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Abstract: Sponge structures are the most abundant forms in nature, on all possible scales 
of material existence, while the amount of morphological insights into the phenomenon, 
as accumulated over the last millennia, is incredibly meager. Only in the last 200 years, 
and mostly in the second half of the 20th century, we witnessed the emergence of basic 
concepts, insights and imagery with a growing attention given by designers, architects 
and structural engineers. The author had participated conspicuously in expanding the 
domain with his publications on Periodic Hyperbolic Sponge Surfaces (1966); Uniform 
‘Infinite (Sponge) Polyhedra’ (1974,2005) and ‘The Periodic Table of the Polyhedral 
Universe’ (1996). Lately, after confronting the prevalent definitions and allowing for 
polyhedral maps with curved edge-lines and face surfaces, the amount of uniform sponge 
polyhedra exploded, to reveal a multitude of new polyhedral sponge configurations, 
spherical, toroidal and hyperbolic, and their governing hierarchical order. The new 
sponge imagery  might play a significant role in the morphological research of natural 
bio-forms and  physical nano – structures, promote images and ideas of innovative space 
structures and influence the way we perceive our increasingly dense urban habitat.  

1 INTRODUCTION

Nature is saturated with sponge structures on every possible scale of physical-biological 
reality. The term was first adopted in biology:
“Sponge: any member of the Phylum Porifera, sessile aquatic animals with single cavity 
in the body, with numerous pores. The fibrous skeleton of such an animal. Remarkable 
for its power of sucking up water” ....Wordsworth dictionary.
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With time the expression: Sponge, spongy, spongeous, Sponginess, was adopted in many 
languages to describe a physical phenomenon which is characterized by porosity and 
visual permeability and the condition of a lump of matter which, as a result of biological-
chemical-physical processes of erosion-corrosion, growth and death, acquired its 
characteristic porosity. Numerous examples in the surrounding nature, on the microscopic 
and the macro-scopic scale, carry a testimony to the abundance of the phenomenon: 
microscopic radiolarya, bones,  eroded  rocks and  gigantic cave labyrinths.
Slowly but steadily we are becoming aware that the T is basic and dominant on the nano-
scale of the big molecules (protein +) and, according to Stephen Hauking, also on the 
macro-cosmic scale.
“The outer space of the cosmos lost it Euclidean rectiliniarity to the hyperbolic curvature 
of Riemannian geometry”,,,, (William Day- 1989). It transpires that the phenomenon is 
the most abundant in the physical and the organic material world of nature. With some 
extrapolation of the perceiving mind it is right to claim that the sponge phenomenon, 
with its porosity and permeability characteristics, is central to the physical morphological 
nature of the human habitat, on the urban and the building scale, and represents its defining 
imagery.  
Historically speaking, the phenomenon was received with great consternation. It was 
associated in the human mind of its time with extreme, unresolved complexity. The 
labyrinth of Knossos became the mythological archetype of a complex phenomenon, 
beyond any descriptive discipline and capacity, geometric-mathematical or even literary-
verbal. of course it is beyond the reach of Euclidean geometry. The labyrinth myth came 
to represent impotence of the human intellect in face of a bewildering, puzzling mystery.

2 MORPHOLOgICAL APPROACH TO PERIODIC SPONgE 
STRUCTURES 

“Our study of natural forms”, the essence of morphology, “is part of that wider science 
of form which deals with the forms assumed by nature under all aspects and conditions, 
and in a still wider sense, with forms which are theoretically imaginable”…( on Growth 
And Form…).
A sponge may be characterized by its envelope, which, if unbounded 2-d manifold (sponge 
surface), subdivides space into two complementary subspaces. on this 2-d manifold it 
is possible to draw infinite number of maps, thus giving rise to the notion of ‘sponge 
polyhedra’ and consequently to ‘sponge polyhedral structures’. 
Each of the complementary subspaces may be faithfully represented with Tunnel Space 
Lattices (T.S.L), thus justifying the observation that each pair of complementary (dual, 
reciprocal) 3-D Space Lattices gives rise to a topologically specific sponge surface 
partition, subdividing space between the two.
Within the random myriads of possible sponge surface envelopes, it is quite natural that 
the human mind is inclined to concentrate and explore first the causal and the periodic 
members of the evolving imagery and the related array of forms. Within this context it 
should be noted that each periodicity and symmetry feature of the T.S.L Pair is shared 
with the related Sponge Surface, and vice versa.
It should be stated that by ‘sponge polyhedron’ it is implied: any 3-D polyhedron which 
complies with the Euler’s Formula of   V-E+F=2(1-g),    with V; E; F&g corresponding to 
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Vertices Edges; Faces and genus of the 2-d manifold, respectively.
of critical importance, when dealing with the polyhedral universe and especially with its 
‘sponge domain’, is the determination of their primary parameters, namely: ∑α av.; Valav. 
and-g (average sum of the polygonal angles in a vertex; average valency-the number of 
edges meeting in a vertex; and genus of the 2d manifold, respectively), on the basis of 
which, as coordinates of a Cartesian space, the’ Periodic Table of the Polyhedral Universe’ 
is constructed.
The ‘Periodic Table’, which provides a domain in which every conceivable polyhedron 
has a unique point representation and discloses patterns of polyhedra sharing various 
geometric-topological characteristics, related to the a.m. primary parameters. It constitutes 
a powerful research tool of the polyhedral universe, with its myriads of components and 
of its totality, much of it in visual terms.
While ∑αav. and Val.av. Can be ‘extracted’ from Descartes formula:   V (2л - ∑α av.)= 
4л (1-g)    and the a.m. Euler’s formula, determination of g, especially when in-the range 
of high spatial complexity, was proven to be more elusive     and required mobilization of 
some basic insights from graph theory.
It was resolved, to a great extent, with the author’s theorem, stating that:

The genus-g of the sponge polyhedron’s 2d manifold (in 3D space), which subdivides 
between two complementary Tunnel Space Lattices A&B, each with LA & LB. Lines 
(axes) and NA. & NB. Nodes, respectively, is:
g = LA – NA + 1 = LB – NB + 1,     and if periodic and infinite in extent, the polyhedron’s 
geometry and its g – value may be represented by its Translation Unit (TU.),
Thus:     g(TU.)  = LA(TU.)  - NA(TU.)  +1 = LB(TU.)  - NB(TU.)  + 1.

First to receive mathematical attention were the Periodic Sponge Surfaces P.S.S (Schwartz; 
Mobius – 19-th century), followed by regular skew polyhedra (Petrie – Coxeter, early 20-
th century).
Sponge polyhedra started to feature in molecular illustrations of chemistry books (Wells 
– Structural Inorganic chemistry – 1960). of note was the author’s doctoral thesis (1966), 
dealing with P.S.Ss and P.S.P.s, and the extrapolated ‘Infinite Polyhedra’ (in collaboration 
with Wachman and Kleinman – 1974). The topic was expanded by the author in his 
‘Periodic Table of the Polyhedral Universe’ (1996). Few more colleagues joined in the 
exploration (Mackay, Lalvani, Stewart, Grunbaum, Miyazaki, and Korren), but with the 
self imposed constraints of the geometric – Symmetric nature (and especially the planarity 
of faces), the subject was bound to miss its potential scope and fail to reach beyond its 
already perceived horizon. It was from these premises that the author decided to venture 
again into the field, with the objective of generating periodic (symmetric) uniform sponge 
polyhedra, while accepting non-planarity and curvature of edges and faces.

3 gENERATIVE CONCEPTS AND HIERARCHICAL 
CLASSIFICATION OF THE DOMAIN.

The employed exploratory process involved a certain fusion of symmetry and topological 
reasoning and combinatorics. 
It was clear from the outset that the domain of the periodic sponge polyhedra is dominated 
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by certain topologically categorized classes: the Spherical; Toroidal; Hyperbolical and, 
what could be aptly categorized as Primitive (Cyclic; Stripe; Columnar and helicoidal) 
P.S.Ps. All these Periodic Surfaces and Polyhedra correspond to various symmetry groups 
which account for the uniformity of the vertex configurations. 
Few generative conceptual features have to be introduced at this point: 
• genetic Surface (geS.): when a T.S.L of a specific sponge surface can be perceived 
as a polyhedral map, drawn on (embedded within) a 2d-manifold, this manifold should 
be considered as its genetic surface. Any GeS, can sustain many polyhedral maps and 
therefore many sponge surfaces can be genetically related to one and the same GeS, (and 
when periodical) the symmetries of which will be shared by them all. All the genetically 
related sponges, sharing also the same symmetry groups represent a genetic clan of 
sponge surfaces and related polyhedra. The number of all g-levels of all the genetically 
related sponge surfaces derived from one and same GeS. and their corresponding sponge 
polyhedra are deducible from symmetry combinatorics. 
• Repeating geS. Unit is another ordering feature of P.S.Ps.  It is represented by possible 
topological similarity of repeating (symmetrical) GeS. Units, leading to identical 
polyhedral notations (therefore equality of  ∑αav. and Valav.) while differing in their 
g-values.
• Multi – Layer geS.  Spongeous arrangement is possible while still in conformity with 
the uniformity of vertex configurations, and its local and overall symmetry definition. 
The resulting n – layered sponge surfaces and polyhedra, where n can reach to infinity, 
and with their g, ∑αav. & Valav. values, as functions of the number n, raise considerably 
the attainable complexity of the polyhedral sponge configurations. The whole domain of 
P.S.P displays a hierarchical organization and its classification could be spread over five 
levels:
1. Topological categorization into phenotypes: spherical, primitive, toroidal and 
hyperbolical;
2. Symmetry groups, corresponding to particular phenotypes;
3. Genetically related Clans, corresponding to same Genetic Surfaces;
4. Families, corresponding to common T.S.Ls and g-levels;
5. Individual polyhedral - species with specific notations.    
  
4 THE EXTENT OF THE   P.S.P DOMAIN, WITHIN THE 
POLYHEDRAL UNIVERSE

When perceived through the coordinated space of the ‘Periodic table of the Polyhedral 
Universe’, it becomes clear  that with the addition of the Sponge Polyhedra domain, the 
emerging polyhedral universe is exploding to cosmic dimensions, as compared with the 
‘Ptolemaic world picture’ of the polyhedral domain of just one decade ago.When all 
the horizon of sponge structures is taken in, it dawns on us that the number of P.S.Ps, 
with all their phenotypes, clans and families, many of which include infinite number 
of members, each, is overwhelming, much in excess of all the familiar polyhedra in the 
g = 0 (spherical) and the g = 1 (toroidal) domains. So, it’s not just in the natural – 
physical, but also in the theoretical and possibly imaginable world of geometry that 
the sponge configurations constitute the overwhelmingly greater majority of shapes 
and forms.  
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