• ADAMS, C.C.: The Knot Book, Freeman, New York, 1994. 
  • AIGNER, M.: Combiniatrial Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1979. 
  • ASCHER, M.: Ethnomathematics: A Multicultural View of Mathematical Ideas, Brooks/Cole, 1991. 
  • BAIN, G.: Celtic Art - the Methods of Construction, Dover, New York, 1973. 
  • BARRETT, C.: Op-art, Studio Vista, London, 1970. 
  • CAUDRON A.: Classification des noeuds et des enlancements, Prepublications Univ. Paris Sud, Orsay, 1981. 
  • CONWAY J.H.: An enumeration of knots and links and some of their algebraic properties, In Computational Problems in Abstract Algebra, Pergamon Press, New York, 1970, 329-358. 
  • CROMWELL, P.R.: Celtic knotwork: mathematical art, The Math. Intelligencer 15, 1 (1993), 36-47. 
  • DOWKER, C.H.; THISTLETHWAITE, M.B.: Classification of knot projections, Topology Appl. 16 (1983), 19-31.
  • DUNHAM D., Hyperbolic Celtic Knot Patterns, Bridges: Mathematical Connections in Art, Music, and Science, Conference Proceedings, 13-23, 2000. 
  • FARMER, D.; STANFORD, B.: Knots and Surfaces, American Mathematical Society, 1996. 
  • FONTINHA, M.: Desenhos na areiados Quiocos do Nordeste de Angola, Inst. de Invest. Cientif. Tropical, Lisboa, 1983. 
  • GARDNER, M.: Mathematical Puzzles and Diversions, Penguin Books, London, 1991. 
  • GERDES, P.: Reconstruction and extension of lost symmetries, Comput. Math. Appl. 17, 4-6 (1989) 791-813 (also in Symmetry: Unifying Human Understanding II, Ed. I.Hargittai). 
  • GERDES, P.: On ethnomathematical research and symmetry, Symmetry: Culture and Science 1, 2 (1990) 154-170. 
  • GERDES, P.: Geometria Sona
  • GERDES, P.: Extensions of a reconstructed Tamil ring-pattern, in The Pattern Book: Fractals, Art and Nature, Ed. C.Pickower. World Scientific, Singapoore, 1995, pp. 377-379. 
  • GERDES, P.: Lunda Geometry - Designs, Polyominoes, Patterns, Symmetries, Universidade Pedagogica, Mocambique, 1996. 
  • GERDES, P.: On mirror curves and Lunda designs, Comput. & Graphics 21, 3 (1997) 371-378. 
  • GERDES, P.: On Lunda-designs and Lunda-animals. Fibonacci returns to Africa, The Fibonacci Quarterly (to appear). 
  • GERDES P.: Geometry from Africa: Mathematical and Educational Explorations, Mathematical Association of America, Washington DC, 2000.
  • GOLOMB, S.: Polyominoes: Puzzles, Patterns, Problems and Packings, Princeton University Press, New York, 1994. 
  • GRÜNBAUM, B.; SHEPHARD, G.C.: Tilings and Patterns, W.H.Freeman, New York, 1987. 
  • HARARY, F.; PALMER, E.: Graphical Enumeration, Academic Press, New York, London, 1973. 
  • JABLAN, S.V.: Periodic antisymmetry tilings, Symmetry: Culture and Science 3, 3 (1992), 281-291. 
  • JABLAN, S.V.: Magic, CEVISAMA'94, Valencia. 
  • JABLAN, S.V.: Theory of Symmetry and Ornament, The Math. Inst., Belgrade, 1995. 
  • JABLAN, S.V.: Mirror generated curves, Symmetry: Culture and Science 6, 2 (1995) 275-278. 
  • JABLAN, S.V.: Are Borromean Links so Rare?, Forma, 14, 4 (1999),  269-277 (also in Visual Mathematics).
  • JABLAN, S.V.: Ordering Knots, Visual Mathematics, 1998. 
  • KAUFFMAN L.H.: On Knots, Princeton University Press, Princeton, 1987. 
  • KIRKMAN, T.P.: The enumeration, description and construction of knots of fewer than ten crossings, Trans. Roy. Soc. Edinburgh, 32 (1885), 281-309. 
  • LAYARD, J.: Labyrinth ritual in South India: threshold and tattoo designs, Folk-Lore 48 (1937) 115-182. 
  • LIVINGSTON, C.: Knot Theory, Math. Assoc. Amer., Washington DC, 1993. 
  • PEARSON, E.: People of the Aurora, Beta Books, San Diego, 1977. 
  • SANTOS, E. DOS: Sobre a matematica dos Quiocos de Angola, in Garcia de Orta, Lisboa, Vol. 8, 1960, 257-271. 
  • SANTOS, E. DOS: Contribuicao para o estudo das pictografias e ideogramas dos Quiocos, in Estudos sobre a etnologia do ultramar portugues, Lisboa, Vol. 2, 1961, 17-131. 
  • TAIT, P.G.: On knots, I, II, III, in Scientific Papers, Vol. 1, C.U.P., London, 1898, 273-347. 
  • TURNER, J.C.; GRIEND, P. VAN DE (Eds.): History and Science of Knots, World Scientific, Singapoore, 1996. 
  • WASHBURN, D.; CROWE, D.: Symmetries of Culture, University of Washington Press, Seattle, 1988. 
  • ZASLAVSKY C.: Africa Counts: Number and Pattern in African Culture, Weber & Shmidt, Boston, 1973. 



    WWW Sites 

    Centre for the Popularization of Mathematics

  • Exibition: Mathematics and Knots 
  • Dragon curves


  • Ethnomathematics Study 
  • Geometry Junkyard

  • Knot Theory 
  • Info on Polyominoes

    ISIS Symmetry (International Society for the Interdisciplinary Study of Symmetry

    A Knot Theory Primer

    Knot a Braid of Links

    KnotPlot Site

    Knots on the Web

    Learning in Motion

    Mouse's Knot Theory Home Page

    This work was supported by the Research Support Scheme of the OSI/HESP, grant No. 85/1997.