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Abstract

This article describes schemes for coloring an m × n grid in two or more
colors. Such a grid is based on the “product” of two q-ary sequences, one of
length m and the other of length n, each built from an alphabet A containing
q distinct symbols and a q× q product matrix that defines the product of two
elements ai and aj of A. With this product matrix and a color set containing
up to q2 colors, we define the m×n product of two such q-ary sequences, along
with its associated m×n colored grid. Considered in detail is the special case
when the product matrix is a one-step left (or right) circulant latin square and
the number of colors is from 2 to q, as results when the operation is addition
(or subtraction) with modular arithmetic.

1 Introduction

This work is inspired by beautiful patterns developed over centuries by weavers of textiles.
Two examples are shown in Figure 1: The wheel in (a) and the rose in (b) are adapted
versions of patterns described in [2] and [3].

We will describe each of the two patterns in this figure as a color array defined by
the “product” of two integer sequences and an appropriate coloring scheme. The wheel
pattern in Figure 1(a) results from coloring the product of the sequence S with itself. The
rose design in (b) results from the product of the sequences S and S∗ shown in the figure.
There is a simple relationship between S and S∗, a relationship commonly exploited by
weavers in designing textiles. Let < denote the permutation of the integers 1 through 8
that reverses their order, mapping (1, 2, 3, 4, 5, 6, 7, 8) onto (8, 7, 6, 5, 4, 3, 2, 1). Then S∗ is
the sequence that results from replacing each integer i in S with <(i). Weavers frequently
use this technique of order reversal to create beauty and interest within a single woven
piece.
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S  =  (1,2,3,4,5,6,5,6,7,8,7,8,7,6,5,6,7,8,7,8,7,6,5,6,5,4,3,4,3,4,3,2,1,2,1,2,1,2,

          3,4,3,2,1,2,1,2,1,2,3,4,3,4,3,4,5,6,5,6,7,8,7,8,7,6,5,6,7,8,7,8,7,6,5,6,5,4,3,2,1)

 

S*  =  (8,7,6,5,4,3,4,3,2,1,2,1,2,3,4,3,2,1,2,1,2,3,4,3,4,5,6,5,6,5,6,7,8,7,8,7,8,7,

            6,5,6,7,8,7,8,7,8,7,6,5,6,5,6,5,4,3,4,3,2,1,2,1,2,3,4,3,2,1,2,1,2,3,4,3,4,5,6,7,8)

  (a)  wheel                                                                        (b)  rose

Figure 1: The designs in (a) and (b) are outlines of traditional eight-harness weaving
patterns called wheel and rose, respectively.
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Textile weavers use two-color drafts such as those in Figures 1 and 2 to define fabric
structures. We begin with a definition of the weaver’s draft, discuss it in terms of coloring
a rectangular grid with two colors and then generalize to colorings that use more than two
colors.

Textile weaving is a process of interlacing threads into cloth. Traditionally, lengths of
yarn called warp ends are attached in parallel and held under tension on the loom. The
weaver separates warp ends into two layers, passes a strand of yarn called the weft through
the resulting opening (the shed) and then moves (or beats) that weft strand so that it
lies against the previously woven weft, perpendicular to the warp. Then the weaver lifts
another subset of warp strands, repeating the process until the fabric is completely woven.
When using a loom with a harness mechanism, a weaver passes each warp thread through
a harness so the thread then rises and falls with that harness.

A weaver’s draft provides the information necessary for creating a woven fabric. An
example of a four-harness weaving draft based on a wheel design is shown in Figure 2(a).
The 4 × 45 rectangle at the top of the draft is the threading diagram, showing how warp
threads pass through harnesses, the harnesses shown numbered from top to bottom. (Gen-
erally a weaver’s draft numbers the harnesses from bottom to top, harness one being closest
to the weaver sitting at the front of the loom. We reverse this numbering, to correspond
with standard matrix notation.) The threading diagram at the top of Figure 2(a) shows
that the left-most warp thread passes through the fourth harness, the next thread passes
through the third harness, and so on. The 45× 4 rectangle at the right of the draft shows
the harness lift plan. With harnesses numbered from left to right, column i contains a
black square when harness i is lifted, for i from 1 to 4. To produce the exact pattern
shown in Figure 2(a), the weaver starts at the bottom of the draft and passes the first
weft thread through the shed with harnesses 1 and 4 lifted, passes the second weft through
with harnesses 3 and 4 lifted, and so on, to create the 45× 45 grid of fabric represented in
the bottom left of Figure 2(a). This 45 × 45 grid, called the drawdown, defines the fabric
interlacement structure. A black square in this grid indicates that a warp end is lifted
and therefore passes over the weft yarn, while a white square indicates weft passing over
warp [23], [1]. Note that color in the drawdown denotes fabric structure; the apparent
pattern in the woven cloth depends on the fabric structure as well as the colors chosen for
warp and weft threads.

As the draft in Figure 2(a) suggests, a weaving drawdown is a two-dimensional array
defined by two two-color border patterns. Lourie [16], Hoskins [13] and others made this
explicit in terms of binary matrices. Suppose the draft calls for q harnesses, q ≥ 2. Let L
denote the m × q matrix corresponding to the lift plan, with 1’s replacing black squares
and 0’s replacing white. Similarly, let H denote the q × n binary matrix representing the
harness threading diagram. Then the m× n binary array corresponding to the drawdown
is the matrix product LH. Some restrictions must be placed on the binary matrices L and
H to ensure that the resulting drawdown in fact represents a fabric structure that “hangs
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T  =  (4,3,2,1,4,3,2,1,2,3,2,1,2,3,4,1,2,1,2,3,2,3,4,3,2,3,2,1,2,1,4,3,2,1,2,3,2,1,2,3,4,1,2,3,4)

1
2
3
4
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N

HARNESS  THREADING

Drafts of two four-harness fabric structures with the same harness threading corresponding to 

sequence  

(a)                                                                                               (b)

T

T

Figure 2: Weaver’s drafts of two four-harness fabric structures with the same harness
threading defined by sequence T . Following draft (a), the weaver lifts two harnesses
at a time. In draft (b), the lift plan calls for one harness to be lifted at a time.

together” rather than falling apart [4], [6], [11], [20]. The drafts presented in this paper
describe fabrics that hang together.

The drafts in Figures 2(a) and (b) have the same threading diagram. Since each warp
thread passes through exactly one harness, we can represent this threading diagram as a
sequence built from the integers 1 through 4. The draft in Figure 2(b) calls for exactly
one harness to be lifted at a time, so the lift plan can also be specified by a sequence built
from the integers 1 through 4. In a draft such as this, the harness threading and lift plan
sequences completely describe how to color the drawdown grid in two colors.

Weavers have devised a notational system so that a draft is completely specified by a
harness threading sequence, a lift plan sequence and a coloring rule specifying which har-
nesses to lift for a given number in the lift plan sequence. Figure 4(c) shows this version
of the draft in Figure 2(a), while Figure 4(d) does the same for Figure 2(b). Weavers will
recognize these as right twill drafts, with each row of the coloring grid a one-step right
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circulant version of the row before it. All of the drafts we consider in this work are exam-
ples of twill drafts. In the next section, we extend this model for coloring a rectangular
grid in two colors to a multiple-color model. Using two sequences built from q symbols, we
describe a scheme for coloring a two-dimensional grid in s colors, where 2 ≤ s ≤ q2.

What happens to a pattern if we change the “names” of the symbols in the harness
threading and/or lift plan sequence in a weaving draft such as the one in Figure 2(b)? It
seems obvious that if we permute the symbols in the two sequences the same way, the the
pattern will not change because we are only changing the names of the harnesses. But
what happens if the symbols of the harness threading sequence are permuted in one way
and those of the lift plan sequence in another? We will address this question in Section 3.
In Sections 4 and 5, we relate our coloring schemes to modular arithmetic, using addition
and subtraction mod q.

2 Coloring arrays defined by sequences

Consider a sequence B = (b1, b2, . . . , bn) where each bi belongs to an (ordered) alphabet A
consisting of q distinct symbols a1, . . . , aq. We will say that B is a sequence built from the
symbols in A. If each symbol in A is represented at least once in B, we say B is a q-ary
sequence of length n. (Translations of B generate a periodic sequence of period n; see, for
example, [9], [10], [22], [5], [19], [18].)

Our goal is to specify a procedure for coloring a grid defined as a product of two
sequences, each sequence built from an alphabet A. If M is a q × q rectangular array, we
can define an operation on A based on M this way: if ai and aj are two symbols in A, then
ai ◦ aj equals the element in the (i, j) position of product array M.

Suppose that there are s distinct elements in the q × q product array M, 2 ≤ s ≤ q2,
and that these elements have an ordering m1, . . . ,ms. Let C denote an ordered set of s
colors c1, . . . , cs. We define a q × q colored grid C this way: if the (i, j) element of M is
mk, then the color in the (i, j) position of C is ck.

Now suppose F is a sequence (f1, . . . , fm) of length m and G is a sequence (g1, . . . , gn)
of length n, each built from the q symbols in A. By F •G we will mean the m × n array
whose (i, j) element is the product fi ◦ gj defined by the product array M. That is, the
(i, j) element of F •G is the (fi, gj) element of M. Note that if we let I denote the sequence
(a1, a2, . . . , aq), then I • I is another name for M.

Using product array M and color set C, we define C(F • G) as the m × n grid in
which the (i, j) position of C(F •G) has the color in the (fi, gj) position of C. Note that
C(I • I) = C(M) = C.

Consider now the particular product array A, defined as follows:
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a1 a2 a3 . . . aq
a1 a1 a2 a3 . . . aq
a2 aq a1 a2 . . . aq−1
a3 aq−1 aq a1 . . . aq−2
...

...
...

...
...

...
aq a2 a3 a4 . . . a1

The first row of the q × q product array A consists of the symbols a1 through aq of
A, arranged in order from left to right. A is a right circulant latin square (each letter
ai appears exactly once in each row and column), with each row a one-step right cyclic
translation of the one before it [7], [8].

Let C denote an ordered set of q colors c1 through cq, assigned to the symbols a1
through aq, respectively. Then the colored grid C resembles A in the sense that it is a
one-step right circulant latin square.

For two specific examples, we will color the wheel and rose designs of Figure 1. Suppose
that q = 8, A is the set of integers from 1 to 8, I = (1, 2, 3, 4, 5, 6, 7, 8) and the eight colors
in C are dark blue, blue, turquoise, green, yellow, orange, red and purple.

In Figure 3(a), the sequence S of Figure 1 serves as both the vertical (lift plan) sequence
and the horizontal (threading) sequence. The color array C = C(I • I) is the 8× 8 array
at the top right of (a), C(I • S) is the 8 × 79 border pattern shown at the top left and
C(S • I) is the 79× 8 border pattern shown at the right. The 79× 79 grid at the bottom
left of (a) is the eight-color wheel design C(S • S). As in the two-color case of weaving
drafts, we might think of the 79×79 eight-color pattern as “defined” by the horizontal and
vertical border patterns.

The colored grid C(S •S) in Figure 3(a) is an eight-color version of the two-color wheel
pattern in Figure 1(a). If for this example the first color in C is black and the other seven
are all white, then C(S • S) is the 79× 79 black and white wheel design of Figure 1(a).

For the rose design in Figure 3(b), the sequence S is the horizontal sequence, S∗ = S<
is the vertical sequence and C(S∗ • S) is the 79× 79 eight-color grid shown at the bottom
left. Again, we might think of the 79 × 79 colored grid C(S∗ • S) as “defined” by the
horizontal and vertical border patterns C(I • S) and C(S∗ • I), respectively. Note that if
we change the first color of C to black and the others to white, D(S∗ • S) becomes the
two-color rose of Figure 1(b).

Each of the sequences S and S∗ is symmetrical about its center element, leading to
the vertical and horizontal symmetries of the wheel and rose designs. In Figure 3(b), we
see that C(S∗ • I) is the transpose of C(I • S), accounting for the invariance of C(S∗ • S)
under 90◦ rotations. In Figure 3(a), C(S • I) results from taking the transpose of C(I •S),
reflecting over a vertical axis and then reversing the color order; therefore, this eight-color
wheel design is invariant under 180◦ but not 90◦ rotations.
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 C(I • S)  

 C(S* • S)  

C(I • I)

C(S* • I)

 C(I • S)  C(I • I)

C(S • S)                                            C(S • I)

(a)                    (b)

Figure 3: Shown in (a) are four colored grids defined by the sequences S and I;
clockwise from the top left, C(I •S), C(I • I), C(S • I) and C(S •S). Shown in (b)
are the four colored grids C(I •S), C(I • I), C(S∗ • I) and C(S∗ •S). The colors in
C are dark blue, blue, turquoise, green, yellow, orange, red and purple.
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Let’s return to the four-harness example of Figure 2, with sequence T defined there.
Suppose that q = 4, A is the set of integers from 1 to 4, I = (1, 2, 3, 4) and the four colors
in C are: navy, blue, green and yellow. Then C = C(I • I) is the 4 × 4 four-color grid at
the top right of Figure 4(a), C(I • T ) is the 4 × 45 horizontal border pattern at the top
left of the figure, C(T • I) is the 45 × 4 vertical border pattern shown at the right and
C(T • T ) is the 45× 45 grid at the bottom left of the figure. Figure 4(b) shows the same,
with colors changed to red, blue, pink and purple.

For this same example, suppose now that the colors d1 and d2 are black, while d3
and d4 are white. Then we obtain the drawdown in Figure 4(c), equivalent to the one
shown in Figure 2(a). If d2, d3 and d4 are white and d1 is black, then we find the draft
in Figure 4(d), equivalent to that in Figure 2(b). As noted previously, the orientations of
the horizontal harness threading diagram at the top left and the color matrix (or “tie-up”
grid) at the right of these figures do not coincide with the orientations traditionally used
in weaving, but the meanings are the same.

In the next section, we look at the effects on a colored pattern of permuting elements
of the horizontal and/or the vertical sequences and relate these to the effects of permuting
the rows and/or columns of the corresponding color array C.

3 Permutations of rows and columns of a color

array C

In Figures 1 and 3, we saw the effect of replacing the elements (1, 2, 3, 4, 5, 6, 7, 8) in one of
the defining sequences with the corresponding elements of the order-reversed permutation
(8, 7, 6, 5, 4, 3, 2, 1). What happens when we permute the rows and/or columns of the color
array C? How are these changes related to the effects of renaming the symbols in one or
both of the defining sequences? We will address these two questions, but first we need
some definitions.

Let π denote a permutation of the integers from 1 to q and W an ordered set of elements
w1, . . . , wq. Define π[W] as the ordered set resulting from rearranging the elements of W
according to the permutation π: the element in position i of π[W] is wπ(i).

If F is a q-ary sequence built from an alphabet A, let Fπ denote the sequence that
results from replacing each symbol in F by its corresponding symbol in π[A]. For instance,
if I = (a1, . . . , aq) and r is the permutation that results in a one-step right cyclic translation
of the symbols in A, then Ir = (aq, a1, . . . , aq−1) = r[I].

Now suppose that Z is a q × q array and that π and ρ are two permutations of the
integers 1 through q. Define Zπ,ρ as the array that results from this procedure: permute the
rows of Z according to the permutation π and then permute the columns of the resulting
array according to the permutation ρ (or, equivalently, permute the columns according
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HARNESS  THREADING HARNESS  THREADING

(c)  black, black, white, white                     (d)  black, white, white, white

HARNESS  THREADING HARNESS  THREADING

(a)  navy, blue, green, yellow                     (b)  red, blue, pink, purple

Figure 4: Four-color grids defined by the sequences T and I of Figure 2. In each part
of the figure, the colored grids are, clockwise from the top left: C(I • T ), C(I • I),
C(T • I) and C(T • T ), with colors as shown.
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to ρ and then the rows according to π). Note that if ι is the identity permutation, then
Z = Zι,ι. If C is a color array associated with the q × q multiplication matrix M, then we
can think of Cπ,ρ as the color array corresponding to product matrix Mπ,ρ. We prove the
following theorem:

Theorem 1. Suppose F is a q-ary sequence of length m and G is a q-ary sequence of
length n, each built from the q symbols in an ordered alphabet A with product matrix M
and color array C. Let π and ρ be permutations of the integers from 1 to q. Then the
m× n colored grid defined by Fπ, Gρ, M and C is the same as the array defined by F , G,
Mπ,ρ and Cπ,ρ. That is, C(Fπ •Gρ) = Cπ,ρ(F •G).

Proof. Let i be an integer from 1 to m and j an integer from 1 to n. We first will find the
color in the (i, j) position of C(Fπ •Gρ). If the symbol fi in position i of the sequence F
is al, then the symbol in position i of Fπ is aπ(l). If the symbol gj in position j of G is ah,
then position j of Gρ is aρ(h). Therefore, the color in the (i, j) position of C(Fπ • Gρ) is
the color in row π(l) and column ρ(h) of C.

The (i, j) element of F • G is f(i) ◦ g(j) = al ◦ ah. We need to determine the color
in Cπ,ρ for the row associated with symbol al and column associated with symbol ah. We
know that row l of C corresponding to al becomes row π(l) in Cπ,ρ and column h of C
corresponding to ah becomes column ρ(h). Therefore, the color in the (i, j) position of
Cπ,ρ corresponding to f(i) ◦ g(j) = al ◦ ah is the color in row π(l) and column ρ(h) of C.

As an example, let C = C(I • I) be the one-step right circulant color array shown
in Figure 5(a), with colors blue, red, yellow, cyan. Also, let < be the permutation that
reverses the order of the integers in A, mapping I = (1, 2, 3, 4) onto I< = (4, 3, 2, 1). As
illustrated in (b) of the figure, the array C(I • I<) = Cı,<(I • I) is a reflection across a
vertical axis of the original array C = C(I • I) in (a). The array C(I< • I) = C<,ı(I • I)
in (c) is a reflection across a horizontal axis of the original array C = C(I • I) in (a). In
(d), we can see that C(I< • I<) = C<,<(I • I) is the reflection of the array in (c) across a
vertical axis, as well as the reflection of (b) across a horizontal axis. . The colored grid in
(d) is also the transpose of the beginning color array C, resulting from flipping C across
its main diagonal. Therefore, the arrays in (a) and (d) are the same if and only if C is
symmetrical across the main diagonal. Similarly, the color array in (c) results from a flip
across the other (upper right to lower left) diagonal of the array in (b) and these arrays
are equal if and only if C is symmetric.

Now let T be the sequence defining the wheel designs in Figure 2. In Figure 5(e)-(h)
are the four patterns defined by the sequences T , T< = T ∗ and color array D = D(I • I).
D(T • T ) is the 45 × 45 four-color wheel design in Figure 5(e). The 45 × 45 rose design
in (f) is D(T • T<) = Dı,<(T • T ), where color array Dı,< is shown in Figure 5(b). In (g)
is the rose pattern D(T< • T ) = D<,ı(T • T ), with color array D<,ı shown in Figure 5(c).
Finally, (h) shows the wheel pattern D(T< •T<) = D<,<(T •T ), with D<,< in Figure 5(d).
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(a)                                               (b)

(c)                                                (d)

D(I•I)

 1  2  3  4    4  3  2  1

1
2
3
4  

4
3
2
1

T                                                             T*

T

T*

(e) (f )

(g) (h)

Figure 5: The color arrays in (a) through (h) are, respectively: C = C(I • I),
C(I • I<) = Cı,<(I • I), C(I< • I) = C<,ı(I • I), C(I< • I<) = C<,<(I • I), C(T • T ),
C(T • T<) = Cı,<(T • T ), C(T< • T ) = C<,ı(T • T ) and C(T< • T<) = C<,<(T • T ),
where T< = T ∗ and T is the sequence defined in Figure 2. The colors in C are blue,
red, yellow, cyan.
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We see that wheel pattern D(T< •T<) in (h) results from a 90◦ rotation of wheel D(T •T )
in (e). Rose pattern D(T< • T ) in (g) is related to the rose D(T • T<) in (f) by a reversal
of colors across the main diagonal of Dı,<.

4 Addition and subtraction

Let us suppose now that our alphabet A consists of the integers from 0 to 3 and the op-
eration is subtraction mod 4, so that the (i, j) element of the 4× 4 product array M	4 is
aj − ai mod 4:

0 1 2 3

0 0 1 2 3
1 3 0 1 2
2 2 3 0 1
3 1 2 3 0

With the same alphabet and addition mod 4 as the operation, we obtain 4× 4 product
array M⊕4 below:

0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Suppose I = (0, 1, 2, 3), I< = (3, 2, 1, 0) and the color set C contains blue, red, yellow,
green. Using product array M	4 results in the 4× 4 colored grids C(I 	4 I), C(I 	4 I<),
C(I<	4 I<) and C(I<	4 I) shown clockwise from the upper left in Figure 6(a). With the
same product array M	4 and color set C< that reverses the order of the colors in C, we
obtain the colorings in Figure 6(b).

If we use product array based on addition mod 4 with color set C, we find C(I ⊕4 I),
C(I ⊕4 I<), C(I< ⊕4 I<) and C(I< ⊕4 I) shown in Figure 6(c). Switching to color set C<
results in the colorings in Figure 6(d).

The four color arrays in Figure 6(a) all appear in (d), but in a different order. Likewise,
the four color arrays in (b) appear in (c), but in a different order. Theorem 2 describes
two relationships between arrays based on subtraction and those based on addition, with
modular arithmetic.
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(a)  subtraction mod 4

colors:  blue, red, yellow, green

(d)  addition mod 4

colors:  green, yellow, red, blue

(b)  subtraction mod 4

colors:  green, yellow, red, blue

(c)  addition mod 4

colors:  blue, red, yellow, green

 0   1   2   3        3   2   1   0

0 

1 

2 

3       

3 

2 

1 

0

0   1   2   3         3   2   1   0 

0 

1 

2 

3      

3 

2 

1 

0

0   1   2   3          3   2   1   0

0 

1 

2 

3       

3 

2 

1 

0

0   1   2   3         3   2   1   0

0 

1 

2 

3      

3 

2 

1 

0

Figure 6: In each of figures (a) through (d), the colored grids are, clockwise from the
upper left: C(I • I), C(I • I<),C(I< • I<) and C(I< • I), with the colors indicated.
The operation in (a) and (b) is subtraction mod 4; in (c) and (d), addition mod 4.
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Theorem 2. Suppose that the q symbols a1, . . . , aq in alphabet A are the integers from 0
to q − 1, I = (0, 1, . . . , q − 2, q − 1) and M	q = I 	q I is the q × q product array whose
(i, j) position is aj − ai mod q:

0 1 . . . q − 2 q − 1

0 0 1 . . . q − 2 q − 1
1 q − 1 0 . . . q − 3 q − 2
...

...
...

...
...

...
q − 2 q − 2 q − 1 . . . 0 1
q − 1 1 2 . . . q − 1 0

Let M⊕q = I ⊕q I be the product array having aj + ai mod q in the (i, j) position:

0 1 . . . q − 2 q − 1

0 0 1 . . . q − 2 q − 1
1 1 2 . . . q − 1 0
...

...
...

...
...

...
q − 2 q − 2 q − 1 . . . 0 1
q − 1 q − 1 0 . . . 1 2

Suppose C is the color set with colors c1, . . . , cq and color array C = C(I 	q I)
corresponds to M	q and C. Let C< denote the color set that reverses the order of the
colors in C and let C< = C<(I ⊕q I) represent the color array corresponding to color set
C< and product array M⊕q . Then:

(a) C<(I ⊕q I) = C(I 	q I<) = Ci,<(I 	q I).

(b) If π is the permutation that maps I onto Iπ = (0, q − 1, q − 2, . . . , 2, 1), then
I ⊕q I = Iπ 	q I.

Proof. M	q is the q× q one-step right circulant array with first row a1 = 0, . . . , aq = q−1,
so that a1 = 0 is on the right (upper left to lower right) main diagonal. The color
array C = C(I 	q I) is one-step right circulant with colors c1, . . . , cq on the diagonals
corresponding to a1, . . . , aq, respectively, in M	q . Therefore, C has first row colored
c1, . . . , cq, with color c1 on the right main diagonal. The array I	q I< is the reflection over
a vertical axis of M	q = I 	q I. Therefore, I 	q I< is one-step left circulant, with first row
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aq = q − 1, . . . , a1 = 0 and a1 = 0 on the left main (upper right to lower left) diagonal.
Therefore, the corresponding colored grid C(I 	q I<) is one-step left circulant with first
row cq, . . . , c1 and color c1 on the left main diagonal. The product array M⊕q = I ⊕q I
is one-step left circulant with first row a1 = 0, . . . , aq = q − 1 and aq = q − 1 on the left
main diagonal. Using color set C<, the colored grid C<(I ⊕q I) has first row colored with
cq, . . . , c1 and color c1 on the left main diagonal. Therefore, C<(I ⊕q I) = C(I 	q I),
proving (a).

To prove (b), note that the the first row of Iπ 	q I is the same as the first row of
I	q I, while its remaining rows are the same as rows 2 through q of I	q I, in reverse order:

0 1 . . . q − 2 q − 1

0 0 1 . . . q − 2 q − 1
q − 1 1 2 . . . q − 1 0
q − 2 q − 2 q − 1 . . . 0 1

...
...

...
...

...
...

1 q − 1 0 . . . q − 3 q − 2

The first row of Iπ	q I is 0, . . . , (q− 1), the same as the first row of I⊕q I. The second
row of Iπ 	q I is 1, 2, . . . , q − 1, 0, the same as the last row of I 	q I and this is the same
as the second row of I ⊕q I. Continuing, we see that the last row of Iπ 	q I is the same as
the last row of I ⊕q I: q − 1, 0, 1, . . . , q − 2. Therefore, I ⊕q I = Iπ 	q I.

5 Sequences with fewer than q symbols, product

arrays with more

In our original definition of a product array M, we placed no restrictions on the elements
of M; they do not have to contain or be limited to the symbols in A.

Suppose, for example, that A4 consists of the integers from 0 to 3, I4 = (0, 1, 2, 3) and
addition is the operation so that aj +ai is in the (i, j) position of the product array I4⊕I4:

0 1 2 3

0 0 1 2 3
1 1 2 3 4
2 2 3 4 5
3 3 4 5 6
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This 4 × 4 product array based on addition is the same as the 4 × 4 array I4 ⊕7 I4 in
the upper left of the product array corresponding to alphabet A7 consisting of the integers
from 0 to 6, with addition mod 7:

0 1 2 3 4 5 6

0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 1 2
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 4
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

Therefore, if color set C contains the seven colors c1, . . . , c7, then C(I4⊕ I4) = C(I4⊕7

I4).
If, on the other hand, subtraction is the operation so that aj−ai is in the (i, j) position

of the product array I4 	 I4 , then we have:

0 1 2 3

0 0 1 2 3
1 −1 0 1 2
2 −2 −1 0 1
3 −3 −2 −1 0

whereas the product array I4 	7 I4 whose (i, j) position is aj − ai mod 7 is:

0 1 2 3

0 0 1 2 3
1 6 0 1 2
2 5 6 0 1
3 4 5 6 0

I4 	7 I4 is the same as the upper 4× 4 portion of the product array corresponding to
alphabet A7 with subtraction mod 7:
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0 1 2 3 4 5 6

0 0 1 2 3 4 5 6
1 6 0 1 2 3 4 5
2 5 6 0 1 2 3 4
3 4 5 6 0 1 2 3
4 5 6 0 1 2 3 4
5 6 0 1 2 3 4 5
6 0 1 2 3 4 5 6

C(I4 	 I4) is not necessarily the same as C(I4 	7 I4). The elements are the same
on and to the right of the right main diagonals of I4 	 I4 and I4 	7 I4. However, the
differences −3,−2,−1 precede the differences 0 to 3, while the corresponding values 4, 5, 6,
respectively, follow 0 to 3. Therefore, to obtain the same colorings of I4 	 I4 and I4 	7 I4,
we need to rearrange colors. If we rearrange the colors of C to obtain the color set Cρ with
colors in the order c5, c6, c7, c1, c2, c3, c4, then Cρ(I4 	 I4) = C(I4 	7 I4). We summarize
these results in Theorem 3, stated without further proof.

Theorem 3. Suppose k and q = 2k − 1 are integers, 2 ≤ k, alphabet Aq contains the
integers from 0 to q − 1, sequence Ik = (0, 1, . . . , k − 1) and color set C contains colors
c1, . . . , cq.

(a) If the operation ⊕ of addition puts aj + ai in the (i, j) position of the product array
Ik ⊕ Ik and ⊕q puts aj + ai mod q in the (i, j) position of the product array Ik ⊕q Ik, then
C(Ik ⊕ Ik) = C(Ik ⊕q Ik).

(b) Let π be the permutation that maps the sequence (1, 2, . . . , q) onto
(k + 1, . . . , q, 1, 2, . . . , k) and let Cπ be the color set whose ith color is cπ(i), the
color in the π(i) position of color set C. If the operation 	 of subtraction puts aj − ai
in the (i, j) position of the product array Ik 	 Ik and 	q puts aj − ai mod q in the (i, j)
position of the product array Ik 	q Ik, then Cπ(Ik 	 Ik) = C(Ik 	q Ik).

Consider the color arrays in Figure 7. The four-color 4× 4 array in (a) is the one-step
right circulant latin square that results from using subtraction mod 4 as the operation with
alphabet A4 containing the integers 0 through 3 and the four colors blue, red, yellow, cyan.
The seven-color 4× 4 array in (b) results from using subtraction, with colors green, pink,
purple, blue, red, yellow and cyan corresponding to differences −3 to 3, respectively. The
full 7× 7 color array using all integers of A7 with subtraction mod 7 is shown in (c), using
colors in this order: blue, red, yellow, cyan, green, pink and purple. We see that the color
array in (b) is the same as the 4× 4 array outlined at the upper left of that in (c).

The patterns in Figure 8 are based on colorings of U • U<, where U =
(8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8). In (a), the operation is
subtraction mod 8, with one-step right circulant color array D at the upper right. The
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(c) subtraction mod 7  

 0      1      2      3      4      5     6

0   

1

2

3

4

5

6

(a) subtraction mod 4 

0    1    2    3

0

1

2

3

(b) subtraction

0

1

2

3

0    1    2    3

Figure 7: The color array in (a) is based on the integers from 0 to 3 and subtraction
mod 4 with colors blue, red, yellow and cyan. The array in (b) results from subtrac-
tion and colors green, pink, purple, blue, red, yellow and cyan corresponding to the
differences −3 to 3, respectively. In (c), the color array uses subtraction mod 7, with
colors blue, red, yellow, cyan, green, pink and purple corresponding to the integers
0 to 6, respectively.
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(a) subtraction mod 8 (b) subtraction mod 15

Figure 8: The 29 × 29 colored grid in (a) is D(U 	8 U<), where U =
(8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8), with the eight col-
ors shown. If subtraction mod 15 is the operation, and C is the color array at the
top right of (b), then C(U 	15 U<) is the 29× 29 fifteen-color pattern in (b).

29 × 29 grid in (a) is an eight-color quilt design. The operation in (b) is subtraction
mod 15 (equivalent to simple subtraction, with permutation of the color set described in
Theorem 3), resulting in the fifteen-color design shown.

As another example, consider the designs in Figure 9 generated using I8 =
(1, 2, 3, 4, 5, 6, 7, 8), subtraction mod 15 and sequences S and S∗ = S< defined in Fig-
ure 1. The first eight colors are the same as those used in Figure 3, with another seven
colors added. With the additional colors, the wheel and rose designs at the top of Figure 9
have a different look than those shown in Figures 3.

6 Discussion

In a weaving draft, the harness threading and lift plan grids are often represented as two-
color border patterns that generate the drawdown and define the fabric structure. If the lift
plan in the draft is one-step circulant (right or left), then the resulting fabric structure is
known as a twill [1]. Examples of twills appear in Figures 1, 2 and 4. This paper extended
the two-color “weaving” draft to multiple colors. We defined the product of two sequences,
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S                       S*                                      

S

S*

Figure 9: The 79×79 colored grids are, clockwise from top left: C(S	15S),C(S	15

S∗),C(S∗	15S
∗) and C(S∗	15S), where sequence S is defined in Figure 1, S∗ = S<

and the 15× 15 color array is shown at the top right.
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Figure 10: This 45 × 45 diamond is an example of a typical Amish quilt design
known as sunshine and shadow. This design is generated by coloring E •E<, where
E = (1, 2, . . . , 22, 23, 22, . . . , 2, 1).
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with a corresponding color array, and described a method of coloring the resulting grid.
When the color array is one-step right (or left) circulant and consists of exactly two colors,
then the resulting colored grid is the drawdown of a twill fabric structure.

If F and G are q-ary sequences, I = (a1, . . . , aq) and C is a q × q color array, then we
might think of C(I •G) and C(F • I) as colored border patterns that generate the larger
pattern C(F • G). As Figure 9 shows, two border patterns that look like waves of color
can generate a large design with multiple geometric motifs.

These ideas on coloring in the plane could be extended by considering shapes other
than squares and sequences that are not necessarily symmetrical.

Colored grids are seen in art forms such as mosiac and quilts [24], [25]. A common
motif is the diamond that results from coloring E • E<, where E = (1, 2, . . . , q − 1, q, q −
1, . . . , 2, 1) [21]. Examples of the diamond motif appear in Figure 8. Figure 10 shows a
diamond in twenty-three colors, inspired by the “sunshine and shadow” tradition of the
American Amish community [15]. The artists use the simple diamond motif with colors
carefully chosen to produce an elegant and joyful work of art.

Notes: Many thanks to Jacob Fenwick for writing the Python program that allowed
creation of the colored grids in this article. Adobe Illustrator CS5 helped complete the
illustrations.
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