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Abstract. In this paper we show a way of viewing normal surfaces in a one-
vertex triangulation of a three-manifold using the unique vertex-linking two
sphere and projections of the normal surface.

1. Normal Surface Theory

Let M be a three-manifold with a triangulation T . A normal surface in M

is a properly embedded surface such that the intersection of the surface with each
3-simplex of M is a collection of properly embedded disjoint disks with either three
or four edges that span three or four distinct faces of the 3-simplex. A disk with
three edges is called a t-disk, and a disk with four edges is called a q-disk. A
normal isotopy of M is an isotopy that leaves the simplicies of T invariant. Up
to normal isotopy, there are four distinct t-disks and three distinct q-disks in each
3-simplex. We refer to t-disks and q-disks as elementary disks. A normal surface
can consist of any combination of the four t-disk types but can have at most one
q-disk type in each tetrahedron. Figure 1 illustrates the t-disks and the q-disks. An
arc type is the normal isotopy class of an arc in which an elementary disk meets a
2-face of a 3-simplex of T . A normal arc is made up of a union of arcs from given
arc types.

Figure 1. The Elementary Disk Types

Corresponding to a triangulation T is a set of matching equations. The
elementary disk types relative to T are arbitrarily assigned labels (a1, a2, a3, ..., a7t),
where t is the number of tetrahedra in T . We then can assign to a normal surface F

a 7t-tuple ~F = (x1, x2, x3, ..., x7t), called the normal coordinates of F , where xi

denotes the number of elementary disks in F of type ai . A 7t-tuple of non-negative
integers ~x = (x1, x2, x3, ..., x7t) corresponds to a normal surface if it satisfies two
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constraints. The first constraint is that there can be only one q-disk type in each
tetrahedron. The second constraint concerns the matching of elementary disks that
meet along an interior 2-simplex of M . In a tetrahedron there are two elementary
disk types that meet a face in a given arc type. In two tetrahedra that meet along
a common 2-face there are three matching equations; one for each arc type. Each
equation is of the form: xh + xi = xj + xk.

The system of matching equations, subject to the constraints that there can be
only one q-disk type in each tetrahedron and all the variables are nonnegative, has
a solution space in which each integral solution corresponds to a normal surface.
Projecting that solution space onto the unit sphere gives us the projective solu-

tion space. Thus the Projective Solution Space is the solution space to the system
we get by adding the additional equation x1 + x2 + ... + x7t = 1

We will refer to a normal surface and its corresponding vector solution to the
matching equations with the same symbol F . A vertex surface is a connected,
two-sided normal surface whose projection class is a vertex in the projective solution
space. A fundamental surface is a normal surface with a vector solution that is
not the sum of two other solutions.

It has been shown that a connected normal surface only depends on which Q-
disks are in that surface [9]. This has developed into Q-normal surface theory, where
we can restrict our attention to just the Q-disks. There are 3t types of Q-disks
and we will arbitrarily label them {b1, b2, b3, ..., b3t}. We describe this theory now,

allowing us to represent a normal surface by the 3t-tuple ~FQ = (y1, y2, y3, ..., y3t)
where yi denotes the number of q-disks in F of type yi.

We fix an orientation to each of the interior edges of M3. Let ~a be an oriented
edge. We describe how a Q-disk, q1, that meets ~a is assigned a value at that corner
of +1 or -1. Using a right-hand rule we rotate around ~a in the positive direction.
As we leave the tetrahedron that contains q1, if the normal arc of q1 in that face
separates the vertex at top end of ~a from the other two vertices in that face, we
assign that corner of q1 the value of +1; otherwise the corner is assigned a value of

-1. Then for each edge ~ek, there is an equation:
∑3t

i=1
εk,iyi = 0, where 0 ≤ yi is

the number of q-disks in F of type bi and εk,i = −1, 0, or +1 is the value assigned
to bi at the edge ~ek. εk,i = 0 if the q-disk of type bi does not meet the edge ~ek.

The above system of matching equations together with the conditions that there
is only one q-disk type in each tetrahedron and all the variables are nonnegative
give rise to the Q-solution space. By adding the equation y1 + y2 + ... + y3t = 1
gives us the Q-Projective Solution Space which is the projection of the Q-
Solution Space onto the unit sphere. A normal surface F corresponds to the vector
~FQ = (y1, y2, ..., y3t) in the Q-projective solution space. The only normal surfaces
not accounted for in the Q-projective solution space are disks and 2-spheres made
up of only t-disks.

2. 0-efficient Triangulations and One-vertex Triangulations

A 0-efficient triangulation of a closed 3-manifold is a triangulation in which
the only normal 2-spheres are vertex linking 2-spheres. Jaco and Rubenstein have
recently proved the following result.

Theorem 1. [4] Every closed, orientable, irreducible 3-manifold with the exception
of RP 3 has a 0-efficient triangulation. Furthermore, a compact, orientable, irre-
ducible, ∂-irreducible 3-manifold with non-empty boundary, no component of which
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is a 2-sphere, admits a triangulation having all of its vertices in the boundary and
precisely one vertex in each boundary component.

In order to construct a 0-efficient triangulation, they modify a given triangulation
by collapsing normal 2-spheres and maintaining a triangulation.

A closed 3-manifold with a 0-efficient triangulation will have just one vertex,
unless the manifold is either S3 or L(3, 1) [4]. It must be irreducible [1].

A one-vertex triangulation of a surface has a nice property concerning normal
curves that bound a disk.

Lemma 1. [6] If G is any one-vertex triangulation of a surface G then the only
normal simple closed curve bounding a disk is the vertex-linking curve.

3. The Projection Sphere

In this paper we assume that M is a three-manifold triangulated with a one-
vertex triangulation. We denote the triangulation by M. If M has boundary, it
must be connected and contain the vertex. Recall that a 0-efficient triangulated
manifold with at most one boundary component contains just one vertex (with the
exception of S3 and L(3, 1)).

We begin by defining the Projection Sphere of M .

Definition 1. The projection sphere of M (or projection disk of M , in the case
∂M 6= ∅) is a fixed copy of a normal vertex linking sphere (or normal vertex linking
disk) in M.

Since M has one vertex the projection sphere is unique up to normal isotopy.
It consists of one copy of each of the t-disks of M. We give the projection sphere
this inherited triangulation. Looking at this triangulation of the projection sphere
we can see how the faces of the tetrahedra in M meet. If two of the t-disks in the
projection sphere share a common edge, the tetrahedra that contain the two t-disks
meet in the face that contains the common edge. Also, the 1-simplices of M are
present in the projection sphere as vertices of the t-disks. Since both ends of the
edges meet at the single vertex, there is a pair of vertices of the projection sphere
that correspond to each of the edges of M.

The projection sphere gives us an alternate way to view normal surfaces in the
manifold M. We will show how we can represent the normal surfaces of M by normal
one-manifolds in the projection sphere. First we describe a method for projecting
a normal surface onto the projection sphere. Consider a single tetrahedron v of M.
For the tetrahedron v, we arbitrarily label the six edges a, b, c, d, e, f , and the four
t-disks x1, x2, x3, x4 as shown in Figure 2.

Suppose N is a normal surface in M that has some elementary disks in the 3-
simplex v. We will project those elementary disks onto all four t-disks that are
part of the projection sphere. For this we view the t-disk x1 from the vertex at the
corner of v that is separated by x1 from the other three corners. For each ray from
that vertex which meets an elementary disk of N , we mark the intersection of the
ray with x1. If the elementary disk of N is the same disk type as x1, all of x1 is
filled. For any other t-disk, the corner of x1 whose vertex corresponds to the edge
that the x1 shares with the other t-disk is filled by these marks. See Figure 3. For
a q-disk, everything but the corner of x1 whose vertex corresponds to the edge that
the q-disk does not share with x1 is filled. We project the normal surface onto each
of the t-disks of the projection sphere in the same manner.
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Figure 2. The tetrahedron v

Figure 3. The triangle x1 from v with the projection of the other
three t-disk types

We are interested in slightly simplifying the projection of a normal surface on
the projection sphere. We will show that we can represent the normal surface by
just recording the boundary of the projection of the normal surface in the interior
of each of the t-disks that form the projection sphere. We call this boundary the
projected track of a normal surface or just the projected track. In the interior
of each of the t-disks that make up the projection sphere, we refer to the boundary
of a projected normal surface as the boundary projection arcs of the elementary
disks.

Lemma 2 will help to get a better understanding of a projected normal track.

Lemma 2. Given the boundary arcs of a normal t-disk or q-disk in the four t-disks
of a projection sphere from a given tetrahedron, by looking at one arc in just one of
the four t-disks, we can determine the elementary disk type that is being projected.
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Proof. We refer to the tetrahedron v in Figure 2, where we label the six 1-simplicies
of the tetrahedron: a, b, c, d, e, f . Each vertex of the t-disks in the projection sphere
correspond to one of the six 1-simplicies of v, where each 1-simplices corresponds
to two vertices in the projection sphere. Without loss of generality, we assume that
we are given a boundary arc λ in the t-disk x1. In x1, the arc λ separates one
vertex from the other two. Without loss of generality, we suppose that λ separates
vertex a from the other two.

If the boundary arc λ is from a q-disk then the q-disk does not meet the 1-
simplex a. The q-disk meets the other two 1-simplicies b and c corresponding to
the other two vertices of x1. Knowing that the q-disk does not meet a means the
q-disk also misses the edge in v that is opposite to a. We could also find the other
two edges that the q-disk meets by looking at the other triangle with the vertex a;
the other two vertices of that t-disk corresponds to the two edges that the q-disk
meets. Thus if λ is part of a projected q-disk we can determine the elementary disk
type of that q-disk.

If the boundary arc λ is from a t-disk, then the t-disk meets the vertex that is
being isolated. The other t-disk with that vertex is the t-disk type that is being
projected. Thus we are able to determine which elementary disk type is being
projected. 2

Proposition 1. If Γ is a projected track of a normal surface in M then Γ uniquely
determines the normal surface, up to normal isotopy.

Proof. We group the t-disks that comprise the projection sphere by the tetrahedra
they are from. Let x1, x2, x3, x4 be the four t-disks of the projection sphere from
the tetrahedron v shown in Figure 2. Figure 4 shows the boundary projection arcs
of every elementary disk type in v, where y1, y2, and y3 are the q-disks.

Figure 4. The triangles x1, x2, x3, and x4 from v with the bound-
ary of the t-disk and q-disk types
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In each of the three t-disks x1, x3 and x4 we count the number of boundary
projection arcs that are parallel to the boundary arc on which x2 would project;
they are indicated by the bold lines in Figure 4. Let the number of these boundary
projection arcs be m, n, and o in x1, x3 and x4, respectively. If m = n = o then
there are m t-disks of type x2 and no q-disk types in the tetrahedron v. At least
two of the numbers must be equal since there cannot be more than one q-disk type
in v. Without loss of generality suppose that m = n but m 6= o. Then o > m. This
implies that there are elementary disks that are q-disks in v with the boundary
projection arcs in x4 that are parallel to the boundary arc on which x2 would
project. By Lemma 2 this classifies which q-disk type is in v. There are o − m

q-disks of the type y3 in v. There are m t-disks of type x2. Counting the other
boundary projection arcs in x4 will give the number of t-disks of type x1 and x3.
Counting the boundary projection arcs in x1 that are parallel to the boundary arc
on which x4 would project gives the number of t-disks of type x4. 2

We end this section with an application of the projection sphere to Q-normal
surface theory.

Figure 5. The sign of the corners a and b of the given q-disk can
be seen in the projection sphere.

Lemma 3. The associated sign of a corner of a q-disk can be determined from the
projection of the q-disk onto the projection sphere.

Proof. A q-disk has an associated sign at each of its four corners based on a right-
hand orientation. We can find the associated sign of a q-disk in the projected
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track when we rotate around each vertex of the projection sphere. If we view the 2-
sphere outside of the 3-ball containing the 0-simplex of M , we rotate in a clock-wise
direction. If the projection of the q-disk has boundary on the side of the triangle
we enter then the corner is positive. If on the other hand the boundary arc of the
projection of the q-disk is on the side we exit of the triangle, then the corner is
negative. See Figure 5. 2

The projected track of a normal surface must satisfy the q-matching equations.
Since every edge is viewed on the projection sphere as a vertex, we can read off the
q-matching equations by traveling around each vertex.

4. Example of the Projection Sphere

We look at an example that we shall deal with throughout the rest of this thesis:
the one-tetrahedron triangulation T of the solid torus T . In the next section we
will build upon T to obtain closed manifolds with a genus one Heegaard splitting.
In the next chapter we will use two copies of T to build genus two handlebody.
In this section we view T ’s projection disks and the projected tracks from certain
normal surfaces.

Figure 6. The 1-vertex, 1-tetrahedron solid torus T and its boundary

A one-vertex triangulation of the solid torus is thoroughly discussed in Jaco and
Sedgwick [6]. It is the one-tetrahedron triangulation as shown in Figure 6 along
with the corresponding triangulation of it boundary. Notice that the boundary is
the one-vertex triangulation of the torus.

The projection disk of T is the normal surface consisting of four t-disks one of
each type in the tetrahedron. Figure 7 shows the four t-disks in the tetrahedron and
the projection disk obtained after gluing the edges. The vertices of the projection
disk are labeled to correspond to the edges in the triangulation T . In any projec-
tion sphere or disk, there will be two vertices corresponding to each edge in the
triangulated three-manifold. Since some of the tetrahedron’s edges are identified to
each other, we further distinguish which edge of the tetrahedron the t-disks meet
in the pre-image before the identifications.
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Figure 7. The projection disk of T

Figure 8. The Planar Normal Surfaces in T

Figure 9. The Projected Tracks of the normal surfaces in T

Figure 8 shows all the planar normal surfaces in T . Figure 9 shows the projected
tracks of all the connected planar normal surfaces in the projection disk.
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5. Lens Spaces

The two lens spaces that have a one-tetrahedron triangulation are L(4, 1) and
L(5, 2). Figures 10 and 11 show these triangulations and their projection spheres.
For a one-tetrahedron triangulation of a closed 3-manifold, notice that these are
the only two possible triangulation for the projection sphere if there is to be no
identification of an edge of a given t-disk to another edge from the same t-disk.

Figure 10. The one-tetrahedron of L(4, 1) with its projection sphere

Figure 11. The one-tetrahedron of L(5, 2) with its projection sphere

From the one-tetrahedron, one-vertex triangulation of the solid torus T we can
layer on multiple tetrahedra and cap off the resulting torus boundary surface with
another solid torus to produce any lens space. Each layering is called a Pachner
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move because the effect of replacing the attaching edge with the new edge in the
boundary is to switch the position of one edge in the boundary. The boundary
∂T always remains a torus triangulated by two triangles with three edges and one
vertex.

The meridinal disk intersects the boundary ∂T in the three arcs shown in figure
12a. When we layer on a tetrahedron, we have some choices on how to complete the
surface in that new tetrahedron. To complete the surface in most cases, we are only
able to push through with triangles or quads, and we have not changed the given
surface in the three manifold. We must match a quad if the edge that becomes
interior would not satisfy the Q-equation corresponding to that edge without it.

Adding a layer changes how the boundary of the meridinal disk intersects the
boundary triangles. See Figure 12. After several Pachner moves, we attach another
solid torus. The original meridinal curve maps onto the boundary of the new torus
with a given slope [6]. This determines which lens space is created.

Figure 12. a) The boundary of the essential disk in T and b) the
boundary after layering over edge 2

If we view the layered triangulation of the torus from the perspective of the
projection disk, we see a very nice symmetry.

There are only four different normal planar surfaces present in the one tetra-
hedron, one-vertex solid torus. The projected tracks of all four are in Figure 9.
After a Pachner move, the normal surfaces is either pushed through or, if possible,
a banding quad might be attached.

Theorem 2. A presentation of the projection disk for the layered triangulation of
T can be presented so as to have a 180◦ rotation symmetry.

Proof. We start with the one-tetrahedron triangulation of the solid torus T as
pictured in Figure 7. Take the center point between the edge formed from the
vertices 1 and 1, so that the 6 vertices have a 180◦ rotation symmetry. A layered
tetrahedron encloses two of the vertices, but with the same label since the layered
tetrahedron is replacing an edge in the boundary with a new edge. So our projection
disk gets two new vertices corresponding to the new edge in the layered tetrahedron.
We can place these two new vertices in the representation to maintain the symmetry.
See Figure 13. The new edges can be placed to maintain the symmetry. For every
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Figure 13. The projection disk of the solid torus after two layers
have been added the attaching edges are 2 followed by 3

layered tetrahedron, we can place the two new vertices and additional edges to
maintain the 180◦ symmetry. 2

Figures 14 and 15 show two different possibilities for the projection disk of a one-
vertex triangulation of the solid torus after several layers have been added. Figure
14 shows a solid torus where the attaching edges in the layering are 1, 4, 2, 3, and 7
in that order. Since edge 4 was layered over immediately after appearing, the first
two layerings canceled each other out in terms of the Pachner moves. Figure 15
shows a solid torus where the attaching edges are 2, 3, 1, 4, 5, 7, and 6 in that order.

To create a lens space we just attach another one-vertex, one-tetrahedron trian-
gulation of the solid torus to the boundary of our layered triangulation. This gives
us a closed 3-manifold with a one-vertex triangulation. The second solid torus’s
four t-disks complete the vertex linking two-sphere, so we now have a projection
sphere. See Figure 16 where the projection disk created in Figure 14 gets attached
to a solid torus. Notice that no new edges are added when we attach the second
solid torus.

The projection sphere for a triangulation created by layering gives us a convenient
way of recording the layers.



12 JONATHAN P. KEITER

Figure 14. The projection disk after 5 layers have been added
over edges 1, 4, 2, 3, and 7
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