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Abstract

It was shown how the invariant third-order elastic coefficients
can be derived by the procedure proposed by Srinivasan and
Nigam. Particularly, the invariant elastic constants for triclinic,
orthorhombic, cubic and isotropic crystals have been considered.

1 Introduction

We shall remind the reader on the notion of isotropic tensor.
Definition. A tensor is called isotropic if its components retain the
same values (are unchanged) by any proper orthogonal transformation
of rectangular Cartesian coordinates.

There are no isotropic tensors of the first order. The isotropic
tensors of second and third and higher order can be constructed only
by tensors d;;, Kronecker delta, and e;;;,, Ricci tensor of alternation.
Obviously, tensors
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are of even and odd order, respectively. They are isotropic, as well as
any of their isomers, i.e. tensors which differ from original one by the
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arrangements of its indices. Therefore, any linear combination of such
isomers is an isotropic tensor. It can also be proved that any isotropic
tensor can be represented by linear combination of some isomers, [1],
[2]. For example,

Cijkl = A0ijOki + 103k 0y + V0i0ju, (3)
and

Cijklmn = Aléijékﬁmn + )\26ij5km6ln + Agéijéknélm + )\45ik5jl6mn+
+)\56ik6jm6ln + )\Géikéjnélm + )\75i15jk5mn + Agéiléjm(skn‘F
+)\96il6jn6km + Algéiméjkém + )\lléiméjl(skn + )\126im6jn6kl+
+ 13000,k 01m + A140in05i0km + Ai50in0jm Ok

(4)

are general forms of isotropic tensors of fourth and sixth order, re-
spectively. Isotropic tensors of eight and higher even order can be
constructed in the same way. However, in these cases their isomers are
not mutually independent. More precisely, the number of independent
isomers, , is less then the number of all possible their isomers

r!
2nn!

N, =

where r = 2n. The following table illustrate it for some r.

r =246 8 10
N, =1 3 15 105 945
L, =1 3 15 91 603

In order to calculate the method of theory of group representation
is used, [3]. Because of huge number of L,, for practical purposes
in continuum mechanics, we usually confine attention for r = 2,4, 6.
Particularly, when dealing with elasticity tensors of second and third
order we make use of their symmetric properties

Cijkl = Cjikl = Cklij, (5)

Cijklmn = Cjiklmn = Cklijmn = Cijklnm = Cijmnkl, (6)

so that their representation become quite simple:

Cijki = A0kt + 1(8ikbj1 + 8idjk), (7)
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Cijklmn = aéijéklémn+
+0(0§6kmOm + 6i50knOtm + OimOri0jn+
+6in6k16jm + 6ik6j16mn + 5i16jk6mn)+ (8)
+C(6ik6jm6ln + 6ik6jn51m + 6il6jm6kn+
+6z ln(Sjn(Sk:m + 5im5jk5ln + 5im5jl5kn+
+6in6jl6km + 6zn63m5kl)

It easy to see that

A = Ci199, u= 5(01111 — C1122) (9)
and
a = Ciizs3, b= 5(6112222 — C112233),
c = §(0111111 + 2112233 — 3C112222). (10)

The constants A\, ¢ and a, b, c are invariant with respect to the choice
of the coordinate system. It is, therefore, appropriate to call them
the universal constants for the isotropic materials. Contrary to them,
elastic constants ¢;jg (Or Cijkimn) change their values under arbitrary
orthogonal coordinate transformations; also the number of constants,
required to specify the elastic property of a crystal changes from co-
ordinate system to coordinate system. These two aspects are rather
severe handicap in the treatment of various problems and may explain,
in part at least, why the theory of cubic crystals in the elastic domain
did not enjoy a development comparable to that of the classical or
isotropic theory of elasticity. Because of that we have been for a long
time in need to find universal constants for all crystal classes. It was
Thomas [4] who obtained invariant constants A, u, « for cubic crys-
tals similar to Lame’s A, u for isotropic solids. He has proposed the
following expression

Cijkt = A0ijOky + o (0501 + 6itdjk) + QVaiVajVakVai, (11)

where v,; are the components of the unit vectors v, (a = 1,2, 3) which
represent the crystallographic directions of cubic crystal in an arbitrary
Cartesian system (The crystallographic axes represent in direction and
magnitude the three non-parallel edges of the unit cell of a crystal.



94 J.P Jari¢, D.S.Kuzmanovié¢

The unit vectors along these axes are referred to as crystallographic
directions [5]). Srinivasan and Nigam [6], proposed a procedure how
to derive invariant constants of Cjj;i; for all other crystal classes. The
procedure is, as suggested by J.L.. Synge, in some sense, based on the
representation of tensors in anholonomic coordinate systems. For sim-
plicity, the unit vectors n, (a = 1, 2, 3) along crystallographic directions
are chosen as anholonomic basis. Generally, they are not orthogonal.
In order to make this manuscript self-contained we proceed in explain-
ing this procedure.
Given a vector v. Then

V =V;j€; = WMy,

e; and n, (i,a =1,2,3) are two systems of basis vectors, respectively.
Usually we take e; orthonormal. Then

Vi = NgiWq, Ngi = Ng - €4, (12)

where there is summation over a; a is not tensor index.
Let m, be reciprocal basis to the basis vectors n,. Then

n, -m; = 6ab = NgiMp; = 60,1)- (13)

Note that there is no distinction between contravariant and co-
vartant indices since we are working in Cartesian frames of references.
Then, from (12), we obtain

Wq = MygiV;. (14)

But w, do not depend on the choice of coordinate system with respect
to the indices 7. Therefore w, are invariant and behave as a scalars with
respect to any such coordinate transformation. The same approach can
be applied to any tensor. T.P. Srinivasan & S.D. Nigam stated that this
idea can be useful in finding the invariant dielectric constants, piezo-
electric and photo-elastic coefficients. Because of that they confine
they application of the procedure to the tensors of second, third and
fourth order.

We shall consider the elasticity tensor Cjjrimns as a special case of a
tensor of sixth order.
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2 Invariant Elastic Constants of Triclinic
Crystals

We write

Cijk:lmn — nainbjnckndlnemnanabcdef- (15)

This relation can be inverted making use of (13) so that
Agbedef = MaiMpi MM Mo fr,Cijiimn - (16)

From (16) it can be seen that Agp.qes possesses the same symmetric
properties as Cjjimn defined by (6). In above form the scalars Agpeqe s
are the 56 invariant elastic constants for the triclinic crystal (no azes
or plane of symmetry).

At this point, we wish to discuss the so called "matrix notation”,
which is widely used in the theory of elasticity. The matrix notation
introduced by Voigt [6] can be defined by transformation which maps
an index pair 75 into a single index «, i.e. 15 < «, according to the rule:
11 < 1,22 < 2,33 & 3,23=32 < 4,13=31 & 5,12=21 < 6.
Using this transformation, we define symmetric "matrix”, where «, 3,y
are the images, respectively, of ij, kI, mn. The same mapping can be
applied to Agpeqger = Aap, Which enable us to write all 56 independent
constants of A,g,. It is convenient to write them in the following way:

Alll A112 A113 A114 A115 A116 W
A122 A123 A124 A125 A126
A133 A134 A135 A136

Agze Agas Agas Agss Aggg
Aogs Agzy Aoy Asss
Aoss Agus Ao p, No=15
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N3:10

Agas Agas Ausg
Ayss Az Ny=6
Aues

A555 A556}
. Ns=3
A566 b

Ages }, Ng = 1;

N;, (n =1,2,3,4,5,6) represents the number of independent compo-
nents of A,s, for corresponding set in the above expressions.

Note the rule for writing each of the above sets. First set represents
all Ajns = Aiga, (o, 0 =1,2,3,4,5,6); second set represents all Ag,s =
Asga, (o, f=2,3,4,5,6); third all As,g = Asp,, (o, 8 =3,4,5,6) and
SO on.

From these expressions it is possible to obtain expressions in the
case of crystals belonging to other systems by imposing the various
point group symmetries on Cjjim,. This is done by keeping the co-
ordinates of Cjjrimn unchanged and transforming only the vectors n,
according to the symmetries present in the crystal whereas in dealing
with elastic symmetry it has been customary to transform coordinates.

We shall illustrate it in case of orthorhombic and cubic crystals.

3 Invariant Elastic Constants of Orthorhom-
bic Crystals

In orthorhombic crystals n, (a = 1,2, 3) are orthonormal and each one
of them is a two-fold axes of rotation. The atomic array is unchanged
by inversion about the plane defined by n,; this will take n, = —n,.

1. One plane of symmetry defined by unit normal vector ny
The invariance of Cjjkimn, 1.6. Cypy, in (15) under the inversion
n; = —ng,ny, ng, unchanged, leads to following table of
non-vanishing constants A,g:
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A A Ans Ay e o
Agg Aigs Ay @ o
Az Azy @ o

Ajyg @

Here the black points denote the corresponding vanishing constants,
i.e. the constants which contain odd number of index 1.

ii. Two (three) orthogonal planes of elastic symmetry
defined by unit normal vectors n; and no

Here we make use of the following very simple theorems and lem-
mas.

If an anisotropic elastic material possesses a material symmetry
with the orthogonal matriz Q, it possesses the material symmetry with

T _ Q_l.
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If an anisotropic elastic material possesses a material symmetry
with Q1 and Qq, it possesses a material symmetry with respect to Q =
Q:1Q.

The proves of these theorems can be find in [7].

Lemma 1.4 tensor of even order invariant under Q is also invariant
under —Q.
Proof. Let Cj,. ;, be invariant under Q. Than

Cil...ip - Qiljl Qi2j2 s Qipjpcjl...jp'

But,
(= Qi) (—Qirgy) - - (= Q4 )Ciy gy =
= (_l)inljl Qi2j2 . 'Qipjpojl---jp =
— Cil...ip
for p = 2k.

Lemma 2. If a tensor of even order possesses two orthogonal planes
of symmetry than the plane orthogonal to them is also the plane of
symmetry.

Proof. Let ny, ny and n3 are orthonormal vectors. Let

Qi:I—Qni(X)ni, 221,2,3

If n; and n, are the unite vectors of two planes of symmetry, than Q;
and Q, are corresponding orthogonal tensors of symmetry. Obviously

QQ:=n3®n; —I=-Q;,
since
1’11®1’11+1’12®1’12+1’13®1’13:I.

Then by Lemma 1 and Theorem 2 Qj3 is also tensor of symmetry, and
thus n3 defines also plane of symmetry.
Then the value of constants A,g, are given in the following table:

A Ang Az e o o
Ajgy Ajpz @ o o
Az @ ° °

Ajyg @ L

Aiss @
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Agoo A223 b b b
Agzz ° °
A244 [ ] o
Agss @
Ases
Aszz @ . °
A344 [ ] [
Asss @
Asge
[ ] [ ] [ ]
b A456
[ ]
[ ]
°

Therefore, tensor of elasticity of third order for orthorhombic crystals
has 20 invariant constants.

4 Invariant Elastic Constants of Cubic Crys-
tals

The invariant constants of cubic crystals can be obtained from those
corresponding to orthorhombic crystals by imposing the symmetric
condition that Cjjxmn for orthorhombic crystals should be invariant
under 120° rotation about the axis which is equally inclined to n;, n,
and n3z. Such an operation will take n; to ns, ny, to n3 and n3 to n;
and vice versa. Also each of n;, ny, and n3 defines a two-fold axes of
rotation. Hence, a rotation of 180° about n3 will take n; to n, and
n, to —n;, and so on. Again, from physical point of view it means
that such operation will not alter the atomic array in cubic crystal.
The requirement that Cjjxm, should be invariant under these sym-
metry operations leads to the conclusion that invariant coefficients of
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orthorhombic crystal with these changes of indices in the above table
should be equal, i.e.

Alll = A222 = A3337
A112 = A113 = A122 = A133 = A223 = A233>

(17)

It is of interest to write the table of invariant constants for cubic crys-
tals:

A Az Apg e L4 L4
Apgg Ao @ L L
Ajg @ . °
A144 [ J [
Az,
Aiss
A Ay @ L L
Az @ b b
A155 ® o
Agg @
Aiss
A o ° °
A155 [ ] [ ]
Az, ®
Ay
[ ] [ ] [ ]
L A456
[ ]
[ ]
[ ]

This is all we can obtain for the invariant coefficients of cubic crystal.
Obviously, tensor of elasticity of third order for cubic crystal has 6
invariant constants.
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5 Compact form of the tensor of elasticity
of third order for cubic crystals

Once we know the invariant coefficients of elasticity tensor we can write
compact form of the tensor of elasticity of third order. It can be done,
formally as we do for the tensor of elasticity of second order, by collect-
ing terms in (15) for corresponding invariant coefficients. Generally, so
obtained expression for elasticity tensor of third order is very long and
complicate because of a huge number of terms. This is the main dif-
ference between elasticity tensors of second and third order. In fact,
only those terms which correspond to the invariant coefficients equal
zero do not appear in the final form. All others have to be taken into
account. But, in some cases, as it was seen for isotropic elastic tensor
given by (8), these expressions can be quite simple. We shall proceed
to show how such a form can be deduced for the tensor of elasticity of
third order for cubic crystals.
First we introduce the following quantities:

Mijkimn = MailajNakNalMamMan (RO sum over a), a =1,2,3, (18)

3

Mijklmn = E NgiNajNakMalMNamMan; (19)
a=1
Nuijki = NaiMajNakNer (O SUM OVer a), (20)
3
Nijktmn = E NaiTajNakMal; (21)
a=1
Naij = NaiNgj, (DO sum over a), (22)

3 3
0ij = Z NaiNajs  Oab = Z Ngi N - (23)
a=1 i=1

Note that Meijkimn, Mijkimn, Naijrr and Niji are tensors of even
order symmetric with respect to all of their indices. Also, if we denote
by g the isotropy group of cubic crystals, then

Ny, = Qijnaj, a, b= 1, 2, 3 (24)
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for any orthogonal Q(Q;;) € g. Because of that, M(M;jkmns) and
N(Nijr) are invariant under g, i.e. gM = M and gN = N. We will
see that these quantities form the basis of for the tensor of elasticity of
third order for cubic crystals.

In order to show this we have to use the symmetry conditions given
by (17) We start with conditions (17)1 ObViOUSly Alll = A111111-
Its coefficient is ni;ni;niEnunimn, = Miijkimn- In the same way we
conclude: Ay = Aggoge with corresponding coefficient Ma;jkimn;
Aszzz = Assazzz and Majjpimn. But Ajp = Agy = Assz so that

3
Mijklmn = Z Maijklmn (25)
a=1

is their common coefficient.
Next we consider (17),. We shall write all terms for Aj;2. Then

Avig = Nigminomn, Azt = Nigmnhor,  A211 = NikimnNoij-
(26)
In the same way we can write the corresponding terms for each of
A113, A122, A133, A223, A233. In all we have 18 terms for (17)2 After
lengthy algebra, making use of (18)-(23), they can be written as

i Nitmn + 061 Nijmn + OmnNijer — 3M,jkimn.- (27)
Further we consider only term
6iijlmn + 6klNijmn + 6mnNijkl (28)

since last term in (27) is already given by (25). The form of this term
suggest us the term

0ike Njtmn + 0t Njkmn + OimNijkin + Oin Njkim+
ik Nitmn + 0t Nikmn + 0jm Nikin + 0jn Nikim+ (29)
Okm Nijin + OknNijim + Otm Nijkn + 0inNijkm

which is invariant under g and has symmetric properties given by (6).
These requirements are obviously satisfied by (8) which already has
three invariant coefficients: a, b and c¢. Then (8), (25), (28) and (29)
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form the basis for the tensor of elasticity of third order for cubic crys-
tals. Thus
Cijkimn = A0ij0k10mmn+
14 (855 0kmOin + 0ij0knOim + OimOkidjn+
8inOkiOjm + 0ik0;10mn + 6i10k0mn) +
v (6zk63m6ln + 6ik6jn5lm + 6il6jm6kn+
5il6km6jn + 5im5jk5ln + 5im5jl5kn+
5in5km5jl + 5in5jm5kl) —+ (30)
aM;jkimn+
B (05 Nitmn + 0kt Nijmn + OmnNijr) +
i (5iklemn + 5ilekmn + 5imNjkln + 5iank:lm+ +
5jkNilmn + 5leik:mn + 6ijikln + 6jnNiklm+
5kmNijln + 5anijlm + 6lmNijkn + 6lnNijkm)

is required form.

The reader will note that we did not consider terms of invariant co-
efficients (17)3_g. We shorten our investigation defining the term given
by (29) which completes the bases. However, if we do this investigation
for (17)5 we will obtain 6 terms:

A9 = N1 N2k N3mn Avze = N1iN3pNomn
Aot = N9iN1kN3mn Aozt = N2 N3k Mimn
Asip = n3inigNomn Asor = N3Nk Mimn

or, because of (17)5, common term

N1 N2k N3mn + N1 N3k N 2mn T N2ii N1k N3mn T (31)
+N2i M35 M1 mn T M35 N1k N2mn T M35 N2k M mn -

Then we can write ¢;jxm, in compact form with (31) instead of (29).
The other terms basis are the same. Thus,

Cijkimn = M0ijOkiOmn + A2 (0550kmOim + 0ij0knOim+
+6im6kl5jn + 6in6kl6jm + 6ik6jl6mn + 5zl63k6mn) +
A3 (050 im0 + 0ik0 jnOm + 0i10jmOkn + 0i0km0n+
6im6jk6ln + 6im6jl6kn + 6in5km5jl + 5m5]m5kl)+ (32)
M Miikimn + As (05 Nkimn + 661 Nijmn + Omn Nijki) +
A6 (N1 2k M3mn + 113 N3k N 2mn + N2 N1k 3mn +
N2i N3k N imn + N3 Mk 2mn + M35 72k M 1mn )

(see V.A. Lubarda [11]). Of course, the values of constants in (30) and
(32) are different.
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6 Conclusion

The determination of third-order coefficients of crystals is of general in-
terest, since they allow the evaluation of anharmonic properties such as
thermal expansion and the interaction of thermal and acoustic phonons.
For their evaluation, usually, the experimental technique involves mea-
surements of the wave speeds of various small amplitude elastic modes
in crystals under hydrostatic or uniaxial stresses, [8]. Here we consider
another problem of a third-order coefficients of crystals: their invari-
ance. The approach is simple an differs from so far used approaches.
To see the differences it is advisable to consult the literature on this
subject (see, for instance, [8], [9], [10], [11]). It is one of the reasons
why we have confined our investigation to some classes of crystals, i.e.
to triclinic, orthorhombic, cubic and isotropic materials.
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O tenzoru elasti¢nosti treceg reda
UDK 539.32

Pokazano je kako se invarijantni koeficijenti tenzora elasti¢nosti
tre¢eg reda mogu odrediti na osnovu postupka Srinivasana i Nigama.
Posebno su razmatrane invarijantne elasticne konstante za triklinicne,
ortorombicne, kubne i izotropne kristale.



