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Abstract

The note investigates the stability of linear conservative gyroscopic
systems. A new theorem which provide sufficient condition for
instability is established. This condition is stated in terms of the
coeflicients of system matrices.

1 Introduction

Systems of interest here are linear conservative gyroscopic systems de-
scribed by the equation

MG+ B¢+ Cq=0, (1)

where ¢ is the n—dimensional position vector and M, B and C are n xn
constant real matrices; C is symmetric (CT = C), M is symmetric
and positive definite ( M > 0), and B is skew (B” = —B ). Stability
properties of the systems have been studied for more than one hundred
years. Applications vary from the classical problem of the spinning top
to more complicated rotating bodies (such as spaceship, elastic shafts
and CD players), and to the motion of fluids in flexible pipes.

It is well known that the positive definiteness of C' is a sufficient
condition for stability of system (1). While gyroscopic forces Bg can
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never destabilize a stable conservative system (C' > 0), they can possi-
bly stabilize an unstable conservative system (C' % 0). Many attempts
have been made to establish related stability and/or instability criteria
when C' is not positive definite, and the references on the subject can
be found in [1] (see, also, subsequent papers (2], [3], [4], [5]).

2 Preliminaries

It is convenient, although not necessary, to rewrite equation (1) in the
form

#+Gi+ Kz =0, (2)

using the congruent transformation x = MY%q, G = M~Y2BM /2,
K =M12CM 2.

The system is said to be stable if all solutions z(t) of (2) are bounded
for all non-negative t. All solutions of (2) can be characterized alge-
braically using properties of the quadratic matrix polynomial

L)) := NI+ )G + K, (3)

where I is identity matrix. The eigenvalues of the system (2) are zeros
of the characteristic polynomial

AN = det(L(\)) (4)

and the multiplicity of an eigenvalue is the order of the corresponding
zero in A()N). If X is an eigenvalue, the nonzero vectors in the nullspace
of L()) are the eigenvectors associated with A. In general, eigenvalues
and eigenvectors may be real or complex. Since GT = —G and KT =
K, then L(A\)T = L(—\) and, consequently, A(\) = A(—)). Thus, the
system (2) is stable only when every eigenvalue is on the imaginary axis
(purely imaginary or zero) and semi-simple, i.e., if the eigenvalue has
multiplicity k, there are k linearly independent associated eigenvectors.

3 Nonspectral Conditions for Instability

The most simple nonspectral criteria for instability of the system (2)
are as follows:
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(A) The system is unstable if det K < 0 (Kelvin-Tait-Chetayev theo-
rem);

(B) The system is unstable if 4K — G? < 0 [6] (see also [7]);

(C) The system is unstable if 277(K) + ||G?|| < 0, where Tr(K) is
the trace of K and ||G|| is Euclidean matrix norm of G [4].

The criteria given above are supplemented by the following theorem.

Theorem 1 If the condition
27 () + || G?[|]* > 2n [2 IK|? + || G?||” +4Tr(GTKG)|  (5)

holds, then the dynamical system (2) is unstable.

Proof. The characteristic polynomial (4) contains only even powers
of A, 1i. e.,

AN = X"+ a NP+ o+ ap 1N+ an, (6)

since, as mentioned in Section 2, A(\) = A(—)). Denoting 3 = A\* we
get the polynomial of n-th order in 3. If the gyroscopic system (2) is
stable then all roots (3 of (6) are real and nonpositive.

Consider the quadratic form

S=y"Hy, yeR" (7)
with
[ sg s1 Sse . . . Spq |
S1 S9 S3 Coe Sn
52 S3 S4 - - . Spt1
H= ,
L Sp—1 Sn Sp+1 - - . S2p—2 ]
where
sk= By, k=012 (8)

Jj=1
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A theorem (see [8], Chapter XVI, Theorem 6) states that rank and sign

of the quadratic form (7) are equal to the number of unequal roots of

(6) and the number of unequal real roots (3, respectively. It follows

that all roots [ are real if and only if S is positive semi-definite.
Suppose that

5082 — 52 < 0 9)

Then S#0 and, consequently, the polynomial A(S) has at least one
non-real root. Therefore, condition (9) implies instability. Now it will
be proved that (9) is equivalent to (5).

The power sums (8) can be expressed by the coefficients of the
polynomial A(() through Newton recurrence formulae [9]:

So=mn, Sp=—Sk 101 — ... — S1ak_1— kag, k<n
(10)
Sk = —Skp_101 — ... — Sk_pln, k>n+1
From (10) we have
$1 = —a (11)
and
S = a% — 2ay (12)
On the other hand, it is well-known that
A(N) = det(A — AI) (13)
where
A= { _[G _OK} (14)

According to the method of Fadaev [8], we have

a = —%TT (A%) = % [2Tr(K) —Tr (G?)] (15)
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and
1
Ao = _ZTT (A4 + a1A2> =
2
1

= 3 — 7 [2T7(K?) + Tr (G") + 4Tr(GTKG)] (16)
Since G = —G7 there exists an orthogonal matrix 7" such that (see

[10])

TTGT = G = diag <91 [ _01 (1) } s eens Ok [ _01 (1) } ,0, ...,0) . (17)
and
TTG*T = G? = —diag (g%,g%, s Gi 93,0, ., 0) , (18)
where k < [n/2]. From (17) and (18), we have
Tr (G*) = - ||G|*, (19)

because orthogonal transformation preserve Euclidean norm and trace
of a matrix. Similarly,

Tr(K?) = |IK|°, (20)
and
Tr (GY) = |7 (21)

Finally, from (9), according to (15), (16), (19), (20) and (21), we
obtain condition (5). This proves the result.

Remark 1 Condition (C) can be easily established by the following
consideration. If the system (2) is stable then 32" A2 = Tr (A?) < 0.
Consequently, Tr (A2) = —2Tr(K) — ||G||* > 0 implies instability.

Theorem 1 is a new criterion for instability and the following ex-
amples show that neither condition (C ) nor condition (5) implies the
other one.
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Example 1 Let
0 1 4 0
G—4<_1 0>cde——<09>.

|G| + 27 (K) =6 > 0

We have

so that criterion (C ) does not apply. However,
2| K|+ ||G?|° +4Tr(G"KG) = —126
and instability follows from Theorem 1.

Example 2 Let
0 1 1 0
G—4(_1 O>andK——(026).

We have

2Tr(K) + ||G|” = —22
and instability follows from criterion (C). On the other hand,
27r(K) + |GI")” = 4 [2 K> + | 62" + 4Tr(GTKG)| = —68

and Theorem 1 tells us nothing.
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Uslov nestabilnosti konzervativnih ziroskopskih sistema
UDK 531.36

Proucava se stabilnost linearnih konzervativnih Zziroskopskih sis-
tema. Uspostavljena je nova teorema koja obezbedjuje dovoljan uslov
nestabilnosti. Ovaj uslov je izrazen pomocu koeficijenata matrica sis-
tema.



