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Abstract: A tiling by polygons is called normal if it is edge-to-edge and there are positive 
numbers r and R such that each polygon contains a certain disk of radius r and is 
contained in a certain disk of radius R. A node of valence k in an edge-to-edge tiling is 
a point that is the common vertex of k tiles. Given a normal tiling of plane by pentagons 
each of which has m nodes of valence 3 and 5 - m nodes of valence  k (0 < m < 5, k ≥ 4 ), 
we find ( m, k ) = ( 3, 4 ) or ( m, k ) = (4, 6 ) .
 
1 CONVEX PENTAGONAL TILING PROBLEM

Tiling by polygons is to cover a plane with polygons (tiles) without gaps or overlaps. In 
this paper, the term “plane” is used to refer to the Euclidean plane of elementary geometry. 
A single congruent polygon used to tile the plane is called a prototile or a polygonal 
tile, and plane tiling with convex polygons has primarily been studied in an attempt to 
exhaust all of the conditions of the prototile. It is well known that any single triangle or 
quadrilateral, including concave quadrilaterals, is tileable (i.e., all prototiles). In the case 
of convex hexagons, prototiles can be categorized into three types. For convex polygons 
with seven or more edges, no prototiles exist. At present, for the convex pentagons, 14 
types are known (see Fig. 1), but it remains unclear whether this is the complete list 
of convex pentagonal tiles (Grünbaum and Shephard, 1987). This pentagonal case is 
generally termed the convex pentagonal tiling problem. As shown in Fig. 1, each convex 
pentagonal tile is defined by the lengths of its edges and the magnitudes of its angles, 
but some degrees of freedom remain. Then, unless a convex pentagon is a new prototile, 
any convex pentagonal tile belongs to one or more of 14 types. For example, although 
the tiling in Fig. 2 is new, the pentagonal tiles in the figure are not new prototiles. This is 
because the pentagonal tiles belong to types 1 and 7.
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Figure 1: Convex pentagonal tiles of type 1-14.

Figure 2: Tiling by convex pentagons that belong to type 1 and 7.

2 DEFINITIONS AND PROPOSITION

Tiling by polygons is edge-to-edge if the vertices and edges of the polygons coincide 
with the vertices and edges of the tiling. With respect to the pentagonal tilings, we are 
primarily interested in edge-to-edge tiling, since it is more essential than non-edge-to-
edge tiling. Therefore, in this paper, we consider the properties of edge-to-edge tiling 
by pentagons. In our study, the common vertex of k polygons (tiles) in an edge-to-edge 
tiling is called a node of valence k. The valence k of a node in edge-to-edge tiling is at 
least three. There exist positive numbers r and R such that each tile contains a disk of 
radius r and is contained in a disk of radius R, in which case the tiles in the tiling are said 
to be uniformly bounded. A tiling T by polygons is called normal if it is edge-to-edge 
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and all of the tiles in T are uniformly bounded. Given a normal tiling T by polygons, let 
W be a closed disk of radius  ρ ( > 0 ) on the plane. Then, let F1 and F2 denote the set of 
polygons contained in W and the set of polygons that meet the boundary of W but are not 
contained in W, respectively. Here, we define F:= F1      F2 and  denote by P(F), E(F), and 
N(F) the numbers of polygons, edges, and nodes in F, respectively. In addition, let K(F) 
be the sum of valences of N(F) nodes in F. Then, the limit lim ρ→∞ (K(F)/N(F)) is called 
the average valence of nodes in T. The tiling T is balanced if it is normal and satisfies the 
following condition: the limits lim ρ→∞ (N(F)/P(F)) and lim ρ→∞ (E(F)/P(F)) exist and 
are finite. Next, let Ph(F) and Ns(F) be the number of polygons with h edges in F and the 
number of s-valent nodes of the tiling in F, respectively. The tiling T is strongly balanced 
if it is normal and the limits lim ρ→∞ (Ph(F)/P(F)) and lim ρ→∞ (Ns(F)/P(F)) both exist 
(Grünbaum and Shephard, 1987). 

Bagina (2004) demonstrated that there exists a tile with at least three nodes of valence 3 
in each edge-to-edge tiling of the plane by uniformly bounded pentagons. On the other 
hand, the average valence of nodes in a balanced tiling by pentagons is 10 / 3 ≈ 3.33 Λ.  
Therefore, since the average valence is not an integer, there are no balanced tilings by 
pentagons with all nodes of the same valence. One reason that the convex pentagonal 
tiling problem remains unsolved may be the property of average valence. Therefore, we 
consider the properties of nodes in pentagonal tilings and study the convex pentagonal 
tiling problem by investigating the properties of the nodes. Sugimoto and Ogawa (2006) 
reported that if the strongly balanced tiling by pentagons is formed of only 3- and k-
valent nodes, then lim ρ→∞ (N3(F)/Nk(F)) = 3k – 10 (k ≥ 4 ). In this paper, we present the 
following proposition:

Proposition. If each pentagon in the normal tiling of a plane by pentagons has m nodes 
of valence 3 and 5 –  m nodes of valence k (0 < m < 5, k ≥ 4 ), then ( m, k ) = ( 3, 4 ) or ( 
m, k ) = (4, 6 ) .

3 CONCLUSION

Let us investigate the properties of tilings by congruent convex pentagons by using the 
proposition presented in the previous section. First, the tilings of type 4, 6, 7, 8, and 9 
in Fig. 1 satisfy the property of ( m, k ) = ( 3, 4 ) in the proposition. Then, although the 
type 1 and 2 tilings, among the 14 types, are generally non-edge-to-edge (see Fig. 1), the 
tilings by convex pentagonal tiles, which belong to types 1 and 2, can be edge-to-edge in 
special cases (see Fig. 3). When the tilings are edge-to-edge, in the range that we know, 
the convex pentagonal tiles that belong to type 1 or type 2 can form tilings that satisfy the 
property of ( m, k ) = ( 3, 4 ) in the proposition. On the other hand, the edge-to-edge tiling 
of type 5 in Fig. 1 satisfies the property of ( m, k ) = (4, 6 ) in the proposition.

The properties introduced in this paper may not be sufficient for solving the convex 
pentagonal tiling problem. However, by accumulating such properties one by one, we are 
steadily approaching the complete solution of the problem.
This research was supported by the Ministry of Education, Science, Sports and Culture, 
Grant-in-Aid for Young Scientists (B), 19740061.
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Figure 3: Edge-to-edge tilings of type 1 and 2. (a) Convex pentagonal tiles belong to type 1. (b) Convex 
pentagonal tiles belong to type 2.
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