On the Cordovan ogive

Cristian Lăzureanu

Department of Mathematics, "Politehnica" University of Timişoara Piaţa Victoriei nr. 2, Timişoara, 300006, România cristian.lazureanu@mat.upt.ro

1 Introduction

The circle is a fundamental geometric figure in art and architecture. The region of intersection of two equal circles is called *symmetric ogive*. Villard de Honnecourt, a thirteenth-century architect in northern France, is believed to be the first to use the term ogive [1].

One of the famous symmetric ogive is the equilateral ogive or vesica piscis, described for example in [3]. The equilateral ogive circumscribes a rhombus composed of two equilateral triangles.

In 1973, the Spanish architect Rafael de la Hoz Arderius introduced the Cordovan proportion [5]. Using the Cordovan proportion, the Cordovan triangle is defined [2].

In this paper, an ogive circumscribed a rhombus composed of two Cordovan triangles, called the Cordovan ogive or quadratic ogive, is defined. The geometrical properties related to the Cordovan ogive are presented. Moreover, a $1: (1 + \sqrt{2})$ proportional system is generated.

2 Background

Two intersecting circles are said to be *orthogonal* if the angle between them is 90° , i.e. the tangents at each point of intersection are orthogonal and then they pass through the center of the other circle (Fig.1).

Fig.1 Orthogonal circles

Two positive quantities a and b are in the silver ratio if $\frac{a}{b} = \frac{2a+b}{a}$, i.e. $\frac{a}{b} = 1 + \sqrt{2} \stackrel{not.}{=} \theta$. θ is called the silver number [8].

A rectangle of proportion $1: \theta$ is called a *silver* (or *roman*) *rectangle* [7].

A system of proportion consists of several proportional sequences between there are additivity relationships and the arithmetic or harmonic mean of two consecutive terms of a sequence is a term of other sequence. We mention the system of proportions based on Nicomachuss sequences, the Roman system of proportions and the Modulor of Le Corbusier (see, e.g., [7]).

The Roman system of proportions is based on θ . Considering the sequences $a_n = \theta^n$, $b_n = \sqrt{2} \cdot \theta^n$, $c_n = 2\theta^n, \ldots, n \in \mathbb{N}$, the additivity relationship $a_n + a_{n+1} = b_{n+1}$ holds and the arithmetic mean of b_n and b_{n+1} is a_{n+1} , respectively the harmonic mean of a_n and a_{n+1} is b_n [7].

Fig.2 The sacred cut square

This system of proportion is related to the sacred cut square (Fig.2) [7]. Given a reference square (blue), a sacred cut square (red) is constructed. The relation $\frac{L}{I} = \theta$ holds.

An isosceles triangle is a *Cordovan triangle* if the measures of its angles are respectively 45° , 67.5° , 67.5° , 2]. A *Cordovan diamond* is a rhombus whose angles have the measures 45° and 135° [2].

A logarithmic spiral (see, e.g., [4]) is a spiral curve in which distinct radii vectors emanating from the pole at equal angles to one another are in geometric progression (Fig.3).

Using the polar equation of a logarithmic spiral,

$$\rho = a e^{b\varphi},$$

where ρ is the distance from the origin, φ is the angle from the *x*-axis, and *a* and *b* are arbitrary constants, if the radii vectors $\rho_k, \rho_{k+1}, \rho_{k+2}, \ldots$ are orthogonal, the following relations

$$\frac{\rho_{k+1}}{\rho_k} = \frac{\rho_{k+2}}{\rho_{k+1}} = \dots = e^{\frac{\pi}{2}b}$$

hold.

Fig.3 A logarithmic spiral

3 Geometrical properties of the Cordovan ogive

Considering the square $O_1A_3O_2A_4$, $O_1A_3 = r$ (Fig.4), the circles $C(O_1;r)$ and $C(O_2;r)$ are orthogonal and its region of intersection is called *quadratic ogive*.

If we denote the intersection points between $[O_1O_2]$ and the circles $C(O_1;r)$, $C(O_2;r)$ by A_1 and A_2 (Fig.5), then it is easy to obtain that $A_1A_3A_2A_4$ is a Cordovan diamond. Then the quadratic ogive will be called *Cordovan ogive*.

Fig.5 The Cordovan ogive inscribed in a silver rectangle

Using Pythagoras' theorem, we have

$$\mathcal{O}_1\mathcal{O}_2 = \mathcal{A}_3\mathcal{A}_4 = r\sqrt{2}.$$

From

$$\mathcal{O}_1\mathcal{O}_2 = r\sqrt{2} = 2r - \mathcal{A}_1\mathcal{A}_2$$

it results that

$$A_1A_2 = r\sqrt{2}(\sqrt{2} - 1) = \frac{r\sqrt{2}}{\theta}$$

Let MNPQ be a rectangle such that $MN = A_1A_2$ and $MQ = A_3A_4$. Then

$$\frac{\mathrm{MN}}{\mathrm{MQ}} = \frac{1}{\theta},$$

hence MNPQ is a silver rectangle.

So we got that the Cordovan ogive is inscribed in a silver rectangle.

By analogy with the ellipse, the segments $[A_1A_2]$ and $[A_3A_4]$ are called the *minor axis*, respectively the *major axis*. Then, the ratio between the major and minor axis of a Cordovan ogive is the silver number.

Let A_5 and A_6 be the others points of intersection between O_1O_2 and the circles $C(O_1;r)$, $C(O_2;r)$ (Fig.6). Also, let I be the middle point of $[A_5A_6]$. The circle $C(I;IA_5)$ intersects the straight line A_3A_4 in the points O_3 and O_4 and thus $O_3A_5O_4A_6$ is a square $(A_5O_3$ parallel with $O_1A_4)$.

We have that

$$O_3O_4 = A_5A_6 = 2r + O_1O_2 = 2r + r\sqrt{2} = r\sqrt{2\theta}$$

and then

$$\mathcal{O}_3\mathcal{A}_5 = \frac{\mathcal{O}_3\mathcal{O}_4}{\sqrt{2}} = r\theta.$$

On the other hand,

$$O_3O_4 = 2O_3A_3 - A_3A_4.$$

Fig.6 A recursive construction

Therefore

$$O_3A_3 = \frac{r\sqrt{2}\theta + r\sqrt{2}}{2} = \frac{r\sqrt{2}}{2}(\theta + 1) = r\theta = O_3A_5$$

It results that the minor axis of the Cordovan ogive obtained at the intersection of the circles $C(O_3; r\theta)$ and $C(O_4; r\theta)$ is exactly the major axis of the first Cordovan ogive.

Continuing the above construction, we obtain a family of Cordovan ogives with the property that a major axis becomes a minor axis for the next ogive (Fig.7). Let us observe that

$$\frac{1}{\theta} = \frac{A_1 A_2}{A_3 A_4} = \frac{A_3 A_4}{A_5 A_6} = \dots,$$

i.e. the axes of the Cordovan ogives of above family are in continual proportion. We say that these ogives follow a $1: \theta$ geometric progression.

Fig.7 A family of Cordovan ogives

Looking again at Figure 6, the squares $O_3A_5O_4A_6$ and $O_1A_3O_2A_4$ have the same center and parallel sides, and the ratio of its sides is

$$\frac{\mathcal{O}_3\mathcal{A}_5}{\mathcal{O}_1\mathcal{A}_3} = \frac{r\theta}{r} = \theta$$

It results that this construction represents another way to obtain the sacred square cut.

4 A logarithmic spiral and the family of Cordovan ogives

Applying Pythagoras' theorem in the triangle A_1IA_3 (Fig.6), we have

$$A_1 A_3^2 = IA_1^2 + IA_3^2 = \frac{1}{4}(A_1 A_2^2 + A_3 A_4^2) = \frac{1}{4}(1 + \theta^2)A_1 A_2^2$$

Also,

$$A_{3}A_{5}^{2} = IA_{3}^{2} + IA_{5}^{2} = \frac{1}{4}(A_{3}A_{4}^{2} + A_{5}A_{6}^{2}) = \frac{1}{4}(1+\theta^{2})A_{3}A_{4}^{2} = \frac{1}{4}(1+\theta^{2})\theta^{2}A_{1}A_{2}^{2} = \theta^{2}A_{1}A_{3}^{2},$$

or equivalent

$$\mathbf{A}_3\mathbf{A}_5 = \theta \cdot \mathbf{A}_1\mathbf{A}_3.$$

We obtain a sequence of segments $A_1A_3, A_3A_5, A_5A_7, \ldots$ that follow a $1:\theta$ geometric progression and forming a spiral (Fig.8).

On the other hand, we have that

$$IA_1 = \frac{A_1A_2}{2} = \frac{r\sqrt{2}}{2\theta},$$

$$IA_3 = \frac{A_3A_4}{2} = \frac{r\sqrt{2}}{2} = IA_1 \cdot \theta,$$

$$IA_5 = IA_1 \cdot \theta^2, \dots$$

Fig.8 A spiral composed by segments

Therefore, $IA_1, IA_3, IA_5, IA_7, \ldots$ are orthogonal radii vectors for a logarithmic spiral, with the center I, passing through the points $A_1, A_3, A_5, A_7, \ldots$ (Fig.9,10).

Fig.9 The orthogonal radii vectors

To find the polar equation of the logarithmic spiral, $\rho(\varphi) = ae^{b\varphi}$, we consider that for $\varphi = 0$, $\rho = IA_1$ and for $\varphi = \frac{\pi}{2}$, $\rho = IA_3$. Then

$$a = \mathrm{IA}_1 = \frac{r\sqrt{2}}{2\theta}$$

and

$$\mathrm{IA}_1 \cdot e^{b\frac{\pi}{2}} = \mathrm{IA}_1 \cdot \theta$$

or equivalent

$$b = \frac{2}{\pi} \ln \theta.$$

Thus

$$\rho(\varphi) = \frac{r\sqrt{2}}{2\theta} \cdot e^{\frac{2}{\pi}\ln\theta \cdot \varphi}$$

represents the polar equation of the θ -logarithmic spiral (Fig.10).

Fig.10 The θ -logarithmic spiral

5 A proportional system generated by the family of Cordovan ogives

By the recursive construction process of the previous paragraphs the following sequences

$$\begin{array}{rcl} (a_n)_{n \in \mathbf{N}} & : & \mathcal{O}_1\mathcal{A}_1, \mathcal{O}_3\mathcal{A}_3, \mathcal{O}_5\mathcal{A}_5, \dots \text{ (rays of orthogonal circles)} \\ (b_n)_{n \in \mathbf{N}} & : & \mathcal{A}_1\mathcal{A}_2, \mathcal{A}_3\mathcal{A}_4, \mathcal{A}_5\mathcal{A}_6, \dots \text{ (axes of family of ogives)} \\ (c_n)_{n \in \mathbf{N}} & : & \mathcal{A}_1\mathcal{A}_5, \mathcal{A}_3\mathcal{A}_7, \mathcal{A}_5\mathcal{A}_9, \dots \text{ (diameters of orthogonal circles)} \end{array}$$

are obtained.

First two sequences were determined in the previous paragraphs. Namely,

$$O_1A_1 = r, O_3A_3 = r\theta, O_5A_5 = O_3A_3 \cdot \theta = r\theta^2, \dots,$$
$$A_1A_2 = \frac{r\sqrt{2}}{\theta}, A_3A_4 = A_1A_2 \cdot \theta = r\sqrt{2}, A_5A_6 = A_3A_4 \cdot \theta = r\sqrt{2}\theta, \dots$$

For the third sequence we observe that

$$A_1A_5 = 2O_1A_1 = 2r, A_3A_7 = 2O_3A_3 = 2r\theta, A_5A_9 = 2r\theta^2, \dots$$

Hence

$$a_n = r\theta^n, b_n = \sqrt{2} \cdot a_n, c_n = 2 \cdot a_n, n \in \mathbf{N}$$

and we get the Roman system of proportions.

References

 R. Branner, Villard de Honnecourt, Archimedes, and Chartres, J. Soc. Arch. Hist. 19(3), 1960, pp. 91-96.

- [2] A.R. Buitrago, E.R. Iglesias, The Geometry of the Cordovan Polygons, VisMath, volume 10, No.4, 2008.
- [3] R. Fletcher, Musings on the Vesica Piscis, Nexus Network Journal 6(2), 2004, pp. 95–110.
- [4] J. Hambidge, The Elements of Dynamic Symmetry, New York: Dover, 1926, Rpt. 1953.
- [5] R. Hoz, La proporcin Cordobesa, Actas de la quinta asamblea de instituciones de Cultura de las Diputaciones. Ed. Diputacin de Crdoba, 1973.
- [6] J. Kappraff, Systems of Proportion in Design and Architecture and their Relationship to Dynamical Systems Theory, VisMath, volume 1, No.1, 1999.
- [7] J. Kappraff, The Arithmetic of Nicomachus of Gerasa and its Applications to Systems of Proportion, Nexus Network Journal, Volume II, 2000, pp. 41–55.
- [8] V. W. de Spinadel, The family of metallic means, VisMath, volume 1, No.3, 1999.