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Abstract

The problem of inhomogeneous anisotropic Bianchi type I space
time with perfect fluid is considered and exact solutions to the field
equations are derived when the metric potentials are functions of
cosmic time only. Some physical and geometrical properties of the
solutions are also discussed.

1 Introduction

The study of Einstein’s field equations in the presence of perfect fluid
has attracted the attention of many workers. Banerjee and Santos
(1981) have solved cosmological equations for a Bianchi type I metric in
general scalar tensor theory proposed by Nordtvedt (1970) and Barker
(1978) and shown that the universe expands from the initial singular-
ity of zero volume and then contracts back. Venkateswarlu and Reddy
(1990) have obtained spatially homogeneous and anisotropic Bianchi
type I models in self creation theory of gravitation proposed by Barber
(1982), Mansouri and Mahazzab (1993) have considered homogeneous
anisotropic Bianchi type I models and have calculated tunreling rate
using Euclidean approach. Mohanty and Daud (1995) have shown that
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there exists spatially homogeneous and isotropic Bianchi type I cosmo-
logical models in Wesson’s (1981) scale invariant theory of gravitation
when the source of gravitational field is a perfect fluid characterized by
equation of state p = pC?.

None of the above authors has attempted the problem of LRS
Bianchi type I space time (MacCallum, 1979) with perfect fluid in
Einstein’s theory. However without solving the field equations, Hajj-
Boutros and Sfeila (1987) and ShriRam (1989) have obtained solutions
of the above problem using solution generation techniques. Recently
Mazumder (1994) has shown that the field equations of the above prob-
lem are solvable for any arbitrary cosmic scale functions where he has
taken particular solutions analogous to those of Hajj-Boutros (1987)
and Shri Ram (1989). Here we have taken an attempt to solve the
field equations to obtain general solutions of this problem, when the
space time is inhomogeneous and anisotropic. In order to avoid the
mathematical complexity due to inhomogeneity, we have derived solu-
tions for homogeneous case and studies some physical and geometrical
properties of the solutions.

In Sec.2, we have derived Einstein’s field equations for LRS Bianchi
type I metric with perfect fluid.

In Sec.3, we have obtained consequences of Einstein’s field equations
considering the cosmic scale functions to be the functions of time only.
In Sec.4, we have solved the field equations for three different cases and
obtained explicit exact solutions. We have also studied some physical
and geometrical properties of the solutions in Sec.5 and have given
concluding remarks in Sec.6.

2 Einstein’s field equations
The metric of inhomogeneous and anisotropic space time is given by
ds® = dt* — A*dx® — B*(dy® + dz*) (1)

where A and B are functions of x and ¢ only. The energy momentum
tensor for a perfect fluid is given by

T;; = (p+ p)uiuj — pgij (2)
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together with
giu'n’ =1 (3)
where u’ is the four velocity vector of the fluid, p and p are proper

pressure and density of the distribution respectively.
The Einstein field equations can be written as

1
Rij — 59iR = —8nT; (4)

where the units are chosen such that G = 1 = C. With the help of
equations (2) and (3), equation (4) for the metric (1) in commoving
coordinate system i.e. u; = (0 0 0 1) take the following explicit forms:

_ 2Bu B? B2

_SWp_T_A2B2+§’ (5)
-l MO LR o
0=DBn - BZAAL (8)

Here after wards the suffixed 1 and 4 after a after a field variable
represent partial differentiation with respect to x and ¢ respectively.
The conservation equations 77/ = 0 for i =1 leads to

p1=0 9)

which on integration yields

p=p(t). (10)
The equations of motion for ¢ = 2,3 are identically zero and the
other surviving equation of continuity for ¢ = 4 yields

A 2B (11)

A B p+p
As the field equations are highly nonlinear in nature, in general it is
difficult to obtain the explicit solution of the field equations. We there-
fore consider the case where the cosmic scale functions are functions of

time only.
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3 Consequence of field equations
Here the cosmic scale functions are assumed in the forms:
A= f(t) and B = g(t). (12)

In this case (8) is identically satisfied. Substitution of (12) in (5)-(6)
yield

2
gu 91 _ Jags  fua

= 13
g 9 f9 f (1)
In view of (13), one can take
g9 =F(ft)). (14)
With the help of (14), equation.(13) can be expressed in the form
F’ 1 F" F/2 ) )
- _ = — — = 1
(F-3)s(Frm-sm)io  w

Here a superscript prime indicates the differentiation with respect
to the argument. This equation is satisfied for the following cases:

F’ 1 F" F/2 F
i = 1
Case F7 0 and I3 + T FT 0 (16ab)
F// F/2 F/
Case 11 : f44 =0 and 7 ﬁ — F_f =0. (17ab)
Case IIT: f, = 0. (18)
1
Case IV : f, =0 and F 7 0. (19ab)

4 Solutions

In this section we intend to derive explicit exact solutions of the field
equations for each of the above cases.
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4.1 Casel
Using (16a) in equation (16b) and integrating, we obtain
F=K f+ K. (20)

where K;(# 0) and K, are constants of integration. Now from (16a)
and (20), one gets

Ky =0. (21)
In view of (21), equation.(14) now yields
g=Kif. (22)

which leads to isotropic model. Substitution of (22) in equations (5)
and (6) yields same value for the pressure of the distribution i.e.

2fu | 1}
—8mp = — + 7. 23
R (23)
Further substitution of (22) in equation.(7), the density of the dis-
tribution is found to be
3 (Y
-2 (L) 24
o (%) 24

In order to get the explicit forms of the physical and geometrical
parameters, we consider the fluid distribution obeying the barotropic
equation of state i.e.

p=0O—-1)p 0<y<2 (25)
In view of (25), (23) and (24) yield

2/3v
=0 (01 + Evt) : (26)

Where C; and Cy(# 0) are constants of integration. Now substitution
of (26) in (23) and (24) yields

p= w (01 + gvt) - (27)
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and

3 3 \7?

Thus we get the following homogeneous barotropic fluid model in
the form

4/3v
ds? = dt? — (C'1 + 571&) (da® + dy* + d2?) (29)

With proper choice of coordinate system the metric can be written
in the form

ds® = dT? — T (dX? + dY? + dZ?). (30)
4.2 Case Il
In this case (17a)-(17b), immediately integrated, yield
f=Kit+ K, (31)
and
F = (Ksf?+ Ki)'"?, (32)

where K;(# 0), Ky, K3(> 0), K4(< 0) are constants of integration.
In view of (32), equation.(14) now yields

9= (Ksf? + K4)"? (33)

With the help of (31) and (33), equations.(5)-(7) yield the pressure
and density of the distribution as

—K3K7 [ 2Ky + K3(Kit + Ko)?
T s [(Kg(Klt 4K+ K4)2} (34)
and
. K3K? li’) {K3(K it + Ky)?* + Ky} - K4} . (35)
87 {K3(Kit + K5)? + K4}
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Consequently the corresponding metric of our solution can be writ-
ten as

ds® = dt* — (Kit + K»)’da® — [K3(Kqt + K»)* + Ky (dy* + dz?)
(36)

which can be transformed through a proper choice of coordinates to
the form

ds® = dT% — T3dX? — (T2 + K)(dY?* 4 dZ?) (37)

Ky

Where K= m

(< 0) is a constant.

4.3 Case 111
In this case (18) integrated to yield

f = const (38)
In view of (38), equations .(5)-(6) yield
g = (Kt + K5)'* (39)

where K;(# 0) and K, are constants of integration.
Substitution of (38) and (39) into equations (5)-(7) yields the same
value for the pressure and density of the distribution i.e.

—p= M (40)
PP = Son (Kt + Ka)?
In this case the metric can be written as
ds? = dt* — da* — (K1t + Ko)(dy? + d2?) (41)

which can be transformed through a proper choice of coordinates to
the form

ds® = dT% — dX? — Ty(dY? + dZ?) (42)
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4.4 Case IV

In this case integrating (19a), one gets
f = const (43)

In view of (43), (19b) yield

F = const (44)
Consequently, we obtain
A = const (45a)
and
B = const (45b)

Substitution of (45a)-(45b) into equations (5)-(7) yields the pressure
and density of the distribution as

p=p=0. (46)

which concludes that the perfect fluid does not survive in this case and
the space time becomes Minkowskian.

5 Some physical and geometrical proper-
ties

In this section we study the following physical and geometrical prop-

erties of the models obtained in the preceding sections. The pressure

and density of the homogeneous barotropic fluid model represented by
(30) are given by

p=——>—> and p=— (47ab)

It is interesting to note that one can get ”"False Vacuum” model for
v = 0 and ”Stiff Fluid” model for v = 2 . These cases have already
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been studied by Mohanty and Pradhan (1990, 1991) in case of viscous
fluid distribution. The reality conditions in this case i.e. p > 0 and
p > 0 are satisfied for 1 < v < 2, the strong energy condition i.e.

2
p + 3p > 0 is satisfied for 3 < 7y < 2 and weak energy condition i.e. is
satisfied for 0 < v < 2. The spatial volume is

V = AB? = K;T}" (48)

3 2/~

where K5 = (57 K2C3 is a constant. For v # 0 it clearly shows

the isotropic expansion of the universe with time.
The magnitude of scalar expansion 6 and shear o? for the model
(30) are given by

2
0=— and o> =0 49ab
¥11 ( )

As 6 blows up and the space time becomes Minkowskian for v =
0, this case does not admit ”"False Vacuum” model. Moreover this
model preserves the shape and size of the universe during evolution.
The scalar expansion becomes indefinitely large or indefinitely small
according as 77 — 0 or T} — oo. For T7 > 0, the expansion scalar 6 > 0
indicates that the model is expanding in nature but the expansion is
decelerating. Thus model (30) is spatially homogeneous and isotropic.

The pressure and density for the model (37) are given by

1 T2+42K 1 372+2K

—— ———— and p=— - ——— 50ab
st kY T8 1t k) (50ab)

p:

In this case the strong energy condition is satisfied for K < 0 and
the weak energy condition is identically satisfied. The spatial volume
is

V=K T (T5 + K) (51)

(K¢ = K3K?} is a constant) which shows the anisotropic expansion of
the universe with time for K5 > 0.
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The scalar expansion 6 and shear o2 for the model (37) are given
by

373 + K

f— 22 T
T, (T2 + K)

(52ab)

Here (02 / (92) — 0 as To, — oo which implies that the model ap-
proaches isotropy for large value of T,. For K = 0 this case violates the
strong energy condition.

Further the pressure, density, scalar expansion and shear o for the
model (42) are given by

(53ab)

1
0= T and 07 = —— (53cd)

Thus this case degenerates only stiff fluid model (Mohanty and Pan-
igrahi, 1990). In this case the reality and energy conditions are identi-
cally satisfied. 02/6* = 1/12 being independent of cosmic time implies
that model does not approach isotropy. As in the preceding cases, this
model is also expanding in nature, but expansion is decelerating. The
spatial volume

V=" (54)

which implies anisotropic expansion of the universe with time.

In view of (47ab), (50ab) and (53ab), it is seen that 71,7, = 0
represent Big bang singularity. It is also observed that the acceleration
a; and rotation w;; are identically zero in all the cases. It is interesting
to note that 77 = oo for the first case and T = oo for the remaining
two cases represent geometrical singularities.

In the fourth case it is shown that the fluid distribution does not
exist and space time becomes Minkowskian.
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6 Conclusion

In this paper we have solved field equations for LRS Bianchi type I ho-
mogeneous cosmological models with perfect fluid and obtained solu-
tions for homogeneous barotropic fluid model in first case, perfect fluid
model in second case and stiff fluid model in third case. The fourth
case does not admit any solution for perfect fluid distribution. Thus
the present work completes the work of Mazumder (1994), wherein he
has taken the particular solutions of the field equations. It is observed
that the models are non rotating in nature with null acceleration and
expanding during the course of evolution. Except first case the model
of first case tends to isotropy and that of third case does not lead to
isotropy for large cosmic time. In all the three cases the spatial volume
increases with time which supports the analysis done earlier in support
of expansion of the models.
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Nehomogeni anizotropni kosmoloski modeli prvog
Bjankijevog tipa sa idealnim fluidom
UDK 530.12; 532.51

Posmatra se problem nehomogenog anizotropnog prostor-vremena
prvog Bjankijevog tipa sa idealnim fluidom. Izvedena su ta¢na resenja
jednacina polja kada su metricki potencijali funkcije samo kosmickog
vremena. Neke fizicke i geometrijske osobine tih resenja su takodje
diskutovane.



