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Abstract 

The samples of geometric interpretation of space-time features of special relativity 

theory and phyllotaxis botanic phenomenon demonstrate variance of Minkovski’s 

theory application in mathematic modeling of natural phenomena. 
 
 

It is a well-known fact that in 1908, i.e. three years after A. Einstein’s theory 

of relativity was published, mathematician G. Minkowski made public geometric 

interpretation of this theory. Peculiarity of Minkowski geometry (in other words, of 

pseudo-Euclid geometry) lies in the fact that hyperbolic rotation becomes a typical 

motion of space (plane) symmetric transformation. We remind that in “usual” – 

Euclidean geometry – analogous symmetry motion is circular rotation. Applying 

pseudo-Euclidean geometry and its trigonometric tools, Minkowski exhaustively 

described in mathematical terms all the effects of relative mechanics. Later we’ll 

return to the details of this interpretation while so far it is necessary to stress that 

for a long time space-time physics of relativity theory was considered to be the 

only field where Minkowski geometry could be applied. However, the paper [1] 

which appeared in 1989 as well as later publications [2, 3, 4, 5] showed that 

Minkowski geometry was realized in growth mechanism of botany phenomenon  

phyllotaxis. It was an unexpected result despite the fact that it was part of 

Vernadski’s prediction who under influence of the theory of relativity substantiated 

an opinion about non-Euclid character of wildlife geometry [6]. At any rate, it 

became understandable that ideas about the role of Minkowski geometry in nature 

were not limited by space-time physics. Soon legitimacy of these ideas was 

confirmed by the results of mathematical successions of pattern-shaping 

regularities in architecture and art, in particular, by the fact of hyperplane 

application to illustrate artistic proportioning schemes [7]. Scientific results known 

nowadays that find Minkowski geometry regularities in various phenomena, 
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confirm its abundance and fundamental role in nature and art. At the same time it 

is known that in various cases there are different mathematical variants of this 

geometry realization. We shall demonstrate this difference on the example of 

interpretations of special relativity theory and phyllotaxis. To do this it will be 

enough to consider two-dimensional case of corresponding geometries. But first of 

all, we shall explain the notion of hyperbolic rotation. 

 Thus, hyperbolic rotation is a motion when all points of the plane except for 

those belonging to axes Ox and  Oy move on concentric hyperbolas (Fig.1). 

 
Fig.1. Illustration of hyperbolic rotation  – plane transformation where 

trajectories of points' motion (except for those that belong to axes Ох and Оу), are 

hyperbolas. 
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The point О is immovable and asymptotes are degenerate hyperbolas the 

motion on which is adjusted to the rotation speed in general. The equation of 

arbitrary hyperbola with respect to asymptotes is 

 , (1) 

where a is the smallest radius of hyperbola. 

Hyperbolic rotation can be considered an aggregate motion appearing as a 

result of simultaneous compression and stretching of the plane along asymptotes; 

for instance, - compression along Оy axis and stretching along Оx axis, performed 

at the same speed (Fig.2). 

Product of the coordinates х and у of plane arbitrary point in the process of 

rotation is unchanged (ху = Const), which is indicated by the formula (1). 

Hyperbolic rotation results in the distortion of figures’ shapes but their squares 

remain unchanged. Hyperbolic rotation does not violate straight lines parallelisms 

as well as ratios of segments of an arbitrary straight. 

 

Fig. 2. The result of hyperbolic transformation of a square lattice which basic 

directions coincide with asymptotes. 
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The parameter of hyperbolic rotation is a rotation angle φ, which is counted 

from axes ОХ and ОY (Fig.1). As a unit of measurement (module) is taken an 

angle the rotation by which the hyperbola arbitrary radius ху = ±1 «sweeps» the 

square equal to one. 

Coordinates х and у of the arbitrary point of the plane look as follows: 

 ;    y  (2; 3) 

where φ is the angular coordinate of the point. 

Value е – Napier’s number – comes from condition of determining the 

measurement unit of the rotation angle. Coordinates Х and Y of arbitrary point are 

described by hyperbolic functions, namely: 

X = a  (4) 

Y = a  (5) 

It is necessary to add that among trigonometric tools of pseudo-Euclidean 

geometry there are also other hyperbolic functions, in particular,  

 (6) 

We have provided minimum sufficient information about Minkowsky 

geometry. Now we shall demonstrate how G. Minkowski applies it to interpret 

physical properties of space-time. 

The key point, to which he has found geometric interpretation is, first of all, 

from where all specific mathematics of relativity theory comes from, is an issue 

about relations between inertial systems that move at various relative speeds. Let 

us consider Figure 3.  

Here the curved lines are conjugate hyperbolas described by the equation 

X2 – Y2 = ±1 (7) 
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Fig.3. The scheme illustrating the idea of geometric interpretation of specific 

relativity theory. 

Axes OX and OY coincide with the axes of symmetry of conjugate 

hyperbolas.  

Axes Ox and Oy coincide with hyperbolas asymptotes. 

α is Euclidean angle X'OX; 

φ is hyperbolic angle X’OX; 

ОА = ; 

ОР = chφ = NP ; 

MP = shφ ; 

 
 

 

In physical terms Х is time  t, and asymptote Ox is given the value of light 

motion graph, which speed С is constant according to the second postulate of 

relativity theory and in this case is considered to be equal to one. 

Coordinate systems XOY and X'OY' symbolize various inertial systems. One 

of them – XOY – is rest one; the speed V of another one (X'OY') is measured in 

parts of light speed and is equal to 
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         V = thφ =  (8) 

 

Logically, 

  (9)

and that means that speed V of inertial system cannot reach speed of light 

с = 1. The figure shows that transition from one inertial system to another one 

can be done by means of hyperbolic rotation. 

For all inertial systems X2 – Y2 = Const. (10) 

At the same time hyperbolic rotation can be characterized by the following 

coordinate transformation: 

;     y   (11; 12) 

Taking into account the physical meaning of coordinates, we obtain: 

;      (13; 14) 

Thus, we have obtained the key formula of special relativity theory– the so 

called Lorentz transformation. It is necessary to emphasize that the whole system 

of formula of special relativity theory is based on hyperbolic trigonometry and one 

way or the other reflects the properties of this trigonometry. 

Now we go on to the phyllotaxis geometry. First of all, we shall provide 

brief explanation of this phenomenon. It goes about bioforms which structure 

includes spiral symmetry. The typical examples may be sunflower discs, pine 

cones, etc. (Fig.4). 

On the surfaces of these forms one can clearly see left- and right-winded 

spiral lines, the so called parastichies formed by adjacent structural surface 

elements – seeds in sunflowers, scales in pine cones, etc. The number of left and 

right parastichies, as a rule, is equal to adjacent numbers of Fibonacci sequence– 

1, 1, 2, 3, 5, 8, 13, 21, …, – i.e. the ratios are realized. These ratios denote the order 

of symmetry of phyllotaxis lattices. 
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Fig.4.  Samples  of  phyllotaxis  forms:   a  –  sunflower  disc,  b  –  pineapple fruit, 

c – trunk of the palm tree. 

 

In the process of growth some kinds of phyllotaxis forms change – increase 

– the order of spiral symmetry. This feature, which is called dynamic symmetry, is 

the main mystery of phyllotaxis. Explanation of this mystery led to the discovery 

in phyllotaxis regularities of Minkowski geometry. 

 Fig.5 shows phyllotaxis surface unfoldings styled to the cylinder form on 

three sequential symmetry development stages.  The lines of lattice vertices 

blocking, which on the cylinder surface look like space spirals, on the unfoldings 

become straight lines.  
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Fig.5. Unfoldings of phyllotaxis surface corresponding to three sequential stages 

of symmetric development. 

 

The number of straight lines in every group of parallels, which determine the 

number of left and right spirals on the three-dimensional form, allow to determine 

the order of symmetry of the corresponding phyllotaxis lattice. 

There is no need to present here the complex analysis that made it possible 

to provide the answer to the question about change of symmetry. Here is the result: 

transformation of symmetry, i.e. transformation of phyllotaxis lattice from 

one state of symmetry to another, is done by means of hyperbolic rotation 

(Fig.6, Fig.7). 

Certainly, the first effect of the result obtained is pre-determined by a 

surprise factor: new field of application of Minkowski geometry has been found! 

The effect was enhanced by the fact that this field was biology which had never 

been related to space-time physics. However, as it has been mentioned, despite the 

common feature of geometric idea, the specific forms of its realization in the 

relativity theory and phyllotaxis are different. Moreover, phyllotaxis geometry is in 

itself  –   
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Fig.6. Transformation of lattice by means of hyperbolic rotation. Two typical 

states acquired by the lattice in half-module of the rotation. 

 

 
 Fig.7. Hyperbolic transformation of phyllotaxis surface unfolding. 

an original variety of pseudo-Euclidian geometry that differs from the classical one 

, the next important effect is purely mathematical one and lies in 

the fa

re lattice is deformed but 

period

est such a transformation of 

symm

erbolic rotation is not completely 

analog

                                                

 

in properties which have not been studied in mathematics before it was discovered 

in phyllotaxis. 

Therefore

ct that according to phyllotaxis geometry hyperbolic rotation is a motion of 

symmetric transformation of a regular (square) lattice. 

In the process of hyperbolic rotation the squa

ically repeats its “square” states, i.e. self-aligns. 

The classical theory of symmetry does not sugg

etry for square (and generally – regular) lattice. From classical point of view 

three motion of self-alignment could be applied to the square lattice: parallel 

transfer, mirror reflection and circular rotation1. 

However, it is necessary to state that hyp

ous to the circular one as vertices motion on hyperplane, unlike the motion 

on Euclidean plane, is accompanied by constant change of “neighbours”. 

 
1 We have mentioned only simple types of motion. As a rule, besides simple ones there is also a complicated motion 
– the so called sliding or, in other words, mirror-transfer symmetry motion. 
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It is important to stress that symmetric transformation of a square lattice by 

means of hyperbolic rotation is impossible if the asymptotes or hyperbolas 

symmetry axes coincide with basic lattice directions (Fig.2) 

 In phyllotaxis geometry basic lattice directions coming through the centre of 

coordinates are deviating from hyperboles symmetry axes by hyperbolic angle ∆, 

which double value is taken as the module (unit) of angle measurement (Fig.6., 

Fig.8.). This way of square lattice alignment with hyperplane is not accidental. In 

general, there could be plenty of similar variants of alignment. Every variant has its 

own value ∆, but it is only one case when symmetry dynamics of phyllotaxis lattice 

will be characterized by Fibonacci numbers. This is the main peculiarity of the 

illustrated alignment. First and foremost, its inevitable consequence is that 

coordinates х and у of lattice vertices are described through the degree of the 

golden section Ф (Fig.8.) 

 

 
Fig.8. Coordinates х and у of square lattice vertices are described through the 

degree of golden section. 

 ;    y  (15; 16) 

where n is vertex angle coordinate, expressed in modules; 

       a is a semi-axis of hyperbola to which the vertex in question belongs. 
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Тhus, we stated one more distinctive effect of phyllotaxis geometry – its 

relation to the golden section (G.S.) and non-accidental character of this relation. 

G.S. is the basis for all the phyllotaxis trigonometry. Coordinates X and Y of lattice 

vertices (Fig.8) are described by means of the so called golden hyperbolic 

functions (G.F.), which are denoted by  

the golden sine Gshn =  (17) 

golden cosine Gchn =  (18) 

It means that coordinates Х and Y of an arbitrary vertex look like 

X = a Gchn ;    Y = a Gshn (19; 20) 

Logically, there appears notion and formula of golden tangent  – 

Gthn =   ,  (21) 

of golden cotangent, etc. 

Finally, if we accept basic directions of a square lattice as axes of 

coordinates, and side of the square cell as length unit, then coordinates X' and Y' of 

an arbitrary vertex will be represented by integer numbers (Fig.9). In general case 

these will be neigbouring numbers of recurrent sequence U which has the 

properties: 

Un + Un+1 = Un+2 (22) 

The equation of an arbitrary hyperbola within the system of coordinates 

X'ОY' will look like 

│X'2 + X'Y' - Y'2│= a'2 (23) 

where a' is hyperbola radius which coincides with ОX'. With a' = 1 ineger-

valued coordinates X' and Y' will be Fibonacci numbers. At the same time they 

will also be described by the golden functions which expressions take into account 

the angular displacement ∆ =  : 

X' =   (24) 
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Y' =   (25) 

Thus, formulae (24) and (25) are trigonometric deciphering of Fibonacci 

numbers: 

Fn+1 = ;       Fn =  , (26; 27) 

where n = 2k+1; k = 1, 2, 3, … 

Numbers 0, 1, 3, 8, 21, …  are expressed through the golden sine and 

numbers 1, 2, 5, 13, … through the golden cosine. 

Integer-valued trigonometry, namely, relation of the golden function with 

the целочисленными systems, is also an interesting отличительная feature of 

phyllotaxis geometry. 

Now let us consider one more important comparison. Geometry of relativity 

theory, as we have already mentioned, reflects Einstein postulate about speed 

limitation. On the Minkowski scheme (Fig.3.) this limitation is interpreted by the 

fact that arbitrary coordinate (inertial) system cannot be aligned with light motion 

graph by means of hyperbolic rotation, because this graph  – Ox axis – asymptote 

of the hyperbola that determines hyperbolic rotation. In trigonometric way this 

impossibility is reflected by the formula 

  (28)

where thφ is the speed of inertial system, expressed in the parts of the light 

one. 

In phyllotaxis geometry there is also similar limit index. It is the so called 

ideal divergence angle which is equal to Ф-1. Divergence D is the divergence angle 

of two sequential vertices of phyllotaxis lattice measured in transverse plane of the 

phyllotaxis form – cylinder, cone, etc. 

The search for value of D led to the interesting result: angle value D in parts 

of a circle is equal to ratio of coordinates Y' and X' of the point O' – the end of the 

moving radius OO', determining the position of phyllotaxis surface unfolding on 

hyperplane (Fig.9.) 
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 , (29) 

where n  is the degree of deviation of radius  OO' from axis OX. 

Having done the transformations, we shall obtain: 

 (30) 

The limit of angle D is the golden section: 

 
 (31) 

 
 

Fig.9. Square lattice in the system of coordinates X'OY'. 

 

Fig. 9 shows that this limit corresponds to the tangent value of Euclidean 

angle XOx, i.e. the angle slope  of asymptote Ox to axis OX' of radius OO' 

counting. We remind that in Minkowski scheme (Fig.3) inertial system speed limit, 
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which is equal to one, corresponds to the tangent value of Euclidean angle 45°, i.е. 

slope of the angle of  asymptote Ox to the axis OX of hyperbolic rotation counting.  

Thus, if in relativity theory inertial system is characterized by speed V: 

V = tgα = thφ =  ;         0 ≤ V < 1,  (8) 

then in phyllotaxis theory phyllotaxis lattice is characterized by indicator D, 

determining the order of symmetry: 

 ;     0 ≤ D < Ф-1 (30) 

In both cases the transfer from one system to the other is geometrically 

interpreted by means of hyperbolic rotation. 

At the same time, if in relativity theory the following is true for all the 

inertial systems: 

X2 – Y2 = Const , (7) 

then in phyllotaxis for all the stages of symmetry development 

X'2 - X'Y' - Y'2 = Const .  (23) 

These are the main peculiarities characterizing similarities and differences of 

geometric interpretations of special relativity theory and phyllotaxis. 

We have already stated that Minkowski geometry can also be applied to 

illustrate the systems of artistic (architectural) proportitioning. It was demonstrated 

on the known system Modulor designed by the French architect Le Corbusier but it 

relates to any proportional systems based on integer recurrent sequences   [7]. 

All in all, we repeat the idea stated at the beginning of the paper about the 

diversity of fields where Minkowski geometry can be applied and validity of 

evaluation of this geometry as a universal regularity of nature. It is doubtless that 

research development will substantiate this conclusion with new facts. 
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