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Abstract 

                                                           
 
The question of the presence of the seventeen symmetry crystallographic groups in the mosaics and other 
ornaments of the Arabic palace of the Alhambra (Spain) seems to be not yet settled. We provide new 
evidences supporting that the answer should be positive.  
 
 

1. INTRODUCTION  
 
The study of the group of movements of the plane, and of some of their subgroups, 

the so-called plane symmetry groups, has besides a theoretical interest a practical one, to 
generate new ornamentations as well to classify the existent ones.   

The Islamic art is a clear example of the use of the geometric ornamentation in all 
its manifestations. 
Different researchers have raised the question: Are the 17 crystallographic groups 
represented in the arabic tiles of the Spanish palace of the Alhambra?  Surprisingly after 
many years the question seems still open. 
       Some authors like E. Müller or B. Grünbaum [3], have answer that question, 
providing partial results that show the presence of 13 or 14 of such groups. J.M. 
Montesinos [5] provides photographic evidence of the presence of the 17 groups, but this 
was questioned by others authors; see by instance R. Fenn [2] and B. Grünbaum [4].  So 
Grümbaum argue that “There is no explanation as to what is the size or extent of an 
ornament that is sufficient to accept it as a representative of a certain group”, “Several of 
the ornaments shown are deteriorated to such an extent that is impossible to see the 
pattern” and “Do we count the symmetries of the underlying tiles, without taking into 
account the colors of the tiles, or do we insist on color-preserving symmetries?”. 
 
We believe that the objections of Grünbaum to the work of Montesinos about the sizes 
and deterioration of some of the ornamentations do not have importance; such physical 
defects are unavoidable in a building that has more than six centuries.     
    We present here new evidences proving that the 17 crystallographic groups can really 
be found in the Alhambra. In our study we have considered the colors and not only the 
form of the mosaics. We also give a dynamical generation of each of the groups.  
   The structure of the paper is as follow: Section 2 reviews the mathematical concepts 
and properties of crystallographic groups and gives an algorithm allowing classifying 
them; a detailed study of those topics can be found in [1] and [5]. The main Section 3 
shows pictures of the ornaments of Alhambra were the different groups appear. For each 
of them we study their generation from the basic motif that defines it, showing its 
fundamental region, and/or its fundamental parallelogram.  
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2. CRYSTALLOGRAPHIC GROUPS   
 

Let us briefly recall some mathematical concepts that will be used in the following: 

We consider the plane R2 endowed with the ordinary Euclidean affine structure. An 

isometry or movement of the plan is an application of the plane onto itself that preserves 

distances, i.e.    

f: R2     R2, such that for each couple of points P, Q ∈ R2  

d (f (P), f (Q)) = d (P,Q) 
As a consequence f also preserves angles.   

If g is another isometry in the plane, the composite (product)  of f and g, f o g, is also an 

isometry, in effect:  

d (f (g(P)), f(g(Q))) = d (g(P),g(Q)) = d (P,Q) 

The first equality follows because f is an isometry and the second because g is another.  

The set M of all the isometries of the plane, with the given operation of composition of 

applications have then a group structure. The group M is called the Symmetry Group of 

the plane and its elements movements.  

Fixed an orientation in the plane, there are two types of plane isometries: directs, which 

preserve the orientation, and indirects, which reverse the orientation.  

On the other hand we have the following classification of the plane isometries (see [1] and 

[5]): 

 Identity, all points of the plane are fixed points.  

 Reflection, indirect isometry with a  pointwise invariant line, the axis of reflection.  

 Rotation, direct isometry with only a fixed points,  the centre of rotation.  

 Translation, direct isometry without fixed points. 

 Glide reflection, indirect isometry without fixed points.  

Let T  be the set of translations of the plane, T  is an abelian group, subgroup of the group 
of isometries M.  

It is worth recalling the Cartan-Diendonné theorem [1] that says:  
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“Every isometry is a product of at most three reflections”. 

As a Corollary the reflections are a set of generators of the group M. 

2.1 Conjugation map   

 For each isometry of the plane,  M, we can define the mapping, :M             M,    

() = = -1,  called the conjugation map by .  

The isometry  is an isometry of the same type (direct or indirect) that . Indeed: 

1) If = tu, is a translation with vector u, = t (u), is a translation with vector (u). 

For each point in the plane P, (P) = tu (P) = P + u, while  


(P) = -1(P) = ( -1 (P) + u ) = P + ( u ),  

i.e. = t (u), is the translation with vector  (u).  

2) If =
t

Cg ϑ,
 is a rotation of centre O and angle ,  is a rotation of centre (O) 

and angle : 

 is a direct isometry with a fixed point O. Therefore    is a direct isometry, we see 

that has a fixed point, (O):  


( (O) ) =  -1((O)) = ((O)) = (O). 

i.e., , is a rotation of centre (O) and angle , equal to the angle formed by the 

vectors (O)R  and  (O)( R), for any point, R of the plane. 

Since a movement preserves angles,  should coincides with the angle between 

vectors O-1(R) and O (-1(R)), which is precisely the rotation angle  of . 

3) If  is a reflection in line r,  is reflection in line (r). 

The isometry , is an indirect isometry, as . All points on the line (r) are fixed 

points of , let P be any point on  r, (P) = P.   


( (P) ) = ((P)) = (P). 


 is a inverse isometry with one pointwise invariant line, (r).  Therefore is a 

reflection in line (r). 
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4)  If  = a
rs = at  rs  is a glide reflection with axis r and vector a, the vector a in the 

direction of the line r,  is a glide reflection with axis (r) and vector  (a) in the 

direction of  (r). In fact:  


 = ( tasr) 

-1 = ( ta 
-1) (sr 

-1) = ta


 sr
= t(a) s(r).

Symmetry of a figure 

Definition.- A figure F in R2 is a nonempty set of points in the plane. A symmetry of the 

figure F, is an isometry of the plan that carry F onto itself.  The set of all symmetries of the 

figure F is a group under the composition application, the symmetry group of the F.  

The symmetry group of a figure F is a subgroup of the group of isometries of the plane. 

A motif is a figure F which only has identity in its symmetry group. 

2.2 The seventeen plane symmetry groups  

A crystallographic group is a subgroup G of the group M of isometries of the plane, such 
that their intersection with the group of translations T is:  

T2=  G ∩ T = { tna o tmb= tna+mb / < a, b >  = R2 , n, m ∈  Z } 
T2 is a free abelian group of rank two, i.e. G contains translations in two independent 

directions.  

 A mathematical analysis of these groups shows that there are exactly seventeen 

different types of plane symmetry groups. ([1], [5], [6]) 

Lattices 

We can always choose two generators of T2, ta and tb such that the set {ta, tb} is a 

reduced set of generators, i.e., let ta be a shortest non-identity translation (a ≠ 0 and the 

norm or length of vector a is minimal among all the translations of T2) and let tb be a 

translation, such that the vector b has a minimum norm among the translations of T2, with 

vector not collinear with the vector a, hence || a || ≤ || b ||. The vectors a and b generate the 

plane, < a, b >  = R2. 

When choosing a point in the plane O, the group T2 determines a lattice C, formed by the 

set of points,   
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C = {t(O) / t = tna+mb ∈T2}, 

Or in other words the orbit of O under the action of  T2. If the set of generators of T2 is 

reduced we obtain the fundamental parallelogram or unit cell: O, O + ta (O), O + tb (O) 

and O + ta + b (O) of the lattice.  

Remark: The set of vectors {Ot(O) / t = tna+mb ∈T2}, as a subset of R2 is independent of 

the choice of the point O.  

Rotations in Crystallographic groups. Crystallographic restriction 

The order of a rotation σ is the least natural number n such that  n = I. The 

Crystallographic Restriction show that, if G is a crystallographic group and σ ∈ G is a 

rotation, the order of the rotation must be n = 1, 2, 3, 4 or 6, see [1]. 

We call crystallographic group of type n, Gn, a crystallographic group which 

contain rotations of order at most n, so there are groups of type 1, 2, 3, 4 and 6.  

If a translation t and a rotation σ = g O,  are in Gn , the conjugate of σ by t, is 

another rotation in Gn,  σt = gt(O),  ∈ Gn,. The group Gn contains all the rotations with 

center in every vertex of the lattice and order n. 

If  ta and  σ ∈ Gn, the conjugate of ta  by  σ, tσ
a = tσ(a) ∈ Gn,  i.e. the translation of 

vector σ(a) belongs to the crystallographic group Gn, which for some values of n 

determines the shape of the lattice.  Thus we have:  

The lattice in the groups of type 4 is a square lattice. In fact, if  is a rotation with 

center O and order 4, and we take the point O as the basis for the lattice and as the reduced 

set of generators {ta, tb}, with  b = (a), the vectors a  and  b are orthogonal and with 

equal norm: || a || = || b ||,  and both vectors determine the square lattice.  

The parallelogram fundamental in a lattice for the groups of type 3 would have the 

shape of two juxtaposed equilateral triangles, i.e. a diagonal of the fundamental 

parallelogram divides it into two equilateral triangles.  

If  is a rotation of centre O and order 3 and ta the translation with vector a are in 

the group, the translation of vector (a) is also in the group G3. The composite translation, 

translation of vector b = a + (a), is obviously also in the group.  
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We take the point O as the basis for the lattice and the reduced set of generators {ta, tb}, 

with b = a + (a). The vectors a and (a) have the same norm and the angle determining 

for them is 2π/3 and so they determine a rhombus, with the vector b = a + (a)  a diagonal 

of the rhombus, that divides it into two equilateral triangles. Thus we call this lattice a 

triangular lattice.  

 The groups of type 6 have triangular lattice, in fact, if  is a rotation of centre  O 

and order 6, we take the point O as the basis for the lattice and reduced set of generators 

{ta, tb}, with b =  (a). The vectors a and b =  (a) have the same norm and the angle 

determining for them is  π/3, and their fundamental parallelogram define a rhombus, one 

of whose diagonals divides it into two equilateral triangles, such a triangle is called 

fundamental region. 

 Note that if the group contains a rotation of order 6, also contains its square 2, 

which is a rotation of order three, and as direct application of the above, the lattice is 

triangular.  

Each vertex of the lattice of a group Gn is a center of rotation of order n. This is because 

the conjugate of a rotation σ with centre O and order n, by the translation tna+mb ∈T2, is a 

rotation of centre  tn a+m b (O) = O + n a + m b and order n. 

As said before there are exactly seventeen different crystallographic groups in the plane. 

Chosen a basic motif F in the plane it is possible to generate a so called wallpaper group: 

if F is a motif and G  is one of the seventeen symmetry group, the union of all images (F) 

with   in G is the wallpaper. 

  
Classification algorithm of the crystallographic groups  
 
 Given a candidate we must, in the first place, to check that it is really a 

crystallographic group, identifying the translations in two independent directions. Then, 

we identify the rotation of maximum order n, contained in the group, i.e. the smallest 

degree rotations and, as we saw above, these orders should be n = 1, 2, 3, 4 or 6.  This 

gives us a first information about the type of the group in question, depending on the value 

of n. Then we can use the algorithm given by the tables below:  
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3. THE SEVENTEEN PLANE SYMMETRY GROUPS IN THE ALHAMBRA 
(GRANADA, SPAIN) 

We present pictures of ornaments locate in the Alhambra showing each of the 

seventeen crystallographic groups. We classified these groups in five types, according to 

their order of rotation. We will use the following symbols in the representations of 

fundamental parallelograms: 

The maximum order  
of the rotations 

 
Symbol 

2  
3  
4  
6  

axis of reflection  
axis of glide reflection  

3.1. Crystallographic group of TYPE 1  

Let G1 be the crystallographic groups that do not contain proper rotations. There are 

four non-isomorphic such groups:  

1.  Group p1: containing only translations,  

p1 = < ta , tb >                 

The lattice is generated by a parallelogram of sides  || a || y || b ||.  
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Fundamental parallelogram 

In the Patio de los Arrayanes we find this group which containing translations in two 

directions, but no rotations or reflections or glide reflections.   

 

 
Palacio de Comares. Patio. Patio de los Arrayanes. 

 

 

 

 

 
Fundamental parallelogram 
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Group p1 

2) Groups that only contain translations and reflections. The reflections can only be in 

parallel directions, because the group has not proper rotations.  

Let sr,  be a reflection in line r. Conjugate reflections of sr by the translations tu of the 

group, must belong to the group. They are  reflections in axes parallel to axis r, and at 

distances that are multiples of the  || u ||.  

     If sr is a reflection of the group, we have two possibilities: 

2. a) Group pm: The vector a is in the direction of the line r, sr(a) = a. 

The conjugates of sr, by tmb are reflections in lines tmb(r). The axes of these 

reflections are lines parallel to line r, to distance m|| b || of r, then we can take the 

vector b as being perpendicular to vector a and so sr(b) = - b. Therefore the group 

contains reflections with axes in the direction of one vector of translation and 

perpendicular to the other vector of translation, so:  

pm = < ta , tb, sr / sr(a) = a, and sr(b) = - b >  

A fundamental parallelogram for the lattice of the translations of this group is then a 

rectangle. And one can be chosen that is split by an axis of reflection so that one of the 

half rectangles forms a fundamental region for the symmetry group.  
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Fundamental parallelogram                       Pieza del Museo de la Alhambra  R. 1375 

 

 
 

 

 

 

 
  Basic motif             

 

 

 

 
Fundamental parallelogram 
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Group pm 

   

2. b) Group cm: The vector a is not in the direction of the line r. In this case we 

can take the vector b = sr(a), || a || = || b ||.  

cm = < ta , tb, sr / sr(a) = b, y sr(b) = a > 

The fundamental parallelogram for the translation group is then a rhombus, and a 

fundamental region for the symmetry group is half the rhombus. The group 

contains translations and reflections that are not in the direction of the vectors 

generating the lattice:  

 
Fundamental paralellogram 

 

         
Salón de Comares 
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  Basic motif               

 

 
 

 

 
Fundamental parallelogram 

 

 

 

 

 

 

 

 

 

 

 

 

Group cm 
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3) Group pg: The group contains translations and glide reflections sr
u, but it does not 

contain rotations or reflections. 

The axes of the glide reflections must be parallels, because the group contains no 

rotation. On the other hand, sr 
u o sr 

u = t2u, and so we can take one the generating 

translations as  ta,  with  a = 2u.[1] 

The axes of glide reflections are in the direction of one vector of translation. 

pg = < ta , tb, sr / sr 
a/2 >.  

A fundamental parallelogram for the lattice of translations is a rectangle. And we can 

choose it such that is split by an axis of a glide reflection so that one of the half 

rectangles forms a fundamental region for the symmetry group.  

 

 
Fundamental parallelogram 

 

 

 
Puerta del Vino  
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Basic  Motif  

 

 

 
Fundamental 

parallelogram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group pg 
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3.2 Crystallographic group TYPE 2  

Let G2 be the crystallographic groups that contain rotations of order 2. 

If gO, is a rotation of order 2 and tu a translation in the group, the composite 

application, tu o gO, = gO´,, is a rotation of order 2 with centre the point O' = O + u /2. As 

a result, the fundamental parallelogram is a parallelogram whose vertices, midpoints of the 

sides and midpoint of the parallelogram are centres of rotations of the group. There are 

five non-isomorphic groups of type 2:  

1. Group p2: It contains translations and rotations of order 2, but  not indirect isometries. 

p2 = < ta , tb , g O,   > 

The fundamental region for the symmetry group is a half of a fundamental paralellogram 

for the translation group. 

 

Fundamental paralellogram 

       
Museo de la Alhambra 
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Basic motif.                   

 
Fundamental parallelogram 

 

 

 

 

 

 

 

 

 

 

 

 

Group p2 
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2. The group contains at least one reflection sr. There are two possibilities: that either the 

axis of reflection passes through a centre of rotation or not.  

2. a) If O ∈ r, the composite application of the rotation gO, and the reflection sr, is a 

reflection, gO, o sr = sm, in line m, where m is the line through O and perpendicular to r. 

Two other possibilities can occur:  

 2.a.1) Group pmm: The axis of reflection is in the direction of the vector a, i.e. a ∈ r, and 

sr ( a ) = a. The translation of vector sr (b) belongs to the group (conjugate of tb by sr), 

and also the translation with vector c = b - sr (b). The vector c is perpendicular to the 

vector a, which allows us to take as a fundamental parallelogram a rectangle, whose sides 

are axes of reflection, so that a fundamental region for the symmetry group can be chosen 

as a quarter of the fundamental rectangle. [1] 

                        pmm = < ta , tb , gO,, sr(a) = a, y sr(b) = - b > 

 
Fundamental parallelogram 

The lines parallel to the translation vector through of the rotation centres are axes of 

reflection.  

 

 
Palacio de los Leones. Sala de los Reyes   
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Basic motif  

 

 

 
 

 
Fundamental parallelogram 

 

 

 

 

 

 

 

 

 

 

Group pmm 
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2.a.2) Group cmm: The axis of reflection is not in the direction of the vector a. If we take 

as vector b = sr (a), ||a|| = ||b||, the fundamental parallelogram is a rhombus with sides a 

and b.  

The diagonals of the rhombus are perpendicular axes of reflection, which pass through 

centres of rotation. Not all the centres of the rotations  are on the reflection axes. Therefore 

a quarter of the fundamental parallelogram is a fundamental region for the lattice of this 

symmetry group.  

                     cmm = < ta , tb , g O, , sr(a) = b, y sr(b) =  a  > 

 
                 Fundamental parallelogram 

 

     
Palacio de Comares. Taca a la entrada del  Salón de Comares 

 

 

 

 

 

 
Basic motif   
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Fundamental parallelogram 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Group cmm 
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2. b) Group pmg: If O∉ r, the centres of rotations are not in the axes of reflection.  

If the axis of reflection is in the direction of a, a ∈ r, we can take the vector b orthogonal 

to a, as noted above.  

  The composite application gO, o sr = sm
u, of the rotation gO,with the reflection sr, 

is a glide reflection of axis m and vector u = b/4, where m is a line through O and 

perpendicular to r.[1]  

The group contains reflections of axes that don’t pass through the centres of rotation, and 

contains glide reflections. The fundamental parallelogram is a rectangle and a quarter of 

this rectangle is a fundamental region for the lattice of the symmetry group. 

  pmg = < ta , tb , g O, , sr(a) = a   > 

 

  
Fundamental parallelogram 

 

 

 
Fuente del patio del Cuarto Dorado 
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Basic motif   

 

 
 

 

 
Fundamental parallelogram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group pmg 
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3) Group pgg: It contains glide reflections but does not contain reflections.  

The group contains glide reflections with perpendicular axes that do not pass through the 

centres of rotation, the group is pgg: 

              pgg = < ta , tb , g O, , sr
a/2  > 

and the fundamental parallelogram is a rectangle, and a quarter of this is a 

fundamental region for its lattice. 

 

 

Fundamental paralellogram 

 

      
Palacio de los Leones. Mirador de Lindaraja     

               

 
Solería de la Sala de los ajimeces 
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Basic motif 

 

 
 

 

 
Fundamental  parallelogram 

 
 

 

 

 

 

 

 

 

 

Group pgg 
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3.3. Crystallographic group  TYPE 4. 

Let G4 be the crystallographic groups that contain rotations of order 4.  

As was seen in Section 2, the lattice of groups of type 4 is square.  The sides of the square 

are a and b,  b = gO, π/2 (a), ||a|| = ||b||.  

 
The vertices of the square are centres of rotation of order 4.  

If we compose the translation of vector a, ta with the rotation gO, π/2 ,  previously expressed 

as a composition of reflections, we have:  

ta o gO, π/2 = (s2 o s3) o (s3 o s1) = s2 o s1= gC,π/2 

 
Then the centre of the square is a centre of rotation of order 4.  

If we compose a rotation of order 4, about O and angle π/2, with itself, we get a 

new rotation with the centre O and angle π,of order 2. Therefore the vertices of the square 

and its centre are centres of rotation of order 2 and the midpoints of the sides of the square 

are too.  

There are three non-isomorphic groups of order 4.  

1) Group p4: It contains translations and rotations of order 4.  

p4 = < ta , tb , gO,π/2  > 

The fundamental parallelogram is a square, and a quarter of it is a fundamental region for 

the symmetry group. 

   
Fundamental parallelogram 

 

C 

2 1 3 

O 
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                   Patio de los Leones.  Galería junto a la Sala de los Mocárabes 

 

 

 
 

 
Basic motif         

 

 
 

 

 
Fundamental parallelogram 
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Group p4 

 

2) If the group contains an indirect isometry, there might be two cases  

2.a) Group p4m: It contains at least one reflection sr.  
If the axis of reflection r has the direction of vector a and passes through the centre of 

rotation O, the composite application of the rotation  = gO,π/2  with the reflection sr is 

a reflection of the axis d, d is a line through O and forms an angle of /4 with the line 

r:  gO,π/2 o sr = sd 

The application 2 = gO,π is in the group and is a rotation about O and order 2, and 

the composite application  


2 o sr = gO,π o sr = sm 

is a reflection in line m, where m is a line perpendicular to r, in the direction of vector 

b.  

The sides, the diagonals and straight lines connecting the midpoints of the sides of the 

squares of the lattice are axes of reflection.  The symmetry group is:  

p4m = < ta , tb , gO,π/2, sr, sr(a) = a, y sr(b) = - b > 

The fundamental parallelogram is a square, and an eighth of it, a triangle, is a 

fundamental region of symmetry group. 
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Fundamental parallelogram 

 

   
Torre de las Infantas 

 

 
Salón de Comares 
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Basic motif   

 
 

 

 

 

 
Fundamental 

parallelogram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group p4m 
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2.b) Group p4g: It has no reflection with axis in the direction of the vector a, but it 

contains a glide reflection of axis in the direction of the vector a, then 2 = ta.  We 

can take  = sr
a/2, with r line in the direction of vector a. The group contains 

reflections; which axes of reflections do not pass through the centre of rotation of 

order 4. 

p4g = < ta , tb , g O, π/2, sr
a/2 /  > 

The fundamental parallelogram is a square and an eighth of it, a triangle, is a 

fundamental region of the lattice.  

. 

 
Fundamental parallelogram 

 
Palacio de Comares. Salón de Comares 
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Basic motif                           

 

 
 

 
Fundamental parallelogram 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group p4g 
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3.4. Crystallographic group  TYPE 3.  

Let G3 be the crystallographic groups that contain rotations of order 3.  

As seen in Section 2 the lattice of this groups of type 3 is triangular.  

 

 The rotation of centre O and  2/3, transforms P into Q. Let a = OP , and let  

c = OQ , we take b = a + c = OR. The fundamental parallelogram OPSR is formed by the 

union of equilateral triangles OPR and PSR. 

The vertices and the centres of the triangles are centres of rotation of 2/3 and 4/3. 

The number of crystallographic groups of type 3 is three:  

1) Group p3: It only contains translations and rotations of order 3. 

p3 = < ta , tb , gO, 2/3  > 

The fundamental parallelogram is  

 
Fundamental paralellogram 

 
Museo de la Alhambra 

 

O 

R S 
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2) If the group contains an indirect isometry, it must contain a reflection. There are 

two possibilities:    

2-a) Group p31m: The direction of the axis of reflection coincides with the direction 

of the vector a, which implies that the group also contains reflections on the directions 

of the vectors b and b – a. These axes cut two to two in points that are centres of 

rotation. Thus the group contains axes of reflections corresponding to the sides of the 

equilateral triangles that form the fundamental region.  

p31m = < ta , tb , g O, 2/3, sr / sr (a) = a  > 

 
Fundamental parallelogram 

We note that not all centres of rotations are in the axes of reflection.  

 
Puerta del Vino 
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2-b) Group p3m1: The group contains no reflections in the direction of the vector a.  

Let sr  be a reflection and the vector b = sr (a), so the direction of the line r is a + b. 

The group contains reflections in the lines corresponding to the heights of the 

equilateral triangles that form the fundamental parallelogram.  

             p3m1 = < ta , tb , g O, 2/3, sr / sr (a) = b, sr (b) = a  > 

 
Fundamental parallelogram 

In this case all the centres of rotation are in lines of reflection. 

 

 
 

   Palacio de los Leones. Arco entre la sala de Abencerrajes y el Patio de los Leones  
Remark that the group p3m1 appears inside of the petal.  



 
 

37 

 

 

 

 

 
Basic motif  

 
 

 
 

 
Fundamental region 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group p3m1 

 

 




 
 

38 

3.5. Crystallographic group TYPE 6.  

Let G6 be the crystallographic groups that contain rotations of order 6.  

As seen in Section 2 the lattice of these groups of type 6 is triangular.  

 

The centres of rotation   of order 6 are also centres of rotation  2 of order 3, and 

centres of rotation 3 of order 2. The vertices of the equilateral triangles are centres of 

rotation of orders 6, 3 and 2. The centres of triangles are centres of rotation of order 3, as 

seen in the groups of type 3 and the midpoints of the sides of the triangles are centres of 

rotation of order 2, as seen in groups of type 2.  

The fundamental region is triangular.  

There are two non-isomorphic groups of order 6.  

1) Group p6: It only contains translations and rotations of order 6.  

p6 = < ta , tb ,  = gO, π/3 /  (a) = b  > 

 
Fundamental parallelogram 

 

 
Palacio del Partal 
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2)  Group p6m: It contains an indirect isometry, so as seen for  the groups of type 3, it 

should also contains a reflection sr. The composite application  o sr is another 

reflection in line r´, where the line r´ forms an angle of π/6 with  r. The composition of 

the two reflections sr o sr´ is a rotation about the point intersection of the two axes and 

angle π/3.  

Therefore for each centre of rotation of order 6 pass six axes of reflection, forming 

between each two of them angles π/6.  

p6m= < ta , tb ,  = gO, π/3, sr /  (a) = b, sr (a) = a  >. 

 

 
Fundamental parallelogram 

 

 
Ventana Del Patio de los Arrayanes 
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