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Abstract

An attempt has been taken to investigate the problem of general
viscous fluid distribution in the space-time governed by the metric
ds® = dt* —dx® —dy? + f(t —x,y, 2)(dt — dz)? in both the theories
of gravitation proposed by Einstein (1915) and Barber (1982).
It is observed that in both the theories the field equations are
reducible to Laplace equation and viscous fluid distribution does
not survive. Moreover, the vacuum models can be constructed by
an arbitrary harmonic function in y and z coordinates and the
solutions governing the models represent plane gravitational wave
propagating in positive z-direction.

1 Introduction

The viscosity mechanism in cosmology can account for high entropy
of the present universe (Weinberg, 1971, 1972). Bulk viscosity asso-
ciated with the grand unified theory (phase transition) may lead to
inflationary cosmology, which is used to overcome lacunae of several
important problems in the standard big bang cosmology. There are
several processes, which are expected to give rise to viscous effects.
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These are the decoupling of neutrinos during the radiation era and the
decomposition of matter and radiation during the recombination era.

Murphy (1973) shown that the big bang singularity can be avoided
by the introduction of bulk viscosity. Banerjee and Santos (1984) stud-
ied the viscous and non-viscous fluids in Bianchi type II, VIII and IX
space - times under the restriction that the ratio of shear to expansion
is constant. Mohanty and Pradhan (1990) investigated the problem of
interactions of a gravitational field with bulk viscous fluid in Robertson
- Walker space - time. Mohanty and Pattanaik (1991) also studied the
anisotropic cosmological models with constant bulk viscous coefficient.

In this paper, we have taken an attempt to study the interacting
viscous fluid containing both bulk and shear viscous coefficients in both
the theories proposed by Einstein and Barber. Einstein’s field equa-
tions are derived in section 2, and their vacuum solution is obtained
in section 3. In section 4, Barber’s field equations are set up and their
vacuum solution is derived in section 4. In section 5, some remarks on
the solutions are given.

2 Einstein field equations
The metric considered here can be put in the form
ds®* = (1 + f)dt* — (1 — f)da* — 2fdtdx — dy* — d2?, (1)

where f = f(t — z,y.2).
The energy-momentum tensor of general viscous fluid is given by

Ti; = (p+ P)vivj — Pgij + Nslij, (2a)

_ 2 a
p=p— (m - gm) Vs (2b)

vt =1, (2¢)

— .. v e— . a . — . a .
Uij = Viij + Vyji — Viv"Vjiq — V0 V;q (2d)
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where p is the matter density, p the pressure, v* the four velocity, and
n, and 7, are the bulk and shear viscosity coefficients respectively. Here
semicolon represents covariant derivative with respect to g;;.

. . . L 1 : sy
In comoving coordinate framei.e. v; = (O, 0,0, —m> , the Einstein’s

field equations
1
Rij — 5Rgij + Agis = —k1 (3)

with (1) and (2) are obtained as

77sz = 07 (4)
ns.f3 =0, (5)
A

%(f22+f33)+)\(1—f):k[ﬁ(l—f)—ﬁsﬁ];

%(fm + faz) = Af =k [ﬁf — mﬁ] ’

and

S+ fa) - N1+ 0 =k o+ p—p0-n] )

for a non-zero field.
Here after wards the subscripts 1,2,3 and 4 after a field variable
represent partial derivative with respect to z,y, z and ¢ respectively.
Now (4) and (5) yield the following two cases:
Casel, n, =0:
In this case, the set of field equations become

Joo+ f33=10 (10)
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A
p=-p=-2, for [#1 (11)

Casell, fo=0 = f3:
In this case, the set of field equations reduce to

ns =0 (12)
D
p=—p=—%, for f#1 (13)

The energy conservation equations le” = 0 for the metric (1) take
the form

—0 (14)

]|

Subsequently (11) and (13) yield
p=0= A
Further in both the cases,

- fi
p—p+77b2\/T—f

Thus in both the aforesaid cases, the cosmological constant A and
viscous fluid do not survive. The first case leads to pure vacuum case
governed by a harmonic function in y and z coordinates (Mohanty
and Mishra, 2000) whereas in the second case even though the metric
potential is an arbitrary function of ¢ — x, the vacuum field equations
are identically satisfied.

=0 which implies p=0=m,.

3 Einstein vacuum solutions

It is evident that the field (10) being Laplace equation, admits the
following solutions where the field f assumed to be a separable function
of t — z,y and z in the form

[t =x,y,2) = h(t — 2)Y (y)Z(2).
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Immediately one gets from (10)

Y// Z//
v =7= M (const)

which yields the following three cases corresponding to tree different
vacuum models:

Casel, M >0:
In this case, (10) admits a solution

f=nh(t—2z)(a1e™ 4 aze *Y)(as cos pz + a4 sin pz) (15)

where M = p?, and a;, i = 1,2, 3,4 are constants of integration.
Casell, M <0 :
In this case, the solution of (10) can be derived as

f = h(t — z)(by cos py + by sin py) (bse?* + bye 7*) (16)

where M = —p?, and b;, i = 1,2, 3,4 are constants of integration.
Caselll, M =0:
In this case, the solution of (10) can be derived as

f=nh(t—z)(c1y + c2)(c3z + ca) (17)

where ¢;, 1 = 1,2, 3,4 are constants of integration.

So, for the Einstein vacuum model, the metric potential f(t—zx,y, z)
takes one of the forms given in (15), (16) and (17) referred to as models
I, IT and III respectively.

If f is assumed in the form f = h(t — x) £ Y (y)Z(z), then we get
analogous solution as obtained above.

Further we assume the field

f=ft—x0(r) (18)

in a separable form f = h(t — x)p(r) where ¢ depends only on the
distance r(# 0) of an arbitrary event (¢t — z,y,2) from a fixed event
5 = (t - T, Y1, Zl) in <y7 Z)_plane'

So, 7= /(Y —1)? + (= — 21

Thus from (10), we have

1
W+;¢=0 (19)
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which on two fold integrations yields
o(r) =cslogr + cg (20)

where c5 and ¢4 are integration constants.
So, the metric potential becomes

ft—z,y,2) =h(t —x)(cslogr + cg). (21)

4 Barber’s field equations and their con-
sequences

The field equations in Barber’s (1982) second self-creation theory are

1
Rij — 5 Rgij = —8m¢ ™' Ty, (22)

O¢ = %T (23)
where X is a coupling to be determined from experiments, ¢ is a Bar-
ber’s scalar and 7' is the trace of energy-momentum tensor.

By taking the help of (2), the Einstein-Barber’s field equations (22)
and (23) for the metric (2) in the comoving coordinate system can be
written in the following explicit form:

-1 [ nsfo _
v g 7Y 20

-1 [ nsff3 | _
¢ 50 ) =0 (25)
¢"'p=0 (26)

fi
1—f

S+ fis) = 8707 |p(1— 1) —, (27)
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%(fzz + fa3) = —8m¢p [ﬁf — N Ih ]

2 7

%(fQQ + fa3) = 8mp ! {(/? +ﬁ)ﬁ —p(1 - f)} (29)

and

A
O¢ = —(1+ f)p11 — boo — 33 + (1 = f)pag — 2f 14 = SL(P—315)

3
(30)

As before for non-zero field and finite Barber’s scalar (24) and (25)
yield the following two cases:

Casel, 7, =0:
In this case the field equations (27)-(30) reduce to
fa2+ f33 =10 (31)
p=0 (32)
and

(L4 f)p11 + Pop + B33 — (1 = f)paq + 2f 14 =0 (33)
Now from (2b) and (26), we have

. f
p—Perﬁ

which on physical ground yields

=0,

p=0=mn,.

Thus the viscous fluid distribution involving bulk and shear coef-
ficients does not survive in Barber’s theory when the space - time is
described by (1).

Casell, o= 0 = f;:

In this case, the field equations are identically satisfied and the
viscous fluid does not survive i.e.

p=p=n,=1n,=0,

even though the field is an arbitrary function of ¢t — x.
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5 Barber’s vacuum solution

If the functional form of ¢ can be assumed as that of f i.e.

¢ = ¢<t - Y, Z)?
then (33) yields

Poz + ¢33 =0 (34)

In view of the interaction of Barber’s scalar with the gravitational
field, it can be assumed that

f=F() (35)
Then (31) leads to

foo + fas = F"(5 + ¢3) + F'(dgy + bg3) = 0 (36)

which yields the following four cases:
Casel, F"=0,F'= 0 :
In this case, we get

f = F(¢) = const.

Thus the Barber’s scalar is arbitrary whereas space-time is flat.
Thus it leads to inconsistency in Barber’s theory.

Casell, ¢pyy+da= 0, F'= 0 :

In this case, we have

f=ap+0,

where a and b are constants of integrations, and both f and ¢ are
harmonic functions (in y and z coordinates) whose explicit functional
forms can be determined as before. Hence any harmonic function in
y and z coordinates can generate Einstein-Barber’s vacuum model in
the space-time (1).

Caselll, ¢2+¢2= 0, F'=0:

In this case, we obtain

f =const and ¢ = const.



Dissipation of General Viscous Fluid Distribution ... 79

So, the space-time reduces to purely flat space-time in Einstein
theory.

CaselV, ¢3+¢3= 0, Pootgs =0 :

In this case, we have

¢ = const.

Hence the Barber’s theory leads to Einstein theory in vacuo.

6 Remarks

In Einstein theory, the models obtained do not have singularity either
at y =0o0r z=0or at bothy =0 = 2. At y = 0o and z = o0, the
models I and IT admit singularity respectively whereas model III admits
singularity at both. No remarks can be given as regards to singularity
with respect to first spatial and temporal coordinates, because the
model depends on an arbitrary function of ¢ — x. But all the solutions
represent forward moving plane gravitational wave. The viscous fluid
distribution with bulk and shear coefficients does not survive in the
space-time (1) and reduces to pure vacuum case. At r = 0, the model
governed by (21) admits a singularity.

Further it is shown that both the metric potential ’f’and the Bar-
ber’s scalar '¢’, exist and satisfy Laplace equation in Barber’s theory.
Moreover it is interesting to note that an arbitrary harmonic function in
y and z coordinates can generate both Einstein and Barber’sss vacuum
models when the space-time is described by the metric (1).

The non-zero components of curvature tensor for the metric (1) can
be obtained as:

22

R1212 = R2424 = _R2124 = - 9

s

R1213 = R1234 = R1324 = R4243 = - 9

a3

Riz13 = R3aza = —R3i34 = -5
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If we assume f to be independent of y and z , or linear in them,
there will be no field i.e. the space-time is flat (the curvature tensor
vanishes) and Barber’s theory. Also the field in the form

Flt =2y, 2) = y2hilt = ) + 507~ Pfalt )

which is homogeneous and quadratic in y and z coordinates, corre-
sponding to a plane wave propagating in positive z-direction and the
curvature tensor in such a field depends only on t — x :

folt — )

R1212 = R2424 = _R2124 = - 2

fi(t — )

R1213 = R1234 = R1324 = R4243 = - 9

folt — )

R1313 = R3434 = _R3134 = 9

Thus the metric contains two arbitrary functions f;(t—z) and fo(t—
x) corresponding to elliptically and circularly polarized wave.
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Disipacija opste raspodele viskoznog fluida u teorijama
Ajnstajna i Barbera

UDK 530.12; 532.51

Ucinjen je pokusaj da se prouci problem opste prostorno-vremenske
raspodele viskoznog fluida sa metrikom ds? = dt* — dz* — dy* + f(t —
x,1y,2)(dt — dx)? u gravitacionim teorijama Ajnstajna (1915) i Bar-
bera(1982). Primetujemo da se u obe teorije jednacine polja mogu
svesti na Laplasovu jednacinu, a da se raspodela viskoznog fluida ne
moze odrzati. StaviSe, oba vakuumska modela se mogu konstruisati
proizvoljnom harmonijskom funkcijom koordinata y i z, dok reSenja
koja modele odredjuju predstavljaju ravanski gravitacioni talas koji se
prostire u z-pravcu.



