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Abstract

A general boundary element methodology for the dynamic analysis

of 2-D and 3-D solids and structures exhibiting quasi-brittle mate-

rial behavior is presented. Inelasticity is modeled with the aid of

the elastic damage theory. Strain rate and cyclic loading effects are

also considered. The integral formulation of the problem employs

the elastostatic fundamental solution and thus both surface and

volume integrals due to inertia and inelasticity are created. Conse-

quently the discretization involves both the surface and the interior

of the body. The singular integrals are evaluated by advanced nu-

merical integration techniques, while Houbolt’s step-by-step time

integration scheme is used to obtain the dynamic response. Nu-

merical examples are presented to illustrate the proposed method

and demonstrate its accuracy and potential.

1 Introduction

Quasi-brittle materials, such as concrete, rocks, soils, ceramics and ma-
sonry, exhibit a behavior under dynamic loading characterized by dif-
ferent strengths in tension and compression, a stress-strain curve with
an almost linear ascending branch and a highly nonlinear descending

39



40 G.D.Hatzigeorgiou,D.E.Beskos

branch (softening), increasing strength in the compression-compression
region, localization of deformation and creation of shear bands, increase
of strengths under dynamic load (strain-rate effect) and cyclic material
behavior under cyclic loading. All these material characteristics can be
successfully simulated by elastic damage theories.

In this work, an elastic damage model called FOM is employed.
This model consists of the elastic damage part of the plasticity-damage
model of Faria and Oliver [1] expressed in terms of the tension and
compression damage indices, which are combined to produce a single
damage index on the basis of Mazars [2] theory of damage. Strain
rate and cyclic effects are embedded in this model with the aid of
experimentally derived empirical relations.

A boundary element method (BEM) employing the elastostatic fun-
damental solution is developed for the dynamic analysis of 2-D and 3-D
solids and structures exhibiting a quasi-static material behavior sim-
ulated by the FOM model. Thus both surface and volume integrals
are created, the latter due to inertia and inelasticity. This requires
both a surface and an interior (domain) discretization of the body. For
this reason the method is called Domain/Boundary Element method or
D/BEM. The space-discretized equations of motion are finally solved
numerically by Houbolt’s step-by-step time integration scheme with
iterations at every time step.

2 FOM damage model

The starting point is the computation of the principal σi(i = 1, 2, 3)
and the effective σ̄+ and σ̄− stresses for tension and compression, re-
spectively. The equivalent stresses τ̄+ and τ̄− in tension and compres-
sion, respectively, are then defined in terms of σ̄+, σ̄− and σi. The
damage indices d+ and d− in tension and compression, respectively,
are subsequently computed in terms of τ̄+ and τ̄− and some material
parameters, which are functions of an internal length scale. Finally,
the combined damage index d is computed as

d = α+d+ + α−d− (1)

where α+ and α− are functions of σ̄+, σ̄− . For more details one can
look at Hatzigeorgiou et al [3].



Dynamic analysis of 2-D and 3-D quasi-brittle... 41

Strain rate effects can be easily introduced into the FOM model in
an empirical way by simply adopting the Suaris and Shah[4] curves,
which provide the expressions

ft,d/ft,s = φ(ε̇+)
fc,d/fc,s = φ(ε̇+)

(2)

In the above, the subscripts t, c, d and s stand for tension, compression,
dynamic and static, respectively, f denotes strength and ε̇ denotes
strain rate, which is computed during the stepwise integration process
of the equations of motion by finite differences in time.

To account for cyclic effects, the damage index d is replaced by the
unloading - reloading damage index d∗ in the form

d∗ = dR (3)

where the exponent R = 2 for most practical cases. For more details
about strain rate and cyclic effects one can consult Hatzigegorgiou et
al [3].

Once the damage index d is known, the total stress vector {σ} is
computed from

{σ} = (1− d) [D] {ε} (4)

where [D] is the elasticity matrix and {ε} is the strain vector.

3 Domain/boundary element method

The integral representation of the displacement uj = uj(ξ,t) at point
ξ and time t inside a body of volume V and surface S has the form
(Hatzigeogiou and Beskos [5])

cijuj =

∫
S

(
u∗ijpj − p∗ijuj

)
dS − ρ

∫
V

u∗i,jüjdV +

∫
V

ε∗jkiσ
p
jkdV (5)

where u∗i,j, p
∗

ij and ε∗jki are the displacement, traction and strain of the
elastostatic fundamental solution, pj denotes the surface traction, ρ the
mass density and σp

jk the inelastic stress.
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Figure 1: Discretization of a general three-dimensional body
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Discretization of the surface S into a number of linear quadrilateral
boundary elements and the volume V into a number of linear hexa-
hedral interior cells (see Fig. 1) enables one to write Eq. (6) in the
discretized matrix form

[G]{p} − [H]{u} − [M ]{ü}+ [Q]{σp} = {0} (6)

The regular space integrations are done by standard Gauss quadra-
ture, while the singular ones by advanced direct algorithms based on
Guiggiani and Gigante[6]. Employment of Houbolt’s stepwise in time
integration scheme enables one to replace ü at time step n + 1 by u
at previous time steps. In addition, use of the initial and boundary
conditions of the problem and rearrangement, finally transforms Eq.
(6) into

[GH]

{
p
u

}
n+1

= [M ]{−5un + 4un−1 − un−2} − [Q∗]{σp
n+1}+ {B}

(7)

where {B} arises from the known boundary conditions.
Since σp

n+1 is not known, un+1 and pn+1have to be computed iter-
atively with the aid of Eq. (7) and the constitutive equation of the
material at every time step. This procedure appears in Fig. 2.

4 Numerical examples

4.1 Dynamic analysis of a mortar beam

A simply supported mortar beam subjected to a central impact load-
ing is analyzed by the present method. The material parameters are
E = 22000N/mm2, ν = 0.15, ft = 3.91N/mm2, fc = 31.0N/mm2,
fc−2D = 36.0N/mm2, ρ = 2410Kg/m3 and Gf = 103.7N/m, where
E, ν, fc−2D and Gf stand for modulus of elasticity, Poisson’s ratio,
compressive strength under biaxial conditions and fracture energy, re-
spectively. Figure 3 shows the geometry and the 3-D BEM discretiza-
tion of the structure.

Figure 4 provides the time history of the vertical displacement at
the load point, as obtained by the present D/BEM and the FEM and
experiments of Du et al [7]. The agreement is very good.
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Constitutive  
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Figure 2: Iterative procedure for the computation of stresses

 

Figure 3: Geometry and discretization of Example 1 (dimensions in
mm)



Dynamic analysis of 2-D and 3-D quasi-brittle... 45

0.0 0.2 0.4 0.6 0.8 1.0 
0

25 

50

75 

100 

125 

 

 Time (msec)  

D
ef

le
ct

io
n 

(µ m
) 

Experiment 

      FEM 

      BEM 

Figure 4: Time history of deflection of load point

4.2 Seismic analysis of the Arta bridge

The historic Arta bridge made of masonry has been analyzed by the
proposed D/BEM under plane stress conditions for the loading case of
self weight plus the first 5secs of the NS El-Centro (1940) earthquake
with maximum horizontal and vertical acceleration of 0.16 g and 0.10 g,
respectively to match local conditions. The bridge consists of four main
arches with spans of 23.95 m, 15.83 m, 15.43 m and 16.16 m, while its
width is 3.70 m. Its material parameters are:

• E = 3.0GPa,

• ν = 0.22,

• fc = 30.00MPa,

• fc−2D = 34.8MPa,

• ρ = 2700Kg/m3,
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Figure 5: Horizontal displacement [mm] versus time [sec]

• ft = 0.3MPa, and

• Gf = 20N/m

Figure 5 shows the time history of the horizontal displacement at
the top of the largest arch as obtained under elastic and inelastic (FOM
model) material behavior.

The discretization of the Arta bridge is shown in Fig. 6. The same
figure (Fig. 6) shows the distribution of damage (dark colour) in the
bridge, on the assumption that an element is considered failed (or fully
damaged) when d = 1.

5 Conclusions

A D/BEM has been developed for the dynamic analysis of 2-D and 3-D
solids and structures exhibiting quasi-brittle material behavior, which
is simulated by the elastic-damage model FOM. The method has been
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Figure 6: Damaged region of the structure: ’self weight + earthquake’
load combination

illustrated by means of two examples, which have also demonstrated
its accuracy and potential.
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Dinamička analiza 2-D and 3-Dd skoro krtih čvrstih tela i
struktura pomócu D/BEM

UDK 517.95; 517.968

Prikazana je opšta metodologija graničnih elemenata za dinamičku
analizu 2-D i 3-D čvrstih tela i struktura koji ispoljavaju skoro krto
materijalno ponašanje. Neelastičnost je modelirana pomoću teorije
elastičnog zamora. Takodje se razmatraju efekti brzine deformacije
i cikličnog opterécenja. Integralna formulacija problema koristi funda-
mentalno rešenje elastostatike. Dakle, i površinski i zapreminski inte-
grali koji potiču od inercije i neelastičnosti su sačinjeni. Prema tome,
diskretizacija obuhvata i površ i unutrašnjost tela. Singularni inte-
grali su izračunati naprednim tehnikama numeričke integracije, dok
se Houbolt-ova korak-po-korak vremensko integraciona šema koristi za
dobijanje dinamičkog odgovora. Numerički primeri su prikazani kako
radi ilustracije predloženog metoda tako i zbog demonstracije njegove
tačnosti i sposobnosti.


