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Abstract

We discuss the solution of the small perturbation equations for a

horizontal fluid layer heated from below with an applied magnetic

field either in vertical or in horizontal direction. The magnetic

field stabilizes, due to the Lorentz force, more or less Rayleigh-

Bénard convective cellular motion. The solution of the eigenvalue

problem shows that the critical Rayleigh number increases with

increasing Hartmann number while the corresponding wave length

decreases. Interesting analogies to solar granulation and black

spots phenomena are obvious. The influence of a horizontal field

is stronger than that of a vertical field. It is easy to understand this

by discussing the influence of the Lorentz force on the Rayleigh-

Bénard convection. This result corrects earlier calculations in the

literature.
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Nomenclature

a wave number
A Ampére, constant

~B = {Bx, By, Bz}
magnetic induction

[V s m−2] ≡ Tesla
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~FL = {FL,x, FL,y, FL,z} Lorentz force [N ]
FV viscous force [N ]
g gravity acceleration [ms−2]
h fluid layer thickness [m]
~H = {Hx, Hy, Hz} magnetic field [Am−2]

~i = {ix, iy, iz}
current density

[Nm2s−1V −1]

k
thermal conductivity

[m2s−1]
p pressure [Pa]

Ra =
gαβh4

kν
Rayleigh number

Rh = Bh(
σ

ρν
)1/2 Hartmann number

t time [s]
~v = {u, v, w} fluid velocity [ms−1]
V Volt
x, y, z coordinates [m]

Greek symbols

α thermal expansion [K−1]

β(< 0)
vertical temperature gradient

[Km−1]

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
Laplace operator [m−2]

∆2 =
∂2

∂x2
+

∂2

∂y2
two-dimensional operator [m−2]

Θ temperature disturbance [K]
λ wave length [m]

µ
magnetic permeability

[V sA−1m−1]
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ν kinematic viscosity [m2s−1]
ρ density [kgm−3]
σ electrical conductivity[Nm3V −2s−1]

1 Fundamental equations

We start with the Lorentz force ~FL due to a magnetic field
~H with magnetic induction ~B = µ ~H, µ = magnetic per-
meability, in a fluid field ~v = {u, v, w}. With the electrical
conductivity σ and the current density ~i = σ(~v × ~B) we have

~FL =~i × ~B = σ(~v × ~B) × ~B, (1)

or explicit in cartesian coordinates

~FL = σ















wBxBz − uB2
z − uB2

y + vBxBy,

uByBx − vB2
x − vB2

z + wByBz,

vBzBy − wB2
y − wB2

x + uBzBx.

(1a,b,c)

The linearized equations of the Rayleigh Theory with gen-
eral magnetic field ~B = {Bx, By, Bz} are the momentum,
energy and continuity equations

∂u

∂t
+

1

ρ

∂p

∂x
− ν∆u =

1

ρ
FL,x =

σ

ρ
(wBxBz − uB2

z − uB2
y + vBxBy),

(2a)

∂v

∂t
+

1

ρ

∂p

∂y
− ν∆v =

1

ρ
FL,y =

σ

ρ
(uByBx − vB2

x − vB2
z + wByBz),

(2b)
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∂w

∂t
+

1

ρ

∂p

∂z
− gαΘ − ν∆w =

1

ρ
FL,z =

σ

ρ
(vBzBy − wB2

y − wB2
x + vBzBx),

(2c)

∂Θ

∂t
= k∆Θ − βw,

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (2d,e)

Herein we underlined once the case of a vertical magnetic
field and twice that with a horizontal field.

The viscous dissipation ∼ ν(w2/h2) and Joule’s heat ∼
(σ/ρ)B2w2 are both ∼ w2 and therefore they don’t appear
separately in the linearized energy equation (2d). Neverthe-
less their ratio is important as we will see later on.

2 Direction of the Lorentz force in a special

case

For the moment we consider only a vertical velocity com-
ponent ~v = {0, 0, w} and apply a horizontal magnetic field
~B = {0, By, 0}. The electric current is ~i = σ (~v × ~B) =
{−σwBy, 0, 0}. Therefore we get finally for the Lorentz force
~FL =~i × ~B = {0, 0,−σwB2

y}.

The direction of ~FL is according to the left hand three
fingers rule (Fig.1). This means: if we have an upward motion

(w > 0) and a magnetic field lies in y-direction then we get an

electric current~i in (−x)-direction. This leads to a downward
(−z) Lorentz force that acts in the same direction as the
viscous force and opposite to the buoyancy force. Therefore
the magnetic field stabilizes the Rayleigh-Bénard instability.
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Figure 1: Vertical motion in a fluid layer with horizontal magnetic
field

3 Heuristic discussion of the instability

The forces per unit mass in z-direction - by absolute value
and order of magnitude - are given as follows:

buoyancy force: FB = gαΘ ∼ gαβwh2

k
, (3a)

viscous force: FV = ν∆w ∼ ν
w

h2
(3b)

Lorentz force: FL =
σB2

ρ
w. (3c)

Here we have for stationary flow

k∆Θ = βw, ∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
∼ 1

h2
, k∆Θ ∼ k

Θ

h2
∼ βw.

The ratios of these forces (3a,b,c) lead to the following
non-dimensional parameters:

FB

FV
=

gαΘ

ν∆w
∼ gαβh4

kν
= Ra = Rayleigh number, (4)
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FB

FL
=

gαΘ

σB2

ρ
w

∼
gαβh4

kv
σ

ρν
B2h2

=
Ra

R2
h

,

where

Rh = Bh

√

σ

ρν
= Hartmann number. (5)

The Rayleigh number (4) and the Hartmann number (5)
are the key - parameters for the Rayleigh -Bénard convection
with magnetic field. The Hartmann number itself has the
following meaning:

R2
h =

Joule’s heat

viscous dissipation
∼

σB2w2

ρ

ν
w2

h2

= B2h2 σ

ρν
∼ FL

FV
. (6)

We see that although the both dissipation terms (Joule’s
heat, viscous dissipation) do not appear in the linearized en-
ergy equation (2d) their ratio will be one of the fundamental
parameters of our problem.

4 Rayleigh theory with magnetic field ~B

4.1 Vertical magnetic field with steady flow

Taking into account that ~B = {0, 0, Bz} elimination of u, v, p
and Θ from (2, a, b, c, d, e) leads - similar to the well known
classical theory - to:

∆∆∆w +
gαβ

kν
∆2w − σB2

zw
2

ρν
∆

∂2w

∂z2
= 0 (7)
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where ∆ = three-dimensional Laplace operator and ∆2 =
two-dimensional (x, y) operator.

We note that (7) is a six order linear partial differential
equation. For a periodic solution of the form:

w = f(x, y) ·F (z), ∆2f +
a2

h2
f = 0, F (z) = A sin

πz

h
(8)

we get the eigenvalue relation

Ra=−gαβh4

kν
=

(π2 + a2)3

a2
+ R2

h

π2(π2 + a2)

a2

(9)

relating Rayleigh number with Hartmann number Rh =
Bh(σ/ρν)1/2 and a = wave number. This means that any
point on the curve (9) leads to a periodic convective motion
of the form (8) (cf Figs. 2,3).

The eigencurve (9) Ra=f1(a, Rh) has a typical minimum
Racrit for acrit. For Rh = 0 we get the well known values:
Racrit=

27
4
π4, acrit = π√

2
. For Rh > 0, Racrit and acrit increase.

For R2
h � 1 we have the remarkable asymptotic relation:

Racrit → π2R2
h, a2

crit →
(

π4

2

)
1

3

R
2

3

h . (10)

This means that the magnetic field stabilizes the Bénard
convection while the wave length λ = 2πh

a decreases with in-
creasing a. This reminds us of some kind of solar granulation.
The convection cells degenerate to vertical orientated needles
parallel to the vertical magnetic field lines.
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Figure 2: Eigenvalue Ra=f1(a,Rh) for a magnetic field in z-
direction (qualitative)

Figure 3: 2π

a
= λ → 0 for Rh � 1 cell geometry for Rh � 1

4.2 Horizontal magnetic field steady flow

In this case we have ~B = {0, By, 0},. For vortices along the

horizontal magnetic field lines
(

∂
∂y = 0

)

the explained elimi-
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nation leads now to the following differential equation

∆∆∆w +
gαβ

kν

∂2w

∂x2
−

σB2
y

ρν
∆∆w = 0 (11)

For a periodic solution similar to (8) we get a corresponding
eigenvalue relation

Ra=−gαβh4

kν
=

(π2 + a2)3

a2
+ R2

h

(π2 + a2)2

a2
(12)

relating Rayleigh number with Rh and a. This time the do-
mains of the variables are restricted to

π2

2
≤ a2

crit ≤ π2,
27

4
π4 ≤ Racrit ≤ 4π2R2

h. (13)

Again we have the characteristic minimum of the eigen-
curve (12), Fig.4. But in contrast to the case with a vertical
magnetic field analyzed in section 4.1 now the wave length
decreases only moderately (Fig.5) while Racrit and Rh tend
to infinity. The convection rolls are orientated along the hor-
izontal magnetic field lines. This simulates the fluid flow at
the outer rim of the so called solar black spots.

5 Conclusions and comments

1. An applied magnetic field stabilizes more or less the
Rayleigh-Bénard convection in a horizontal fluid layer
heated from below.
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Figure 4: Eigencurve Ra=f2(a,Rh) for a magnetic field in y-
direction (qualitative)

Figure 5: 2π h

a
= λ → 2h for Rh � 1 cell geometry for Rh � 1

2. A vertical magnetic field leads to extremely decreasing
wave length with increasing Hartmann number (6). This
looks like solar granulation [6].
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3. A horizontal magnetic field gives moderately decreasing
wave length (7). We get vortices along the magnetic field
lines. This looks like fluid flow at the outer rim of the
solar black spots.

4. The results for a horizontal field are new and correct
earlier calculations in the literature [4]. The influence
of the Lorentz force in this case is much stronger than
that for a vertical field. This means that a horizontal
field stabilizes the convection much more than a vertical
field.
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Rayleigh-Bénard-ova konvekcija sa magnetskim

poljem

UDK 537.84

Diskutuje se rešenje jednačina sa malom perturbacijom za
horizontalni fluidni sloj zagrevan odozdo sa magnetnim pol-
jem u vertikalnom ili horizontalnom pravcu. Magnetsko polje
je stabilizovalo, zbog Lorentz-ove sile, manje ili vǐse Rayleigh-
Bénard-ovo konvektivno celularno kretanje. Rešenje prob-
lema sopstvenih vrednosti pokazuje da kritični Rayleigh-jev
broj raste sa porastom Hartmann-ovog broja dok odgovarajuća
talasna dužina opada. Interesantne analogije sa fenomenima
solarne granulacije i crnih mrlja su očigledne. Uticaj hori-
zontalnog polja je jači od uticaja vertikalnog polja. Ovo je
lako je razumeti pomoću diskusije uticaja Lorentz-ove sile
na Rayleigh-Bénard-ovu konvekciju. Ovaj rezultat ispravlja
ranija izračunavanja raspoloživa u literaturi.


