• ADAMS, C.C.: The Knot Book, Freeman, 1994.
  • ARMSTRONG, M.A.: Groups and Symmetry, Springer-Verlag, New York, 1988.
  • ARNHEIM, R.: Art and Visual Perception, University of California Press, Berkeley, 1965.
  • ASAKURA, N.: Fundamental Problems of Creating in the Two-Dimensional Space, Basic Art & Design Series Tokio, 1994 (in Japaneze).
  • ASCHER, M.: Ethnomathematics: A Multicultural View of Mathematical Ideas, Brooks/Cole, 1991.
  • BAIN, G.: Celtic Art - the Methods of Construction, Dover, New York, 1973.
  • BARRETT, C.: Op-art, Studio Vista, London, 1970.
  • BURCHHARDT, J.J.: Die Symmetrie der Kristalle, Birkhauser, Basel, 1988.
  • BURDE, G.; ZIESCHANG, R.: Knots, W. de Gryiter, Berlin, New York, 1985.
  • CAGLIOTI, G.: The Dinamics of Ambiguity, Springer-Verlag, Berlin, 1992.
  • CHILDE V.G.: The Dawn of European Civilization, Routledge & Kegan Paul, London, 1968.
  • CHRISTIE, A.: Pattern Design, Dover, New York, 1969.
  • COXETER, H.S.M.: Introduction to Geometry, Willey, New York, 1969.
  • COXETER, H.S.M.; MOSER, W.O.J.: Generators and Relations for Discrete Groups, Springer-Verlag, New York, 1980.
  • COXETER, H.S.M.: Symmetrical Combinations of Three or Four Hollow Triangles, Math. Intelligencer 16, 3 (1994) 25-30.
  • COXETER H.S.M.; EMMER, M. ... (Eds.): M.C.Escher: Art and Science, North-Holland, Amsterdam, New York, Oxford, Tokyo, 1987.
  • CRITCHLOW, K.: Islamic Patterns, Thames and Hudson, London, 1976.
  • CROWE, D.W.; NAGY, D.: Cakaudrove Patterns, Ars Textrina 18 (1992), 119-155. EL-SAID, I.; PARMAN, A.: Geometric Concepts in Islamic Art, World of Islam Festival, 1976.
  • EMMER, M. (ED.): Visual Mathematics, Leonardo, 25, 3/4, 1992.
  • EMMER, M. (ED.): The Visual Mind, MIT Press, 1993.
  • ENGEL, P.: Folding the Universe, Random House, New York, 1989.
  • ERNST, B.: The Magic Mirror of M.C.Escher, Taschen, 1994.
  • ERNST, B.: L'aventure des figures impossibles, Taschen, Berlin, 1990.
  • ESCHER INTERACTIVE: Exploring the Art of the Infinite, Abrams, Interactive CD-ROM.
  • FARMER, D.: Groups and Symmetry, American Mathematical Society, 1996.
  • FARMER, D.; STANFORD, B.: Knots and Surfaces, American Mathematical Society, 1996.
  • GERDES, P.: Reconstruction and Extension of Lost Symmetries, Comput. Math. Appl. 17, 4-6 (1989) 791-813 (also in Symmetry: Unifying Human Understanding II, Ed. I.Hargittai).
  • GERDES, P.: On Ethnomathematical Research and Symmetry, Symmetry: Culture and Science 1, 2 (1990) 154-170.
  • GERDES, P.: Lunda Geometry, Universidade Pedagogica, Mocambique, 1996.
  • GERDES, P.: On mirror curves and Lunda designs, Computer and Graphics 21 (1997), 371-378.
  • GERDES P.: Geometrical and educational explorations inspired by African cultural activities, Mathematical Association of America, Washington DC (to appear).
  • GHYKA, M.: Philosophie et mistique du nombre, Éd. Payot, Paris, 1971.
  • GIMBUTAS, M.: The Language of the Goddess, Harper & Row, San Francisco, 1989.
  • GOMBRICH, E.H.: Art and Illusion, Phaidon, London, 1977.
  • GOMBRICH, E.H.: Sense of Order, Phaidon Press, London, 1979.
  • GRÜNBAUM, B.; SHEPHARD, G.C.: Tilings and Patterns, W.H.Freeman, New York, 1987.
  • HAHN, W.: Symmetry as a Developmental Principle in Nature and Art, World Scientific, Singapore, 1995.
  • HARGITTAI, I. (Ed.): Symmetry: Unifying Human Understanding, 1; 2, Pergamon Press, Oxford, New York,..., 1986; 1989.
  • HILBERT, D.; COHN-VOSSEN, S.: Geometry and Imagination, Chelsea, New York, 1952.
  • HOFSTADTER, D.R.: Gödel, Escher, Bach, Harvester Press, Stanford Terrace, 1979.
  • HUFF, W.S.: What is Basic Design?, Intersight 1 (1990), 76-85.
  • JABLAN, S.V.: Periodic Antisymmetry Tilings, Symmetry: Culture and Science 3, 3 (1992), 281-291.
  • JABLAN, S.V.: Symmetry and Ornament,
  • JABLAN, S.V.: Symmetry, Ornament and Modularity, World Scientific, Singapore, 2002.
  • JABLAN, S.V.: Mirror Generated Curves, Symmetry: Culture and Science 6, 2 (1995) 275-278.
  • JABLAN, S.V.: Mirror Curves,
  • JONES, O.: The Grammar of Ornament, Day and Son, London, 1856; Omega Books, Ware, 1986.
  • KALICZ, N.: Die Gotter aus Ton, Corvina Verlag, Budapest, 1989.
  • KALICZ, N.; MAKKAY, J.: Die Linienband Keramik in der Grosen Ungarischen Tiefebene, Akademiaikiado, Budapest, 1977.
  • KAUFFMAN, L.: On Knots, Princeton University Press, Princeton, 1987.
  • KULPA, Z.: Are Impossible Figures Possible?, Signal Processing 5 (1983), 201-220.
  • LEYTON, M.: Symmetry, Causality, Mind, A Bradford Book, The MIT Press, Cambridge (Ma), London, 1992 (see FORMAFLUENS Project).
  • LIVINGSTON, C.: Knot Theory, Math. Assoc. Amer., Washington DC, 1993.
  • LOCKWOOD, E.H.; MACMILLAN, R.H.: Geometric Symmetry, Cambridge University Press, Cambridge, 1978.
  • LOEB, A.L.: Color and Symmetry, Willey, New York, 1971.
  • LOEB, A.L.: Concepts and Images, Birkhauser, Boston, 1997.
  • LOEB A.L.: Space Structures, Birkhauser, Boston, 1997.
  • MAMEDOV, K.H.: Crystallographic Patterns, Comput. Maths. with Appl. 12B, 3/4 (1986) 511-529 (also in Symmetry: Unifying Human Understanding I, ed. I.Hargittai).
  • MARTIN, G.E.: Transformation Geometry, Springer-Verlag, New York, 1983.
  • MATHEWS, W.H.: Mazes & Labyrinths: their History and Development, Dover, New York, 1970.
  • NAGY, D.: Manifesto on (Dis)symmetry with some Preliminary Symmetries, Symmetry: Culture and Science 1, 1 (1990), 3-26.
  • OGAWA, T.; MIURA, K; MASUNARI, T.; NAGY, D. (Eds.): Katachi U Symmetry, Springer-Verlag, Tokyo, 1996.
  • PETERSON, I.: The Mathematical Turist, W.H.Freeman, New York, 1988.
  • PHILLIPS, A.: The Topology of Roman Mazes, Leonardo : Visual Mathematics 25, 3-4 (1992), 321-329.
  • REIDEMEISTER, K.: Knotentheorie, Springer-Verlag, Berlin, 1932.
  • ROBINSON, J.O.: The Psychology of Visual Illusion, Hutchinson University Library, London, 1972.
  • ROSEN, J.: Symmetry Discovered,University Press, Cambridge, 1975.
  • ROSEN J.: A Symmetry Primer for Scientists, Willey, New York, 1983.
  • ROSENSTIEHL, P.: How the "Path of Jerusalem" in Chartres Separates Birds from Fishes, M.C.Escher: Art and Science, North Holland, Amsterdam, New York, Oxford, Tokyo, 1987, pp. 221-230.
  • SHUBNIKOV, V.A.; KOPTSIK, A.V.: Symmetry in Science and Art, Plenum Press, New York, London, 1974.
  • SMITH, C.S.: The Tiling Patterns of Sebastien Truchet and the Topology of Structural Hierarchy, Leonardo 20, 4 (1987) 373-385.
  • SREJOVICH, D. (Ed.): The Neolithic of Serbia, The University of Belgrade, Belgrade, 1988.
  • STEVENS, P.: Handbook of Regular Patterns, MIT Press, 1981.
  • STEVENS, P.S.: Patterns in Nature, Little Brown, Boston, 1974.
  • TITOV, V.S.: Neolit Gretsii, Nauka, Moscow, 1969 (in Russian).
  • TOMPA, F.: Die Bendkeramik in Ungarn, Franklin-Tarsalat Nyomdaja, Budapest, 1929.
  • TOTH, N.: The Prehistoric Roots of a Human Concept of Symmetry, Symmetry: Culture and Science 1, 3 (1990), 257-281.
  • TRBUHOVICH, V.; VASILJEVICH, V.: The Oldest Agriculture Cultures at Podrinje, Narodni muzej, Shabac, 1983 (in Serbo-Croatian).
  • TRIVEDI, K.: Symmetry in Hindu Phylosophy, Symmetry: Culture and Science 1, 4 (1990), 369-386.
  • TURNER, J.C.; VAN DE GRIEND, P. (Eds.): History and Science of Knots, World Scientific, Singapore, 1996.
  • VASICH, M.: Prehistoric Vincha, Drzavna stamparija Kraljevine Jugoslavije, 1936 (in Serbo-Croatian).
  • VULPE, R.: Izvoare, Academiei Republicii Populare Romine, Bucuresti, 1957.
  • WASHBURN, D.K.: A Symmetry Analysis of Upper Gila Area Ceramic Design Decoration, Carnegie Inst., Washington DC, 1977.
  • WASHBURN, D.K.; CROWE, D.W.: Symmetries of Culture, Univ. Wash. Press, London, 1988.
  • WATANABE, Y.; TAKAKI, R.; OGAWA, T. (Eds.): The World of Scientific Art, Forma 9, 3 (1994), pp. 151-310.
  • WEEKS, J.: The Shape of Space, Marcel Dekker, 1985.
  • WENNINGER, M.: Polyhedron Models, Cambridge University Press, London, New York, 1971.
  • WEYL, H.: Symmetry, Princeton University Press, Princeton, 1952.
  • WOLF, K.L.; WOLFF, R.: Symmetrie, Böhlau Verlag, München, 1956.
  • ZASLAVSKY C.: Africa Counts: Number and Pattern in African Culture, Weber & Shmidt, Boston, 1973.


    Centre for the Popularization of Mathematics

  • Exibition: Mathematics and Knots
  • Symbolic Sculptures and Mathematics

    Geometry Center

  • Gallery of Interactive Geometry
  • Geometry and the Imagination
  • Symmetry and the Shape of Space
  • Two-Dimensional Geometry

    Geometry Forum

  • Art
  • Geometry through Art
  • Symmetry and Pattern: The Art of Oriental Carpets
  • Tessellation Tutorials

    Geometry Junkyard

  • Coloring
  • Knot Theory
  • Spirals
  • Planar Geometry

    Math. Archives

  • Art and Music
  • Geometry



    Illusion Works - A Sensory Adventure

    Knot a Braid of Links

    KnotPlot Site

    Knots on the Web

    ISAST (International Society for the Arts, Science and Technology)

  • Leonardo
  • Planetary Collegium

    ISIS Symmetry (International Society for the Interdisciplinary Study of Symmetry)

  • Computer Art and Mathematics
  • Concepts and Images / Space Structures by A.L.Loeb.
  • H.S.M.Coxeter
  • Crystallographic Topology
  • World of Escher, Inc.
  • Emanuel Dimas de Melo Pimenta Home Page
  • Fractals in African Art and Architecture
  • Gödel, Escher, Bach by Douglas R. Hofstadter
  • Islamic Patterns
  • David Joyce Home Page
  • A Knot Theory Primer
  • FORMAFLUENS Project: Leyton's Idea; Leyton's Grammar
  • Learning in Motion
  • Mathematical Sculptures by Helaman Ferguson
  • Mouse's Knot Theory Home Page
  • Ogawa Laboratory
  • Op-art
  • NEXUS'96 - Michele Emmer
  • Art i mathemàtiques visuall - M.Emmer
  • Origami-Math Bibliography/Modular Origami
  • Plane Symmetry Contest
  • Cliford A. Pickover's Home Page
  • Symmetry movies
  • Symmetry: A Unifying Concept
  • Symmetry in the Plane
  • SymmeToy
  • Victor Vasarely
  • Vasarely
  • Visual Illusions Gallery
  • Triangle Illusion
  • Think Labyrinth, Maze Gallery
  • Plane Groups
  • Wallpaper Symmetries
  • Wallpaper Groups: Japaneze Design
  • Wordplay/Symmetry

  • TEXT

    The use in educational and noncomercial purposes is encuraged.
    For any other use of this material, the author's permition is necessary.
    All the illustrations are designed by the author in CorelDRAW®.

    The presentation Modularity in Art is located at and
    and last modified on 1.09.2001.