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Abstract: Considering structure of knots and links as a self-referential system, different 
recursive sequences occurring in knot theory are discussed. Many new integer sequences 
are obtained using the program LinKnot as an experimental mathematics tool.

Knot theory is a new and rich field of mathematics. Although “real” knots are familiar 
to everyone and many ideas in knot theory can be formulated in everyday language, it 
is an area abundant with open questions. One of our main ideas in the book LinKnot: 
Knot Theory by Computer  was to avoid obvious classification of knots and links 
according to their number of components. For this reason knots and links are referred to 
as KLs and treated together whenever possible. KLs are denoted by Conway symbols, a 
geometrical-combinatorial way to describe and derive KLs. The same notation is used in 
the Mathematica based computer program LinKnot that can be downloaded from the web 
address http://www.mi.sanu.ac.yu/vismath/linknot/ and used as a powerful educational 
and research tool for experimental mathematics. The electronic version of the book 
LinKnot and the program LinKnot that provides webMathematica on-line computations 
are available at the address http://math.ict.edu.yu/.
At the first glance, notation, enumeration and work with KLs is very similar with the 
situation occurring in different structures with hardly recognizable ordering principles: 
prime numbers, polyominoes etc., resisting attempts of classification. Following the 
line of T.P. Kirkman, J. Conway and A. Caudron, in the book LinKnot: Knot Theory 
by Computer we have attempted to present a consistent geometrical, combinatorial and 
graph-theoretical approach to the derivation and classification of KLs.  We concluded 
that, in a certain sense, the structure of KLs looks like Chinese nested spheres, where 
every sphere is placed inside the preceding one.
Treating a self-reference and recurrence as a kind of symmetry, in this paper we will 
show some interesting patterns, self-referential recursive integer sequences occurring in 
knot theory. Most of them are already included in The On-Line encyclopedia of Integer 
Sequences by N. Sloane (http://www.research.att.com/~njas/sequences/) and originated 
from very different sources, and some of them are obtained for the first time. First we will 
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present the integer sequences occurring at a global level and characterizing the number of 
KLs belonging to particular large well defined classes (e.g., rational KLs or achiral rational 
KLs), and then to consider integer sequences derived from KL families using polynomial 
KL invariants (e.g., Alexander, Jones, HOMFLYPT, or Kauffman polynomials).

A rational KL in Conway notation is given as any sequence of natural numbers n1, n2, ..., 
nk not beginning or ending with 1, where each sequence is identified with its inverse. The 
number of rational KLs with n  crossings is given by the the following formula which 
holds for every n ≥ 4 :
   2n-4 + 2[n/2] +2 

.
 
This simple formula was first derived by C. Ernst and D.W. Sumners (1987) in another 
form, and later independently by S. Jablan (1999). We can compute the first 20 numbers 
of this sequence. For n = 3 we have one knot, so the sequence is: 1, 2, 3, 6, 10, 20, 36, 72, 
136, 272, 528, 1056, 2080, 4160, 8256, 16512, 32896, 65792, 131328, 262656, 524800, 
... This sequence is included in The On-Line encyclopedia of Integer Sequences as the 
sequence A005418. The number of rational knots with n crossings (n ≥ 3) is given by the 
sequence A090596 and its corresponding general formula, so we can derive the formula 
for the number of rational links with n crossings as well.

A rational KL with single bigons, given by Conway symbol containing only tangles 1 
and 2 is called a rational source link. Computing the number of rational source KLs with 
n crossings we obtain the general recursive formula: b [0] = 1, b [1] = 1, b [2n - 2] + b 
[2n - 1] = b [2 n]  ,  where f is the Fibonacci sequence. For n ≥ 4 we obtain the sequence 
1, 1, 2, 2, 4, 5, 9, 12, 21, 30, 51, 76, 127,195, 322, 504, 826, 1309, 2135, 3410,... known 
as the sequence A102526. Both of these sequences, A005418 and A001224, have been 
discovered before, but in a different context, related to “Binary grids” and “Packing a box 
with n dominoes”.

Rational KLs are the main class of KLs for which we are able to analyze various general 
properties and construct large (infinite) subclasses of KLs satisfying these properties. One 
of such properties is chirality: a KL is achiral (or amphicheiral) if its “left” and “right” 
forms are equivalent, meaning that one can be transformed to the other by an ambient 
isotopy. A rational knot (non-oriented link) is achiral iff its Conway symbol is mirror-
symmetric (palindromic) and has an even number of crossings. The number of achiral 
rational knots for n = 2k ( k = 1, 2, 3,... ) yields the Jacobsthal sequence 0, 1, 1, 3, 5, 11, 
21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, ... 
defined recursively with a [1] = 0, a[2] = 1, 2a[k] + a[k + 1] = a[k + 2] and given by the 
general formula
              2n – (–1)n

   a[n] = –––––––– .
 
Calculating the number of achiral non-oriented rational links for n = 2k (k = 2, 3, 4,... ) we 
again obtain the Jacobsthal sequence.
n -tangles play an important role in knot theory. Every n -tangle can be denoted by a regular 
2n -gon with 2n arcs emerging from its vertices. A closure of n-tangle is obtained 
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by joining the remaining free arcs in pairs, without introducing new crossings. The number 
of closures of n-tangles, i.e., the number of ways of joining 2n points on a circle by n  
non-intersecting chords is known as Catalan number (or Segner number), the sequence 
A000108. In general, Catalan number is given by the formula
     (2n)!
    C(n) = –––––––– .

We can also consider the set of chord diagrams (or Gauss diagrams) obtained from  n-
tangles. The complete set of n -diagrams with the operation of  -tangle composition is 
the non-commutative monoid− a non-commutative semigroup with the neutral element, 
known as Brauer semigroup. The neutral element is the n -diagram with horizontal 
parallel chords. This set has (2n-1) !! elements, where (2n-1) !! is the odd factorial 
number 1×3×...× (2n - 1).The number of  n-diagrams is given by the sequence A001147: 
1,3,15,105,945,10395,... and can be easily computed from the general formula.

Mirror curves are discussed by P. Gerdes. At the beginning of knotwork art, every culture 
probably used plates− rectangular square grids RG[a,b] of dimensions a,b(a,bЄ N) 
without internal mirrors. Plates have been recognized as the basis of all Celtic knotworks 
by the antiquarian J. Romilly Allen whose twenty years’ work is summarized in the book  
Celtic Art in Pagan and Cristian Times (1904). The initial number of mirror curves for 
plates without internal mirrors is k = GCD [a,b], so a single curve is obtained iff a,b  
are mutually prime numbers. From the knot theory point of view, every single-curve 
plate, turned into an alternating knot by introducing the relation “over-under”, represents 
a Lissajous knot. The infinite series of plates, obtained for an arbitrary a (a ≥ 3 ) and b 
= 2 , consists of the rational KLs of the form 313, 31213, 3121213, 312...213 (Fig. 1). 
Notice that for every odd we obtain a knot, and for every even b a 2-component link. The 
number of different projections of these KLs is: 1, 4, 13, 68, 346,...,  respectively, but in 
knotworks, only one of them - the most symmetric, is used for each a. The sequence 1, 4, 
13, 68, 346,... is not included in the The On-Line encyclopedia of Integer Sequences; in 
fact, it is possible to obtain many new infinite sequences defined by numbers of different 
projections of specific classes of KLs.

 

Figure 1

A special class of recursive integer sequences are those derived from KL families by 
computing their polynomial invariants: Alexander, Jones, HOMFLYPT, or Kauffman 
polynomials. Their recursive structure is the result of skein relations. For example, 
computing HOMFLYPT polynomials (reduced to one-variable polynomials) for knots 



269

from the family  2k + 1 (k =1, 2,... ), we obtained the integer sequences  A014106,  
A030440, A057778, A054333, A050486, A005585, A000330, as well as an infinite 
number of new integer sequences. Hence, every family of KLs is an endless source of 
recursive integer sequences originating from polynomial KL invariants.
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