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Abstract

Stability problems of linear circulatory systems of general type
with finite degrees of freedom depending on two parameters are
considered. It is shown that these systems in the generic case
are subjected to flutter and divergence instabilities. Bifurcations
of eigenvalues describing mechanism of static and dynamic losses
of stability are studied, and geometric interpretation of these
catastrophes is given. For two-dimensional case boundaries be-
tween stability, flutter and divergence domain and generic singu-
larities of these boundaries are analyzed. With the use of the left
and right eigenvectors and associated vectors tangent cones and
normal vectors to the boundaries are calculated. As an example
stability of a rigid panel vibrating in airflow is considered and
discussed in detail.

1 Introduction

The equation of motion of a linear autonomous system with noncon-
servative positional forces is

Mg+ Cq=0, (1)

where M is a symmetric positive definite m x m matrix, C is a non-
symmetric matrix of the same order, and ¢ is a vector of generalized
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coordinates of dimension m . Dots mean differentiation with respect
to time ¢. System (1) is usually called a circulatory system, see [20].
Using the transformation ¢ = ue”* we obtain an eigenvalue problem

Cu+ v*Mu =0, (2)

u being an eigenvector. Characteristic exponents v are determined
from the characteristic equation

det [C' + v*M] = 0. (3)

Since C' and M are real matrices, it follows that if any v satisfies
(3), then —v , ¥ , and —v also satisfy this equation. It means that
system (1) can be stable if and only if all the characteristic exponents
belong to the imaginary axis of the complex plane. If at least one of v is
real while remaining characteristic exponents belong to the imaginary
axis, then system (1) is statically unstable (divergence). And if at least
one of the characteristic exponents v is complex this is termed kinetic
instability (flutter). Introducing the notation

A=M1C, I=-17 (4)
we obtain an eigenvalue problem for the matrix operator
Au = lu (5)

It is easy to see that in terms of A system (1) is stable if all A are
positive and simple eigenvalues; if all eigenvalues A are real and some
of them negative system (1) is statically unstable (divergence). And if
at least one eigenvalue A is complex it means flutter instability.

Stability problems for circulatory systems have been considered in
2], [13], [4], [20], 5], [7], [18], [8]- In these works many specific prob-
lems, dependent on one and two parameters, have been studied.

The aim of the present paper is to study stability, flutter and diver-
gence boundaries for two-parameter circulatory systems in the generic
case, i.e. typical case when singularities do not disappear with a change
of the family of matrices, see [1 |. Stability analysis done in this paper
is based on bifurcation diagrams of matrices, see [1 | and [3], and per-
turbation theory of eigenvalues and eigenvectors by [19] and [10], see
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also [12]. This theory has been developed and used by [16], [15], [6],
and [11] to study stability problems of mechanical systems.

First we consider the case of dependence of circulatory systems on
a single parameter p. This case has been studied by [17]. For the sake
of convenience we begin with a short outline of that paper.

For families of matrices A smoothly depending on a single parame-
ter p it is known, see [1 | and [3], that the generic case is characterized
by simple eigenvalues A\, and only at some isolated points py by double
real eigenvalues Ao with Jordan chain of second order. More compli-
cated singularities of A(p) can be destroyed by infinitesimal shift of the
family.

It is easy to show that pg is a boundary of the stability domain.
Indeed, if we take an increment p = py + Ap we obtain the increment
of the matrix A in the form

A:A0+A1Ap+..., (6)
where
dA
Ay = A(po), A= <d_> : (7)
p P=Po

These matrices are connected with the matrices and by the relations

Ay = M;'Cy, Ay = M;'Cy — My M M; ' Co,

My = M(po), Co=C(po), (8)

w- (%), o= (%)
1 dp pP=Ppo ’ ' dp p=Po

Considering )y as a double real eigenvalue with Jordan chain of
second order with the right and left eigenvectors uy and vy we find
bifurcation of Ay in the form, see (A17, A21)

A= £V idp+O(Ap]) (9)
f1 = (Arug, vo). (10)

Since (Ajug, vo) is real, the quantity fo = 0, while f; is real and doesn’t
depend on the increment Ap.
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Fig.2. Bifurcation of eigenvalues shown in three-dimensional space

The bifurcation (9) is illustrated in Fig.1 and Fig.2. It can be in-
terpreted as strong interaction of two eigenvalues, see [16]. If f; < 0,
then with an increase of p < py two real eigenvalues come together,
merge at p = pg, and then diverge along a straight line parallel to the
imaginary axis. The arrows in Fig.1 show the direction of motion of
A when p increases. If f; > 0, the direction of motion of eigenval-
ues changes to the opposite. The bifurcation (9) is shown in Fig.2 in
three-dimensional space ( fi < 0). At p & py the intersecting curves
are quadratic parabolas of the same curvature lying in the orthogonal
planes Im A = 0 and Re A = ).

Since the matrix A is real, the interaction pictures in Fig.1 and Fig.2
are symmetric with respect to axis and plane Im A = 0 , respectively.
It is easy to see that if A is a simple and real eigenvalue it remains real
with a change of p . Indeed, in the other case the complex conjugate
A also appears, which means an increase of the total number of roots
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of the characteristic equation. Hence, with a change of p eigenvalues
are able to leave the real axis (or the plane Im A = 0 ) only when they
meet and interact strongly according to (9), see Fig.1 and Fig.2.

Let us return to problem (1), (2). Since A = —1? positive eigen-
values A\ correspond to pure imaginary characteristic exponents v =
+iv/), and negative A correspond to real v = +i |A|. Thus, positive
Ao = —v3 at the bifurcation point (9) means transition of stability of
system (1) to kinetic instability (flutter) or vice versa (depending on
the sign of fi), and negative )y corresponds to transition of kinetic
instability (flutter) to aperiodic instability (divergence) or vice versa.

The bifurcation (9) can be expressed through characteristic expo-
nents v. Substituting p — po instead of Ap and using \g = —v3 we

obtain
P (1 " —V“f‘p)> L o(1A) (11)
0

The interaction (11) is illustrated in Fig.3 a,b assuming f; < 0.
Direction of the arrows corresponds to increasing p. If f; > 0, then the
arrows should be reversed.

Besides catastrophes (9), (11) circulatory system (1) can lose sta-
bility statically which corresponds to passing of positive eigenvalues
A through zero point to negative values (divergence). Expansion of a

simple eigenvalue in the vicinity of A\g = 0 leads to the relation, see
(Ad), (A9), (Al1)

Imv y)<0 Imv \;2)>0 Imv V():O

0 Rev l 0 l Rev 0 Rev

Fig. 3. Three types of generic catastrophes for one-parameter
circulatory systems
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A= g Ap+o(|Ap|), (12)

g1 = (Arug, vo). (13)

In (13) up and vy are the eigenvectors corresponding to Ag = 0. In
terms of characteristic multipliers we have

v==2vg(p—po) + O (|Ap|) (14)

For g; < 0 the behavior of v with the increase of p is shown in
Fig.3c. If g; > 0 direction of motion of v changes to the opposite.

The main result for stability of one-parameter circulatory systems
is formulated as follows, see Seyranian (1994).

Theorem 1 One-parameter circulatory systems in the generic case
are subjected to catastrophes of three types: flutter, transition of flutter
to divergence, and divergence.

These catastrophes are described by relations (11), (14) and are
shown in Fig.3. Three-dimensional pictures of eigenvalue interaction
are similar to Fig.2.

Many authors have considered one-parameter circulatory systems.
In the book by Leipholz (1987) behavior of eigenvalues of matrices
depending on a single parameter has been studied. Fig.4 reproduces
Fig.6¢,d in [8], showing the behavior of eigenvalues A of a nonsymmetric
matrix depending on a parameter p with p. denoting the critical value
of the parameter p. We note that such behavior of A contradicts the
presented results, and is therefore impossible.

Im\ Im\

\P:l% p=0 \ p=0

0 Re )\ 0 p=p Re )

C

Fig. 4. Behavior of eigenvalues depending on one parameter [§]
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In many books and papers a typical plot of dependence of p on A
is given, which is reproduced in Fig.5, and as a flutter condition the
equality (dp/d)\) = 0 is used, see for example [14]. We note that at
p > p. the eigenvalues don’t disappear, and double eigenvalues A at
the critical point p. are not differentiable with respect to p.

0 A

Fig. 5. Typical plot of flutter instability [14]

2 Two-parameter circulatory systems

We consider circulatory system (1) assuming that the matrices M and
C smoothly depend on two parameters p;, po and would like to study
boundaries between stability, flutter, and divergence domains on the
parameter plane. For appropriate eigenvalue problem we use equation
(5).

According to [3] and [1 ] bifurcation diagram of a general two-
parameter family of real matrices A in the plane of parameters has
the form of isolated point and a plane curve, whose only singularities
are cusps and nodes, Fig.6. Here Jordan forms of matrices A are de-
noted by product of determinants of their blocks, for example o> means
Jordan block of second order with the eigenvalue « etc. The isolated
point in Fig. 6. corresponds to Jordan block of second order with dou-
ble complex eigenvalue & + i¢ (i.e. a double complex eigenvalue with
a single eigenvector). The cusps on the curve correspond to matrices
having 3 x 3 Jordan block with 3-fold real eigenvalue o, and the nodes
correspond to matrices containing two Jordan blocks with two 2 x 2
different real eigenvalues o and (3. Other points on the curve corre-
spond to matrices having single 2 x 2 Jordan block with double real
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eigenvalue «, and points off the curve to matrices with distinct eigen-
values. If the family possesses matrices of more complicated type, or if
bifurcation diagram has worse singularities, then they can be destroyed
by an arbitrary small shift in the family of matrices, see [1 ].

(Evgy

Fig. 6. Two-parameter bifurcation diagram [3]

Let us consider a point py on a curve, corresponding to a double
eigenvalue aq, Fig.6. We take an increment of the vector of parameters
in the form p = py + €e + £2d, where e = (e, e5) and d(dy,ds) are
arbitrary vectors of the variation, and € > 0 is a small number. This
can be interpreted as emitting of smooth curves p(e) in the vicinity
of the point py. In the sequel we take the vector d = 0, i.e. we
consider linear variations p = py + €e, unless otherwise stipulated.
Then, according to (A17), (A21) we obtain

)\:Oéoﬂ:\/<f1,€>€—|—0(€). (15)

In this expression the real vector f; in accordance with (A22) is deter-
mined by the right and left eigenvectors corresponding to g. As ay is a
real number these vectors are also real. Hence, due to (A22) we should
take fo = 0. If the expression under square root in (15) is positive,
then the double eigenvalue «y splits into two real and simple A. And
if this expression is negative then aq splits into two complex-conjugate
eigenvalues .

For the following presentation we need to introduce a concept of
tangent cone, see [9]. Tangent cone to a set Z at its boundary point is
a set of direction vectors of the curves starting at this point and lying
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in the set Z. A tangent cone is nondegenerate, if it cuts out on a sphere
a set of nonzero measure. Other-wise, the cone is called degenerate.

A) First we consider a point g at the curve a? on the bifurcation
diagram (Fig.6), assuming that a > 0 and remaining eigenvalues \ are
simple and positive. Then from (15) it follows that for rather small
e if (f1,e) > 0, then the vectors ¢, lie in the stability domain, and
if (f1,e) < 0, then the vectors ¢, belong to the flutter domain. The
tangent cone to the stability domain is given by

Ksz{e€R2:<f1,e)>O}.

Thus, the curve (o > 0) is a boundary between stability and flutter
domains, and the vector f; is the normal vector to this boundary lying
in the stability domain, see Fig.7a.

Fig 7.(a-d) List of generic singularities appearing at the stability,
flutter, and divergence boundaries for two-parameter circulatory
systems
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o (B=0)

Fig 7.(e-g)

Let us study convexity properties of the boundary. For this purpose
we take a vector of variation e, tangent to the boundary, i.e. (fi,e.) =
0. In this case according to (A23), (A27) a double eigenvalue f; splits
into two eigenvalues A = ag + €y + 0 (€) ., where the coefficients Ao
are determined from the quadratic equation (A27). Since «y is real
number, the imaginary parts of the coefficients ay, as of (A27) are zero.
Then according to (A29) we find

ap = (b1, e.), az = (Hie,, e.), (16)

where by, H; are respectively the real vector and the square matrix of
dimension n = 2, defined in (A28) via left and right eigenvectors and
associated vectors.

Having solved (A27) with the use of (16) we obtain expressions for
A up to the terms of o (¢)

bi,e) =vVD
)\:ao_%g

D = (by,e,)* — 4 (Hye,, e,) (17)
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Since the discriminant D is a quadratic form on the components of
the vector e, the quantity D is independent on sign of e,. If D(e,) < 0,
then from (17) it follows that the vectors e, and -e, lie in flutter domain
because these vectors correspond to complex-conjugate . If D(e,) > 0,
then double o > 0 splits into two real A\. Consequently, the vectors e,
and -e, belong to the stability domain.

The case D(e,) = 0 needs further investigation. It might mean
nonsplitting A or splitting of A in higher order of €.

Thus, if D(e,) > 0 at the point p = pp, then flutter domain is
convex at this point. And the condition D(e.) < 0 means concavity of
flutter domain. Hence, knowing at p = pg double eigenvalue ay > 0 and
corresponding eigenvectors and associated vectors allows to construct
a normal vector to the boundary between stability and flutter domains
on the plane pi, ps and reveal what of halfplanes with respect to the
tangent vector does the flutter domain belong to, and is it convex or
concave.

B) Consider now a point ag on the curve o assuming that a < 0
and remaining \ are simple and real. With the use of (15) we find that
the cone (f1,e) > 0 lies in divergence domain, and the cone (fi,e) <0
corresponds to flutter domain. Thus, the curve o? (a < 0) is a bound-
ary between flutter and divergence domains, and the vector f; is a
normal vector to this boundary lying in the divergence domain, see
Fig.7b. Convexity or concavity of flutter domain can be established
with the aid of (17). If at p = po the discriminant D(e,) > 0, then
flutter domain is convex, and if D(e,) < 0 flutter domain is concave at
this point.

C) Consider on the bifurcation diagram the intersection point a?3?,
Fig.7c. This point corresponds to two Jordan blocks of second order
with different real eigenvalues o and (3. It is easy to see that this sin-
gularity means an angular point at the boundary between stability and
flutter, or divergence and flutter domains. Let us calculate a tangent
cone to the stability domain assuming o > 0, 8 > 0. According to (15)
splitting of double eigenvalues o and [ is given by the relations

A=ax\/(ft,e)e+ O (e)

A=+ <ff,e>g+0(5), (18)



146 A.P.Seyranian, O.N.Kirillov

where the vectors f{¥, flﬂ correspond to the eigenvalues a and §. From
(18) we find that the tangent cone to the stability domain is described
by the expression

Ksz{eeRQ:(ff‘,e>>O, <f{3,e>}>o (19)

According to (18) all the direction vectors e, satisfying the inequal-
ities (f{,e) < 0 or <f1ﬁ, e> < 0, correspond to splitting of a (or 3) to
complex-conjugate quantities which means flutter instability. There-
fore, at the point a?3*(a > 0,3 > 0) the stability domain wedges into
the flutter domain with the angle p¢ < 7, Fig. Tc.

Similarly, we consider the case when at the crossing point a?6? at
least one of the eigenvalues a or (3 is negative. Assuming that remaining
A are real (divergence) from (18) we find that the tangent cone Kp to
the boundary of divergence domain is given by (19). This means that
at this point divergence domain with an angle ¢, < 7™ wedges into
flutter domain, Fig.7c.

D) Consider now a point o® on the curve a? (a cusp), see Fig.
7d. Since this point corresponds to a Jordan block of third order then
according to (A34), (A35) expansions A of due to a variation p = py+ce
are given by

A=a+ g, e)e+o(?). (20)

This formula means that for any vector e, such that (q;,e) # 0,
a triple real a splits into one real and two complex-conjugate (flutter
instability). Hence, stability domain (« > 0) or divergence domain
(av < 0) at this point by a narrow tongue touches flutter domain. This
picture meets the bifurcation diagram shown in Fig.6. The tangent
cone to the boundary of stability or divergence domains at this point
possesses zero angle, i.e. is degenerate.

Let us study what happens when a vector e, satisfies the degenera-
tion condition (g1, e.) = 0. This condition defines a straight line in the
plane of parameters. According to (A37), (A44) a triple real eigenvalue
« splits into three simple so that two eigenvalues are

M =ax\/(r,e)e+ Oe), (21)
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while perturbation of the third eigenvalue according to (A38), (A46) is
of order ¢

<R1€*, €*>

A\ —
1 a-—+ e <T1,€*>

+o(e). (22)
It can be seen from (22) that the third eigenvalue remains real inde-
pendently of sign of e,. But equation (22) is not enough to decide
what domain does the vector e, belong to. This can be established
by analysis of expression (21). If, for example, (r1, e,) > 0, then from
(21) it follows that the vector e, lies in stability domain (o > 0) or in
divergence domain (« < 0), while the vector -e, lies in flutter domain
because of this vector corresponds to a pair of complex-conjugate .

We see that there exists only one direction given by (21) in the
plane of parameters so that triple real eigenvalue « splits into three
simple real eigenvalues due to variation of parameters in this direction.
Hence, at the point a® the degenerate tangent cone to the stability
(a > 0) or divergence (o < 0) domains has the form

Ksp={e€ R*:{(q1,e) =0, (ri,e)>0}.

E) Now we investigate a boundary between stability and divergence
domains. System (1) loses stability statically when with a change of
parameters one of simple positive eigenvalues passes through zero and
becomes negative. A boundary between stability and divergence do-
mains is defined by zero eigenvalue A = 0 which corresponds to the
equation det A = 0. This equation in a general case defines a smooth
curve or several curves. A boundary between stability and divergence
domains is a part of the set, defined by equation det A = 0, since other
(nonzero) eigenvalues can be arbitrary on this set.

Consider now a point on the boundary between stability and diver-
gence domains. A simple eigenvalue A = 0 according to (A4), (Al1)
changes due to a variation p = py + ce as

A=¢c{(q,e) +o(e) (23)

The cone (g1,e) > 0 provides positive eigenvalues while the cone
(g1,e) < 0 corresponds to negative eigenvalues. Therefore, the vector
g1 is a normal vector to the boundary between stability and divergence
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domains lying in the stability domain, Fig.7e. Convexity or concavity
properties of this boundary can be established taking a tangent vec-
tor e, such that (gi,e.) = 0 and calculating the second variation A,
according to (A12). Then we obtain A\ = &2 (Eje., e.) + o(g?). Thus,
when (Fie,, e,) > 0 the boundary of stability domain is concave, and
when (Fje,, e,) < 0 it is convex. The case (Eie,, e,) = 0 needs further
investigation.

We remind that to calculate the vector g; and the matrix F; it is
necessary to know the left and right eigenvectors corresponding to the
simple eigenvalue A = 0 , and derivatives of the matrix A with respect
to parameters p; and po taken at the boundary, see (A9) - (A13).

F) A singularity of a boundary of the stability domain in the generic
case also appears at the points where the curves a?(a > 0) and 3 =0
intersect, Fig.7f. Using (15), (23) we find the tangent cone to the
stability domain at this point as

Ks={e€ R*:(fi,e) >0, (gi,e)>0}.

The angle ¢4 of the tangent cone is less then 7, Fig.7f.

G) Consider now a singularity a?(a = 0) appearing at some points
of the curve o®. To study this singular point we have to take a variation
of parameters in the form p = py + ce + £2d with d # 0. According to
(15) we have

A==£v(f1,e) e+ O(e). (24)

All the vectors satisfying the inequality (fi,e) > 0 lie in diver-
gence domain, while the vectors satisfying (f1,e) < 0 belong to flutter
domain.

Consider now a vector e, tangent to the boundary, i.e. (f,e.) =0.
Then using (A27), (A29) we get

b, e) = v/ Dles) +4(f1,d)
2

Ao = €, (25)
where D = (b, e,)” — 4 (Hye,,e,). It is easy to see from (25) that for
given e, and properly chosen vector d there exist curves p = pg+ce, +
£2d so that double zero eigenvalue splits along these curves into two
positive simple eigenvalues (stability). Different cases can occur:
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1. D(es) > 0, (Hijeses) > 0. In this case the curves satisfy-
ing the inequalities (hi,e.) < 0 and — (1/4) D (e.) < (f1,d) <
(Hje,, e,) lie in the stability domain. The stability domain be-
longs to both halfplanes with respect to the tangent vector e,,
and flutter domain is convex, see Fig.7g.

2. D(ey) > 0, (Hje.e,) < 0. In this case the curves satisfy-
ing the inequalities (h1,e.) < 0 and — (1/4) D (e.) < (f1,d) <
(Hyey, e.) < 0 and lie in the stability domain. The stability do-
main belongs to the halfplane (fi,d) < 0 with respect to the
tangent vector e,, and flutter domain is convex, see Fig.7g.

3. D(es) < 0. In this case the curves satisfying the inequalities
(h1,e.) < 0and 0 < —(1/4) D (e.) < (f1,d) < (Hies, e.) and
lie in the stability domain. The stability domain belongs to the
halfplane (f;,d) > 0 with respect to the tangent vector e,, and
divergence domain is convex, see Fig.7g.

Therefore, the point o(a = 0) in all three cases is common for the
boundaries between three domains: divergence, flutter, and stability,
the stability domain having a sharp tongue, Fig.7g. The degenerate
tangent cone to the stability domain at this point takes the form

Ks={e€R*:(fi,e) =0, (h,e)<0}. (26)

In the generic case the vectors h; and f; are linearly independent.
It should be noted that to investigate the singularity in case G we have
to take a variation p = pg + e + £2d, where d # 0, since there might
be no vectors p = py + e belonging to the stability domain.

Singularities, considered above in cases A-G are generic singulari-
ties for two-parameter circulatory systems. These singularities are in-
herent and don’t disappear for small changes of matrix families A(py, ps).
A hypothetical division of the parameter plane p1, p2, to stability, flut-
ter, and divergence domains is presented in Fig.8.

The results obtained we formulate as a theorem

Theorem 2 In two-parameter circulatory systems boundaries between
stability, flutter, and divergence domains in the generic case are smooth
curves, described in A, B, E; at some points of these curves singulari-
ties, given in C, D, F, G and shown in Figq.7, Fig.8, take place.
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Fig. 8. Hypothetical division of the plane of parameters into stability,
flutter, and divergence domains

3 Example: stability of a rigid panel sub-
jected to an airflow

As an example, consider stability of a rigid panel of infinite span sub-
jected to an airflow. It is assumed that the panel is maintained on two
elastic supports with the stiffness coefficients ¢; and co per unit span.
The panel has two degrees of freedom: a vertical displacement y and a

rotation ¢, Fig.9.
Y
v T a
§@ Q <
y

[
C.

== s
F b/2————b/2 —=

Fig. 9. A rigid panel vibrating in airflow

It is assumed that aerodynamic lift force Y acting on the panel of
unit span is proportional to an angle of attack ¢, to dynamic pressure
of airflow, and to a width b of the panel
PV’

Y = Cy 7()@
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Here ¢} is the partial derivative of the aerodynamic lift force coeffi-
cient with respect to the angle of attack, p and v are density and speed
of the flow, respectively. Damping forces are not involved in the model
considered. The differential equations of motion are, see [13]

y+any+anp =0

¢+ any + axp =0 (27)
where
C14C2 C1_C o PV
a — 7 a frd —C _’
1 mb 12 2m Yom

6(ci—c2) 3(c14c2) ap_vg (b — 2a)

mb? ' 422 = mb 0, 2 mb? (28)

a21 =
Here mb is mass of the panel per unit span, a is a distance between

the right edge of the panel and the aerodynamic focus (the point where
aerodynamic lift force is applied). Introducing dimensionless variables

Cc1_Cy 2a
c= ———, =6(——1],
2erres) ! ( b >

1 g pv®

2 (Cl+62)’

<

= T, :t B
Y=y 7 mb

and separating time with ( ZJ; ) = ue””, the eigenvalue problem Au =

Au is obtained, where

|1 c—q _ 9
A_[IQC 3‘7Q}7 A= -~ (29)

The corresponding characteristic equation is

N+ Nyg—4) +12cg —vqg — 1262 +3=0. (30)
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Here ¢ is a load parameter (¢ > 0), c is a stiffness parameter
(le| < 0.5), and y characterizes the point where aerodynamic lift force is
applied. For thin profile in incompressible flow v = 3, since a/b = 0.75.

When parameter v is fixed we can consider the problem as two-
parametric and depending only on c and q. Taking v = 3 characteristic
equation (30) yields

N4 (3¢ — 4N+ 12¢q — 3¢ — 126+ 3 =0, (31)

4 —3q+/9¢> — 12 — 48cq + 48¢2 + 4
5 .

Ao = (32)

Setting A = 0 in characteristic equation (31) we obtain a critical
divergence load g4

1-4¢

wle) = T (33)

Since |¢| < 1/2,q > 0, the curve gq(c) belongs to the region ¢ <
1/4. Substitution of (33) into equations (31), (32) gives expressions
describing how the roots A1,\s change along this curve

1 — 16c + 12¢2
A(e) =0, X(c) = T

(34)

It is easy to see that if ¢ < (4 - \/ﬁ) /6 then \, is positive, and the
curve gq(c) is the boundary between stability and divergence domains.
In the case when inequalities (4 —v/13) /6 < ¢ < 1/4 hold the curve
qa(c) belongs to divergence region since A, is negative. This part of
the curve (33) is shown in Fig.10 by dotted line. At the point py =
(c = (4 — \/ﬁ) /6, q= 4/3) the root Ay changes the sign.
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Figure 10. Stability, flutter, and divergence domains for a vibrating
panel

Now we proceed to study flutter domain. It can be seen from (32)
that flutter occurs when the discriminant of quadratic equation (31)
becomes negative. Setting the discriminant equal to zero, a critical
flutter load gy is found as

a7(c) = § <1+4c:i:2\/c(c+2)>. (35)

It follows from (35) that flutter domain belongs to the region ¢ > 0.
The curve g(c) consists of two branches corresponding to different
signs in (35). Recall that flutter boundary is characterized by double
eigenvalues. From (32), (35) it can be shown that on flutter boundary
M2 = (4 —3q) /2. Thus, if ¢ > 4/3 then (35) describes the boundary
between flutter and divergence domains. In the case ¢ < 4/3 the curve
gr(c) is the boundary between stability and flutter domains, Fig.10.

Consider now a point (c,q) at the flutter boundary. Solving the
eigenvalue problem with (30) and y = 3 we get the vectors ug, u1, vo, v1
corresponding to the double eigenvalue A\; » = (4 — 3¢q) /2

2q—c 12¢
Uy = 3q — 2 , Vg = 1 ,
| )

0
0
UG = 9 1 s Ulz(l). (36)
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Using (36) in (A20) yields

B 12(c — q)
h= —12c+%(3q—2) ‘ (37)

Consider for example the point (¢ = 0, ¢ = 2/3), where the tangent
direction to the flutter boundary is vertical, Fig.10. Then according to
(37) the normal vector to the boundary at this point is f; = (—8; 0)7,
and it lies in the stability domain, being parallel to the c—axis, Fig.10.

The point py = (c = (4 — \/ﬁ) /6, q= 4/3) corresponds to the
double zero eigenvalue Ay = Ay = 0. At this point the flutter domain
touches the divergence domain

_ dgy _ dga
4 = da, dc de’

With the use of expressions (36) we get eigenvectors and associated
vectors corresponding to the double zero eigenvalue

= (T, e (202D,

0o —
1 -1

ulz(_ol>, ”1:((1))' (38)

From (37) we obtain the vector f; = (—4\/5; -5+ 2\/ﬁ)T. This
vector lying in the second quadrant is normal to the flutter boundary
and belongs to the divergence domain, Fig.10. From the orthogonality
condition (fi, e,) = 0 we obtain the vector e, tangent to the boundary
and lying in the first quadrant

1
. ( (26 - 5v/13) > | (39)

Due to a variation of the vector of parameters p = py + €e, double
zero eigenvalue splits into two simple in accordance with (A23), (A27).



Bifurcation Diagrams and Stability... 155

Coefficients of quadratic equation (A27) with the use of (38), (39) and
according to (A28), (A3) are

81
52

Thus, at the singular point py for the vector e, tangent to the flutter
boundary we obtain

ar =3, a

ay >0, D=a®—4ay>0.

This means that the double zero eigenvalue due to the variation
p = po + €e, splits in accordance with (25) into two negative simple
eigenvalues A

1 1
)\—35( 5 + \/ﬁ) + o(e),

and into two positive eigenvalues —\ for the vector —e,. Therefore, the
tangent vector ce, for rather small ¢ lies in divergence domain while
the vector —ce, belongs to the stability domain. The point p, corre-
sponding to the double zero eigenvalue is common for three domains:
divergence, flutter, and stability; flutter domain being convex. At this
point the stability domain touches by a narrow tongue flutter and di-
vergence domains, Fig.10. This result is in accordance with the general
analysis, given in Section 2 of this paper.

Note that singularities a?, a?3%, and (8 = 0) cannot appear in
this example because of the system considered has only two degrees
of freedom. Indeed, singularities o® and o?8(8 = 0) can appear in
systems with three or more degrees of freedom, and a?(% needs at
least four degrees of freedom.

4 CONCLUSION

In Sections 1, 2 stability of circulatory systems with finite degrees of
freedom smoothly depending on two real parameters is studied. It is
shown that in the generic case boundaries between stability, flutter and
divergence domains in the plane of parameters consist of smooth curves
corresponding either to double real eigenvalues with Jordan chain of
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second order or to simple zero eigenvalues. At some points the bound-
aries possess singularities, corresponding to multiple eigenvalues with
Jordan chains, listed in Theorem 2 and shown in Fig.7, Fig.8. This
result is based on the work of Galin (1972) where bifurcation diagrams
for real matrices depending on one, two and three parameters are given.
Thus, the proven Theorems supply an engineer or applied mathemati-
cian by information about nonsmoothness of stability boundaries and
list all possible types of singularities and their properties in the generic
(unavoidable) case.

As an example in Section 3 a problem of stability of a rigid panel
subjected to airflow is considered. Stability, flutter, and divergence
domains for this system are analyzed. It is shown that in this prob-
lem the singularity o?(a = 0) arises. Normal vectors to the stability
boundary are calculated and the degenerate tangent cone at the point
of singularity is found.

A method allowing to determine local geometrical properties of a
boundary is developed. This method analyses bifurcations of eigen-
values near a boundary between different domains due to variation of
the vector of parameters. It is based on the perturbation theory of
eigenvalues of nonsymmetric matrices depending on parameters, see
[19], [16]. In Appendix first- and second-order perturbation terms of
simple eigenvalues are obtained. Explicit formulae describing splitting
of double and triple eigenvalues with the corresponding Jordan chains
of second and third order in the first approximation are given. It is
shown that knowing a critical eigenvalue with the corresponding eigen-
vectors and associated vectors at the boundary point and using first
order derivatives of the matrix of the circulatory system with respect
to parameters we can construct a normal vector to the boundary at the
given point. This allows us to find directions in the plane of parame-
ters stabilizing or destabilizing the system, i.e. to construct a tangent
cone to the boundary. Degenerate cases when the vector of variation
of parameters is tangent to a boundary are also considered. Explicit
expressions describing splitting of eigenvalues due to perturbations of
parameters taken in such directions are presented. The study of de-
generate cases is necessary to establish convexity properties of stability,
flutter, and divergence domains at the boundary points and to find the
degenerate tangent cones. Thus, using only information at a bound-
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ary point (regular or singular) we can construct approximation of the
stability boundary in the vicinity of this point.

The method presented is general and can be used for investigation of
local geometrical properties of the boundaries when dimension of the
parameter space is arbitrary, and when singularities are not generic.
The approach developed in this paper can directly lead to a computer
program, hence the possible loss in stability for a high order matrices
can be determined.
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Appendix: Bifurcations of eigenvalues

Let us consider an eigenvalue problem

Au = M, (A1)

where A is a real nonsymmetric matrix m X m smoothly depending on a
vector of real parameters p = (p1, po, ...,pn)T, A is an eigenvalue, and u is
a corresponding eigenvector of dimension m.

It is assumed that )¢ is an eigenvalue of A(pp) at fixed p = pp, and a
change of the eigenvalue A is sought that depends on a change of the vector
of parameters p. For this purpose, an increment p = py + e + £2d is given
to the vector pg, where € > 0 is a small number, e and d are real vectors of
the variation of dimension n. As a result, the matrix A takes an increment

Alpy +ee+e*d) = Ay +eAy + 2 Ay + .. (A2)
The matrices Ag, A1, Ay are described by the relations
"L 0A " 0A 1 — %4
Ag=A A= —e5, Ay = —d; + = —eg6y.
' (pO), 1 s=1 8p56 i i=1 apz ! 2 stzzl 0 Sapte K
(A3)

Due to the variation of the vector p an eigenvalue A and an eigenvector
u take increments. According to the perturbation theory of nonselfadjoint
operators, developed by Vishik and Lyusternik (1960), these increments can
be expressed as series of integer or fractional powers of €, depending on
Jordan structure corresponding to the eigenvalue \.

Simple eigenvalue

Assume that )y is a simple eigenvalue of the matrix Ay and wug is a
corresponding eigenvector. In this case A\ and u are smooth functions of
and can be expressed as Taylor series ([19])

A= )\0 +€)\1 +€2)\2 + ...
(A4)

u = ug + ewy + 2ws + ...
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Substitution of expansions (A2), (A4) into equation (A1) yields

(AO — )\0])U0 =0
(AO — )\0[)11]1 = )\1U0 — A1U0 (A5)

(AO — )\0[)11]2 = )\111]1 — A1w1 + )\QUO — AQUO.

Here [ is the identity matrix. We introduce the inner product (a,b) =
Z;Zl a;b; for vectors a,b € C™, where the overbar denotes complex con-
jugate. Then the operator L* = AT — A\oI is adjoint to L = Ag — Aol
as it satisfies the relation (Lu,v) = (u, L*v) holding for arbitrary vectors
u and v. For the following presentation the ad-joint eigenvalue problem is
introduced

It is assumed that the eigenvector vy satisfies the normality condition

(uo, vo) = 1. (A7)

For given ug this equality defines vy uniquely. For the perturbed vector
4 the normality condition

(u,v9) =1 (A8)

is used. This condition is necessary to uniquely determine all the terms \;
and w;.

The solvability conditions for the second and the third of equations (A5)
require that the right hand sides be orthogonal to the solution of homoge-
neous adjoint problem (A6). Thus, equalities (Aug — Ajug, v9) = 0 and
(Aaug — Agug + \qw1 — Ajwy, vg) = 0 with the use of normality conditions
(A7), (A8) give

)\1 = (A1U0,U0), (Ag)

)\2 = (AQUO, Uo) + (A1w1, Uo). (AlO)
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Here wy = Go(Mug — Ajup) is found from the second of equations
(A5), and G is an operator inverse to Ag — Ao/, see Vishik and Lyusternik
(1960).

For the sake of convenience we introduce the inner product (a,b) =
S L asbs of vectors a,b € R™ | in the parameter space. With the use
of expressions (A3) for the matrices A; and Aj first- and second-order
eigenvalue perturbations (A9) and (A10) can be written in the form, see
Seyranian (1993)

A= (g1, e) +i(gee€), (A11)

Ay = <E16, 6> +1 <E26, €> + (gl, d> +1 <gg, d> , (A12)

where ¢ is the imaginary unit. Vectors g1 and g are gradient vectors of real
and imaginary parts of A\ at p = pg, and their components are defined by

0A
9] +1igs = <%u0,vo> ,s=1,2,...,n, (A13)

while matrices F/y and Es, defined by (A10), are real matrices associated
with the quadratic forms on components of the vector e.

Double eigenvalue

Consider the case of a double eigenvalue \g with length of Jordan chain
equal to 2. This means that at p = pg there exist an eigenvector ug and an
associated vector uq, corresponding to \g and governed by equations

(Ao — )\0[)’&0 =0

(AO - )\0[)“1 = Ugp. (A14)
For the adjoint eigenvalue problem we have

(Ag — 5\0[)1)0 =0

(Ag - 5\0[)’01 = 9. (A15)
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The vectors ug, U1, Vg, v1 are related by the following conditions

(uo,v9) =0, (u1,v9) = (ug,v1) # 0, (A16)

that can be proved by means of equations (A14) and (A15), see [19].

Taking a variation of the vector of parameters p = pg + e + £2d,
the variation of the matrix A in the form (A2) results. In the case of
a Jordan block expansions for eigenvalues and eigenvectors contain terms
with fractional powers €7/, 7 =0,1,2,..., where [ is length of Jordan chain
([19]). The case of a double eigenvalue A\g with [ = 2 yields

A= )\0 + 61/2)\1 + 6)\2 + 63/2)\3 + ...
(A17)

1/2 3/2

U=1ugt+e’'w +ewy+ e’ ws + ...

Substituting (A17) and (A2) into (A1) , we get equations for determining
coefficients of expansions for the eigenvalue and the eigenvector

(Ao — )\of)wl = )\I'LLO

(Ao — )\ol)wg = —A1U0 + )\QUO + )\171)1. (A18)

Assuming that the vector uyg is fixed, the normality conditions for vg,vq
and u are used in the form

(up,1) =1, (u,v1) = 1. (A19)

From the first of equations (A18) using (A14) it is seen that w; =
Go(Mug) = MGoug = Mug + yug. The second of normality conditions
(A19) yields for unknown constant y = —\;(uy, v1). Then, the solvability
condition for the second of equations (A18) with (A16), (A19) gives

)\% = (AIUO, 1)0). (A20)

If the right hand side of (A20) is not zero, it yields two different nonzero

roots A\ = £+/(A1ug, vg) with the corresponding vectors wy = Aj(u; —
(u1,v1)ug). Using expression (A3) for the matrix Aj, equation (A20) can
be re-written in the form, see [16]

A= (f1,e) +i(fa,€). (A21)
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Components of the vectors f1 and fa are defined by

0A

fi+ifs= (a—psuo,vo) , s=1,2,...,n. (A22)

Equation (A21) describes splitting of a double eigenvalue with Jordan
chain of second order in the general case (Ajug, vg) # 0.

Consider now a degenerate case when the right hand side of (A20) is
zero. In the sequel we assume that the vector of variation e, belongs to the
hyperplane defined by the degeneration condition (Ajug,vo) = (f1,ex) +
i {f2,es) = 0. Then it is easy to verify that the terms with fractional powers
in a general case disappear in (A17), and we have

A= )\0 +8)\2 +€2)\4 + ...
(A23)
u = ug + cwy + 2wy + ...

Substituting (A23), (A2) into (A1) , we obtain equations for determining
coefficients of expansions

(AO — )\0])102 = )\QUO — AI'LLO

(AO — )\0[)104 = )\ng — Ale + )\4'LLO — AQUO. (A24)

The solvability condition for the second of equations (A24) with (A16)
yields

)\Q(wg, Uo) — (AﬂUQ, Uo) — (AQUO, Uo) = 0. (A25)

The term (wsq, vy) can be found from the first of equations (A24) with
the use of (A15) and normality condition (A19)

(wg, 'Uo) = )\2 — (AIUO, 1)1). (A26)

Substituting (A26) and ws = Go(Aaug — Ajugp) into (A25) leads to the
quadratic equation on Ay

)\g + )\20,1 +ay = 0 (A27)
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with the coefficients

ay = —(A1U0,U1) - (A1U1,Uo),

az = _(AQUOa UO) + (Go(AﬂLo), A{UO) . (A28)

Equation (A27) defines in the first approximation splitting of a double
eigenvalue )\g in the degenerate case. With the use of expressions (A3) for
the matrices Aq1,As the coefficients a1 and ay can be given in the form

a] = <b1,6*> + 7 <b2, 6*> y

a9 = <H1€*, €*> + ) <H2€*,6*> — <f1,d> —1 <f2,d> . (A29)

Here the real vectors by,by and the real matrices Hy,Hsy are defined by
expressions (A28).

Triple eigenvalue

Consider the case of a triple eigenvalue that is characterized by Jordan
chain of length 3. This means that there are eigenvectors ug, vg and asso-
ciated vectors uy, ug, v1, Vo satisfying the equations for main and adjoint
eigenvalue problems

(Ao - )\0])’&0 = 0, (Ag - 5\0])'1)0 = O,
(AO — )\0])U1 = U, (Ag — 5\0[)111 = Vo, (A30)

(AO — )\0])U2 = Uq, (Ag - S\OI)UQ = v1.
The vectors u;, v; are related by the following equalities

('LLo,'Uo) = ('LLl,Uo) = (Uo,vl) = 0, (A31)

(UQ,U1) = (U1,U2), (UQ,U()) = (Ul,Ul) = (Uo,UQ). (A32)
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These conditions can be proved by means of equations (A30). Assuming
that the vectors ug, uq, ug are fixed, the normality conditions for vg, v1,vs
and u are used

(up,v2) =1, (u,v2) = 1. (A33)

Due to perturbation of parameters p = pg+ece+¢e2d the triple eigenvalue
Ao generally splits into three simple eigenvalues A. The eigenvalues and the
eigenvectors are given in the form ([19])

A= )\0 + 81/3)\1 + 82/3)\2 + 8/\3 + ...

(A34)
1/3 2/3

U =1Uy+E /"W + 7wy + w3 + ...

In the same way as for a double eigenvalue the expression for \; can be

found as
Al = (Ao, vo) = (a1, €) +1i{ga,e) (A35)
where the real vectors ¢; and gy are defined by the relation
0A
q; +ig5 = (%uo,vo) , s=1,2,...,n. (A36)

If (Ajug, vg) # 0, then expression (A35) yields three different complex
roots A\ = {/(Ajug,vg), describing splitting of the triple eigenvalue with
Jordan chain of third order.

In the degenerate case when the right hand side of (A35) is zero the
triple eigenvalue splits into three simple by another way. Expansions for
two of the eigenvalues and for the corresponding eigenvectors contain terms
with fractional powers €//2, j = 1,2, ...

A= )\0 + 81/2)\1 + 8/\2 + 63/2)\3 + ...
(A37)
u = ug + 2wy 4 ewy + ¥ w3 + ...,

while expansions for the third of eigenvalues and for the corresponding eigen-
vector contain only integer powers of €, see [19]:

A= )\0 +8)\1 +€2)\2 + ...
(A38)
U = Ug + EWq —|—€2w2 + ...
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Substituting (A37), (A2) into (A1), we obtain

(AO — )\0])11)1 = )\1“0,
(Ao — )\of)wg = >\1w1 — A1U0 + )\QUO, (A39)

(Ao — )\ol)wg = )\111)2 — A1w1 + )\le + )\3U0.

The first of equations (A39) gives wy = Go(Ajug) = Ajug + yug, where
v = —Ai(ug,v9) is found from (A33). Then solvability condition for the
third of equations (A39) with (A31) yields

(w2, v0) = (Aru1, vo). (A40)

Taking the inner product of the second of equations (A39) with v; and
using (A31), (A32), (A33), and wy = A\juq + Yuo, gives

)\% = (ws, vo) + (Aruo, v1). (A41)
After substitution of (A40) into (A41) we obtain
A = (Avur,v0) + (Ayug, vr). (A42)

Introducing real vectors 1 and r2, whose components are defined by

A A
ry +iry = (a—ul,m) + (8 uo,vl) , s=1,2,...,n, (A43)

Ops Ops

we have from (A42)

M= £V (e +i (o, e,). (A44)

In the same way, substituting (A38), (A2) into (A1), for the third eigen-
value we obtain the expression for determining A; in expansions (A38) in

the form

(Go (Aruo), A1TU0) — (Aauq, vo)

A45
(Ayuy,vo) + (Arug, v1) (Ad5)

A =
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This formula can be written as

(Riex e.) +i(Roes, ex) — (q1,d) — i (g2, d)

N =
! (r1, ex) + 1 (ra, e,)

, (A46)

where Ry and Ry are real matrices defined by the equality

<R1€*, €*> + 7 <R2€*, €*> = (GO(A1u0), A{Uo) —

" 0%A
a Sapt Uop, Vo | -

Equations (A44), (A46) describe splitting of the triple eigenvalue )\ in
the degenerate case (Ajug, Vo) = (g1, €x) + @ {ga2, €x) = 0 under condition
(r1,e.) +1i(ra,e) #0.
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Bifurkacioni dijagrami i granice stabilnosti cirkulatornih
sistema

UDK 531.36

Razmatraju se problemi stabilnosti linearnih cirkulatornih sistema
opsteg tipa sa konacnim brojem stepeni slobode koji zavise od dva
parametra. Pokazano je da su ovi sistemi u izvornom slucaju izlozeni
flaterskim i divergentnim nestabilnostima. Bifurkacije sopstvenih vred-
nosti koje opisuju mehanizam statickih i dinamickih gubitaka stabil-
nosti se studiraju i daje se geometrijska interpretacija ovih katastrofa.
Za dvodimenzioni slucaj granice izmedju domena stabilnosti, flatera
i divergencije se analiziraju. Tangentni konusi i vektori normalni na
granice se izracunavaju pomocu levih i desnih sopstvenih i pridruzenih
vektora. Kao primer se razmatra stabilnost krutog panela koji osciluje
u struji vazduha.



