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1 Introduction

The circle is a fundamental geometric figure in art and architecture. The region of intersection of two
equal circles is called symmetric ogive. Villard de Honnecourt, a thirteenth-century architect in northern
France, is believed to be the first to use the term ogive [1].

One of the famous symmetric ogive is the equilateral ogive or vesica piscis, described for example in
[3]. The equilateral ogive circumscribes a rhombus composed of two equilateral triangles.

In 1973, the Spanish architect Rafael de la Hoz Arderius introduced the Cordovan proportion [5].
Using the Cordovan proportion, the Cordovan triangle is defined [2].

In this paper, an ogive circumscribed a rhombus composed of two Cordovan triangles, called the
Cordovan ogive or quadratic ogive, is defined. The geometrical properties related to the Cordovan ogive
are presented. Moreover, a 1 : (1 +

√
2) proportional system is generated.

2 Background

Two intersecting circles are said to be orthogonal if the angle between them is 90◦, i.e. the tangents at
each point of intersection are orthogonal and then they pass through the center of the other circle (Fig.1).

Fig.1 Orthogonal circles

Two positive quantities a and b are in the silver ratio if
a

b
=

2a+ b

a
, i.e.

a

b
= 1 +

√
2
not.
= θ. θ is called

the silver number [8].
A rectangle of proportion 1 : θ is called a silver (or roman) rectangle [7].
A system of proportion consists of several proportional sequences between there are additivity rela-

tionships and the arithmetic or harmonic mean of two consecutive terms of a sequence is a term of other
sequence. We mention the system of proportions based on Nicomachuss sequences, the Roman system of
proportions and the Modulor of Le Corbusier (see, e.g., [7]).

The Roman system of proportions is based on θ. Considering the sequences an = θn, bn =
√

2·θn, cn =
2θn, . . . , n ∈ N, the additivity relationship an + an+1 = bn+1 holds and the arithmetic mean of bn and
bn+1 is an+1, respectively the harmonic mean of an and an+1 is bn [7].
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Fig.2 The sacred cut square

This system of proportion is related to the sacred cut square (Fig.2) [7]. Given a reference square

(blue), a sacred cut square (red) is constructed. The relation
L

l
= θ holds.

An isosceles triangle is a Cordovan triangle if the measures of its angles are respectively 45◦, 67.5◦, 67.5◦

[2]. A Cordovan diamond is a rhombus whose angles have the measures 45◦ and 135◦ [2].
A logarithmic spiral (see, e.g., [4]) is a spiral curve in which distinct radii vectors emanating from the

pole at equal angles to one another are in geometric progression (Fig.3).
Using the polar equation of a logarithmic spiral,

ρ = aebϕ,

where ρ is the distance from the origin, ϕ is the angle from the x−axis, and a and b are arbitrary
constants, if the radii vectors ρk, ρk+1, ρk+2, . . . are orthogonal, the following relations

ρk+1

ρk
=
ρk+2

ρk+1
= . . . = e

π
2 b

hold.

Fig.3 A logarithmic spiral

3 Geometrical properties of the Cordovan ogive

Considering the square O1A3O2A4, O1A3 = r (Fig.4), the circles C(O1;r) and C(O2;r) are orthogonal
and its region of intersection is called quadratic ogive.

If we denote the intersection points between [O1O2] and the circles C(O1;r), C(O2;r) by A1 and A2

(Fig.5), then it is easy to obtain that A1A3A2A4 is a Cordovan diamond. Then the quadratic ogive will
be called Cordovan ogive.
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Fig.4 A quadratic ogive

Fig.5 The Cordovan ogive inscribed in a silver rectangle

Using Pythagoras’ theorem, we have

O1O2 = A3A4 = r
√

2.

From
O1O2 = r

√
2 = 2r −A1A2

it results that

A1A2 = r
√

2(
√

2− 1) =
r
√

2

θ
.

Let MNPQ be a rectangle such that MN = A1A2 and MQ = A3A4. Then

MN

MQ
=

1

θ
,

hence MNPQ is a silver rectangle.
So we got that the Cordovan ogive is inscribed in a silver rectangle.
By analogy with the ellipse, the segments [A1A2] and [A3A4] are called the minor axis, respectively

the major axis. Then, the ratio between the major and minor axis of a Cordovan ogive is the silver
number.

Let A5 and A6 be the others points of intersection between O1O2 and the circles C(O1;r), C(O2;r)
(Fig.6). Also, let I be the middle point of [A5A6]. The circle C(I; IA5) intersects the straight line A3A4

in the points O3 and O4 and thus O3A5O4A6 is a square (A5O3 parallel with O1A4).
We have that

O3O4 = A5A6 = 2r + O1O2 = 2r + r
√

2 = r
√

2θ

and then

O3A5 =
O3O4√

2
= rθ.

On the other hand,
O3O4 = 2O3A3 −A3A4.
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Fig.6 A recursive construction
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Therefore

O3A3 =
r
√

2θ + r
√

2

2
=
r
√

2

2
(θ + 1) = rθ = O3A5.

It results that the minor axis of the Cordovan ogive obtained at the intersection of the circles C(O3; rθ)
and C(O4; rθ) is exactly the major axis of the first Cordovan ogive.

Continuing the above construction, we obtain a family of Cordovan ogives with the property that a
major axis becomes a minor axis for the next ogive (Fig.7). Let us observe that

1

θ
=

A1A2

A3A4
=

A3A4

A5A6
= . . . ,

i.e. the axes of the Cordovan ogives of above family are in continual proportion. We say that these ogives
follow a 1 : θ geometric progression.

Fig.7 A family of Cordovan ogives

Looking again at Figure 6, the squares O3A5O4A6 and O1A3O2A4 have the same center and parallel
sides, and the ratio of its sides is

O3A5

O1A3
=
rθ

r
= θ.

It results that this construction represents another way to obtain the sacred square cut.

4 A logarithmic spiral and the family of Cordovan ogives

Applying Pythagoras’ theorem in the triangle A1IA3 (Fig.6), we have

A1A2
3 = IA2

1 + IA2
3 =

1

4
(A1A2

2 + A3A2
4) =

1

4
(1 + θ2)A1A2

2.

Also,

A3A2
5 = IA2

3 + IA2
5 =

1

4
(A3A2

4 + A5A2
6) =

1

4
(1 + θ2)A3A2

4 =
1

4
(1 + θ2)θ2A1A2

2 = θ2A1A2
3,

or equivalent
A3A5 = θ ·A1A3.

We obtain a sequence of segments A1A3,A3A5,A5A7, . . . that follow a 1 : θ geometric progression and
forming a spiral (Fig.8).

On the other hand, we have that

IA1 =
A1A2

2
=
r
√

2

2θ
,

IA3 =
A3A4

2
=
r
√

2

2
= IA1 · θ,

IA5 = IA1 · θ2, . . .
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Fig.8 A spiral composed by segments

Therefore, IA1, IA3, IA5, IA7, . . . are orthogonal radii vectors for a logarithmic spiral, with the center I,
passing through the points A1,A3,A5,A7, . . . (Fig.9,10).

Fig.9 The orthogonal radii vectors

To find the polar equation of the logarithmic spiral, ρ(ϕ) = aebϕ, we consider that for ϕ = 0, ρ = IA1

and for ϕ =
π

2
, ρ = IA3. Then

a = IA1 =
r
√

2

2θ

and
IA1 · eb

π
2 = IA1 · θ

or equivalent

b =
2

π
ln θ.
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Thus

ρ(ϕ) =
r
√

2

2θ
· e 2

π ln θ·ϕ

represents the polar equation of the θ−logarithmic spiral (Fig.10).

Fig.10 The θ−logarithmic spiral

5 A proportional system generated by the family of Cordovan
ogives

By the recursive construction process of the previous paragraphs the following sequences

(an)n∈N : O1A1,O3A3,O5A5, . . . (rays of orthogonal circles)

(bn)n∈N : A1A2,A3A4,A5A6, . . . (axes of family of ogives)

(cn)n∈N : A1A5,A3A7,A5A9, . . . (diameters of orthogonal circles)

are obtained.
First two sequences were determined in the previous paragraphs. Namely,

O1A1 = r,O3A3 = rθ,O5A5 = O3A3 · θ = rθ2, . . . ,

A1A2 =
r
√

2

θ
,A3A4 = A1A2 · θ = r

√
2,A5A6 = A3A4 · θ = r

√
2θ, . . .

For the third sequence we observe that

A1A5 = 2O1A1 = 2r,A3A7 = 2O3A3 = 2rθ,A5A9 = 2rθ2, . . .

Hence
an = rθn, bn =

√
2 · an, cn = 2 · an, n ∈ N,

and we get the Roman system of proportions.
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