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Abstract

The paper deals with viscoplasticity of ferromagnetic materials.
Evolution equations are derived either from inelastic materials of
differential type or from loading function generalized normality.
In both cases tensor representation is applied to such a set of
evolution equations. Restrictions to the set of field equations are
established by means of the extended irreversible thermodynam-
ics. Small magnetoelastic strains of isotropic insulators are consid-
ered in detail in two special cases of finite as well as small plastic
strain. As one example low-cycle fatigue of ferromagnetics is con-
sidered with special account to time delay between stress and mag-
netic field histories. To describe such an experimental evidence an
integro-differential equation is proposed whose equivalent plastic
strain dependent kernel covers the observed delay.

1 Introduction

The principal objective of this work is to present a rational thermody-
namic approach to inelasticity of ferromagnetic materials in a simpli-
fied version which should serve primarily to subsequent nondestructive
electromagnetic examination of inelastic behavior of reactor steels ( cf.
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[1, 2, 3] ). Due to limited space however some second order effects have
to be dropped from the consideration.

In this paper like in [4, 5, 6] ) associativity of flow rule ( the nor-
mality of the plastic strain rate tensor onto a yield surface has not been
taken as granted even if such an approach is accepted in the major-
ity of the papers dealing with the subject ( cf. [7, 8] and references
mentioned in these papers). Such normality is seriously questioned not
only by the theoretical but by experimental results as well (see [9] )
for a comparison between tension and torsion and [10] for experiments
dealing with cruciform specimens). For these reasons the normality is
abandoned and instead of such an assumption evolution equations ( ex-
posed in the second section of this paper) are based on the appropriate
geometry of deformation and the extended irreversible thermodynam-
ics. This geometry is founded on the continuum theory of dislocations
(compare with [11, 12, 13] ) and is shortly reviewed in the next section.
A very attractive approach to the extended thermodynamics has been
proposed in [14] with a rational analysis of thermodynamic processes
leading to the desired thermodynamic restrictions of general constitu-
tive equations. This approach with the Liu’s theorem [15] was applied
to viscoplastic materials in [4] and to inelastic composite materials in
[5]. However despite of its beauty an inherent coldness function (which
is not quite clear from the experimental point of view ) is inevitable.
Herein an alternative approach [16, 17, 18] (already applied to thermo-
plasticity of irradiated materials in [6] ) is chosen instead.

As a prerequisite, a correct geometric description of an inelastic de-
formation process analyzed is necessary. Consider a crystalline body in
a real configuration (k) with dislocations and an inhomogeneous tem-
perature field T'(X,t) (where t stands for time and X for the consid-
ered particle of the body)subject to surface tractions. Corresponding
to (k) there exists, usually, an initial reference configuration (K) with
(differently distributed) dislocations at a homogeneous temperature Tg
without surface tractions. Due to these defects such a configuration is
not stressfree but contains an equilibrated residual stress ( often named
as ”"back-stress” ).

It is generally accepted that linear mapping function F(.,¢) : (K) —
(k) is compatible second rank total deformation gradient tensor. Here
time t as scalar parameter allows for family of deformed configura-
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tions (k). In the papers dealing with continuum representations of
dislocation distributions configuration (k) is imagined to be cut into
small elements denoted by (n) , these being subsequently brought to
the temperature of (K) free of neighbors. The deformation tensor Fp
(.,t) : (n) — (k) obtained in such a way is incompatible and should
be called the thermoelastic distortion tensor whereas (n)-elements are
commonly named as natural state local reference configurations (cf. for
instance [11, 12, 13] ). Of course, the corresponding plastic distortion
tensor

Fp(,t):=Fp(,t)" - F(.,1), (1)

is also incompatible. Here F is found by comparison of material fibres

in (K) and (k) while Fp is determined by crystallographic vectors in
(n) and (k). Multiplying above formula from the left hand side by F
(.,t) we reach at Kroner's decomposition rule which is often wrongly
named as Lee’s decomposition formula. It is worthy of note that curlF
(.,t)"' # O and this incompatibility is commonly connected to an
asymmetric second order tensor of dislocation density.

In the paper [13] the authors connected to the natural state ele-
ments magnetization vectors in such a way that they are isoclinic in
(n) and inhomogeneous in (k) the inhomogeneity being responsible for
magnetostrictive strains. Such an assumption is very much in accord
with the above geometrical argument and is accepted in the sequel.

2 Evolution and constitutive equations

Ignoring ferroelectric effects the next set of objective and Galilei-invariant
state variables [1, 20] (with acceptance of internal variables approach)
should be introduced in general

= {E7EP7A7 Ta GRADTa Q7 Qa ja ﬁ7M7MR}7 I'e ga (2)
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where 2E = FT . F — 1 = C — 1 is the Lagrangean total strain tensor,
2Ep = F}C -Fp—1=Cp—1 -is the Lagrangean plastic strain
tensor,
GRADT =F ! gradT - temperature gradient,
Q = J !¢ - the electric charge, (J? = det C)
0= JF L. 7 - the heat flux vector ,
J = JF™'.(j — #qs ) - the electric current vector,
P = JF-! - p - the polarization vector,
M= JF' (i + 7 x p/c) - the magnetization vector,
Mp, - the (K)-defined irreversible (residual) magnetization vector,
A - the volume defined dislocation density,
with GRADT,Q, 0, J,P, M, My and A being (K)-defined, whereas
by grad = V® and GRAD = V ® are denoted, respectively, vecto-
rial differential operators in (k) and (K). The above set may be oth-
erwise understood as a point belonging to the extended configuration
(deformation-temperature-electromagnetic) space G. To this configu-
ration point there corresponds a reaction point represented by the set

Ay :={T,u,s,S,E B}, A €D, (3)

where T = JF~'T, -F~7 - the symmetric Piola-Kirchhoff stress tensor
of the second kind related to (K) wherein T} is the Cauchy

stress,
u and s - the internal energy and the entropy densities,
S JF1.5- the entropy f flux vector,

= (@+Txblc)-F=E+F-V x BJc- the electromotive

intensity and

B=({b-0xé/c)-F=B—F-V x E/c- the magnetic induction

vector,

and D is the extended stress space, whose (K)-defined objective and
Galilei-invariant elements are listed above. At this place the constitu-
tive equations are simply stated by the bijective mapping;:

A =R(I)=A() or R:G— D, (4)

which is too general so that the thermodynamic analysis presented
henceforth is aimed to supply restrictions concordant with the second
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law of thermodynamics.
The evolution functions are proposed here in such a way to be
compatible with ( 2 - 4 ) and are collected into the set
Ay = {0, T E*, M*, A*}, A, €D, (5)

such that objective evolution equations simply read:

DO = §*(I), (6)
DJ = J¥I), (7)
DEp = E*(T), (8)
DMp = M*(T), (9)
D A= A*(T), (10)

where the material time derivative is designated by D. The simplicity
of left hand sides of ( 6 - 10 ) owing to the absence of corotational
time derivatives has the origin in the accepted Lagrangian description
of constitutive functions and variables listed in ( 2-3 ) .

A thermodynamic process occurring in the considered body is de-
scribed by the evolution equations and by the following balance laws
(pp and p are mass densities in (K) and (k) while ¥ is the velocity of
the particle ) which are equivalent but slightly modified with regard to
those of [1]:

pDu—{T + (P®

= 1B-M)-C™'} : DE— (11)
J-E—E.-DP—

_I_
DM+ DIVQ — p,h = 0,

po—pJ =0, (12)
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pDG— f— ff" — DIV(T-F7)/J =0 (13)

with conventional notation

—_

Jff" = QE+(T+DP)x =B-F'+P Voo (£-F )+

¢
1=
JF*l.v()@(jB.F).F*l-M,

T-TT+(PRE—(BaM)-C'—C ' (E@9P - (M B) =0,
(1

DQ+ JDIVJ =0, (15)
Q—JDIV(P+ JC™'- E) =0, (16)
CURLE + %DE =0, (17)

DIVE =0, (18)
CURL(J'C-B-M)-XDE+DP+F) =0, (19)

c
which are, respectively, the equation of energy balance , the mass con-
servation law, the equation of balance of momentum , the equation
of balance of angular momentum, the balance of electric charge and
Maxwell equations.

Let us specify more precisely the scope of this work by the assump-
tions:

(A1) ferroelectric and ferrimagnetic effects, intrinsic spin, exchange
forces

and gyromagnetic effects are ignored ( with negligible precessional
velocity of magnetization - cf. [19]
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(A2) all time rates are small i.e. the considered process is slow.

The consequence of (A1) is simplification of the set of internal vari-
ables losing from it gradient of the magnetization vector assuming in
such a way that balance law for magnetization [21] ( i.e. balance of
angular momentum of spin continuum in wording of [1] ) is identically
satisfied. One consequence of (A2) is that all the terms of the form
(U/c) x (+) in electromagnetic vector fields listed in ( 1 - 2 ) may be
disregarded.

The above listed balance laws imply constraints on the elements of
the set {T'}U{DTI'} causing breaking of their independence which is the
essence of the Liu’s theorem [15]. There is still another constraint on
these elements in the case of inelastic deformation process: the essential
notion of yield surface which divides sharply two regions of material
behavior. Let us define dynamic and static scalar yield functions in
the following way:

f=f(T,T,Ep, Mz) = W), (20)

fo= f(T# T, Ep, Mz) = ho(I), (21)

where T# is static stress corresponding to the dynamic viscoplastic
stress T. Their difference is usually named the overstress tensor and
may be represented by a linear function of DEp (linearity appears as
consequence of (A2)):

AT :=T -T# =T(T) : DEp, (22)

with 7 (") being fourth rank tensor of plastic viscosity coefficients.
Introducing the plastic strain rate intensity by

Dp:= (DE} : DEp)'/? = |DEp|| > 0, (23)

the classification:
f>0,fy=0,Dp > 0 - viscoplastic behavior;
f = fo=0,Dp =0 - elastoplastic frontier;
f=f<0,Dp=0 - elastic behavior;
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and the kinematic constraint:

< f>Dfy=0, (24)

may be formulated in a straightforward way, where < x >= 1 for
positive and < x >= 0 otherwise.

All thermodynamic processes must obey the master law of nature
i.e. the second law of thermodynamics which in our case reads:

pDs+ DIVS — p% — 0, (25)

where 7/T is the entropy source. Precisely defined a thermodynamic
process is a solution of evolution and balance equations which obeys
( 25 ). The analysis of the above entropy inequality ( 25 ) by the Liu’s
theorem may be described as follows. Replacing s*(I') and S*(I') into
( 25 ) this becomes a differential inequality linear with respect to the
elements of the set {DI'} U{GRADI'} namely:

—

pODs+DIV§—p%—A“{—[T+(73®5—§®/\?l+

1B-M)-C™: DE+,00Du J-E—E-DP—-B-DM+
DIVG - pyh} K- [pD7 ~ [ - f J'DIV(T - F7)] —
ACT-TT+(PRE— é M)-Ct-C ! (EaP -

M@ B)] — Af<f>Df0— —A?.[DG - @*(T) - A - [DT~
JH(T)] = AM - [DMp — M*()] — A” : [DEp — E*(T'] -
ADA — A*(D)] — A?[DQ + JDIVJ] — A'[Q — JDIV (P +
JC ' E) — A*. [CURLE + %Dé] — A°DIVB —

A* . [CURL(J'C-B— M) — %(DE +DP+J]>0. (26)

By introducing Lagrange multipliers all the elements of the set
{DI'} U {GRADT'} except GRADT ( which is already included into



On Viscoplasticity of Ferromagnetics 115

I' ) become mutually independent. Hence, in thus extended inequal-
ity all the coefficients with the elements of the set {DI'} U{GRADI'}
must vanish. This gives rise to the following constitutive restrictions

(ct. [6]):

S =AYT)Q + JAYT)J = (Q + JNJ)/T, (27)

T =p0eF+ < f>TNOgfo+C ' (EQP-M@B+1B- M),

(28)

s=0rF+ < f>Tp 'Norf, (29)

£ = —pdsF— < f>TNsf, (30)
B=—pdgF— < f>TNagf, (31)

0 = daraprF+ < f > Tp M daraprfo, (32)

and the residual dissipation inequality

=1
fa)

QX)) + A JHD) 4+ AM . MHT) 4+ AP EF(D) + AANT) +
OrS-GRADT +T7'J-£ >0, (33)

where F' := u—s(A“)"! = u—Ts is the free energy density. If the ther-
modynamic process is very near to equilibrium (cf. [6] ) then the above
residual inequality permits the direct application of Onsager-Casimir
reciprocity relations. The above Lagrange multipliers are explicitly
given by:

A = —p,T7'05F— < f > Mg fo,
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N = —pT7'9;F— < > M f,
AM _ —poT 103 F— < f > Ny fo,
AP = —pyT™'0sF— < f > Nogfo,
A = —p, T ouF— < f > Noafo,

N =0, A"=0, A>=0, A>=0, A*=0, A’ =0.

The details of the above procedure are presented elsewhere ([6]).

3 Small magnetoelastic strains of isotropic
plastically deformed insulators

In order to illustrate the above derived constitutive and evolution equa-
tions we accept in this section the following very simplifying assump-
tions:

(A3) elastic strain, reversible and irreversible magnetization are
small of the same order but plastic strain itself is finite (cf. also [6]);

(A4) thermal and electric effects are neglected,

holding for an isotropic body.

Such assumptions correspond to the so called piezomagnetism processes
when magnetization is generated by straining processes (cf. for instance
[27] and [28]).

Let us take into account that by its very nature the mechanical
stress disappears when pure elastic strain vanishes and, similarly, the
local magnetic field equals to zero if the reversible magnetization van-
ishes. Then, according to [13] it is reasonable to introduce magne-
tostrictive strain by means of

Ep :=E—-Ep=FL (F;-Fp—1)-Fp, (34)
or, in other words:

Ez=E.+L: (./\—/l>0®./\7>0) =E.+ Emag- (35)
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Here L is the fourth rank tensor of magnetostriction constants sym-
metric only in indices of the first as well as the second pair whereas
the notation /T/io stands for the unit vector of the magnetization vec-
tor M. The constituents of the Lagrangian elastic strain tensor Eg,
namely, E, as well as E,,,, are both incompatible and are referred to
as pure elastic strain and magnetostrictive strain .

With these facts taken into account and the above assumptions
(A3-A4) the constitutive equations for mechanical part of the stress
tensor and the local magnetic field specialize into:

T = (c11+cEp+ cEL) trE. +2¢4 E, + (36)
cs (Ep-E,+E,-Ep)+c¢ (E%-E, +E,-E?}),

H= C7Mr + Cg(Ep . Mr + M»r : EP) + CQ(E?D : M’I‘ + MT : E%)a (37)

where instead of magnetic induction field the internal magnetic field
vector H (opposing the local magnetic field vector under assumption
(A1) ) has been derived from ( 31 ) by making use of tensorial represen-
tations for the proper orthogonal group [22]. In the above ”magnetic”
constitutive equation

M, == M — Mg, (38)

is the reversible magnetization vector while the above antisymmetric
second rank tensors H, M, and My are made from the corresponding
vectors by means of the Ricci third rank permutation tensor defined in
(K)-configuration in the following way:

H=¢ H=-H' M, =6 M,=-M! Mp=E- My =-M5%.
(39)

They are favored instead of the corresponding vectors for convenience
and more compact representation. Of course, an equivalent formu-
lation using cross products of vectors M, and Mpz with symmetric
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second rank tensor Ep is also possible. Equation ( 36 ) is the gen-
eralized Hooke’s law accounting for plastic strain induced mechanical
anisotropy while the constitutive equation for internal magnetic field
predicts magnetic anisotropy induced by the same cause.

The free energy function generating (36) and (37) i.e. :

1 . 1 . 1 . ) . .
F = 561Z%+§C2Z§+§C3Z§+C424+C5Z5+6626+

1 1 1
567 i7 —+ 568 ig -+ 569 ig, (40)

where the following proper and mixed invariants appearing in the
above scalar function must be introduced (cf. [22]):

iv = trE., is=tr{Ep-E.}, iy =tr{E} - E.},
iy = tr{E2}, is =tr{Ep-E?}, i = tr{E% - EZ}, (41)
i = tr{M?}, is=tr{Ep- M.}, ig = tr{E} - M}}.

In the sequel inverse forms of (36) and (37) will be useful. They
can be written in the following way:

E. = (711+7%Ep+73EL) trT+2y, T+ (42)
Vs (Ep-T+T-Ep)+7s (Ep- T+ T-E}),

and

M, =v,H+7v(Ep-H+H- -Ep) +v(E}, -H+H-E}). (43

The relationships between sets {c,...,co} and {7,...,79} can be
found as follows. Let us multiply (36) as well as (42) by the tensors 1,
Ep and E% finding traces of both sides. If we introduce notations:

s = trT, ss=tr{Ep T}, s3= tT{E% - T},
so = tr{T%}, ss =tr{Ep-T?}, s¢ =tr{Ep-T?},  (44)
sy = tr{H?}, sg =tr{Ep-H*}, sy = tr{E% - H*}.
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then such a procedure will make possible finding relationships between
{c1,...,c6} and {vq,...,74}. Of course, the same procedure applied to
(37) as well as (43) would connect sets {cz,...,co} and {77, ..., 79}
Similarly, the evolution equations for plastic strain rate and residual
magnetization rate are explicitly stated by the following formulae:

DEp = < f>[dil+dE,+d; (EEp+Ep-E.)+ (45)
dy (Ec-E} +E% - E.) +dsEp + dgEF +
d;(M, -Ep —Ep-M,) +ds(M, - E3 — E%L - M,) +
dy(Mp - Ep — Ep - Mg) + dio(Mg - E} — EL - Mp) +
diy(Ep-M, -E%L —E%-M, -Ep) +
di>(Ep-Mpg-Ep — EL - Mg - Ep)],

DMy = eM, +e(M,-Ep+Ep-M,) +e3 (M, - EL+ (46)
E} -M,) + esMp + e5(Mg - Ep + Ep - Mp) +
66(MR . E%p -+ E?_—; . MR) -+ €7(Ep . EE — EE . EP) -+
es(Ep-Ep —Ep-E%L) +eo(E} - Ep-Ep — Ep - Ep - E3).
It should be noted here that all the scalar coefficients in above re-
lationships ( 36 )-( 37 ) and ( 3 )-( 46 ) are functions of the principal
invariants of the plastic strain tensor Ep . Of course, if plastic strain
itself is small, then the corresponding complete linearization of con-
stitutive and evolution equations is straightforward which might be of
interest especially if dynamic effects are considered i.e. wave equations

of the linearized problem written (cf. [6] ). Evolution equations then
would reduce to Onsager-Casimir reciprocity relations.

4 (Generalized normality applied to small
magnetoelastic-viscoplastic strains of iso-
tropic insulators

At the end of this paper let us see what consequences could have an
introduction of a generalized loading function {2 with the following
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orthogonality properties (cf. [1])

DEp = DAS_I(; and DMp = DAg—Ig_ZI. (47)
where the material time rate of a scalar function A vanishes if the yield
functions f as well as fj are either negative or zero (cf. (24)).Suppose,
for simplicity that the assumption (A4) holds whereas the assumption
(A3) is replaced by means of:

(A5) elastic and plastic strain, reversible and irreversible magneti-
zation, as well as plastic strain rate and irreversible magnetization rate
are all small of the same order.

Then we may assume the loading function in the following polyno-
mial form

1 1

1
Q= 5&)1 S% + 5&)2 S4 + 5&)3 S7, (48)

leading by means of (48) into the following two evolution equations

DEP:DA[w11 tTT+LU2T], (49)

DMj, = DA ws H, (50)

whose simplicity follows from the above very special loading scalar
function 2. In addition, the free energy function (40) might be reduced
into:

I 1 .
F= 3¢ i+ ia+ 5Cr + F*(Ep, Mg) (51)

where F* would depend proper and mixed invariants of Ep and Mg.
Such a function allows the following specialized constitutive equations:

T =1 trE, + 2¢4 E,, (52)

H = C7MT, (53)
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whose material constants are easily recognized to be Lame constants
¢ =X and ¢ = p, (54)

as well as the constant of magnetic susceptibility (cf. [19]) is identified
with inverse of ¢y i.e.

1
Cr )

X (55)
It should be noted that if the tensor of magnetostriction constants £
is introduced into (52) then magnetostriction process can be shown
explicitly.

The situation described in this section could correspond to piezo-
magnetism induced by low-cycle fatigue of ferromagnetics. Such a
process was investigated in the paper [27]. A cylindrical specimen of
AISI 1018 was uniaxially treated by push-pull tests on MTS-810 servo-
hydraulic testing machine such that total strain was periodic and trian-
gularly shaped ||E|| € {0, 0.009} with cycle duration of 2 s. Magnetic
induction due to piezomagnetism effect was also almost periodic with
very slight changes with increase of relative number of cycles N/Ny
and cumulation of phase delay with respect to strain with growth of
accumulated plastic strain. Maxima and minima of E are almost coin-
cident with minima and maxima of the magnetic induction B. Thus,
if plastic strain accumulation is calculated by means of

- /0 |DEs(r)| dr (56)

then if uniaxial components of E as well as B,M,, My are denoted
by means of Fy; as well as Byy,M,11, Mg11 the following memory-type
equation

By (t) == /Ot J(m,t — 1) DEy(7) dr, (57)

would describe fairly well the above explained experimental situation.
Time differentiation of the above relationship gives rise to the expres-
sion:

DBH( ) = J(ﬂ' 0 DE11 / 8t , — 7') DEH(T) dr. (58)
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In the above integro-differential equation the second term on the right
hand side is responsible for the above mentioned change of time delay
and the deflection of pure periodicity of Byi(t). Therefore, it is much
smaller than the first part. On the other hand, if the constitutive
equation By = pu Hyy (where p is magnetic permeability) is used, then
we have

DB11 = (DMH — DMRH) as well as DE11 = DEEH + DEPH-

(59)

==

Since in the paper [27] such a splitting has not been made, a more
specific comment on simultaneous zeros of DEp and DMy (following
from (49) and (50) ) is not possible.

5 Conclusions

Concluding this paper it is inevitable to compare the foregoing results
with existing achievements in the field. The main contributions to
viscoplasticity of ferromagnetic materials have been given by Maugin
and his collaborators in [1, 19]. The principal assumptions accepted in
our work are closer to the scope of the first of these two papers where

1. small strain case together with absence of exchange forces and
gyromagnetic effects has been assumed

2. the accent on hysteresis effects has been given and

3. evolution equations derived by normality of plastic strain rate
and residual magnetization rate onto a loading surface.

The main results of this paper might be summarized as follows:

1. in the case of finite plastic strains magnetic anisotropy induced by
plastic strain is predicted by ( 46 ) where development of residual
magnetization by mechanical terms is also evident;

2. the influence of magnetization on plastic strain rate is obtained
even in the case of isotropic ferromagnetic materials;
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3. the extended thermodynamics procedure allows for more general

history effects with inhomogeneities of magnetization taken into
account;

. the obtained relationships with couplings allow for magnetic mea-

surements of inelastic phenomena but the measurements will show
their order of magnitude and practical measurability of these phe-
nomena;

. the developed theory is of non-associate type for plastic strain

rate and residual magnetization rate are not perpendicular to
the yield surface;

although a generalized normality is much simpler with smaller
number of material constants, a careful examination of the exper-
iments on piezomagnetism and magnetostriction processes would
give the final judgement which theory should be applied.
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126 M. Miéunovié

O viskoplasti¢énosti feromagnetika
UDK 539.374; 537.622.4

U radu se razmatraju viskoplasti¢ni feromagnetski materijali. Evolu-
cione jednacine se izvode iz specijalnog slucaja materijala diferenci-
jalnog tipa sa neelasticnom bledetcom memorijom ili pomoc¢u general-
isane ortogonalnosti i funkcije opterecenja. U oba slucaja se na skup
konstitutivnih i evolucionih jednacina primenjuje tenzorska reprezentacija.
Ogranicenja na jednacine polja se uspostavljaju pomocu prosirene ter-
modinamike ireverzibilnih procesa. Mala magnetoelasti¢na deformacija
u dva specijalna slucaja: (a) konac¢ne plasti¢ne deformacije kao i (b)
male plasticne deformacije izotropnih izolatora se analizira u detalje
sa osvrtom na neke eksperimentalne rezultate gde se piezomagnetizam
pojavljuje tokom niskocikli¢cnog zamora.



