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Abstract

An analysis is made for a deforming gas bubble impulsively started
to rise with a constant velocity in a quiescent liquid of infinite
extent. The disturbed layer is sufficiently large and thus makes
possible an important simplification of the governing equations
of motion. Simultaneous solution of the unsteady boundary-layer
equations for the both outside and inside flows of the bubble are
obtained by considering that tangential velocity components and
shear stresses on both sides of the interface are equal, while the
normal velocity components are given by the velocity of growing of
the bubble. Satisfactory results are obtained for spherical deform-
ing air bubbles in water. The theoretical results are applicable
to any uniformly deforming fluid sphere started impulsively in a
substantially immiscible, viscous liquid provided that the internal
circulation is complete, the flow separation is negligible and the
Reynolds number is sufficiently large.

1 Introduction

It has been known that a bubble is nearly spherical even when the
Reynolds number becomes large, provided that the Weber number
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(2RpUZ /o) remains small [1]. Rosenberg [2] performed extensive ex-
periments on the terminal velocity and shape of air bubbles in water.
He found that the bubbles were spherical with Reynolds numbers rang-
ing up to about 400. Haberman and Morton [3] presented a table giving
the approximate ranges of Reynolds numbers for which air bubbles re-
main spherical in eight different liquids. Garner and Hammerton [4]
reported the existence of regular circulatory currents in gas bubbles ris-
ing through liquids using freshly formed ammonium chloride fog. For
gas bubbles of diameter greater than 0,03 cm in water, toroidal circu-
lation sets in which increases in vigor with increasing bubble diameter.

Hill [5] analyzed the circulatory motion of an inviscid fluid inside a
non deforming sphere due to external irrotational flow. Hill’s stream
function for such vortex motion is of the form:

v 3U 1 - r?sin?f, r < R
i — 7V - 5o 1 ) x I,

4 R?
where Uy is the outside, uniform fluid velocity at infinity, r is the
magnitude of the position vector 7 with origin at the bubble center and
0 is the angle between 7 and the upstream axis of symmetry. If U; and

V; denote, respectively, the tangential and radial velocity components,
then,

Ui /Uy = —% (1 —-2r?/R?*)sinf, r < R,
(1)

3
Vi/Uso = 3 (1—7*/R*) cosf, r < R.

The stream function for the external potential flow is well known
and is given by

1
v, = §Uoo (1 — R3/7’3) r?sin?6, r > R.

The corresponding tangential and radial velocity components are

Ue/Uso = (1 + %R‘Q‘/r?’) sinf, r > R,

V,/Us = — (1= R3/r®)cos®, r > R.
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Figure 1 shows graphically the tangential velocity distribution both
inside and outside of the non deforming fluid sphere at 6 = %ﬂ'.

Fig.1. Tangential velocity distribution in the equatorial plane of a
fluid sphere

The vorticity distribution is given by

15
7Umé sinf, r < R,
w= (3)

0, r>R,

which exhibits a discontinuity at the bubble surface except at 8 = 0
or m. The sudden jump in vorticity at the fluid interface cannot be
physically realized.. It is the consequence of the ideal fluid assumption.

It is to be noticed here that all these considerations are also valid
in the case of a uniformly growing bubble (R = Ry + A t), started im-
pulsively to rise in a liquid. So, it can be obtained by the perturbation
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method that the vorticity distribution will be given by

15 Ux A ly 12y A )
21—t - == t]sind R
> RO( Ro ' 5R, 5 RoRo )Sm B
w = (4)
y y A :
60U | ——= + 2= ¢ sind, R,
( R0+RORO )Sln >

which confirms the relation (3) in the limiting case A = 0 taking into
account % < 1.

1.1 Boundary layer adjacent to fluid interface

Levich [6] was credited for his first suggesting the concept of a boundary
layer over a non deforming fluid interface for analyzing the velocity
field associated with bubble motion. Unfortunately, his formulation
was in error and his solution incorrect. That is why we are going to
use the approach of Chao [7], who corrected this error and proposed a
convenient formulation of the corresponding steady problem.

1.2 Mathematical formulation of the unsteady prob-
lem

Let us consider the unsteady flow past a fluid sphere whose radius (of
initial value Ry) grows uniformly with a constant factor of deformability

A:
R=Ry+ At, (5)

started impulsively at the same time into rectilinear motion, with a
constant velocity Uy, in a viscous, unbounded liquid, initially at rest.

The continuity equation and the Navier-Stokes equation of motion
for constant density p and viscosity u are:

a) for outer flow:
Continuity:
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Navier-Stokes equation:
O,
ot

1
+ U, VU = ——p, + V. AD,, (7)

e

where v, is the kinematic viscosity, . /p,. The body force due to gravity
does not explicitly appear in equation (7) since it may be conveniently
incorporated in the pressure term.

It should be noticed here that first Sears [8] in 1949 and then Telio-
nis [9] in 1974 showed that if the motion is started impulsively from
rest, the generated field is irrotational and, similarly, even if an impul-
sive pressure produces a change on an established viscous flow, then
this change is also irrotational. In accordance with this idea, we will
suppose the solution for the outer flow as follows:

o, = V. + 1., with 7| < |V,

(8)
and
DPe = Pe + p/-; (9)

where V. is the velocity field given by the potential solution. Its two
components are given by equation (2) including (5). P, is the pressure
field satisfied by equation (11) below. It is identical to that of the ir-
rotational field. In the foregoing expressions, the perturbed quantities
are designated by primes. Intuitively, one may assert that considera-
tions of p/, will be of no consequence since the disturbed layers are thin.
This is the usual conclusion one arrives at in ordinary boundary-layer
analysis. That such is indeed the case for boundary layers adjacent to
the fluid interface was demonstrated in the steady case by Chao [7].

When Egs.(8) and (9) are introduced into Egs.(6) and (7), and by
virtue of the Sears-Telionis” theorem:

V-V.=0 (10)
v, - 1 .
+V,-VV, = —=VP, 4 1AV, (11)

ot Pe
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one obtains for early times of flow development around a uniformly
deforming spherical bubble:

V-d =0 (12)
o 5 1
aljf 4TV 4V VT = ——Vp, + AT, (13)

e

In equation (13), the term v/,- V7, has been deleted since it is of smaller
order.

b) for inner flow:

A list of equations exactly analogous to Egs.(6) to (13) can be
written for the flow inside the sphere by simply replacing to subscript
7e” by ”i”. Here, V;, as defined by an expression similar to equation
(8), is the velocity field given by Hill’s inviscid solution. Its components
are given by equation (1). The pressure field P; satisfies:

!

0
ot

!

~ 1 B
LV, YV, = ——VP + uAV, (14)

(2

1.3 Perturbation method of analysis

Following a procedure suggested by Boltze [10] in his study of boundary
layers over a body of revolution, we introduce a curvilinear system of
coordinates as shown in Fig.2, which can be considered as Hamiltonian
in the case of uniformly increasing (or decreasing) radius of a sphere.

We denote by = the arc length measured along any meridian from
the front stagnation point, and y the coordinate normal to the bubble
surface, outward as positive. For thin boundary layers on the interface,
Egs.(12) and (13), respectively, become (with the latter now written
in component form):
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to.
x=R& | +y

Fig.2. Tangential velocity distribution in the equatorial plane of a
fluid sphere

a) for outer flow:

0 o’
_ ! . . e — 1
pe (u, sin @) + sin 6 By 0, (15)

z direction:

ou, , 0U, ou!, ,0U, ou!

e < ‘/e = =
ot +u68x+U8x +U68y+ dy
_1op O™, 0%l
T p, Oz e ( ox?  Oy? ) ’ (16)

in which w, is the x (or tangential) component of the perturbed ve-
locity; v, is its y (or radial) component. Under the assumption of a
thin boundary layer, i.e., (6./R) < 1,the following approximations are
valid:

Ue/Uoo =

N W

y y A .
1- = = ¢ 6, y >0, 17
K R0)+RORO}SIH,@/ (17)
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A Y
e/Yoo = — l——1)—= 07 = 0, 1
Ve/U. 3( o ) R cosf, y=0 (18)
A
since: % = (1 - R#O t) Rio, when —go < 1 and
R3 y\ 3 A Yy A
and 5 1+ R> b=3 (1 Ry t) Ry’ Ro

If we estimate the order of magnitude of each term in the Navier-
Stokes equation in the z—direction (16), we will obtain, in the case of
a gas bubble impulsively started, that dp/,/0x = 0. It must be pointed
out here that, since we consider z ~ 0(1), the analysis cannot be ex-
pected to hold at the front stagnation. Substituting the approximate
relationships given by Eqs.(17) and (18) into the simplified form of
equation (16), gives,

Oy 3l (1 44
ot 2 Ry Ry

, oul, . oul, o0l
X <ueCOS(9—|— 50 sinf — 2y cosf 8y> =V, ek (19)

It is to be noticed that this estimation of the order of magnitude
of the terms in the Navier-Stokes equation in the y—direction gives
that the pressure variation in the y—direction is negligeable within the
boundary layer (0p./0y = 0). This means that this equation is thus
exhausted and needs no further consideration.

b) for inner flow:
For the inner flow, expressions corresponding to Eqs.(17) and (18)
are:

3 Yy y A .
UfUs =2 (1442 422 ) sing, y <o, 20
/ 2( T R )Sm Y (20)

A )
VilUo=-311—— - , Yy <0, 21
/Uso 3( Re t) ROCOSQ y<O0 (21)
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since
2 2 A A

r Y Y Y
— = 1+—> =14+2(1——=—1t)|=, when = < 1and — t <K 1.
R? < R ( Ry > Ry Ry Ry
By going through a series of arguments analogous to that given for
outer flow, one arrives at a simplified equation of motion for w. Here
we are going to summarize the results:

Continuity equation:

/

a . . 0vp
o (u; sin #) + sin 6 oy 0. (22)

Simplified equation of motion for u:

Ou; +§% 1—i t) | cosh+ Ou; sinf — 2 Coseau; —1/462“;
dt 2R, Ro i 0 YOSy | TV o
(23)

Evidently, that these equations (22) and (23) for inner flow are exactly
analogous to those (15) and (19) for outer flow.

1.4 Interface conditions

Interface conditions (y = 0) are :

u, = uj, (24)
ou’ ou. 3U. A
e _ =% 4u.) 1 — — t | siné. 2
Mgy gy T3 R (ke + uz)( R )Sm (25)

The first condition is obtained from the ”no-slip” condition at the
interface, namely,

(e)y=o = (i) y—yg -

Since (Ue),—q = (Ui),—o, equation (24) follows immediately. The sec-
ond emerges from the requirement of continuity of shear stress, i.e.,

(&), ()
:u’e ay yzo /‘LZ ay y:0'
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Since

and

(8Ue) _ 3Us (1 — it) sin 6
ay y=0 2 RO RO ’

oU; Uso A .
=6— (1 — —t | sind,
( ay >y—0 RO ( RO )

one arrives at equation (25).
In the case of a deforming gas bubble, there is also the interface
condition in radial direction:

()0 = (Vo = 22 = A (26)

Conditions at the edge of the disturbed layer:

!/

(ug),—s, = 0, for outer flow,
(27)

and (u;),__s = 0, for inner flow,

where 6, and ¢; designate, respectively, the thickness of the boundary
layer in the outer and in the inner flow.

At this point, one may remark that the solution for the z compo-
nents of the perturbed velocities, u,, and u}, can be obtained indepen-
dently of the y components. The mathematical simplification achieved
is thus significant. When they are evaluated, the y components of the
perturbed velocities can be obtained from the continuity equations.

2 Approximate method of resolution

It has been known since the 1930’s that impulsively generated flows
around a solid body are initially inviscid. We will consider the same
flow development around a radially uniformly deforming sphere, started
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impulsively in a viscous liquid initially at rest. Or, after an infinitively
small time, the both sides of the interface are covered with vortex sheets
which are confined to regions infinitely close to the interface.

Behind this initial period, the most important characteristic of the
flow is the concentrated vorticity that needs to be diffused into the
flows described by the equations (19) and (23). The diffusion terms
will then outweigh all other terms in these equations and will balance
the unsteady terms Ou’, /0t and Ou}/0t.

So, the integration of the equations (19) and (23) can be carried
out by a process of successive approximations:

N N
!/ !/ !/ !/
Uy = § Uep, u; = § Uiy, (28)
n=1 n=1

the method being based on the following physical reasoning: in the first
instants, after the motion had started from rest, the boundary layers
on both sides of the interface are very thin and the viscous diffusion
terms. In Egs.(19) and (23) are very large, comparing to the convective
terms. In the frame of the first approximation, these diffusion terms
are balanced by the non steady accelerations Ju’,/0t and Ou;/0t. The
equations for the second and third approximations are then obtained
from (19) and (23) in which the convective terms are calculated by
using the preceding approximations u., and u}, already known. Hence
we have a succession of linear differential equations completed by the
continuity equations for each approximation as follows:

a) for outer flow:

oul, 0*ul,
el _ . el , 2
ot o 0 (29)
0 I . avél _n.
o (u,,sinf) +sind o 0; (30)

ot 92 2R,

ou,, 0l 3Ux A
Ry

1- —t) (uy,, cos O+
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/ a /
Yel ging 2y cos 6 el

0 o )

a ., . A
%(uegsm@)—i-&n@ 2 =0

Oy

Oul, Pugs  3Us A
ot © Oy? 2 Ry

Ry

/! /!

aueQ . aueQ
+ 50 sinf — 2y cos By ),

a /
— (u_zsinf) + sin U8 _
T

Oy

a) for inner flow:

ouly 0l 0
— V’i =0,
ot oy?

(uj; sin0) + sin 9% = 0;

O y

Ol Puly  3Us ( A

ot — Y 8y2 N 2 RO RO
+ gél sin @ — 2y cos 085:1 ),

o'
(U)o sin @) + sin pl2 0;

o oy

1- —t) (ul5 cos O+

1- —t> (u;; cos 0+

R. Askovié

(31)

(32)
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Oujq Puy 33U A ,

(‘)t — V; ay2 = —570 <1 — Eot) (uiQ COS 0+
+% sin f — 2y cos QaaL;), (39)
5% (w5 sin B) + sin QaaL;’ =0; (40)

Higher-order approximations ul,,u.,, ... can be obtained in a similar
way. However, the complexity of the method of successive approxima-
tions increases rapidly as higher approximations are considered.

Of course, the solutions of all these approximations have to be found
satisfying the interface and boundary conditions (24) to (27).

2.1 Determination of the tangential velocity com-
ponents of both external and internal flows

The equations (29) and (35) of the first approximations are identical
with that for one-dimensional heat conduction. By introducing the new
dimensionless variables 1, and 7,, we found the solutions satisfying the
interface and boundary conditions (24) to (27), in the form:

ul, = Uy K t'/? <e_"3 — /mn,erfe %) sin 6, (41)
wy = Uy Ky t'/? <e_’7%2 — /mn; erfc m> sin 6, (42)

where
: (43)

Mle = 2V t
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(44)

K, = _ . (45)

Inserting then (41) into (31), it results:

Oty aQU/ez 12, A Ufo 2
ot — Ve 3y = ( -tV +E0t/ 3F0K16 e sin 6 cos 6.

If we assume the solution as follows:

U ,
U;Q = UOOKl |:t3/2 (3_) FeQa (776) +

Ry
U A
+ 5/2 <3FOEO) Fly, (ne)] sin ¢ cos 0, (46)

we obtain from the preceding equation the following two differential
equations:

111

F,

e2a

+ 2776Fe”2a - 6Fe,2a = 4677]27

111

Flyy+ 20, Fly, — 10Fy;, = —de ™,
which general solutions are:

, 1

2
FeQa (ne) = Oe?ag3/2 (ne) - 56 nea
’ 1 _nQ
Foop (ne) = Ceangs/2 (1) + 3¢5

where:

2 o0 90, 772
W)= — _ dr.
9o (M) NG (QQH)/% (y—=m.) e Vdy



Impulsive Ascension of Spherical Deforming Gas Bubbles 47

Taking into account the interface and boundary conditions as well as
the manner in which the first approximations (41) and (42) are found,
the integration constants will be determined by using the following
conditions:

17

F,

e2a

(0) = 0 and F.,,(0) =0,
hence
Cega =0 and Cegb = 0.

So, we obtain:

/ 1
FeQa (ne) = _56 nﬁ’ (47)

! 1 _772
Fop (1) = ge °. (48)

Proceeding analogously, we obtain the solution of the equation (37)
for the second approximation of inner flow in the form:

, U\ Uyp A , ,
Uy = Uso Ky {t3/2 (3 R0> E,, (n;) + $5/2 ( T RO) Fly (nl)} sin 6 cos 6,
(49)
with
, 1
Fipa (1) = =3¢, (50)
, 1 o
Eop (0:) = 3¢ (51)

Finally, inserting (46) into (33) and seeking the solution as follows:

QU3
63 - t5/2 <2 RQ Kl) [Slne Fe3a( ) + sin 9 F,3b (7]8)} +

99U, A
i <QEEOK1> [sin@ Fls. (n.) +sin® @ Flq, (n.)] +
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9U. A /
44972 <2FEK1) [sm& Fl.. (n,) +sin® 6 F3f (Ue)} ’ (52)

we obtain from equation (33) the following ordinary differential equa-
tions:

Flaq + 20 Fgq — 10F5, = 8 (Foq — n.F0) | )
Fay+ 20 Flgy — 10F ., = 4 (=3F 5, + 2n.F.,)

Foae + 20, Fpy. — 14F ., = 8 (= Floy + Foop + 0. F 50 — 1Fuay)

Fag + 20 Foay — 14F 5, = 4 (3F, — 20, F 5, + 20.Fly,)
Fae + 20 Fl, — 18F 5, = 8 (—Floy + 1. Fly)

F;gf + 277eFe3f 18Fr;3f =4 (3F;2b - 277eF;’2b) ; J

(53)

which solutions, satisfying the interface and boundary conditions:

1 1 1

Fe3a(0) = Fe3b(0) = Fe3c(0) = 07
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are found in the form:

!

2
Fer(T’e) = _§ (ng_l—l) ein; )

By going through an analogous procedure, we determined also the
third approximation for inner flow:

U3 = 1/ <Zg Kl) [sm@ Fzsa (n:) + sin® § E’l% (Wz)] +
0

9U” A
4T/ <§EEKI) [sin@ Fjy, (n;) +sin® 0 Fy, (n;)] +

9U3 A
+t9/2 <——2_K1> [Slng FBe (772) +Sln 9 F3f <n1)j| ’ (55)
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where:

’ (56)
, 2, 17\ .,
. L) = —mM- R 77]7,
zBd(T’z) (3771 + 24> € )
/ 2 7 2
Fom)==n2+— e
236(772) (an + 45) € )
/ 2 2 —n?
E’Bf(ni):_g(ni +1)e ", )

2.2 Determination of the normal velocity compo-
nents of both outer and inner flows

According to the relations of transformation of coordinates:

9 1 0 1 AN\ 9
g~ 9 _ - (1-ZNE =2/,
9z Ro+ ALo0 RO( R(])ae’ Y= Vet

the continuity equation for the first approximation of outer flow (30)
becomes:

. Oul 1 A o, ., .
sm@a—y1 + o (1 — §0t> 2 (u, sinf) = 0.

Hence, multiplying by dy = 2y/v.tdn, and by integration, respecting
the interface condition (v;;),_, = A, we obtain:

UL, A Ve A
Jor _ 2y Nk (1- )t
Uoo Uoo RO 1( RO)X
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VT —nz_ﬁ(l

1 2
1 517 5 |3 + 776> erfc ne] cosf. (57)

Analogously, we found the solution of the equation (36) for the first
approximation of inner flow in the radial direction:

U;l A Vi A
I RALY O L
U. U Ry 1( R0> X

1 Tgme 2 \2

% [ﬁ L ot _ VT (l + 77?) erf ¢ m] cos ¢ (58)

Inserting (46) into (32), then by integration and taking into account
of the interfacial condition (vg,),_, = 0,we obtain for outer flow:

62 W (1 _ it) K, [tQ (3(]]%2) Feaa(n.)+

OO

+ ¢ (3%%) Fegb(ne)} (3sin*6 — 2) , (59)

as well as for inner flow:

Ul A 5 [ Uso
o mi (11— Z4) K, (82 (32 ) Fau(n,
U V( Ro) 1{ (333) 2al1h) ¥

o

U A .
+ t3 (3F%EO) Fz'gb(m)} (3 Sln2 0 — 2) . (60)

It is also possible to determine the third approximations from both
outer and inner flows in the radial direction, beginning from the equa-
tions (34) and (40), and using the expressions (52) and (55).

3 Computation of velocity profiles

The distribution of two velocity components, tangential and radial,
for both outer and inner flows, in function of: deformability factor
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(Ui and f]‘—T>, dimensionless time <% = T) and Reynolds numbers
oo oo 0

(% = Ree, % =R, = %Ree>, is computed at the equatorial
plane (0 = g), of a uniformly deforming air bubble rising in water, by
using all the solutions previously obtained, namely (41), (42), (46),
(49), (52), (55), (57), (58), (59), (60), adapted into non dimensional

form as follows:

Ue Ue U; 3 AT Y
— _ 20 (2 L
Un  Un  Un 2 [ ( Uoo) Ro]
T2 2
—2.62\/R_ee (e”’e —/m erfc %) -
T5/2 AT ATN?| >
1.965 — 2.45625 | — 0.786 | — e 61
+ = (Uoo>+ (Uoo) e (61)
ve Vo n vl B
Uw Usx Usx
=—+9851|1— = AT —I—2 AT : T2erf (62)
" U U.) "3\U.) | R, e
N = —3_ — 1 (Re 1/21. (63)
€ 2\/I/et 2\/§ T RO’
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v, T2 AT AT\ ? >
= 1.965 — 2.45625 [ — . il -,
+ T 965 56 5<Um>+0786<U00> e
vV n v
U, Uy, U,
A vy T? 5 (AT 2 [AT\?
— L 77.92564-< - ()2 (2 £,
i o R 3 (Uoo> + 3 (Uoo> err n,,

. y o 1 Rei 1/2 y
i = 2/rit 22\ T Ry’

53

(64)

(66)

Figures 3 to 6 illustrate this computation in the case of AIR BUBBLES

RISING IN WATER at 20°C, where:
p;/pe. = 0.0012 and p,;/p, = 0.019.

Inner Flggf} Outer Flow

—

L) 22 .4 ..6 .8

S

T Taviscid! Solution

Fig.3. Tangential velocity distribution in the equatorial plane for
deforming air bubbles rising in water at different deformability factors
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v, ST
Inner Flow = (uter Flow
0,028
AT s
—=0.03 1
v _/0.
T = -----h,cn09

R, =192 | R, -300

Fig.4. Instantaneous radial velocity distribution in equatorial plane
for uniformly growing air bubbles rising in water at different
deformability factors

Inner Flow -%‘ —= Quter Flow

l.%

""" Tiviseid | Solution

Fig.5. Instantaneous radial velocity distribution in equatorial plane
for uniformly growing air bubbles rising in water at different
Reynolds numbers
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v, /17,
Imner Flow — | — (uter Flow

01168 |- —— e

0,1028 |- A7 -
R, =300
0,1

0,0333

S SO S PR I S ‘y/RQ

Fig.6. Radial velocity distribution in equatorial plane of the growing
air bubbles at AT /U, = 0.03 and for two Reynolds numbers

4 Conclusion

Now we are studying the problem of deforming spherical gas bubbles
impulsively rising in some organic liquids (such as the methyl alcohol at
30°C for instance). All the results, either these presented here or those
for organic liquids seem to be entirely satisfactory. So as expected,
the tangential velocity at the interface decreases when the deformabil-
ity factor A increases, while the effect is just opposite sufficiently far
from the interface (fig.3), because of the pushing forward effect. But
the growing bubble causes a big difference especially in radial veloc-
ity distribution, comparing to the non deformable case (fig.4), which
probably could have significant sequels to the drag force of a spherical
deforming bubble. That will be our next subject of study.

Figures 5 and 6 show that the boundary layer becomes evidently
thinner as the Reynolds number is increased, for every particular value
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of deformability factor and at each instant of time.

Inasmuch as the present analysis is developed under the assumption
that the perturbed velocity is small as compared to the velocity given
by the inviscid solution, as well as taking into account the applied
method of successive approximations, we can expect the solution to
hold at early times, and not in the region close to the rear stagnation
to hold at early times, and not in the region close to the rear stagnation
point. That is why only a portion of the velocity profile inside the
bubble is shown since, according to the inviscid solution, the radius
of the stagnation ring in the equatorial plane is v/2/2 of the bubble
radius (figure 1). Due to the small-perturbation hypothesis used in the
analysis, the both outer and inner velocity fields are considered to be
accurate only in the vicinity of the interface.

Finally, all the shapes of velocity profiles for both external and
internal flows, given in figures 3 to 6, are compatible to those recently
obtained [12] in the case of impulsive ascension of a non deforming
spherical gas bubble. Likewise. to confirm our results presented here,
we also intend to solve the equations (19) and (23) by direct numerical
integration similarly as in [11].
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Impulsivno kretanje deformabilnog sfernog gasnog mehura
kroz viskoznu tecnost
UDK 532.526; 533.15

U radu se resava problem impulsivnog kretanja sfernog gasnog mehura
uniformno rastuceg poluprec¢nika kroz viskoznu tec¢nost pri dovoljno ve-
likim Rejnoldsovim brojevima, primenjujuéi koncept formiranja spol-
jasnjeg i unutrasnjeg granitnog sloja u odnosu na opnu (interface)
mehura. Dobijena su simultana priblizna resenja oba nestacionarna
grani¢na sloja, spoljasnjeg i unutrasnjeg, uz zadovoljavanje svih grani¢nih
uslova, posebno na povrsini opne: uslovi ”"neklizanja” i kontinuiteta
tangencijalnih napona, dok je radijalna brina definisana brinom rasta
mehura. PredloZzena metoda je testirana na primeru kretanja vadusnog
mehura u vodi, sa zadovoljavaju¢im rezultatima.



