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Abstract

We present some results for convergence properties of a system of non linear

rational difference equations subject to multi -point exception handling. The con-

vergence of solution to this equation is investigated by introducing an exception

handling techniques. We also prove the convergence properties and boundedness

concepts for a more general class of rational difference equation. The obtained

results are applied to the analysis of exception handling techniques which is associ-

ated with error identification and noise reduction in non linear filters like Extended

Kalman Filter associated with non linear difference equations. Finally some numer-

ical examples are showed for exception handling techniques and the same is draw it

by MATLAB.
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1. Introduction

The study of the nonlinear rational difference equations of a higher order is quite

challenging and rewarding [7]. The results about these equations offer prototypes

towards the development of the basic theory of the global behavior of nonlinear

difference equations of a higher order [2,4]. Recently, many researchers have inves-

tigated the behavior of the solution of difference equations. Difference equations

arise in the situations in which the discrete values of the independent variable in-

volve. Many practical phenomena are modeled with the help of difference equations



[1,8]. In engineering, difference equations arise in control engineering, digital signal

processing, electrical networks, etc. In social sciences, difference equations arise to

study the national income of a country and then its variation with time, Cobweb

phenomenon in economics, etc.

Periodic solutions of difference equations have been investigated by many re-

searchers, and various methods have been proposed for the existence and qualita-

tive properties of the solution [11]. The study of rational difference equations of

order greater than one is quite challenging and rewarding [5]. There has been a

great interest in studying the global attractivity, the boundedness character and the

periodicity nature of nonlinear difference equations [19].

Recently there has been a great deal of interest in studying the behavior of rational

difference equations [13, 14, 21]. Our goal in this paper is to investigate the behavior

of positive solutions of the recursive equation

xn+1 =
αxn + γyn
Axn + Cyn

and yn+1 =
βxn + δyn
Bxn +Dyn

(1)

where α, β, γ, δ, A,B,C and D are non negative parameter. We develop several

approaches which allow us to extend boundary conditions of the above rational

difference equations and handled the exceptions.

The paper is organized as follows: In Section II, we recall the basic concepts and

definitions and results which are used throughout the paper, also we obtained the

main result of the paper which is to identify and overcome (reduce) the exceptions

which are going to produce the noise of any system of signals. Some numerical

simulations to the equation are given to illustrate our results in Section III which

are implemented in an Extended Kalman Filter. Section IV concludes the paper.

2. MAIN RESULTS

Consider the following system of difference equations,

xn+1 =
αxn + γyn
Axn + Cyn

and yn+1 =
βxn + δyn
Bxn +Dyn

In order to analyze this system, we consider un = yn
xn

, we can always arrange at least

one non zero coefficient is equal to one in either the numerator or the denominator



or both. Let xn = 1, then (1) becomes,

xn+1 =
α + γun
A+ Cun

and yn+1 =
β + δun
B +Dun

(2)

From the above equations we extend un into un+1 , then we have

un+1 =
(β + δun)(A+ Cun)

(B +Dun)(α + γun)
(3)

We will break up the analysis into the various cases, depending upon the coefficients

of un+1. Thus the difference equation reduces to a single variable for these cases [9,

20].

Theorem 2.1. Suppose xn and yn satisfying system (1). Then for any given choice

of parameters, exactly one of the following must happen :

(i) Every solution converges to a fixed point of the system

(ii) There exists a unique positive prime period two solution and every solution

converges either to the prime period two solution or to a fixed point of the system

(iii) There exist unbounded solutions.

Proof. We will now go through the different cases depending upon which the coeffi-

cients of un+1 are positive in (1).

Case (1) Assume that C,D, γ and δ are all positive. By the change of variables, we

may express (1) in the form,

un+1 =
(β + un)(A+ un)

(B + un)(α + un)
(4)

Lemma 2.2. Consider the difference equation,

un+1 =
(a+ un)(b+ un)

(c+ un)(d+ un)

with a, b, c and d are non negative constants. For all values of the parameters a, b, c

and d every solution converges either to a fixed point or to a unique positive prime

period two solution. Furthermore the fixed point to which the solution converges

must be positive with the following exceptions.

(i) If b = 0, and a < cd then there exist solutions so that un → 0, as n→∞.



(ii) If b = 0, and a = cd and c+ d ≥ 1, then there exist solutions so that un → 0 as

n→∞.

By the Lemma (2.2), every solution converges either to a fixed point of (4) or to

a unique positive prime period two solution. The fixed point must be positive with

certain exceptions. By excluding these exceptions the system converges either to

a positive fixed point of (1) or to a unique positive prime period two solution. To

identify the exception consider the following various cases.

Case 1.1 Assume that A = 0, β = Bα and B + α ≥ 1.

By exception (ii) in Lemma 2.2, there exist solutions so that un → 0. From this we

get

xn+1 =
α + un
un

→∞ if α > 0.

If α = 0, then there exist solutions so that xn+1 = 1, for all n ≥ 0 and yn+1 =
un

B+un
→ 0.

Case 1.2 Assume that β = 0, A = Bα and B + α ≥ 1

By exception (ii) in Lemma 2.2, there exist solutions so that un → 0. If A > 0, then

there exists a solution,

xn+1 =
α + un
A+ un

→ α

A
and yn+1 =

un
B + un

→ 0

Case 1.3 Assume that A = 0, and β < Bα.

By exception (ii) in Lemma 2.2, there exist solutions so that un → 0. Thus xn+1 =
α+un
un
→∞

Case 1.4 Assume that β = 0 and A < Bα.

By exception (ii) in Lemma (2.2), there exist solutions so that un → 0. If A > 0,

then there exist a solution so that,

xn+1 =
α + un
A+ un

→ α

A
and yn+1 =

un
B + un

→ 0

Case 2 Assume that γ, C and δ are positive and D = 0 in (2). By relabeling the

parameter and change of variables, we can express the system in the following form,

xn+1 =
αxn + yn
Axn + yn

and yn+1 =
βxn + δyn

xn
(5)



Where δ > 0.

Case 2.1 Assume that α > 0, A > 0 and β > 0.

By the change of variables xn → yn and yn → xn, the system becomes

xn+1 =
δxn + βyn

yn
and yn+1 =

xn + αyn
xn + ayn

After a further change of variables and relabeling the parameters, we can express

the system in the form,

xn+1 =
αxn + yn

yn
and yn+1 =

βxn + yn
Bxn + yn

(6)

with α, β and B are being positive. We apply (1) in the lemma (2.2), then we have,

xn+1 =
un(un + δ)

(un + β)(un + α)
(7)

Under the assumption of δ 6= β and α > 0, now by the lemma 2.2 every solution of

(1) converges to a fixed point. Furthermore, the fixed point must be positive with

the exceptions to be covered. The exceptions are

(i) Assume that β < αB

(ii) Assume that β = αB and α +B ≥ 1.

Case 2.2 Assume that α > 0, A > 0 and β = 0.

Here we have the following equations,

xn+1 =
α + un
A+ un

, yn+1 = δun and un+1 =
δun(un + A)

un + α

Case 2.3 Assume that δ = 1 and A > α or δ > 1 and Aδ ≥ α.

We know that un+1 > un and it is obvious that un → 0. Hence yn+1 = δun → ∞
and then unbounded solution exists.

Case 2.4 Assume that δ < 1 and Aδ ≤ α or δ = 1 and A < α.

We have un+1 < un then it is easy to conclude that un → 0. If α > 0 and A = 0,

then xn+1 →∞. Otherwise

xn+1 =
α + un
A+ un

→ α

A
, and yn+1 = δun → 0



Case 2.5 Assume that δ > 1 and Aδ ≤ α.

Note that,0 and ū = α−Aδ
δ−1 > 0 are the only fixed points of (7). Also we observe that

lim
u→∞

f(u)
u

= δ > 1 and lim
u→∞

f(u)
u

= Aδ
α
< 1. Thus f(u) < u for u ∈ (0, ū) and f(u) > u

for ū ∈ (ū,∞). Since f is strictly increasing, then whenever u0 ∈ (0, ū) then un → 0

and whenever u0 ∈ (ū,∞) then un →∞. Thus yn+1 = δun →∞ and so unbounded

solution exist.

Case 2.6 Assume that δ < 1 and Aδ > α.

Consider the fixed points of (7) i.e. 0 and ū = α−Aδ
δ−1 > 0. Further observing that

lim
u→∞

f(u)
u

= δ > 1 and lim
u→∞

f(u)
u

= Aδ
α

> 1. Thus f(u) > u for u ∈ (0, ū) and

f(u) < ufor ∈?(ū,∞), Sincef is strictly increasing then by analysis we get un → ū

for all possible positive initial conditions and hence {xn, yn} converges to all its

initial values.

Case 2.7 Assume that δ ≥ 1.

Here we have un+1 > un and it obvious that un → ∞. Thus yn+1 = β + δun and

hence unbounded solution exist.

Case 2.7 Assume that δ < 1.

Obviously there is exactly one positive fixed point say ū. If we consider 0 is the fixed

point then either β = 0 or A = 0. If both β = 0 and A = 0 then it is trivial to

see that un → ū, where ū is the unique positive fixed point and hence the system

converges to its unique positive fixed point. If suppose β and A are not equal to

zero, then there exists a critical point and it gives an absolute minimum value. Then

check that a necessary condition for here to be a prime period two solution m and

M. If there are no prime period two solutions then the system converges to its unique

positive fixed point.

Case 2.8 Assume that α > 0 and A = 0.

In this case we have

un+1 = un
δun + β

un + α

Now we consider the following Theorem and Lemma about exception handling tech-

niques of rational difference equations. �



Theorem 2.3. Consider

un+1 =
A(un + a)(un + b

un + c
(8)

with a, b and c are non negative,A > 0 and the latest one of a, b or c equals to zero.

Then every solution converges to the unique positive fixed point with the following

exceptions.

(i) Suppose that c = 0, a > 0, b > 0 and A ≥ 1 then every solution un →∞.
(ii) Suppose that a = 0, A > 1 and Ab ≥ c or that a = 0, A = 1 and b < c. Then

un →∞.
(iii) Suppose that a = 0, A = 1 and b = c, then un = u0 for all n ≥ 1

(iv) Suppose that a = 0, A > 1 and Ab < c. Then if un ∈ (0, ū) we have un → 0. If

u0 ∈ (ū,∞) then un →∞.
(v) If one reverses the roles of a and b in exceptions (ii) through (iv) the same results

will follow.

Now consider the following lemma,

Lemma 2.4. Consider the system (1) and the rational difference equation (3) with

C,A, γ, α,D,B, δ and β are non negative constants. Then it follows that

(i) (x̄, ȳ) is a positive fixed point of (1) if and only if ū is a fixed point of (3), where

xn+1 =
α + γun
Cun + A

, yn+1 =
β + δun
B +Dun

andū =
x̄

ȳ

Furthermore the system converges to (x̄, ȳ) if and only if the solution for (3) con-

verges to ū.

(ii) (m1,m2) and (M1,M2) are positive prime period two solutions of the system if

and only if m and M is a positive prime period two solution of (3) where,

m =
m2

m1

and M =
M2

M1

m1 =
α + γm

A+ Cm
, m2 =

β + δm

B +Dm
, M1 =

α + γM

A+ CM
and M2 =

β + δM

B +DM
Furthermore, the system converges to (m1,m2) and (M1,M2) if and only if the equa-

tion (3) converges to the prime period two solutions m and M. By Theorem (2.3)



and Lemma (2.4), every solution of the system converges to the unique positive fixed

point with the following exceptions.

Exceptions of Case 2.8

S.No Condition Exceptions

1 Suppose that δ > 1 and β ≥ 1 Then by exception (ii) of Theorem 2.3, every

solution un →∞ and so yn+1 = β + un →∞.
2 Suppose that δ = 1 and β ≥ δα Then by exception (ii) of Theorem 2.3, every

solution un →∞ and so yn+1 = β + un →∞.
3 Suppose that δ = 1 and α = β Then by exception (ii) of Theorem 2.3,

un = u0 for all n ≥ 1.Thus xn+1 = αx0+y0
y0

and yn+1 = αx0+y0
x0

for all n ≥ 0.

4 Suppose that δ > 1 and β ≤ α Then by exception (iv) of Theorem 2.3, if uo ∈ (0, ū),

or δ = 1 and β < α we have un → 0, and so xn+1 = α+un
un
→∞.

5 Suppose that δ > 1 and β < α Then by exception ( v) of Theorem 2.3, if uo ∈ (0, ū)

we have un →∞. Thus if y0/x0 ∈ (o, ū)

then we have xn+1 = α+un
un
→∞.

Theorem 2.5. Suppose

un+1 =
1

(a+ un)(b+ un)
(9)

where a and b are non negative constants, then for all positive initial conditions

every solution converges either to a unique positive prime period two solution or to

a positive fixed point with the following exception. If either a = 0 or b = 0 then

whenever u0 ∈ (0, ū) we have u2n → 0 and u2n+1 → ∞ and whenever u0 ∈ (ū,∞),

we have u2n →∞ and u2n+1 → 0 as n→∞.

Proof. f is strictly increasing on (0,∞) and hence the proof is trivial.

Case 2.9 Assume that γ and D are positive and that C and δ are both obtain the



value of zero. In this case we express our equation (2) as

xn+1 = αn + un, yn+1 =
1

B + un
and un+1 =

1

(α + un)(B + un)

By Theorem (2.3) and Lemma (2.4) every solution of the system converges either

to a unique positive prime period two solution or to a positive fixed point with the

exception that either α = 0 or B = 0. By Theorem (2.3) if u∈(ū,∞) then u2n →∞.

Thus if y0
x0
> ū, then x2n+1 = α + u2n →∞.

Case 2.10 Assume that γ, δ and D are all positive and that γ = 0.

This shows that α > 0, otherwise xn will becomes zero and the original form of xn+1

and yn+1 are,

xn+1 =
1

A+ un
and yn+1 =

β + δyn
B + un

where un+1 = (δun+β)(A+un)
un+B

with δ > 0, β > 0, A > 0 and B > 0.

Case 2.11 Assume that A,B and β are all positive.

Now we relabeled xn by yn and then yn by xn. Now we get the system of equations

in the form of,

xn+1 =
α

′
xn + yn

A′xn + yn
and yn+1 =

yn
B′xn + yn

where α
′
, A

′
and B

′
are positive. This provides us,

xn+1 =
α

′
+ un

A′ + un
and yn+1 =

un
B′ + un

with

un+1 =
un(A

′
+ un)

(un + α′)(un +B′)
(10)

By Lemma (2.2) every solution of (10) converges to a fixed point. Furthermore,

the fixed point must be positive with a couple of exceptions. By Lemma (2.4) the

system must also converge to a positive fixed point. These exceptions are

(i) Suppose A
′
< α

′
B

′
then the solutions will be xn+1 →∞. (ii) Suppose A

′
= α

′
B

′

and α
′
+B

′ ≥ 1, then the solutions will be xn →∞.
Case 2.12 Assume that at least one of A,B and β is equal to zero. By Theorem

(2.3) and Lemma (2.4), every solution of the system converges to a unique positive



fixed point with the following exceptions.

Exceptions of Case 2.12

S.No Condition Exceptions

1 If β > 0, B = 0, A > 0 and δ ≥ 1 By Theorem 2.3 , exception (i), every solution

un →∞ and hence xn+1 → 0 and yn+1 → δ.

2 If β = 0 and δA > B and δ ≥ 1 By Theorem 2.3 , exception (ii), every, every

solution un →∞ and hence xn+1 → 0 and yn+1 → δ

3 If β = 0, δ = 1 and A > B By Theorem 2.3 exception (i), every solution

un →∞ and hence xn+1 → 0 and yn+1 → δ.

4 If β = 0, δ = 1 and A = B By Theorem 2.3 exception (iii) un = u0 for

all n ≥ 1. Thus xn+1 = x0
αx0+y0

and

yn+1 = y0
α+y0

for all n ≥ 0.

5 If β = 0, δ < 1 and αδ ≤ B By Theorem 2.3 exception (iv) un → 0.

Then xn = 1
A

and yn → 0.

6 If β = 0, δ > 1 and αδ < B By Theorem 2.3 exception (v) ?u0 ∈ (0, ū) then

un → 0, and if u0 ∈ (ū,∞) then un →∞
7 If A > 0, δ > 1, β ≥ B By Theorem 2.3, exception (ii), for every

solution un →∞ and hence xn → 0 and yn → δ.

8 If A = 0, δ = 1, β = B By Theorem 2.3, exception (ii), for every

solution un = u0 for all n ≥ 1. Thus xn+1 = x0
y0

and yn+1 = 1, for all n ≥ 1.

9 If A = 0, δ < 1, β ≤ B By Theorem 2.3 exception (iv) un → 0.

Then xn →∞.

This concludes the Theorem (2.1) �

3. SIMULATION

In discrete time a wide variety of data filtering, time series analysis, and digital

filtering systems and algorithms are described by difference equations. The extended



Kalman filter [10] (EKF) is a very popular method in engineering, that allows to

compute an estimate of the state of a dynamical system from several sensors mea-

surements, possibly corrupted by measurement’s noise [6]. The principle is to merge

predictions from a trusted model of the dynamics of the system with measurements,

in order to efficiently filter the noise and get an accurate estimate of the (unknown)

internal state of the system in real time [12,18]. The method presented here deals

with the measurement of the parameters of a system signal which is usually con-

taminated with noise and high disturbances [15,17].

It has been shown that the system of difference equations estimated by a signals

and systems version of the EKF [3, 16]. Then, the filtering problem is equivalent

to the unbiased minimization problem subject to assumptions on the noises and

the initial conditions [6]. The solutions of the above system of difference equation

problem lead to the standard EKF model. In this case, we study the solution of the

following system of the difference equations

xn+1 =
αxn + γyn
Axn + Cyn

and yn+1 =
βxn + δyn
Bxn +Dyn

Where n ∈ N0 and the initial conditions are arbitrary real numbers such that

x−3, x−2, x−1, x0 and y−3, y−2, y−1, y0 with non negative parameters α, β, γ, δ, A,B,C

and D.

Example 3.1. We consider some interesting numerical example for the system

of rational difference equation (1) with initial conditions, where x−3 = 0.8, x−2 =

0.2, x−1 = 1.4, x0 = 0.3, y−3 = 1.7, y−2 = 0.5, y−1 = 0.5, and y0 = 0.3 . The values

of the non negative parameters are α = 1.7, β = 0.7, γ = 0.6, δ = 1.2, A = 1.7, B =

1.9, C = 2.4 and D = 0.2 (see Figure 1)



Figure 1

Example 3.2. Figure 2 shows the behavior of the solution of the system of rational

difference equation (1) with the initial conditions, where x−3 = 0.4, x2 = 0.5, x−1 =

1.6, x0 = 0.7, y−3 = 2.7, y−2 = 0.5, y−1 = 0.5, and y0 = 0.8. The values of the non

negative parameters are α = 1.9, β = 0.9, γ = 0.8, δ = 1.4, A = 1.9, B = 2.1, C = 2.6

and D = 0.2 (see Figure 2)

Figure 2

Example 3.3. Figure 3 shows the behavior of the solution of the system of rational

difference equation (1) with the initial conditions, where x−3 = 1.5, x−2 = 0.8, x−1 =

1.9, x0 = 0.9, y−3 = 1.8, y−2 = 0.5, y−1 = 0.5, and y0 = 0.3. The values of the non



negative parameters are α = 2.4, β = 1.2, γ = 1.6, δ = 1.3, A = 1.2, B = 0.5, C = 1.7

and D = 0.2 (see Figure 3)

Figure 3

Example 3.4. Figure 4 shows the behavior of the solution of the system of rational

difference equation (1) with the initial conditions, where x−3 = 1.4, x−2 = 0.7, x−1 =

1.1, x0 = 0.7, y−3 = 1.6, y−2 = 1, y−1 = 0.7, and y0 = 0.2 . The values of the non

negative parameters are α = 0.7, β = 0.7, γ = 0.6, δ = 1.2, A = 1.7, B = 1.9, C = 2.4

and D = 0.2 (see Figure 4)

Figure 4



4. CONCLUSION

In this paper we have analyzed boundedness properties of some rational difference

equations with a new concept as exception handling techniques. We applied this

technique to noise reduction and enhanced the stability of a non linear extended

Kalman filters via rational difference equations. Finally Numerical examples are

simulated to support our result through MATLAB.
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