
6. Examples

In this section, we deal with the mathematics of Examples 2, 3, 4,
5, 6 and 11.

Example 2. The visibility of surfaces of revolution
A surface of revolution is generated by rotating a planar curve γ about
an axis in the plane of the curve. We may assume that γ is in the x1x3

plane and has a parametric representation

~x(t) = (r(t), 0, h(t)) (t ∈ I ⊂ IR) where r(t) > 0 on I,

and that the axis of rotation is the x3–axis. Furthermore we assume

(r′(u1))2 + (h′(u1))2 6= 0 on I, (6.1)

which is a natural assumption connected with the smoothness of γ.
We put u1 = t and write u2 for the angle of rotation. Then the sur-
face of rotation RS(γ) generated by γ in this way has a parametric
representation

~x(ui) = (r(u1) cos u2, r(u1) sin u1, h(u1))

((u1, u2) ∈ D = I × (0, 2π)) (6.2)

Putting ~u = ~u(u2) = (cos u2, sin u2, 0) and ~e 3 = (0, 0, 1), we may write
(6.2) as

~x(ui) = r(u1)~u + h(u1)~e 3 ((u1, u2) ∈ D). (6.3)

First we determine the intersections of the surface of rotation RS(γ)
with a straight line g given by a parametric representation

~y(t) = ~p + t~v (t ∈ IR) (6.4)

where ~p = (p1, p2, p3) and ~v = (v1, v2, v3), that is we find (u1, u2) ∈ D
and t ∈ IR with

r(u1)~u + h(u1)~e 3 − (~p + t~v) = ~0. (6.5)

This implies

h(u1)− (p3 + tv3) = 0. (6.6)

First we consider the case v3 6= 0 when g is not orthogonal to the axis
of rotation of RS(γ). Then (6.6) implies

t =
h(u1)− p3

v3
. (6.7)

We put

~a = ~p− p3

v3
~v and ~b =

1

v3
~v

1
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and, taking the square in (6.5) and substituting (6.7), we obtain

r2(u1) + h2(u1) =

(
~p− p3

v3
~v +

h(u1)

v3
~v

)2

= (~a + h(u1)~b)2.

Hence we must find the zeros u1 ∈ I of

f(u1) = r2(u1) + h2(u1)− (~a + h(u1)~b)2 = 0. (6.8)

Using the zeros u1
0 of (6.8), we determine the values t0 = t(u1

0) in (6.7)
and finally the values u2

0 ∈ (0, 2π) from

cos u2
0 =

p1 + t0v
1

r(u1
0)

and sin u2
0 =

p2 + t0v
2

r(u1
0)

. (6.9)

Now a point P ∈ RS(γ) is invisible if and only if, with ~p =
−→
OP and

~v =
−→
PC, there is a solution u1

0 ∈ I of (6.8) with corresponding t0 > 0
from (6.7) and u2

0 ∈ (0, 2π) from (6.9).
Now we consider the case v3 = 0 when the straight line g is orthog-

onal to the axis of rotation of RS(γ). Then (6.6) implies

f(u1) = h(u1)− p3 = 0. (6.10)

We determine the zeros u1
0 ∈ I of (6.10). For each u2

0 there are at most
two intersections with the corresponding parallel, that is with the u2

line corresponding to u1
0. The corresponding values t0 = t(u1

0) are the
solutions of

t2~v 2 + 2t~p • ~v + ~p 2 −
(
r2(u1

0) + h2(u1
0)
)

= 0. (6.11)

Finally we have to determine the values u2
0 from (6.9). Now a point

P ∈ RS(γ) is invisible if and only if, with ~p =
−→
OP and ~v =

−→
PC, there

is a solution u1
0 ∈ I of (6.10) with corresponding t0 > 0 from (6.11) and

u2
0 ∈ (0, 2π) from (6.9). We observe, that if P is a point of the surface

of revolution then ~p2 = r2(u1
0) + h2(u1

0) and (6.11) reduces to a linear
equation.

The algorithm described above is implemented in the procedure
RotST. V isibility.

The procedure RotST.NotHidden is very similar with the single
exception that now, in general, the point P under consideration is not
a point of the surface of revolution, and so we need to find the solutions
of the quadratic equation (6.11) in the special case v3 = 0.
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Example 3. (a) The contour of surfaces of revolution
We consider a surface of revolution RS with a parametric representa-
tion (6.2). Then

~n(ui) = r(u1)
(
r′(u1)~e 3 − h′(u1)~u(u2)

)
.

So condition (2) for P ∈ RS with position vector
−→
OP = ~x(ui) to be a

contour point is

− r(u1)h′(u1) + h(u1)r′(u1)− r′(u1)~c • ~e 3 + h′(u1)~c • ~u(u2) = 0,
(6.12)

since r(ui) 6= 0. Taking into account the symmetry of rotation, we may
assume ~c = ‖~c‖(cos Θ, 0, sin Θ) with ‖~c‖ > 0 and Θ ∈ [0, 2π).
First we study the case ~c • ~u(u2) = 0 when the centre of projection is
on the axis of rotation. Then (6.12) yields

g1(u
1) = r(u1)h′(u1)− r′(u1)(h(u1)− ~c • ~e 3) = 0.

(6.13)

Contour lines are the parallels that correspond to the solutions u1
0 ∈ I

of (6.13).
Now we consider the case ~c • ~u(u2) 6= 0 when the centre of projection
is not on the axis of rotation. First we determine the zeros u1

0 ∈ I of

g2(u
1) = h′(u1) = 0. (6.14)

Since r′(u1
0) 6= 0 by the condition in (6.1), it follows from (6.12) that

h(u1
0) = ~c • ~e 3. (6.15)

Therefore each parallel corresponding to a solution u1
0 ∈ I of both

(6.14) and (6.15) is a contour line. Now we consider the interval I
without the solutions of (6.14). By the choice of ~c, the condition in
(6.12) is equivalent with

h′(u1)‖~c‖ cos Θ cos u2 = r(u1)h′(u1) + r′(u1)
(
‖~c‖ sin Θ− h(u1)

)
.

Since ~c • ~u2 6= 0 implies cos Θ 6= 0, the last condition is equivalent with

cos(u2) = a(u1) =
r′(u1) (‖~c‖ sin Θ− h(u1)) + r(u1)h′(u1)

h′(u1)‖~c‖ cos Θ (6.16)

From (6.16) we can determine u2(u1) for those values u1 ∈ I for which
|a(u1)| ≤ 1.
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(b) Lines of intersection of planes and surfaces of revolution

If E is a plane with normal vector ~N and P a point in E then the
intersection of E with the surface of revolution RS is given by(

(r(u1) cos u2, r(u1) sin u2, h(u1))−
−→
OP

)
• ~N = 0,

by (3). In view of the symmetry of rotation, we may assume that n2 = 0

for the second component of the vector ~N . Putting a0 =
−→
OP • ~N , we

conclude

n1r(u1) cos u2 + n3h(u1)− a0 = 0. (6.17)

First we consider the case when g2(u
1) = n1r(u1) = 0. Then ~N is

parallel to the axis of rotation, since r(u1) 6= 0. The lines of intersection
are the parallels corresponding to the values u1

0 that are the zeros of

g1(u
1) = n3h(u1)− a0 = 0.

Otherwise, if g2(u
1) = 0 then we can solve (6.17) for

cos u1 = −g1(u
1)

g2(u1)
(6.18)

and obtain u2(u1) for those u1 ∈ I for which∣∣∣∣∣g1(u
1)

g2(u1)

∣∣∣∣∣ ≤ 1.

(c) Lines of intersection of surfaces of revolution
Let RS(γ) and RS(γ∗) be surfaces of revolution generated by the
smooth curves γ and γ∗ which are given by the parametric representa-
tions (r(t), 0, h(t)) (t ∈ I) and (r∗(t∗), 0, h∗(t∗)) (t∗ ∈ I∗) with r(t) > 0
on I, r∗(t∗) > 0 on I∗,

(r′(t))2 + (h′(t))2 > 0 on I and (r∗
′
(t∗))2 + h(∗

′
(t∗))2 > 0 on I∗.

(6.19)

For the lines of intersection of RS(γ) and RS(γ∗) we must have

r(u1) cos u2 = r∗(u∗1) cos u∗2, r(u1) sin u2 = r∗(u∗1) sin u∗2

and

h(u1) = h∗(u∗1) for all u1, u∗1 ∈ I ∩ I∗ and u2, u∗2 ∈ (0, 2π).

Squaring the first two equations and adding them yields (r(u1))2 =
(r∗(u1))2, hence r(u1) = r∗(u∗1), since r(u1), r∗(u∗1) > 0 on I ∩ I∗,
and then also u2 = u∗2 from the first two equations, since the map
v 7→ (cos v, sin v) is one to one on (0, 2π). Furthermore it follows from
the conditions in (6.19) that at every point u1 ∈ I, at least one of
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the functions r′ or h′ is unequal to zero. We assume that r′(u1
0) 6= 0

for some u0 ∈ I. By the continuity of r′ there is a neighbourhood
N0 = N(u1

0) ⊂ I such that r′ is unequal to zero on N0, hence the
inverse function φ of r exists on N0. Thus u1 = φ(r∗(u∗1)) on N0, and
so the line of intersection is locally given by the zeros of the function

f(u∗1) = h(φ(r∗(u∗1)))− h∗(u∗) on the set φ(N0) ∩ I∗.

The other cases are treated in exactly the same way.

Example 4. Some algebraic curves
An important class of two–dimensional or planar curves is that of al-
gebraic curves of order n, given by equations, that is the class

Cn =

X = (x1, y1) ∈ IR2 :
∑

0≤k+m≤n

akm(x1)k(x2)m = 0 (akm ∈ IR)

 .

The most familiar algebraic curves are the conic sections, that is the
curves in the family C2.
As a first example, we consider Cassini curves ; they are curves in
C4 and can geometrically be defined as the set of all points for which
the product of the distances from two given points is constant. If
the product has the value a2 and the distance between the given two
points is equal to 2c, then the corresponding Cassini curve is given by
the equation

f(x1, x2; a, c) =
(
(x1)2 + (x2)2

)2
− 2c2

(
x2 − y2

)2
+ c4 − a4 = 0.

Introducing polar coordinates x1 = ρ cos φ and x2 = ρ sin φ, we obtain

ρ4 − 2c2ρ2 cos 2φ + c4 − a4 = 0.

A lemniscate is the special case a = c of a Cassini curve.
Now we consider two fifth order algebraic curves, namely double egg
lines and rosettes. A double egg line has an application in the problem
of doubling a cube. It has the following geometric definition. Let Sr(0)
be the circle line of radius r > 0 and centred at the origin, and A and B
be distinct points on Sr(0). Furthermore let F be the intersection of the
straight line OA with the straight line through B which is orthogonal
to OA and P be the intersection of the the straight line OB with
the line through F which is orthogonal to OB. If B moves along
the circle line Cr(0) then a double egg line is the set of all points P
that are constructed in the way just described. Introducing Cartesian

coordinates with the x1 axis along the vector
−→
OA, we obtain

f(x1, x2; r) =
(
(x1)2 + (x2)2

)3
− r2(x1)4 = 0
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as an equation for the double egg line, or, in polar coordinates

ρ = r cos2 φ.

This yields a parametric representation

~x(t) = r(cos3(t), cos2(t) sin(t)) (t ∈ [0, 2π]).

A rosette has the following geometric definition. Let AB be a straight
line segment of length a the end points of which move along the axes
of a Cartesian coordinate system with its centre in the origin O. If
P is the intersection of AB with the straight line through O which
is orthogonal to AB then a rosette is the set of all points P which
are constructed in the way just described. A rosette is given by the
equation

f(x1, x2; a) =
(
(x1)2 + (x2)2

)3
− a2(x1x2)2 = 0;

a parametric representation is

~x(t) =
a

2
sin 2t(cos t, sin t) (t ∈ [0, 2π]).

Example 5. The envelope of a family of ellipses
Let α > 0 be fixed. We consider the family Γα = {γc : c ∈ (0, 1)} of
curves γc given by the equations

|x1|α

cα
+

|x2|α

(1− c)α
− 1 = 0. (6.20)

Then (7) becomes

|x1|α

cα+1
− |x2|α

(1− c)α+1
= 0, (6.21)

and (6.20) and (6.21) yield

|x2|α = (1− c)α − (1− c)α

cα
|x1|α (6.22)

and

|x1|α =
cα+1

(1− c)α+1
|x2|α. (6.23)

Substituting (6.22) in (6.23) and (6.23) in (6.22), we obtain

|x1|α = cα+1 and |x2|α = (1− c)α+1,

or, putting β = α/(α + 1)

|x1|β + |x2|β − 1 = 0.
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In the special case α = 2, Γ2 is a family of ellipses and its envelope is
the astroid given by the equation

|x1|2/3 + |x2|2/3 − 1 = 0.

Example 6. Orthogonal trajectories of generalized circle lines
Let I ⊂ (0,∞) α > 0 and Γα be the family of all curves given by the
equations

f(x1, x2) = |x1|α + |x2|α = cα.

In the special case of α = 2, the curves γc ∈ Γ2 are circle lines of radius
c, centred at the origin. For α ≥ 1, the curves in Γα are the boundaries
of the balls of radius c, centred at the origin, with respect to the norm
‖ · ‖α defined by

‖(x1, x2)‖α =
(
|x1|α + |x2|α

)1/α
.

The differential equation (8) for the orthogonal trajectories becomes

αsgn(x1)|x1|α−1dx2

dx1
= αsgn(x2)|x2|α−1 for x1, x2 6= 0,

and it follows that∫
sgn(x1)|x1−α| dx1 =

∫
sgn(x2)|x2−α| dx2

with solutions

log |x1| = log |x2|+ δ for α = 2

and

|x1|2−α = |x2|2−α + δ for α 6= 2

where δ is a constant of integration. Thus the orthogonal trajectories
of the family Γ2 of circle lines are the rays given by

|x2| = k|x1| (k ∈ (0,∞))

and, for α 6= 2, the curves γα,⊥
k given by the equations

f(x1, x2; k, α) = |x1|2−α − |x2|2−α + k = 0 (k ∈ IR).

Example 11. Lines of constant slope on surfaces of revolution
We determine all curves on surfaces of revolution that have a constant
angle β ∈ [0, π) with the axis of rotation, that is with the vector ~e 3.
First, we recall a few well–known notations from the theory of curves
and surfaces. Let S be a surface with a parametric representation
~x(ui) of class Cr (r ≥ 1) on some domain D ⊂ IR2. Then the functions
gik : D → IR with

gik = ~xi • ~xk (i, k = 1, 2) where ~xk =
∂~x

∂uk
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are called the first fundamental coefficients of S. If γ is a curve on S
with a parametric representation ~x(s) = ~x(ui(s)) where s is the arc

length along γ, then ‖~̇x(s)‖ = 1 where the dot denotes differentiation
with respect to s. We remark that

‖~̇x(s)‖ = ~xi • ~xku̇
iu̇k = giku̇

iu̇k

where the sum is taken with respect to i, k = 1, 2.
Let the surface of revolution RS be given by the parametric represen-
tation (6.2). Then its first fundamental coefficients are given by

g11 = g11(u
1) = (r′(u1))2 + (h′(u1))2, g12 = 0

and
g22 = g22(u

1) = r2(u1).

Let ~x(ui(s)) be the parametric of a curve γ on RS where s denotes the
arc length along γ. If γ is to be a line of constant slope with the angle
β to the x3 axis, then the equation

~̇x • ~e 3 = h′(u1)u̇1 = cos β (6.24)

must hold. First we consider the case β 6= π/2. Then solutions of
(6.24) exist only in subintervals J ⊂ I for which h′(u1) 6= 0. Since

‖~̇x‖ = 1 and
1

(u̇1)2
=

(h′(u1))2

cos2 β
,

it follows that (
du2

du1

)2

=
(h′(u1))2/ cos2 β − g11(u

1)

g22(u1)
,

hence

du2

du1
=

1

| cos β|

√√√√(h′(u1))2 − g11(u
1) cos2 β

g22(u1)

and

u2(u1) =
1

| cos β|

∫ √√√√(h′(u1))2 − g11(u
1) cos2 β

g22(u1)
du1

=
∫ √

(h′(u1))2 tan2 β − (r′(u1))2

r(u2)
du1

in those subintervals J of I in which

|r′(u1)| ≤ | tan β · h′(u1)|.


