upper 
division of the seven liberal arts, together with arithmetic, geometry, and astronomy. The 
trivium, the lower division, is grammar, logic, and rhetoric. The seven liberal arts played a 
major role in learning during the Middle Ages. (Interestingly, music is the only one that is 
related to art in the modern sense.) Boethius was also a chief minister, but later executed 
by the ruler Theodoric. The Greek term harmonia, similar to many other expressions, 
were adapted into Latin, but many scholars substituted it by other words. For example, 
St. Augustine (354–430) used convenientia more or less in the same sense as the looser 
understanding harmonia in Greek (De vera religione, 30, 55). On the other hand, Isidore, 
the Archbishop of Seville (ca. 560–636), applied the Latinized harmonia, and stated that 
the world is based on a “certain harmony of sounds” (Etymologiae, 3, �7 or PL 8�, �64).

During the Italian Renaissance, Platonism, actually various forms of Platonism, was 
rediscovered. It included an interest in mathematical ideas, which attracted, among others, 
the philosopher Nicholas of Cusa (�40�–�464). In Florence, a Platonic Academy was 
founded, and Marsilio Ficino (�433–�499) translated the works of Plato and Plotinus into 
Latin. The architect, sculptor, and painter Leon Battista Alberti (�404–�47�) – who wrote 
theoretical books in both Latin and Italian – introduced concinnitas as his fundamental 
concept. It is often interpreted as harmony, although the concept was more complex 
with three components: numerus (numerical proportion), finitio (“finishing” the figure 
or form), and collocatio (arrangement). In music, the analogical concepts are rhythm, 
melody, and composition. In his main work De re aedificatoria libri decem (Ten Books 
on Architecture) – this title indicates a competition with Vitruvius’ similar work – Alberti 
also summarized the Pythagorean theory of harmony based on ratios of integers, which is 
followed by the introduction of irrational numbers (Book 9, Chapter 6). Alberti also wrote 
a short work containing Pythagorean maxims (Sentenze pitagoriche). The theoretical 
studies of artist-humanists – who were able to interpret and comment classical Greek and 
Latin works – also attracted the interest of artist-craftsmen. For example, both Leonardo 
(�45�–�5�9) and Dürer (�47�–�5�8) became involved in the study of human proportions. 
The first dictionary of musical terms written in Latin by the Flemish composer Tinctoris 
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(ca. 1435–1511), who was active in Italy, gave the following definition: “Harmony is the 
beauty caused by an appropriate kind of sound” (Diffinitorium musicae, 4, �79). He used 
armonia, instead of harmonia (I guess that dropping the initial h is an influence from 
the Greek orthography; also see it in Italian and Spanish). Many Italian authors wrote 
important works on the theory of harmony (Gafurino, �5�8; Giorgi, �5�5; Zarlino, �558 
and �57�).  The architect Andrea Palladio (�508–�580) needs a special attention since he 
excelled in both theory and practice. His view is very important to see the relationship 
between musical harmonies and architectural proportions: “As the proportion of voices 
is harmony (armonia) to the ear, so the proportions of measure are harmony to our eyes” 
(Memorandum on the cathedral of Brescia, �567). His system of architectural proportions 
is so sophisticated that the art historian R. Wittkower compared it with a musical fugue. 
The study and application of “harmonic proportions” led to many interesting works. The 
reader may follow the developments via some exciting modern works (W. Tatarkiewicz 
History of Aesthetics, Vol. 3, the Hague, �974; R. Wittkower Architectural Principles in 
the Age of Humanism, London, �973).  Perhaps the Spanish architects went to an extreme 
end in the case of harmonic considerations. Juan de Herrera (�530–�597) and Juan 
Baptista Villalpando (�55�–�608) were involved in the extensive usage of mathematical 
ideas in architecture. They founded an Academy in �58�. The Jesuit Villalpando 
concretely suggested that architecture should correspond to musical harmonies. He tried 
to unite the Bible and the ancient theory of harmony (In Ezechielem Explanationes, �596-
�604). Herrera and Villalpando had a desire to reconstruct the Biblical temple and to 
approach a cosmic order by this. Since King Philip II liked their model, Herrera gained 
the opportunity to build one of the greatest buildings of the Western culture, the Escorial, 
near Madrid. Although the Academy was closed shortly after Herrera’s death, but some of 
the related ideas were later popularized even in other countries by Spanish scholars (Juan 
Caramuel de Lobkowitz). Simon García’s work of �68�, which we discussed in Chapter 
1, demonstrates the continuing interest in this field (Compendio de architectura y simetría 
de los templos: Conforme a la medida del cuerpo humano, con algunas demostraziones de 
geometría). The French mathematician and musicologist Marin Mersenne (�588–�648) 
– who corresponded with the majority of leading scientists of his age from Descartes 
to Pascal – discussed the “universal harmony” from acoustical point of view  (Traité 
d’harmonie universselle, 1627).  This became an important field of study in the next 
decades. We may summarize the influence of the Pythagorean theory of harmony – which 
was, unlike our diagram, not “linear” – in the following way, adding a surprising new 
name to the end of this list:

Pythagoreans Nicomachus → Kepler
Archytas → Plato → (ca. 60–��0 A.D.) Boethius → (�56�–�630)
(6th–4th cc. B.C.) (4�8–348 B.C.) Ptolemy  → (ca. 480–5�5) Herrera

(ca. 85–�65 A.D.) (�530–�597)

How could musicology help an astronomer? Kepler related the regular polygons and 
star-polygons to musical harmonies. Indeed, both of these can be characterized by 
the same ratios, which are available by dividing the full circle and the monochord, 
respectively. Kepler’s first mathematical model for the motion of the planets was based 
on concentric circles, where the radii were calculated by the circumspheres and inspheres 
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of an imbedded sequence of the five regular polyhedra or Platonic solids (Mysterium 
cosmographicum, �596). After the sudden death of Tycho Brahe, Kepler had access to a 
rich set of observed data, and understood that the circles should be replaced by ellipses 
(Astronomia nova, �609). He made this work complete in a third book on the “harmony 
of the world” (Harmonice mundi, �6�9). He took the Pythagorean idea of the “music 
of the spheres” seriously. Specifically, he used the ratios of his calculations in order 
to present the melodies associated with the planets. It is a rare case that we have an 
insight into the style of thinking of a great mind during a breakthrough of science, which 
attracted the interest many people from the composer Hindemith to the physicist Pauli. 
“The last Pythagorean musician: Johannes Kepler” – stated E. Werner in the title of his 
paper (In: Aspects of Medieval and Renaissance Music, New York, �966, pp. 867-88�). 
The statement that Kepler was a Pythagorean musician is correct, but perhaps he was not 
the last. It is true that musicology and acoustics became interdisciplinary fields where not 
only mathematical, but also physical, physiological, and psychological considerations are 
important (Rameau, Helmholtz, Stumpf, von Békésy, and others). Some developments 
are more mathematics-related. For example, A. J. Ellis (�8�4–�890) – who translated 
Helmholtz’s book into English (On the Sensation of Tone, London, �875) – introduced a 
system where each half-tone is measured as having �00 cents. This is useful to compare 
the musical scales of different nations in ethnomusicology. (These studies became even 
important after the invention of the phonograph, which was also used for recording folk 
music; the pioneers were W. Fakes among Native Americans in �889 and B. Vikár among 
Hungarian villagers in �896.) However, there is another “line” that has much stronger link 
to the Pythagorean tradition and survives at schools of music in Vienna and New York:

Thimus (1868–76) → Kayser (1926) → Haase (1960) → Schulze
                                                            → Levarie and Levy (1968) → McClain

The revitalization of the Pythagorean tradition of harmonics is due Albert von Thimus 
(Die harmonikale Symbolik des Alterthums, � vols, Köln �868–76). The “lambdoma”, the 
arrangement of musical ratios in the form of the Greek capital lambda (Λ), and the related 
“Pythagorean table” are very useful tools. Moreover, the latter also has some similarity 
with the table of hexagrams of the I Ching. The German-born Swiss musicologist Hans 
Kayser – a student of E. Humperdinck and A. Schoenberg – continued these studies and 
summarized his findings in a series of books (Orpheus, Berlin, �9�6; Vom Klang der 
Welt, Zürich, �937; Lehrbuch der Harmonik, Zürich, �950; etc.). More recently, a group 
of American scholars decided to translate most of his works into English, which is an 
ongoing project. Rudolph Haase continued the work of Kayser, which later led to a new 
monograph (Einführung in die harmonikale Symbolik, München, �960) and many further 
publications. In �967, he founded the Hans-Kayser-Institute, later International Center 
for Harmonics, at the University of Music and Performing Arts in Vienna. These works 
– beyond helping music education and inspiring some composers – have interesting 
links to architecture, fine art, and some fields of science, including crystallography (V. 
Goldschmidt, �90�) and genetics (M. Schönberger, �977). The successor of Haase is 
Werner Schulze, educator, composer, and musician, while his assistant is De La Cuesta 
from Mexico. Turning to North America, Siegmund Levarie and Ernst Levy, giving credit 
to Thimus and Kayser, introduced a course on musical acoustics at the Brooklyn College 
of the City University of New York (Tone: A Study in Musical Acoustics, Kent, Ohio, 
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�968). Ernest McClain extended the topic towards Oriental cultures, including India and 
China.

We should also mention other initiatives that were started independently:
→  Eichhorn (1888) acoustics and architecture
    → Schultz (1891) architectural harmonies  →  proportional studies 
         →  Thompson (1917), R. France (1921) biology  →  design education

Interestingly, Albert Eichhorn published books not only on the Pythagorean theory of 
harmony and acoustical questions, but also on the Maya scientia mirabilis of architectonic 
and artistic composition (�896) and Maya pictographic writing (�905). W. Schultz, starting 
with the Pythagorean theory of harmony, contributed to a new wave of proportional studies 
in Germany (Thiersch, �893) and in Russia (Grimm, �935). The “record-holder” is A. 
Lurcat who published a five-volume set on the “law of harmony” in architecture (Formes, 
composition et lois d’harmonie: Eléments d’une science de l’esthétique architecturale, 
Paris, �953–�957). G. Doczi’s book excels by an especially wide scope (The Power of 
Limits: Proportional Harmonies in Nature, Art and Architecture, Boston, �98�). Joseph 
Needham, the biologist turned later sinologist, explained that many scholars tempted to 
see D’Arcy Thompson – the author of the earlier referred to book on biological shapes 
(On Growth and Form, Cambridge, �9�7 and �94�), as the last of the Pythagoreans. 
His mysticism, however, tended towards mathematical descriptions and explanations 
(see in L. L. Whyte, ed., Aspects of Form, London, �96� and �968, p. 78). As we 
remarked earlier, Thompson’s book – and partly France’s book (Bios, München, �9��) 
– became very popular among architects and designers in wide circles. These two books 
were important references even for the Russian scholars who founded a Laboratory of 
Architectural Bionics in Moscow (Yu. S. Lebedev Arkhitektura i bionika, Moskva, �97� 
and �977, p. �8). As I have learnt from William Huff, the book by D’Arcy Thompson 
was on the shelf of the Argentine-born designer at the Hochschule für Gestaltung, Tomás 
Maldonado. Perhaps, it is also a special “harmony of the world” that this theory helped 
us to visit various regions, from Greece to Middle and South America. It is important to 
add there are two types of artists: those who are interested in theoretical questions and 
those who are not. Both ways may lead to masterpieces as Leonardo and Michelangelo 
demonstrated. This is also a sort of “harmony”…

5 THE BIRTH OF  SYMMETRIA,   ASYMMETRIA, AND 
DISSYMMETRIA: SOME TROUBLES WITH THE SQUARE

If we consider the developments in connection with harmonia, not just the Pythagorean 
tradition, we may outline two problems in art which could have inspired the birth of a 
new concept:

First conjecture: artistic origins of the new concept symmetria
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Mathematical components
(quantitative 

considerations)

Primary field
(although not 
exclusively)

harmonia less (beyond some basics) music
(need for a concept)  ← more  visual arts

The solution of these problems was the introduction of symmetria (good proportion), 
which is – considering the grammatical genders – is the “younger sister” of harmonia. 
It is important to note that the Greek symmetria was not associated with the modern 
meaning “mirror symmetry”. In the scholarly literature many authors suggest such an 
origin of symmetria. Interestingly, not only historians of aesthetics, but also a few leading 
scientists hint that somehow sculptors played a primary role at the birth of symmetria. 
The universal mathematician Hermann Weyl (1952), who contributed to many fields of 
mathematics, started his survey on the history of symmetry with proportional questions 
and referred to the sculptor Polyclitus (Polykleitos, 5th c. B.C).  The Russian polymath 
V. I. Vernadskii (�96�), the father of geochemistry, and the biologist Yu. A. Urmantsev 
(�974) gave credit to another sculptor, Pythagoras of Rhegium (5th c. B.C.) – he is not 
identical with the mathematician-philosopher – for introducing the expression symmetria. 
Although these authors did not give references to ancient sources, but I traced back both of 
these views to the antiquity. The appropriate sources, however, do not give clear supports 
to the referred to modern views. Polyclitus’ book entitled Canon does not survive beyond 
a few fragments, and he is considered as a follower, not an originator of symmetria. The 
origin of the statement on Pythagoras of Rhegium is an unclear note written about six-
seven centuries later by Diogenes Laertios (Vitae philosophorum, 8, 47). An even greater 
problem is that in the 5th century B.C., when the term symmetria existed already, the 
described two problems did not exist yet:

(�) The mathematical component of the Pythagorean harmonia, long before the challenges 
by Aristoxenus (4th c. B.C.) , was strong.

(�) The understanding of harmonia – according to Philolaus (5th–4th c. B.C.) it is the 
“unity of many mixed (elements)” – was not yet limited to music as a primary field.

In addition to this, there existed already the appropriate mathematical terminology that 
artists needed for describing the proportions of artworks:
- logos (ratio): a/b, where a and b are (positive) integers,
- analogia (proportion), a/b = c/d, the equality of two logos-es.

With great probability this terminology was originated in musicology, thus its possible 
usage in other fields of art was reasonable.

What was the event that possibly required a new concept and terminology?  If we consider 
the early usages of the expression symmetria in the surviving texts, which were originated 
in the 5th–4th centuries, many of these point to mathematics (e.g., Plato Theaetetus, �47 
d–�48 b; Aristotle Analytica Priora, 4� a �6; Analytica Posteriora, 7� b �7; Physica, ��� 
b �5; Metaphysica, �004 b �� and �06� b �; Rhetorica, �39� a �8). The mathematical 



33

problem was to find a common measure for the diagonal and the side of a given square. 
A similar question can be put in the case of a regular pentagon. If we consider all of the 
diagonals of a regular pentagon, we have a pentagram or a five-pointed star, which was 
allegedly the symbol of the Pythagoreans. The surprising finding was that there is no 
common measure for the diagonal and the side of a square. The same is true in the case 
of a regular pentagon. Thus we should make distinction between commensurable and 
incommensurable pairs of line-segments.

Second conjecture: mathematical origins of the new concept symmetria

Two possibilities (�) (�)
pairs of antonyms

Geometric approach:
Measuring two line-segments
by a common unit

symmetros
commeasureable

asymmetros
incommonsurable

Algebraic approach:
Calculating the ratio of  two 
numbers (length-measures)

rhêtos or logos
expressible /  rational

arrhêtos or alogos 
inexpressible / irrational
→ surd (via Arabic)

The algebraic interpretation, using modern notation, is that the ratio of the length of 
the diagonal to the length of the side of a given square is √2, an irrational number that 
cannot be expressed in the form of a/b, where a and b are integers. (The Arabic term is 
jadr asamm, deaf root, which was later translated into modern languages – via the Latin 
surdus, deaf or mute – as “surd number”.) The mathematical proof that the diagonal and 
the side of a square are incommensurable in length required a new methodology, which 
is called indirect proof. First we suppose the opposite case and after some mathematical 
steps present a contradiction. This proof led to a higher level of abstraction where logical 
operations are made by non-existing objects in an “imaginary world” (see this proof at 
Aristotle Analytica Priora, 4� a �6–�7; Euclid Elements, Book �0, Proposition ��7). 
The idea of commensurability was extended from lengths to squares: the diagonal and 
the side of a square are incommensurable in length (asymmetros mêkei), but these are 
commensurable in square (symmetros dynamei), since the ratio of the area of the squares 
drawn on these two line-segments is �. This terminology is used by Plato (Theaetetus, 
�47d–�48b) and later by Euclid (Elements, Book 10, Definitions 1–3).

There is another interesting philosophical-mathematical problem here. According to the 
original Pythagorean theory of harmony, everything can be described by integers and 
their ratios. This theory was very successful in musicology, sculpture, and cosmology, 
but had some limits: the ratio of the diagonal and the side of a square cannot be 
expressed by a ratio of integers. Some modern authors suggested that the discovery of 
incommensurability lead to a major crisis of Greek of mathematics. This is, however, 
probably an overstatement: there is no reference in the contemporary literature to such a 
crisis. On the other hand, the discovery could have given an additional connotation to the 
expressions symmetria and asymmetria when considering the parts and the whole of an 
object. Specifically, this new geometric terminology had immediately an association with 
“good” versus “bad proportions”: the expected case versus the disturbing new one. The 
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modern algebraic terminology also preserved something similar: rational versus irrational 
or surd numbers, where the latter two obviously have some negative connotations. (The 
very fact that we have “irrational numbers” in mathematics, the most rational field of 
science, is seemingly a contradiction. Of course, the problem is that the mathematical 
meaning of “ratio” differs from the everyday understanding of the same expression. A 
sad story related to this problem is the case of the Russian mathematician N. N. Luzin: 
in the Soviet period he was attacked for dealing with sets of points that have irrational 
coordinates.) The metaphorical meanings of symmetria and asymmetria led to the quick 
adaptation of this terminology to aesthetical contexts:

Geometry Art, Aesthetics

symmetria / asymmetria
adaptation
────────────> symmetria / asymmetria

commensurability  
/ incommensurability

due proportion 
/ lack of due proportion

Both Plato and Aristotle used symmetria not only in mathematical, but also in aesthetical 
contexts. According to Plato (Philebus, 64e):
 […] measure (metriotês) and proportion (symmetria) are everywhere identified  
 with beauty and virtue.
 Aristotle spoke about three categories of beauty and also emphasized the  
 mathematical connections of these (Metaphysica, �078 a 35–b �):
 The main species of beauty are orderly arrangement (taxis), proportion  
 (symmetria), and limitation (horismenon), which are revealed in particular by  
 mathematics.
Interestingly, the adjective symmetros appeared in the Greek translation of the Old 
Testament, but only once (Septuaginta, Jeremiah ��:�4): it is about building a “great 
house” (oikos symmetros). This usage is rather aesthetical than religious. 

What we see here is very important from the point of view of ISIS-Symmetry. In fact, 
symmetria became a “bridge” between mathematics and art as early as the 6th–5th 
centuries B.C. It is also interesting that symmetria and asymmetria were coined together, 
with an initial prejudice against the latter. We may also say that symmetria followed 
harmonia: from a strict mathematical understanding to a less mathematical approach 
in aesthetics. However, the mathematical aspect of symmetria remained stronger. Let 
us return to the two arguments considered in Conjecture �. These are very useful to 
understand why symmetria – that had links to both mathematics and visual arts – spread 
and gained popularity from the 5th-4th centuries B.C., but, I believe, these were not 
associated with the birth of the concept.

Relaxing the strict symmetria also appeared in the aesthetical writings of Plato (Sophista, 
�35 e–�36 a). In the case of large sculptures or paintings we should not follow the true 
proportions (symmetria), because of the optical illusions. The idea of considering not only 
the objective and measurable aspects of beauty (symmetria), but also some subjective 
elements led to the introduction of the concept eurythmia, from eu- (well) and rhythmos 
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(proportion, arrangement). This term appeared in both aesthetical and mathematical 
works (Xenophon, Memorabilia, 3, �0, ��; Damianus, Optica, �8; Hero, Definitiones, 
�35). Another criticism against the emphasis of symmetria was given by Plotinus (3rd 
c. A.D.), who fully challenged its importance as a category of beauty. He explained that 
the too perfect symmetria is disturbing. These are belonging to the prehistory of the �9th 
century concept of dissymmetry, which we shall discuss later. 

Earlier we remarked that the translation of Greek terms into Latin led to various 
ambiguities. This statement is also valid in the cases of symmetria and analogia:

Greek Latin
Adoption Translation

symmetria →
(common measure
or  proportion)

symmetria commensus (Vitruvius, 1st c. B.C.)
commensuratio (Boethius, 5th–6th cc.)

analogia → (proportion) analogia proportio (Cicero, 1st c. B.C.)

Here the adopted terms were rarely used, while the translated ones became more popular. 
In fact, there are very few ancient texts where the Latin symmetria is used (Varro, �st 
c. B.C.; Vitruvius, �st c. B.C.; Plinius, �st c. A.D.).  In mathematics commensura and 
in aesthetics proportio became the standard terms, which fact is well reflected by our 
modern terminology. How did symmetria survive? I answered this question in the opening 
talk of the Washington Congress in �995. The peculiarity of my answer is that I refuted 
the view available in major historic-etymological dictionaries in English, German, and 
French. Specifically, it is not true that the first non-Latin usage of the expression is due to 
Geoffroy Tory’s book Champ fleury (Paris, �5�9), and the expression spread from French. 
I located very many earlier usages in Italian. My conjecture was that those people who 
dealt with the Vitruvian text during the Italian Renaissance needed such an expression. The 
reason is very simple: Vitruvius used three different terms in connection with proportions. 
Although the distinction is not fully clear, but we may list the following three steps in the 
case of determining the proportions of an object during the process of design:
(�) symmetria – considering the general theory of proportion,
(�) proportio  – concrete realization of the proportions of the object,
(3) eurythmia – adjust the proportions to counteract to the optical illusions.

The main point is that Vitruvius used the expressions symmetria and proportio in slightly 
different senses, and the translators and the authors of commentaries also needed two 
terms. Thus, Lorenzo Ghiberti (around �450), Francesco di Giorgio Martini (around 
�475), Cesare Cesariano (�5��) used the expression symmetria in Italian, applying various 
orthographies. This new expression spread very quickly into other languages, partly 
directly from Italian, partly by translations of the Vitruvian text. However, the distinction 
between symmetry and proportion was not always clear, thus symmetry remained open 
for additional meanings. 

The idea of “mirror symmetry” was important for architects and had its root in the Greek 
concept of “commensurability of squares”, which is now became the “commensurability” 
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of two equal halves. This new meaning gradually appeared in architecture, geometry, 
and everyday language. The zoologist turned architect Claude Perrault, who published 
a new French translation of Vitruvius, noted that “symmetry” has also a new meaning 
(Paris, �673). From mathematical point of view, mirror symmetry means that the 
corresponding figure can be transformed into itself by a mirror reflection. This idea can 
be generalized: a figure-system is symmetric if it can be transformed into itself by any 
kind of transformation (automorphism). It could be a rotation or, thinking about infinite 
patterns, a translation. In other words, an object is symmetric if it remains the same 
(“invariant”) under some transformations. Physicists made the next move to consider 
non-geometric invariances. There is a deep mathematical theorem that connects symmetry 
transformations (invariances) and conservation laws (Noether, �9�8). 

The development of the meanings of symmetria / symmetry

MATHEMATICS
SCIENCE

BETWEEN ART
AESTHETICS

Ancient Greeks  
(6th-5th cc. B.C.) common measure ───> proportion
Vitruvius (�st c. B.C.) and 
the Middle Ages

proportion
(as general theory)

Renaissance proportion, harmony
Modern Period
- Architecture (�7th c.) mirror symmetry balance proportion, harmony
- Geometry (�8th c.)     roto-symmetry cyclicity
- Crystallography (�9th c.) periodic symmetry rhythm
- Physics (�0th c.) invariance archetype

Symmetry became a major organizing principle in science: it helped to find all the possible 
cases, the exhaustive list, in various fields:
- kaleidoscope types (Brewster, Möbius, Hess, Fedorov),
- crystallographic point and space groups (Frankenheim, Hessel / Fedorov, Schoenflies),
- chemical isomers (van’t Hoff, Fischer), 
- elementary particles (Gell-Mann, Ne’eman).

These exhaustive lists often predicted new cases that were not yet known, which oriented 
the related experimental works. Similar lists and classifications are also useful in some 
fields of art and the humanities, including
- ornamental arts (cf., Crowe and Washburn’s survey), 
- musicology (Graeser’s reconstruction of Bach’s Kunst der Fuge), 
- architecture (March and Steadman). 

In the mid �9th century, Pasteur answered an important question in chemistry: how is it 
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possible that molecules with the same chemical composition and the same geometrical 
structure may have different physical properties (turning the plane of the polarized light 
to the left or to the right)? His answer was based on the fact that although the left-handed 
and right-handed molecules are equivalent by a mirror reflection, we cannot transform 
these into each others by 3-dimensional motions. A necessary condition of the handedness 
of molecules is the lack of some elements of symmetry. Pasteur introduced the concept 
“dissymmetry” as the lack of some possible elements of symmetry. It is not identical with 
“asymmetry”, since the latter refers to the lack of all elements of symmetry. The concept 
“dissymmetry” became very fruitful in theoretical physics (P. Curie) and crystallography 
(Shubnikov and Koptsik). I warmly suggest revitalizing this concept and also using it in 
other fields, including aesthetics:

symmetry
(thesis)

asymmetry
(antithesis)

dissymmetry
(synthesis)

the lack of some elements of symmetry,
a small violation of the perfect symmetry

                       
In a long period, symmetry had a very successful “marriage” with group theory. Their 
union led to major breakthroughs in mathematical crystallography and theoretical physics. 
Of course, I do not suggest a “divorce”, but it would be better to have more activities in 
wider circles. Group theory is a very good partner to treat ideal structures, but we should 
also consider real objects. Symmetry was originally a “measure”. It would be important 
to pay more attention to this. There are some works into this direction, including the 
“dissymmetry measure” that I introduced for the study of non-ideal crystal structures.

The success of symmetry is well represented by many interesting publications world-
wide. For the first issue of our electronic journal VisMath, I made a “Symmetro-graphy” 
that included about 600 interdisciplinary books on symmetry in �5 languages. The fact 
that Hermann Weyl’s Symmetry (Princeton, �95�) has three different Chinese translations 
(Beijing, �986; Taipei, �988; Shanghai, �99�) and three different Spanish translations 
(Buenos Aires, �958; Barcelona, �974; Madrid, �990) demonstrates that we need 
“symmetry” elsewhere, and Buenos Aires has a special position in this.

6  APPENDIX (with an apology to János Bolyai): From the akros kai 
mesos logos to the goldener Schnitt (sectio aurea)

One may say that I missed the golden section during this survey. In fact, I made it by 
purpose. Unfortunately, very many well-known “facts” in connection with the early 
usages of the golden section are just “legends” with no bases. The only known ancient 
expression for this concept is the Greek akros kai mesos logos (the extreme and mean 
ratio), which is the circumscription of the definition:  
            a/b = b/(a + b)   where a and (a + b) are the extremes and b is the mean.
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Its numerical value is Φ = (√5 – 1)/2 = 0.618…  .  All of the surviving ancient references 
to this concept are in mathematical works. In the case of the Cheops Pyramid, there are 
two modern theories – among the very many ones – that claim that the shape is associated 
with the golden section. However, there is a simpler theory based on a rational number: 
the angle of the slope of a triangular face is arc tan 28/22 ≈ 51.843˚ (as it was discussed by 
Sir Flinders Petrie in 1883). It gives a better agreement with the measured data (51.844˚) 
than other theories, and it is supported by both textual and archaeological evidence, 
specifically by a mathematical problem in the Rhind Papyrus and a tomb with similar 
regulating lines (see R. Herz-Fischler’s related publications). Turning to the Greeks, I 
was able to prove that Polyclitus’ Canon, on the basis of surviving fragments of the text, 
was not based on the golden section. There is no reference to this proportion in Vitruvius’ 
work De architectura. Turning to the Middle Ages, we may mention a few Arabic 
mathematical works that refer to the nisbat dhalika wasat wa tarafayn (“proportion of a 
middle and two ends”). Since the Islamic culture produced an especially rich geometric 
art, we may believe that this proportion was used occasionally. For example, Abu ‘l-Wafa’ 
al-Buzjani’s �0th century work – which uses this proportion without naming it – hints 
that artisans and mathematicians had consultations: Kitab fima yahtaju ilayhi al-sani‘ 
min a‘mal al-handasa (“Book on What the Artisan Needs of Geometric Constructions”). 
In the modern literature there are very many statements on the extensive usage of this 
proportion by Renaissance artists. However, most of them have no bases. For example, 
the mathematician Luca Pacioli did not suggest using the “divine proportion” (extreme 
and mean ratio) in art, but discussed it in the context of theory of polyhedra. Although 
Leonardo da Vinci designed the original illustrations of polyhedra for Pacioli’s book, these 
drawings did not require the usage of this proportion. I also demonstrated that Leonardo’s 
expression “divine proportion” in his Trattato – which appears in a quote of the Hungarian 
King Matthias Corvinus – is not the same as Pacioli’s later term. Leonardo used the 
adjective “divine” metaphorically, while the Franciscan priest Pacioli, perhaps knowing 
Leonardo’s expression, coined the mathematical term “divine proportion” as a simple 
equivalent of the earlier mentioned extreme and mean ratio. The secret of Leonardo’s 
“Vitruvian man” – a male body inscribed into a square and a circle drawn around the 
navel – is not based on this proportion, but on some simple ratios of integers. Many 
Renaissance artists made illustrations to an obscure text of Vitruvius (De architectura, 
3, 1, 2–4), but Leonardo was the first who decided that the circle and the square are not 
concentric. Leonardo’s “proportional figure” became widely accepted, and now it is one 
of the best known pieces of artwork. However, Leonardo kept secret the relative position 
of the square and the circle. I reconstructed his possible method on the basis of the ratios 
in the text written by Leonardo himself – following the data of Vitruvius – on the same 
page around the figure. It was not necessary to introduce new regulating lines, which is 
made by very many authors who dealt with this problem. I used simple calculations and 
two theorems of elementary geometry (Pythagorean theorem and the statement that a 
perpendicular bisector of a chord of a circle passes through its center). 

Let us start with the square. It is drawn on the basis of the following observation: “The 
span of a man’s outstretched arms is equal to his height” (I quote Edward MacCurdy’s 
English translation with some corrections). Of course, the side of the square is equal to 
the man’s height (which is the unit). Leonardo described various lengths of the body by 
simple ratios of integers: �/�, �/4, �/5, �/6, �/7, �/8, �/�0 times the man’s height. Let us 
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consider the upper side of the square (Fig. �). I projected the marked “maximum width 
of the shoulders”, which is “a fourth part of the man”, to this side. The point at the right 
is denoted by C (we do not deal with the other side).  Let us calculate BC, where B is the 
point of intersection of the upper side of the square and the circle (see figure caption).
   

←   1/4    →

Figure �
B is given, A and C are available by extending 
the appropriate line-segments marked by 
Leonardo. According to him:
(�) AC = �/6  (“from the top of the breast to the 
crown of the head” is “the sixth of the man”). 
(�) AB = �/4 + �/8 = 3/8  (the length of the 
arm, which is “from the elbow to the tip of the 
middle finger is the fourth part; from this elbow 
to the end of the shoulder is the eighth part”)
Using the Pythagorean theorem, we have: 
BC = √65/24 = 0.335…  times the height.

Figure �
The added bold lines are just 
illustrating the steps of a geometrical 
construction, not regulating lines.

 
After determining the exact position of point B, it is easy to calculate the radius of the 
circle. Just we follow the steps of a simple geometrical construction (Fig. �). First, we 
connect point B with the midpoint of the bottom horizontal side of the square (where the 
circle and the square have a tangential point), and then the perpendicular bisector of this 
new line-segment (chord of the circle) will intersect the vertical midline of the square 
(diameter of the circle) at the center of the circle. The radius is:  (325 + 3√65)/576 = 
0.606... times the height. Since the center of the circle is at the navel, this number also 
gives the ratio of the height of the navel to the full height of the body. It is significantly 
less than the golden number (0.6�8…).  I also noticed that Leonardo’s given ratios include 
a redundant one. The distance from the top of the breast to the crown of the head is given 
as �/6 (= 0.�66…), but it can be calculated by using some given ratios:  
                                      �/8 + �/7 –�/�0 = 47/�80 (= 0.�67…).

This means that Leonardo did not hesitate to round a complicated ratio in order to have a 
simple one. Consequently, we may believe that 
                             BC = 0.335…  should be rounded to �/3 = 0.333…

I am less enthusiastic to round 0.606… to 3/5 = 0.6 since the difference is bigger. 
Moreover, by fixing 1/3, we determine the entire system. Thus, the ratio 1/3 is either a 
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well kept “secret code” of Leonardo or, at least, the key to a method to approximate his 
system. Note that if we consider all of the ratios that Leonardo listed in his text around 
the figure (1/2, 1/4, 1/5, 1/6, 1/7, 1/8, 1/10 times height of the man), the “secret code” 
�/3 is the “missing link” in the list. (It is true, that �/3 is given in another context when 
Leonardo discusses the proportions of the face.) This result is a further piece of evidence 
that the books on basic design should not rush to explain Leonardo’s “Vitruvian man” 
by using the golden section or other sophisticated methods. It is enough to remain in the 
world of “harmonic ratios”.

The German astronomer Kepler dealt with the extreme and mean ratio several times during 
his mathematical calculations. He also referred to this concept as the divine proportion or 
divine section. He was among the first who pointed out that the numerical value of this 
proportion (now it is called the golden number) can be approached by Fibonacci numbers 
(�, �, �, 3, 5, 8, �3, ��, 34 – each term from the third one is the sum of the previous 
two). Specifically, if we consider ratios of neighboring Fibonacci numbers, these ones 
tend to the golden number (Φ = 0.6�8…; see �/3 = 0.666…; 3/5 = 0.6; 5/8 = 0.6�5; 8/�3 
= 0.6�5…; �3/�� = 0.6�9…). Although we cannot exclude that such an approximation 
was used earlier, Fibonacci remained silent on this in the �3th century. It is important 
to note that Kepler, after his great discoveries in astronomy, made a new edition of his 
earliest book and compared the Pythagorean theorem and the extreme and mean ratio 
with a gold-nugget and a gemstone (Mysterium cosmographicum, �nd edition, �6��, 
Chap. ��).  Although, strictly speaking, the Pythagorean theorem is the gold-nugget and 
the extreme and mean ratio is the gemstone, we suspect that this statement contributed 
to the formation of the later term. Finally, the extreme and mean ratio became really 
“golden” in the early �9th century. There is no documented evidence that this term or 
its equivalents were introduced earlier. Until very recently historians of science gave 
credit to M. Ohm, the brother of the physicist G. S.Ohm, for the first printed usage of the 
expression goldener Schnitt in �835, but I gave two earlier examples: Ferdinand Wolff’ 
used this expression as an alternative one in his textbook of geometry in �830 and �833. 
The difference is just a few years, but it means that the discovery of the importance of 
the golden section in botany in the early �830s did not contribute to coining the new term 
goldener Schnitt. Surprisingly, the Latin sectio aurea (golden section) is not an ancient 
or medieval expression, but the joking translation of the German goldener Schnitt into 
Latin in the �9th-century mathematical-educational literature. The goal of introducing a 
Latin expression into German text was simply to demonstrate that the very concept (not 
the expression!) is ancient. 

Adolf Zeising’s German book on his “new theory of proportions of the human body”, 
which is associated with an “unrecognized basic law of morphology penetrating the 
whole nature and art” (the quotes are from the very long title of his work) appeared in 
�854. This is the starting point of “golden sectionism”: Zeising and his followers tried 
explaining all proportional problems by the golden section. In fact, Zeising presented very 
many attractive analyses of various objects of nature and art, with a special emphasis on 
ancient sculptures and buildings. A closer look, however, makes clear that his regulating 
lines associated with the golden section are often artificial. Speaking about the “ideal 
proportions” of human body is also dangerous from the point of view of prejudice against 
people with different proportions. How did “golden sectionism” survive? G. T. Fechner, 
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the father of experimental psychology, relaxed Zesing’s overstatements and discussed 
the golden section statistically. In the case of Fechner’s tests, many people preferred the 
golden section against other proportions, but it is far from being a universal aspect of 
beauty. Fechner’s study of the frames of pictures led to a similar conclusion.

The �0th century produced many works that repeated the overstatements in connection 
with the golden section, while some interesting cases, where this proportion was really 
used, are not widely known. For example, the “golden section algorithm” is the best 
method, with some conditions, in the mathematical theory of search. There are various 
mathematical generalizations of the golden section, including the “metallic means” (Vera 
Spinadel in Buenos Aires) and the “golden n-section” by this lecturer (which is associated 
with the solution of a generalized problem of Kepler). The Hungarian composer Ferenc 
Liszt wrote letters on the golden section. In Russia and Ukraine there are very many 
interesting works on the application of the golden section in architecture and engineering. 
The real golden section needs more “glitters”…

7  MEETING OF  FORMA,  HARMONIA,  AND  SYMMETRIA 

On the basis of the previous survey, I am not surprised that a morphological society was 
born in South America: Sociedad de Estudios Morfologicos de la Argentina (SEMA). 
Similar to this, it is understandable that the traditions of harmonics survive in Vienna. 
Rudolf Haase, the founding director of the International Center for Harmonics, gave a 
lecture at our first congress and exhibition in 1989, and now I am very glad to reestablish 
the harmonic and symmetric connections with Werner Schulze, the current director. 
Of course, we have many overseas members of ISIS-Symmetry at this congress and 
exhibition; they made a long journey to join this meeting. Last, but not least, we have 
some scholars and architects who made important contributions to the topic of the golden 
section. They represent a fourth informal group. Considering the earlier congresses and 
exhibitions of ISIS-Symmetry, there were many exciting presentations on morphology, 
harmony in architecture, symmetry in music, and the applications of the golden section. 
However, this is the first case where three plus one organizations came together. Let us 
hope in harmony, symmetry, and the golden mean in the case of the given form of this 
congress and exhibition.

Dénes Nagy 
Budapest, October �007




