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Abstract

This paper attempts to contribute to the canonical formalism in
the non-linear theory off elasticity. It has been shown that the
basic balance equations, in the Hamiltonian form, represent the
extremal of the functionals of action. We have used the canonical
formalism upon an infinitesimal-dimensional phase manifold in the
material description.

1 Introduction

Let (B,G) and (R?, g) be the smooth Riemannian manifolds, which
represent the reference configuration and the ambient space of body B
respectively. We define the configuration space as a set of all orientation
preserving embeddings of B in R* which do not change the orientation:

S := Emb(B, R?) (1)

This set can always be completed in the Banach space, and therefore
can be considered as an infinitesimal-dimensional phase manifold.

We are constructing the tangent bundle upon S in the following
way: Let us consider the smooth curve y. upon S:ec€ R — x. € S.
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The tangent upon S in point y, is

Consequently, the tangent space upon S in point y is
TS :={vy: B— TR v (X) € ,R* VX € B}, z =x(X) (3)
while the tangent bundle is

7S = JT,S. (4)

XES
The cotangent space T5 S in point  is
TS :={vl: B— T*"R’|v}(X) € T;R* VX € B}. (5)

The natural pairing of the tangent and cotangent space in the same
point is performed by using the weak nondegenerate bilinear form

() : T:S x T,R — R (6)

expressed by the formula

() = [ wi(en(c) @)

where w} (vy) = g(wy, vy) - the value of the I-form w* upon vector v, (in
the rest of the paper we shall omit index x) and u(G) = (det G)'/2dX
are the metric element of the volume.

If we denote the charts of the local coordinates with ®(X) =
(X1 X2 X3) and p(x) = (2,22, 2*), we shall have

vi—, w* = wida’, dX =dX' NdX?* NdX3,
891:1 (8)

v =

g(w,v) = gijw'w! = w;v’.
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2 Lagrangian and Hamiltonian

The motion of a body B is a uniparametric mapping of x, : B X
R — R3. The motion of point X € B is, consequently, curve y,(X) =
x(X,t) upon R3. The velocity of point B in the material description
is, according to definition

B a*

Let us denote the deformation gradient in the following way

k
O 0 ®dX". (10)

Let us also introduce into the consideration the metric tensor spaces
M (in the referential configuration) and M, (in the ambient space).
We call Descartes’ product

Q=M,;xTSx Mg (11)

the material configuration space.

We shall consider the motion of an elastic body determined by the
Lagrangian £, by the boundary and the initial conditions. A charac-
teristic of elastic bodies is that they possess the function of the defor-
mation energy W : ) — R such that the first Piola-Kirchhoff’s tensor
P is equal to the partial derivative of function W according to F'. We
shall assume that the volume forces acting upon a body have the po-
tential 7 : Q — R. We assume that the boundary conditions are given
in the mixed form:

X(X) =p(X), X e€B, (p—given function)
(12)
P(X)n(X)=t(X), X € &:B, (t— given function)

Cl(01BUB) = ClOB, 0;BNd:,B = ), n 1-form upon 9B which is an-
nulled at each vector from the tangential bundle upon 0B, whereby we
take that 0B represents a submanifold of manifold B. The Lagrangian
is a functional upon @), which, under the conditions mentioned, can be
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taken in the following form

Lo ) i= [ {ox) [ OO - Wlae00). ). G000 -

—m(g(x(X)), F(X), G(X))} (@) + [ (x(X), (X))

0B

7(G)

(13)

where v(G) is the restriction of the volume element u(G) upon 0, B
whereby n A y(G) = pu(G). In the remaining part of the paper we shall
assume that the functional (13) is differentiable according to Fréchet.

We shall now pass on to the construction of the Hamiltonian. With
this aim, let us define the momentum in the material description. One-
form of M, € T} S, satisfying equation

(M,,U) = L,[U], VYU eT,S, (14)
where £,[U] is the value, partial with respect to U, of Fréchet’s deriv-

ative of the Lagrangian on vector U, we call the material momentum
that corresponds to velocity v. It can easily be seen that

M, = pv?, = plgij o X)v'da’ (15)
(b the operator of the index lowering). The Hamiltonian H is a func-
tional upon the function set FQ*defined upon the material phase space
Q* = M, x T*S x Mg, which represents Legendre’s transformation of

the Lagrangian. If we denote Legendre’s transformation induced by
the Lagrangian £ with ¢,

C: {vax} S TS - {X7 MX} € T*S (16)
the Hamiltonian is, by definition,

H:= (M, (7' (M)) — Lol (M). (17)
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Accordingly, the Hamiltonian

H(g; M, x; G) i=£{ﬁ M(X)[;+ p(X)W (9(x(X)), F(X), G(X))+

+r(g(x(X)), F(X), GX)) (@) + [ (x(X), 1(X)

0o B

7(G)

(18)

corresponds to the Lagrangian (13).
For the sake of easier writing, we shall express the former in the
form

H(g: M, x: G) = / H(g, M, x, G)u(C) — / (LtG).  (19)

0o B
3 The Hamiltonian principle
Let us define the 1-form on an extended phase space Q* x R

w = / (MA(X)dy (X)u(G) — Hlg: M, . C)dr.  (20)

B

Let ¢ : [0.1] — T*S be a smooth curve. Let us consider the func-
tional

76 = [w (21)

(which is, traditionally, called the functional of action). We shall say
that curve ¢ is the extremal of functional (21) if 7 (¢) < J(c) or J(c) <
J (¢) for each ¢ from an environment of ¢ .

Theorem 1 (The Hamiltonian Principle) The extremal ¢ of functional
(21) upon the set Q of all smooth curves with joint ends in fixed points
¢(0) and ¢(1) is the motion that corresponds to Hamiltonian (18).
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Proof. Let us first define the environment of point ¢ in 7*S5. In
order to avoid possible complications, we shall assume that curve ¢
has no self-crossings or any other similar irregularities. Let us use A
to denote the group of single-parametric diffeomorphisms o, upon (2.
The open set

S:={c,=a,0¢|a, €A s€(—¢6)co=2¢ CN (22)

represents the environment of point ¢.
Since the extremal of the functionals is at the same time its critical
point too, we have

d

s J(cs) =0 (23)

s=0

The derivative on the left-hand side of this equation, according to
definition, is

d

ds

LT / iy < (2} — ) = / Low, (24)

s—0 8§
é é

where L,w is Lie’s derivative of 1-form w in the direction of the varied
vector field v, induced by diffeomorphism s — «;. By utilizing Cartan’s
formula of homotopy, Lie’s derivative can be expressed in the following
way

Lyw = iydw + d(i,w). (25)

Keeping in mind the fact that the varied vector field is annulled at
the fixed ends of curve ¢, from (23), with regard to (24) and (25), we
obtain

/ivdw = 0. (26)

Let us write the varied vector field v in the form

+nia ={+7 (27)

v=¢§ oy

oM,
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and substitute it in (26), we obtain

/ /<X'€_M'">“(G>_HM[§]—Hx[n] dt=0  (28)

[0,1] B

where Hj[€] and H, [n] are partial Fréchet’s derivatives (according to
M and Y, respectively) of the Hamiltonian upon £ and n,respectively.
Regarding the calculation of these derivatives, we are giving a short
remark. The partial derivative with respect to M is calculated in ac-
cordance with the standard definition of the Fréchet’s derivatives (the
same as we had in determining the partial derivative of the Lagrangian
with respect to v). Namely, the mapping of M — H(g, -, x, G) is dif-
ferentiated, according to Fréchet, at fixed x. In that way, we obtain

Hulél = [ Z% - u(G) = [ v-€u(c) (29)

B B

(# is the symbol denoting the operation of raising the index). This
definition cannot be applied in the calculation of the partial derivative
with respect to x, since M cannot be fixed when x changes. We shall
therefore use formula ([1])

Hy[n] =

by the application of which, we obtain

o1
lim <[H(g; Myean, X + X1 G) = (g My, x; G)] - (30)

Hx[n]=/<p%—¥:Fx[n]+g—;n> uw(G) — /x-n Y(G). (31)

62B & B
Taking into account that
ow
pop Il =P grady (32)

as well as the theorem of divergence (cf. [2]), (31) can get the form

il = [ (de—g—;) @)+ [Panl 2@ @Y
B 02 B p)

b B
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When (29) and (33) are substituted in (28), we obtain

/ B/l(k—v).ﬁ—(M—divPJrZ_z).H}M(GH

[0,1]

+ / (Pn—t)-n| ~(G) pdt=0. (34)

B 9B

The variational vector field, as well as its restriction on 0; B can in
intB be selected arbitrarily. Hence, assuming that the Hamiltonian is
continuously differentiable, it follows from (34) that

Ox(X,t) OM(X,t) on(g, x(X),G)

~ 5 = v (X)), Er =divP(X) — oy

for X € intB,
(35)

X(X,t) = ¢(X) for X € 0,B; P(X)n(X) =t(X), for X € &B.
(36)

The equations obtained represent the familiar canonical equations
of motion (balance) in material description ([1]). Thereby the theorem
is proved.
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Hamiltonov princip u teoriji elasti¢nosti
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U radu je pokusana formulacija kanonskog formalizma u nelin-
earnoj teoriji elasticnosti. Pokazano je da osnovne jednacine balansa,
u Hamiltonovom obliku, predstavljaju ekstremale funkcionala dejstva.
Koris¢en je kanonski formalizam na infinitezimalno-dimenzionalnoj faznoj
mnogostrukosti u materijalnom opisu.



