6. Examples

In this section, we deal with the mathematics of Examples 2, 3, 4, 5, 6 and 11.

Example 2. The visibility of surfaces of revolution

A surface of revolution is generated by rotating a planar curve γ about an axis in the plane of the curve. We may assume that γ is in the x^1x^3 plane and has a parametric representation

$$\vec{x}(t) = (r(t), 0, h(t)) \ (t \in I \subset \mathbb{R}) \text{ where } r(t) > 0 \text{ on } I,$$

and that the axis of rotation is the x^3 -axis. Furthermore we assume

$$(r'(u^1))^2 + (h'(u^1))^2 \neq 0 \text{ on } I,$$
(6.1)

which is a natural assumption connected with the smoothness of γ . We put $u^1 = t$ and write u^2 for the angle of rotation. Then the surface of rotation $RS(\gamma)$ generated by γ in this way has a parametric representation

$$\vec{x}(u^i) = (r(u^1)\cos u^2, r(u^1)\sin u^1, h(u^1))$$
$$((u^1, u^2) \in D = I \times (0, 2\pi)) \quad (6.2)$$

Putting $\vec{u} = \vec{u}(u^2) = (\cos u^2, \sin u^2, 0)$ and $\vec{e}^3 = (0, 0, 1)$, we may write (6.2) as

$$\vec{x}(u^i) = r(u^1)\vec{u} + h(u^1)\vec{e}^3 \quad ((u^1, u^2) \in D).$$
 (6.3)

First we determine the intersections of the surface of rotation $RS(\gamma)$ with a straight line g given by a parametric representation

$$\vec{y}(t) = \vec{p} + t\vec{v} \quad (t \in \mathbb{R}) \tag{6.4}$$

where $\vec{p} = (p^1, p^2, p^3)$ and $\vec{v} = (v^1, v^2, v^3)$, that is we find $(u^1, u^2) \in D$ and $t \in \mathbb{R}$ with

$$r(u^{1})\vec{u} + h(u^{1})\vec{e}^{3} - (\vec{p} + t\vec{v}) = \vec{0}.$$
 (6.5)

This implies

$$h(u^{1}) - (p^{3} + tv^{3}) = 0.$$
(6.6)

First we consider the case $v^3 \neq 0$ when g is not orthogonal to the axis of rotation of $RS(\gamma)$. Then (6.6) implies

$$t = \frac{h(u^1) - p^3}{v^3}.$$
 (6.7)

We put

$$\vec{a} = \vec{p} - \frac{p^3}{v^3} \vec{v} \text{ and } \vec{b} = \frac{1}{v^3} \vec{v}$$

and, taking the square in (6.5) and substituting (6.7), we obtain

$$r^{2}(u^{1}) + h^{2}(u^{1}) = \left(\vec{p} - \frac{p^{3}}{v^{3}}\vec{v} + \frac{h(u^{1})}{v^{3}}\vec{v}\right)^{2} = (\vec{a} + h(u^{1})\vec{b})^{2}.$$

Hence we must find the zeros $u^1 \in I$ of

$$f(u^{1}) = r^{2}(u^{1}) + h^{2}(u^{1}) - (\vec{a} + h(u^{1})\vec{b})^{2} = 0.$$
(6.8)

Using the zeros u_0^1 of (6.8), we determine the values $t_0 = t(u_0^1)$ in (6.7) and finally the values $u_0^2 \in (0, 2\pi)$ from

$$\cos u_0^2 = \frac{p^1 + t_0 v^1}{r(u_0^1)} \text{ and } \sin u_0^2 = \frac{p^2 + t_0 v^2}{r(u_0^1)}.$$
(6.9)

Now a point $P \in RS(\gamma)$ is invisible if and only if, with $\vec{p} = \overrightarrow{OP}$ and $\vec{v} = \overrightarrow{PC}$, there is a solution $u_0^1 \in I$ of (6.8) with corresponding $t_0 > 0$ from (6.7) and $u_0^2 \in (0, 2\pi)$ from (6.9).

Now we consider the case $v^3 = 0$ when the straight line g is orthogonal to the axis of rotation of $RS(\gamma)$. Then (6.6) implies

$$f(u^1) = h(u^1) - p^3 = 0.$$
 (6.10)

We determine the zeros $u_0^1 \in I$ of (6.10). For each u_0^2 there are at most two intersections with the corresponding parallel, that is with the u^2 line corresponding to u_0^1 . The corresponding values $t_0 = t(u_0^1)$ are the solutions of

$$t^{2}\vec{v}^{2} + 2t\vec{p} \bullet \vec{v} + \vec{p}^{2} - \left(r^{2}(u_{0}^{1}) + h^{2}(u_{0}^{1})\right) = 0.$$
(6.11)

Finally we have to determine the values u_0^2 from (6.9). Now a point $P \in RS(\gamma)$ is invisible if and only if, with $\vec{p} = \overrightarrow{OP}$ and $\vec{v} = \overrightarrow{PC}$, there is a solution $u_0^1 \in I$ of (6.10) with corresponding $t_0 > 0$ from (6.11) and $u_0^2 \in (0, 2\pi)$ from (6.9). We observe, that if P is a point of the surface of revolution then $\vec{p}^2 = r^2(u_0^1) + h^2(u_0^1)$ and (6.11) reduces to a linear equation.

The algorithm described above is implemented in the procedure *RotST*. *Visibility*.

The procedure RotST.NotHidden is very similar with the single exception that now, in general, the point P under consideration is not a point of the surface of revolution, and so we need to find the solutions of the quadratic equation (6.11) in the special case $v_3 = 0$.

Example 3. (a) The contour of surfaces of revolution

We consider a surface of revolution RS with a parametric representation (6.2). Then

$$\vec{n}(u^{i}) = r(u^{1}) \left(r'(u^{1})\vec{e}^{3} - h'(u^{1})\vec{u}(u^{2}) \right).$$

So condition (2) for $P \in RS$ with position vector $\overrightarrow{OP} = \vec{x}(u^i)$ to be a contour point is

$$-r(u^{1})h'(u^{1}) + h(u^{1})r'(u^{1}) - r'(u^{1})\vec{c} \bullet \vec{e}^{3} + h'(u^{1})\vec{c} \bullet \vec{u}(u^{2}) = 0,$$
(6.12)

since $r(u^i) \neq 0$. Taking into account the symmetry of rotation, we may assume $\vec{c} = \|\vec{c}\|(\cos \Theta, 0, \sin \Theta)$ with $\|\vec{c}\| > 0$ and $\Theta \in [0, 2\pi)$.

First we study the case $\vec{c} \bullet \vec{u}(u^2) = 0$ when the centre of projection is on the axis of rotation. Then (6.12) yields

$$g_1(u^1) = r(u^1)h'(u^1) - r'(u^1)(h(u^1) - \vec{c} \bullet \vec{e}^3) = 0.$$
(6.13)

Contour lines are the parallels that correspond to the solutions $u_0^1 \in I$ of (6.13).

Now we consider the case $\vec{c} \bullet \vec{u}(u^2) \neq 0$ when the centre of projection is not on the axis of rotation. First we determine the zeros $u_0^1 \in I$ of

$$g_2(u^1) = h'(u^1) = 0.$$
 (6.14)

Since $r'(u_0^1) \neq 0$ by the condition in (6.1), it follows from (6.12) that

$$h(u_0^1) = \vec{c} \bullet \vec{e}^3. \tag{6.15}$$

Therefore each parallel corresponding to a solution $u_0^1 \in I$ of both (6.14) and (6.15) is a contour line. Now we consider the interval I without the solutions of (6.14). By the choice of \vec{c} , the condition in (6.12) is equivalent with

$$h'(u^1) \|\vec{c}\| \cos \Theta \cos u^2 = r(u^1)h'(u^1) + r'(u^1) \left(\|\vec{c}\| \sin \Theta - h(u^1) \right).$$

Since $\vec{c} \bullet \vec{u^2} \neq 0$ implies $\cos \Theta \neq 0$, the last condition is equivalent with

$$\cos(u^2) = a(u^1) = \frac{r'(u^1) \left(\|\vec{c}\| \sin \Theta - h(u^1) \right) + r(u^1)h'(u^1)}{h'(u^1)\|\vec{c}\| \cos \Theta}$$
(6.16)

From (6.16) we can determine $u^2(u^1)$ for those values $u^1 \in I$ for which $|a(u^1)| \leq 1$.

(b) Lines of intersection of planes and surfaces of revolution

If E is a plane with normal vector \vec{N} and P a point in E then the intersection of E with the surface of revolution RS is given by

$$\left((r(u^1)\cos u^2, r(u^1)\sin u^2, h(u^1)) - \overrightarrow{OP} \right) \bullet \overrightarrow{N} = 0$$

by (3). In view of the symmetry of rotation, we may assume that $n^2 = 0$ for the second component of the vector \vec{N} . Putting $a_0 = \vec{OP} \bullet \vec{N}$, we conclude

$$n^{1}r(u^{1})\cos u^{2} + n^{3}h(u^{1}) - a_{0} = 0.$$
(6.17)

First we consider the case when $g_2(u^1) = n^1 r(u^1) = 0$. Then \vec{N} is parallel to the axis of rotation, since $r(u^1) \neq 0$. The lines of intersection are the parallels corresponding to the values u_0^1 that are the zeros of

$$g_1(u^1) = n^3 h(u^1) - a_0 = 0.$$

Otherwise, if $g_2(u^1) = 0$ then we can solve (6.17) for

$$\cos u^1 = -\frac{g_1(u^1)}{g_2(u^1)} \tag{6.18}$$

and obtain $u^2(u^1)$ for those $u^1 \in I$ for which

$$\left|\frac{g_1(u^1)}{g_2(u^1)}\right| \le 1.$$

(c) Lines of intersection of surfaces of revolution

Let $RS(\gamma)$ and $RS(\gamma^*)$ be surfaces of revolution generated by the smooth curves γ and γ^* which are given by the parametric representations (r(t), 0, h(t)) $(t \in I)$ and $(r^*(t^*), 0, h^*(t^*))$ $(t^* \in I^*)$ with r(t) > 0 on I, $r^*(t^*) > 0$ on I^* ,

$$(r'(t))^{2} + (h'(t))^{2} > 0 \text{ on } I \text{ and } (r^{*'}(t^{*}))^{2} + h(^{*'}(t^{*}))^{2} > 0 \text{ on } I^{*}.$$

(6.19)

For the lines of intersection of $RS(\gamma)$ and $RS(\gamma^*)$ we must have

$$r(u^1)\cos u^2 = r^*(u^{*1})\cos u^{*2}, \ r(u^1)\sin u^2 = r^*(u^{*1})\sin u^{*2}$$

and

$$h(u^1) = h^*(u^{*1})$$
 for all $u^1, u^{*1} \in I \cap I^*$ and $u^2, u^{*2} \in (0, 2\pi)$.

Squaring the first two equations and adding them yields $(r(u^1))^2 = (r^*(u^1))^2$, hence $r(u^1) = r^*(u^{*1})$, since $r(u^1), r^*(u^{*1}) > 0$ on $I \cap I^*$, and then also $u^2 = u^{*2}$ from the first two equations, since the map $v \mapsto (\cos v, \sin v)$ is one to one on $(0, 2\pi)$. Furthermore it follows from the conditions in (6.19) that at every point $u^1 \in I$, at least one of

the functions r' or h' is unequal to zero. We assume that $r'(u_0^1) \neq 0$ for some $u_0 \in I$. By the continuity of r' there is a neighbourhood $N_0 = N(u_0^1) \subset I$ such that r' is unequal to zero on N_0 , hence the inverse function ϕ of r exists on N_0 . Thus $u^1 = \phi(r^*(u^{*1}))$ on N_0 , and so the line of intersection is locally given by the zeros of the function

$$f(u^{*1}) = h(\phi(r^{*}(u^{*1}))) - h^{*}(u^{*})$$
 on the set $\phi(N_0) \cap I^{*}$.

The other cases are treated in exactly the same way.

Example 4. Some algebraic curves

An important class of two-dimensional or *planar* curves is that of algebraic curves of order n, given by equations, that is the class

$$\mathcal{C}_n = \left(X = (x^1, y^1) \in \mathbb{R}^2 : \sum_{0 \le k+m \le n} a_{km} (x^1)^k (x^2)^m = 0 \ (a_{km} \in \mathbb{R}) \right).$$

The most familiar algebraic curves are the *conic sections*, that is the curves in the family C_2 .

As a first example, we consider *Cassini curves*; they are curves in C_4 and can geometrically be defined as the set of all points for which the product of the distances from two given points is constant. If the product has the value a^2 and the distance between the given two points is equal to 2c, then the corresponding Cassini curve is given by the equation

$$f(x^{1}, x^{2}; a, c) = \left((x^{1})^{2} + (x^{2})^{2} \right)^{2} - 2c^{2} \left(x^{2} - y^{2} \right)^{2} + c^{4} - a^{4} = 0.$$

Introducing polar coordinates $x^1 = \rho \cos \phi$ and $x^2 = \rho \sin \phi$, we obtain

$$\rho^4 - 2c^2\rho^2\cos 2\phi + c^4 - a^4 = 0.$$

A *lemniscate* is the special case a = c of a Cassini curve.

Now we consider two fifth order algebraic curves, namely double egg lines and rosettes. A double egg line has an application in the problem of doubling a cube. It has the following geometric definition. Let $S_r(0)$ be the circle line of radius r > 0 and centred at the origin, and A and Bbe distinct points on $S_r(0)$. Furthermore let F be the intersection of the straight line \overline{OA} with the straight line through B which is orthogonal to \overline{OA} and P be the intersection of the the straight line \overline{OB} with the line through F which is orthogonal to \overline{OB} . If B moves along the circle line $C_r(0)$ then a double egg line is the set of all points Pthat are constructed in the way just described. Introducing Cartesian coordinates with the x^1 axis along the vector \overrightarrow{OA} , we obtain

$$f(x^{1}, x^{2}; r) = \left((x^{1})^{2} + (x^{2})^{2} \right)^{3} - r^{2} (x^{1})^{4} = 0$$

as an equation for the double egg line, or, in polar coordinates

$$\rho = r \cos^2 \phi.$$

This yields a parametric representation

$$\vec{x}(t) = r(\cos^3(t), \cos^2(t)\sin(t)) \quad (t \in [0, 2\pi]).$$

A rosette has the following geometric definition. Let \overline{AB} be a straight line segment of length a the end points of which move along the axes of a Cartesian coordinate system with its centre in the origin O. If P is the intersection of \overline{AB} with the straight line through O which is orthogonal to \overline{AB} then a rosette is the set of all points P which are constructed in the way just described. A rosette is given by the equation

$$f(x^{1}, x^{2}; a) = \left((x^{1})^{2} + (x^{2})^{2} \right)^{3} - a^{2} (x^{1} x^{2})^{2} = 0;$$

a parametric representation is

$$\vec{x}(t) = \frac{a}{2}\sin 2t(\cos t, \sin t) \quad (t \in [0, 2\pi]).$$

Example 5. The envelope of a family of ellipses Let $\alpha > 0$ be fixed. We consider the family $\Gamma^{\alpha} = \{\gamma_c : c \in (0,1)\}$ of curves γ_c given by the equations

$$\frac{|x^1|^{\alpha}}{c^{\alpha}} + \frac{|x^2|^{\alpha}}{(1-c)^{\alpha}} - 1 = 0.$$
(6.20)

Then (7) becomes

$$\frac{|x^1|^{\alpha}}{c^{\alpha+1}} - \frac{|x^2|^{\alpha}}{(1-c)^{\alpha+1}} = 0,$$
(6.21)

and (6.20) and (6.21) yield

$$|x^{2}|^{\alpha} = (1-c)^{\alpha} - \frac{(1-c)^{\alpha}}{c^{\alpha}} |x^{1}|^{\alpha}$$
(6.22)

and

$$|x^{1}|^{\alpha} = \frac{c^{\alpha+1}}{(1-c)^{\alpha+1}} |x^{2}|^{\alpha}.$$
(6.23)

Substituting (6.22) in (6.23) and (6.23) in (6.22), we obtain

 $|x^{1}|^{\alpha} = c^{\alpha+1}$ and $|x^{2}|^{\alpha} = (1-c)^{\alpha+1}$,

or, putting $\beta = \alpha/(\alpha + 1)$

$$|x^{1}|^{\beta} + |x^{2}|^{\beta} - 1 = 0.$$

In the special case $\alpha = 2$, Γ^2 is a family of ellipses and its envelope is the astroid given by the equation

$$|x^{1}|^{2/3} + |x^{2}|^{2/3} - 1 = 0.$$

Example 6. Orthogonal trajectories of generalized circle lines Let $I \subset (0, \infty)$ $\alpha > 0$ and Γ^{α} be the family of all curves given by the equations

$$f(x^1, x^2) = |x^1|^{\alpha} + |x^2|^{\alpha} = c^{\alpha}.$$

In the special case of $\alpha = 2$, the curves $\gamma_c \in \Gamma^2$ are circle lines of radius c, centred at the origin. For $\alpha \geq 1$, the curves in Γ^{α} are the boundaries of the balls of radius c, centred at the origin, with respect to the norm $\|\cdot\|_{\alpha}$ defined by

$$||(x^1, x^2)||_{\alpha} = (|x^1|^{\alpha} + |x^2|^{\alpha})^{1/\alpha}.$$

The differential equation (8) for the orthogonal trajectories becomes

$$\alpha \operatorname{sgn}(x^1) |x^1|^{\alpha - 1} \frac{dx^2}{dx^1} = \alpha \operatorname{sgn}(x^2) |x^2|^{\alpha - 1} \text{ for } x^1, x^2 \neq 0,$$

and it follows that

$$\int \operatorname{sgn}(x^{1}) |x^{1-\alpha}| \, dx^{1} = \int \operatorname{sgn}(x^{2}) |x^{2-\alpha}| \, dx^{2}$$

with solutions

$$\log |x^1| = \log |x^2| + \delta \text{ for } \alpha = 2$$

and

$$|x^1|^{2-\alpha} = |x^2|^{2-\alpha} + \delta$$
 for $\alpha \neq 2$

where δ is a constant of integration. Thus the orthogonal trajectories of the family Γ^2 of circle lines are the rays given by

$$|x^{2}| = k|x^{1}| \ (k \in (0,\infty))$$

and, for $\alpha \neq 2$, the curves $\gamma_k^{\alpha,\perp}$ given by the equations

$$f(x^1,x^2;k,\alpha) = |x^1|^{2-\alpha} - |x^2|^{2-\alpha} + k = 0 \ (k \in {\rm I\!R}).$$

Example 11. Lines of constant slope on surfaces of revolution We determine all curves on surfaces of revolution that have a constant angle $\beta \in [0, \pi)$ with the axis of rotation, that is with the vector \vec{e}^3 . First, we recall a few well-known notations from the theory of curves and surfaces. Let S be a surface with a parametric representation $\vec{x}(u^i)$ of class C^r $(r \ge 1)$ on some domain $D \subset \mathbb{R}^2$. Then the functions $g_{ik}: D \to \mathbb{R}$ with

$$g_{ik} = \vec{x}_i \bullet \vec{x}_k \quad (i, k = 1, 2) \text{ where } \vec{x}_k = \frac{\partial \vec{x}}{\partial u^k}$$

are called the *first fundamental coefficients of* S. If γ is a curve on S with a parametric representation $\vec{x}(s) = \vec{x}(u^i(s))$ where s is the arc length along γ , then $\|\vec{x}(s)\| = 1$ where the dot denotes differentiation with respect to s. We remark that

$$\|\dot{\vec{x}}(s)\| = \vec{x}_i \bullet \vec{x}_k \dot{u}^i \dot{u}^k = g_{ik} \dot{u}^i \dot{u}^k$$

where the sum is taken with respect to i, k = 1, 2. Let the surface of revolution RS be given by the parametric representation (6.2). Then its first fundamental coefficients are given by

$$g_{11} = g_{11}(u^1) = (r'(u^1))^2 + (h'(u^1))^2, \ g_{12} = 0$$

and

$$g_{22} = g_{22}(u^1) = r^2(u^1).$$

Let $\vec{x}(u^i(s))$ be the parametric of a curve γ on RS where s denotes the arc length along γ . If γ is to be a line of constant slope with the angle β to the x^3 axis, then the equation

$$\dot{\vec{x}} \bullet \vec{e}^3 = h'(u^1)\dot{u}^1 = \cos\beta \tag{6.24}$$

must hold. First we consider the case $\beta \neq \pi/2$. Then solutions of (6.24) exist only in subintervals $J \subset I$ for which $h'(u^1) \neq 0$. Since $\|\dot{x}\| = 1$ and

$$\frac{1}{(\dot{u}^1)^2} = \frac{(h'(u^1))^2}{\cos^2\beta},$$

it follows that

$$\left(\frac{du^2}{du^1}\right)^2 = \frac{(h'(u^1))^2 / \cos^2\beta - g_{11}(u^1)}{g_{22}(u^1)},$$

hence

$$\frac{du^2}{du^1} = \frac{1}{|\cos\beta|} \sqrt{\frac{(h'(u^1))^2 - g_{11}(u^1)\cos^2\beta}{g_{22}(u^1)}}$$

and

$$u^{2}(u^{1}) = \frac{1}{|\cos\beta|} \int \sqrt{\frac{(h'(u^{1}))^{2} - g_{11}(u^{1})\cos^{2}\beta}{g_{22}(u^{1})}} du^{1}$$
$$= \int \frac{\sqrt{(h'(u^{1}))^{2}\tan^{2}\beta - (r'(u^{1}))^{2}}}{r(u^{2})} du^{1}$$

in those subintervals J of I in which

$$|r'(u^1)| \le |\tan\beta \cdot h'(u^1)|.$$